Prediction of various soil properties for a national spatial dataset of Scottish soils based on four different chemometric approaches: A comparison of near infrared and mid-infrared spectroscopy

•ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction of carbon.•CNN-1D and cubist techniques generated higher predictive ability than other models.•Feature impacts on predicted values were expl...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 396; p. 115071
Main Authors Haghi, R.K., Pérez-Fernández, E., Robertson, A.H.J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction of carbon.•CNN-1D and cubist techniques generated higher predictive ability than other models.•Feature impacts on predicted values were explored based on a game theory method. Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in soil samples. This study aims to assess the performance of diffuse reflectance spectroscopy in the near-infrared (NIR) region and Attenuated Total Reflection Fourier Transform infrared spectroscopy (ATR-FTIR) in the mid-infrared (MIR) region to predict nine different soil properties: total carbon, total nitrogen, bulk density, clay, sand, silt, pH (in H2O), exchangeable Mg and exchangeable K using chemometric approaches. The predictive performance of four different regression methods i.e., Partial least square (PLS), support vector regression (SVR), Cubist and convolutional neural network (CNN) in combination with different pre-processing approaches were investigated. For CNN, the FTIR/NIR spectra were converted to spectrograms and fed into the CNN to examine the prediction accuracy of two-dimensional convolutional neural network (CNN-2D) and to compare its performance with one-dimensional convolutional neural networks (CNN-1D, spectral data as input). To achieve these objectives, we used a spectral library of 650 samples from National Soils Inventory of Scotland (NSIS) dataset collected in a 20 km grid throughout Scotland between 2007 and 2009. The FTIR and NIR data were both split into calibration (nc = 520) and validation (nv = 130) sets. Our results show that the regression models with FTIR data have better predictive performance than those created using NIR data for all the studied soil properties (improvement in root mean square error of prediction (RMSEP) of 3–61%), except for pH. Comparing the different chemometric approaches, for both the NIR and FTIR, the results indicated that the CNN-1D models performs better than PLS, SVR and CNN-2D for all the studied soil components in terms of RMSEP. We found that the CNN-1D models created using the NIR spectral dataset were superior (lower RMSEP values) to those developed using the Cubist approach for total carbon, total nitrogen, clay, silt, pH and exchangeable K, whereas the Cubist models for sand and exchangeable Mg performed slightly better than CNN-1D. For the FTIR data, Cubist models for total carbon and silt performed best (with lowest RMSEP and highest Residual Prediction Deviation (RPD) values), while for the rest of the components, CNN-1D outperformed the PLS, SVR, Cubist and CNN-2D. We also calculated the impact of the NIR and FTIR variables used by the Cubist and CNN-1D models in predicting different soil properties. We used the Shapley Additive Explanation (SHAP) values, a game theoretic approach, to interpret the output of the CNN-1D models.
AbstractList Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in soil samples. This study aims to assess the performance of diffuse reflectance spectroscopy in the near-infrared (NIR) region and Attenuated Total Reflection Fourier Transform infrared spectroscopy (ATR-FTIR) in the mid-infrared (MIR) region to predict nine different soil properties: total carbon, total nitrogen, bulk density, clay, sand, silt, pH (in H₂O), exchangeable Mg and exchangeable K using chemometric approaches. The predictive performance of four different regression methods i.e., Partial least square (PLS), support vector regression (SVR), Cubist and convolutional neural network (CNN) in combination with different pre-processing approaches were investigated. For CNN, the FTIR/NIR spectra were converted to spectrograms and fed into the CNN to examine the prediction accuracy of two-dimensional convolutional neural network (CNN-2D) and to compare its performance with one-dimensional convolutional neural networks (CNN-1D, spectral data as input). To achieve these objectives, we used a spectral library of 650 samples from National Soils Inventory of Scotland (NSIS) dataset collected in a 20 km grid throughout Scotland between 2007 and 2009. The FTIR and NIR data were both split into calibration (nc = 520) and validation (nᵥ = 130) sets. Our results show that the regression models with FTIR data have better predictive performance than those created using NIR data for all the studied soil properties (improvement in root mean square error of prediction (RMSEP) of 3–61%), except for pH. Comparing the different chemometric approaches, for both the NIR and FTIR, the results indicated that the CNN-1D models performs better than PLS, SVR and CNN-2D for all the studied soil components in terms of RMSEP. We found that the CNN-1D models created using the NIR spectral dataset were superior (lower RMSEP values) to those developed using the Cubist approach for total carbon, total nitrogen, clay, silt, pH and exchangeable K, whereas the Cubist models for sand and exchangeable Mg performed slightly better than CNN-1D. For the FTIR data, Cubist models for total carbon and silt performed best (with lowest RMSEP and highest Residual Prediction Deviation (RPD) values), while for the rest of the components, CNN-1D outperformed the PLS, SVR, Cubist and CNN-2D. We also calculated the impact of the NIR and FTIR variables used by the Cubist and CNN-1D models in predicting different soil properties. We used the Shapley Additive Explanation (SHAP) values, a game theoretic approach, to interpret the output of the CNN-1D models.
•ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction of carbon.•CNN-1D and cubist techniques generated higher predictive ability than other models.•Feature impacts on predicted values were explored based on a game theory method. Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in soil samples. This study aims to assess the performance of diffuse reflectance spectroscopy in the near-infrared (NIR) region and Attenuated Total Reflection Fourier Transform infrared spectroscopy (ATR-FTIR) in the mid-infrared (MIR) region to predict nine different soil properties: total carbon, total nitrogen, bulk density, clay, sand, silt, pH (in H2O), exchangeable Mg and exchangeable K using chemometric approaches. The predictive performance of four different regression methods i.e., Partial least square (PLS), support vector regression (SVR), Cubist and convolutional neural network (CNN) in combination with different pre-processing approaches were investigated. For CNN, the FTIR/NIR spectra were converted to spectrograms and fed into the CNN to examine the prediction accuracy of two-dimensional convolutional neural network (CNN-2D) and to compare its performance with one-dimensional convolutional neural networks (CNN-1D, spectral data as input). To achieve these objectives, we used a spectral library of 650 samples from National Soils Inventory of Scotland (NSIS) dataset collected in a 20 km grid throughout Scotland between 2007 and 2009. The FTIR and NIR data were both split into calibration (nc = 520) and validation (nv = 130) sets. Our results show that the regression models with FTIR data have better predictive performance than those created using NIR data for all the studied soil properties (improvement in root mean square error of prediction (RMSEP) of 3–61%), except for pH. Comparing the different chemometric approaches, for both the NIR and FTIR, the results indicated that the CNN-1D models performs better than PLS, SVR and CNN-2D for all the studied soil components in terms of RMSEP. We found that the CNN-1D models created using the NIR spectral dataset were superior (lower RMSEP values) to those developed using the Cubist approach for total carbon, total nitrogen, clay, silt, pH and exchangeable K, whereas the Cubist models for sand and exchangeable Mg performed slightly better than CNN-1D. For the FTIR data, Cubist models for total carbon and silt performed best (with lowest RMSEP and highest Residual Prediction Deviation (RPD) values), while for the rest of the components, CNN-1D outperformed the PLS, SVR, Cubist and CNN-2D. We also calculated the impact of the NIR and FTIR variables used by the Cubist and CNN-1D models in predicting different soil properties. We used the Shapley Additive Explanation (SHAP) values, a game theoretic approach, to interpret the output of the CNN-1D models.
ArticleNumber 115071
Author Pérez-Fernández, E.
Robertson, A.H.J.
Haghi, R.K.
Author_xml – sequence: 1
  givenname: R.K.
  surname: Haghi
  fullname: Haghi, R.K.
  email: Reza.Haghi@hutton.ac.uk
  organization: The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland
– sequence: 2
  givenname: E.
  surname: Pérez-Fernández
  fullname: Pérez-Fernández, E.
  organization: BÜCHI Labortechnik AG, Flawil, Switzerland
– sequence: 3
  givenname: A.H.J.
  surname: Robertson
  fullname: Robertson, A.H.J.
  organization: The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland
BookMark eNqFUctuFDEQtFAisUn4BeQjl1lsT-aFOBBFASJFIlLgbPXYbeLVjD20vZHye3wZ3gzkwCWntktV3aWqE3YUYkDG3kqxlUK273fbnxgt0gxbJZTcStmITr5iG9l3qmpVMxyxjSjMqhOtfM1OUtqVbyeU2LDft4TWm-xj4NHxByAf94mn6Ce-UFyQssfEXSQOPMCBBxNPS3mVaSFDwnxQ3pmYs0_3T9LEx4JbXpa6uCduvXNIGDI39zjHGTN5w2EpF6Ag6QO_4CbOS7meViMBgbgPjqD44xAsn72tnoG0oMkUk4nL4xk7djAlfPN3nrIfn6--X36tbr59ub68uKmgbvtcNa5TUrRo1Fj33QgK0GLdg-3P29rgAArHUbZmEPWII0IHUHdmcNY6I4fzoT5l79a9xfWvPaasZ58MThMELJlp1TRy6EWnVKF-XKmmeEyEThufn8LLBH7SUuhDdXqn_1WnD9Xptboib_-TL-RnoMeXhZ9WIZYcHjySTsZjMKViKoFpG_1LK_4AllPAjQ
CitedBy_id crossref_primary_10_1016_j_meatsci_2022_108900
crossref_primary_10_1016_j_geoderma_2024_117005
crossref_primary_10_1111_ejss_13370
crossref_primary_10_1016_j_geoderma_2025_117207
crossref_primary_10_1016_j_geoderma_2024_116799
crossref_primary_10_1016_j_renene_2022_05_097
crossref_primary_10_1007_s11104_024_06833_1
crossref_primary_10_1039_D2AY00736C
crossref_primary_10_3390_agronomy12030638
crossref_primary_10_1002_agg2_20438
crossref_primary_10_2166_wst_2023_097
crossref_primary_10_1080_10408347_2024_2351820
crossref_primary_10_1111_ejss_13323
crossref_primary_10_1016_j_compag_2024_108643
crossref_primary_10_1016_j_measurement_2024_114270
crossref_primary_10_1016_j_geoderma_2022_116284
crossref_primary_10_1177_09670335231173140
crossref_primary_10_1016_j_saa_2024_124343
crossref_primary_10_3390_land13020154
crossref_primary_10_3390_molecules28196959
crossref_primary_10_1080_10408398_2023_2198015
crossref_primary_10_1016_j_jfca_2024_105996
crossref_primary_10_1016_j_geoderma_2023_116589
crossref_primary_10_1016_j_ecoinf_2024_102784
crossref_primary_10_1016_j_still_2024_106297
crossref_primary_10_1016_j_jhazmat_2024_135184
crossref_primary_10_1080_00103624_2023_2223657
crossref_primary_10_1016_j_catena_2025_108958
crossref_primary_10_1002_jrs_6435
crossref_primary_10_1016_j_jfca_2024_106200
crossref_primary_10_1021_acs_analchem_2c05094
crossref_primary_10_1016_j_microc_2023_109306
crossref_primary_10_1016_j_aca_2022_340238
crossref_primary_10_1016_j_jddst_2024_106424
crossref_primary_10_1016_j_ecolind_2023_111437
crossref_primary_10_1111_ejss_13438
crossref_primary_10_1002_saj2_70028
crossref_primary_10_1016_j_compag_2024_108627
crossref_primary_10_1111_ejss_13271
crossref_primary_10_3390_rs15174264
crossref_primary_10_1016_j_rsase_2022_100879
crossref_primary_10_1016_j_geoderma_2021_115366
crossref_primary_10_1016_j_saa_2024_125001
crossref_primary_10_1016_j_seh_2024_100113
crossref_primary_10_1016_j_compag_2023_108067
crossref_primary_10_3389_fbioe_2024_1228846
crossref_primary_10_1080_10095020_2024_2343021
crossref_primary_10_1016_j_geoderma_2022_116063
crossref_primary_10_3390_rs14020397
crossref_primary_10_7717_peerj_13740
crossref_primary_10_1038_s41598_024_65251_6
crossref_primary_10_1016_j_geoderma_2023_116487
crossref_primary_10_1016_j_geoderma_2024_117037
crossref_primary_10_1016_j_jenvman_2023_118854
crossref_primary_10_3389_fenvs_2021_809995
crossref_primary_10_1016_j_geoderma_2022_116102
crossref_primary_10_1016_j_still_2021_105284
crossref_primary_10_3390_su16198598
crossref_primary_10_3390_app15020503
crossref_primary_10_1016_j_geoderma_2024_116908
crossref_primary_10_3390_s23125495
Cites_doi 10.1080/00401706.1969.10490666
10.1016/j.soilbio.2007.09.019
10.1016/S0146-6380(02)00208-5
10.1016/bs.agron.2015.02.002
10.1029/JB095iB08p12653
10.5194/soil-6-389-2020
10.1016/j.geoderma.2011.08.001
10.1016/j.compag.2019.02.003
10.1080/01431161.2015.1088676
10.5513/JCEA01/16.1.1535
10.1016/j.still.2014.11.002
10.1071/SR9910049
10.1515/9781400881970-018
10.1016/j.geoderma.2017.09.013
10.1016/S0144-8617(00)00245-9
10.1016/j.geoderma.2013.07.017
10.1255/jnirs.1229
10.1016/j.compag.2017.11.029
10.1017/S0021859602002836
10.1016/j.geoderma.2019.06.016
10.1016/j.foodchem.2004.08.039
10.1016/B978-0-12-800132-5.00001-8
10.1016/j.geoderma.2018.04.005
10.1016/j.biosystemseng.2016.04.018
10.1016/j.geoderma.2004.06.007
10.1109/ICASSP.1997.598826
10.1371/journal.pone.0107285
10.1016/j.soilbio.2008.04.003
10.1371/journal.pone.0066409
10.1016/j.saa.2017.10.052
10.1002/wics.51
10.1016/j.trac.2009.07.007
10.1080/10106040802556207
10.1016/j.geodrs.2018.e00198
10.1139/cjss-2016-0116
10.1051/0004-6361:20034526
10.2136/sssaj2015.11.0414
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115071
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115071
S0016706121001452
GeographicLocations Scotland
GeographicLocations_xml – name: Scotland
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-5f72106ec2b387ba2aede38ad8463ce9a2ebb16c903bebea7aa37c9fddfc19493
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 09:59:01 EDT 2025
Tue Jul 01 04:04:55 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Fri Feb 23 02:42:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spectroscopy
CNN
SHAP
ATR-FTIR
NIR
PLS
Chemometric
Cubist
SVR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-5f72106ec2b387ba2aede38ad8463ce9a2ebb16c903bebea7aa37c9fddfc19493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551980722
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551980722
crossref_citationtrail_10_1016_j_geoderma_2021_115071
crossref_primary_10_1016_j_geoderma_2021_115071
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Padarian, Minasny, McBratney (b0155) 2019; 16
Cozzolino, Moron (b0040) 2003; 140
Lilly, A., Bell, J., Hudson, G., Nolan, A., Towers, W., 2010. National Soil Inventory of Scotland 1 (NSIS_1): site location, sampling and profile description protocols (1978–1988). Technical Bulletin.
Rinnan, van den Berg, Engelsen (b0175) 2009; 28
Lundberg, Lee (b0115) 2017
Shi, Wang, Liu, Wu (b0195) 2015; 36
Nocita, Stevens, van Wesemael, Aitkenhead, Bachmann, Barthès, Dor, Brown, Clairotte, Csorba, Robertson (b0145) 2015
Kuhn, Weston, Keefer, Coulter, Quinlan (b0100) 2014
Kačuráková, Wilson (bib256) 2001; 44
Lilly, Bell, Hudson, Nolan, Towers (b0110) 2011
Xu, Zhao, Wang, Shi (b0250) 2018; 310
Ng, Minasny, Montazerolghaem, Padarian, Ferguson, Bailey, McBratney (b0140) 2019; 352
Parikh, Goyne, Margenot, Mukome, Calderón (bib259) 2014; 126
Artz, Chapman, Robertson, Potts, Laggoun-Défarge, Gogo, Comont, Disnar, Francez (b0015) 2008; 40
Butler, O’Rourke, Hillier (b0025) 2018; 329
Farmer (b0055) 1974
Henderson, Bui, Moran, Simon (b0070) 2005; 124
Pérez-Fernández, Robertson (b0165) 2016; 24
Morellos, Pantazi, Moshou, Alexandridis, Whetton, Tziotzios, Wiebensohn, Bill, Mouazen (b0125) 2016; 152
Du, Zhou, Deng, Zhou (b0050) 2010
Singh, Grafe (b0205) 2010
Robertson, A.H.J., Hillier, S.J., Donald, C., Hill, H.R., Team, N., 2013b. A robust FTIR database for Scotland, Proceedings of the 3 rd Global Workshop on Proximal Soil Sensing, pp. 26-29.
Basak, Pal, Patranabis (b0020) 2007; 11
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
Ng, Minasny, Malone, Sarathjith, Das (b0135) 2019; 158
Nguyen, Janik, Raupach (bib258) 1991; 29
Stenberg, Viscarra Rossel, Mouazen, Wetterlind (b0215) 2010; 107
de Santana, de Souza, Poppi (b0045) 2018; 191
Padarian, McBratney, Minasny (b0150) 2020; 6
Kennard, Stone (b0085) 1969; 11
Vohland, Besold, Hill, Fründ (b0240) 2011; 166
Matrajt, Borg, Raynal, Djouadi, d'Hendecourt, Flynn, Deboffle (b0120) 2004; 416
Clark, King, Klejwa, Swayze, Vergo (b0030) 1990; 95
Xu, Ma, Chen, Jiang, He, Shi (b0245) 2018; 144
Singh, Fang, Johnston (b0200) 2016; 80
Stevens, Nocita, Tóth, Montanarella, van Wesemael (b0220) 2013; 8
Vapnik (b0235) 1995
Abdi (b0010) 2010; 2
Im, Jensen, Coleman, Nelson (b0080) 2009; 24
Ge, Thomasson, Morgan (b0060) 2014; 213
Palacio, Aitkenhead, Escudero, Montserrat-Martí, Maestro, Robertson (b0160) 2014; 9
Zornoza, Guerrero, Mataix-Solera, Scow, Arcenegui, Mataix-Beneyto (b0255) 2008; 40
Müllertz, Perrie, Rades (b0130) 2016
Kuhn (b0095) 2008; 28
Yang, Irudayaraj, Paradkar (bib257) 2005; 93
Shapley, L.S., 1953. A value for n-person games. Contributions to the Theory of Games 2(28), 307-317.
Robertson, Hill, Main (b0180) 2013
Team, R.C., 2014. R: A language and environment for statistical computing.
Tinti, Tugnoli, Bonora, Francioso (b0230) 2015; 16
Greenberg, S., Kingsbury, B.E., 1997. The modulation spectrogram: In pursuit of an invariant representation of speech, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, pp. 1647-1650.
Abdi, H., 2003. Partial least square regression (PLS regression). Encyclopedia for research methods for the social sciences 6(4), 792-795.
Kuang, Tekin, Mouazen (b0090) 2015; 146
Quinlan (b0170) 1992
Sorenson, Small, Tappert, Quideau, Drozdowski, Underwood, Janz (b0210) 2017; 97
Cocozza, C., D'orazio, V., Miano, T., Shotyk, W., 2003. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Organ. Geochem. 34(1), 49-60.
Parikh (10.1016/j.geoderma.2021.115071_bib259) 2014; 126
Stevens (10.1016/j.geoderma.2021.115071_b0220) 2013; 8
Xu (10.1016/j.geoderma.2021.115071_b0250) 2018; 310
Kuhn (10.1016/j.geoderma.2021.115071_b0100) 2014
Ng (10.1016/j.geoderma.2021.115071_b0135) 2019; 158
10.1016/j.geoderma.2021.115071_b0185
10.1016/j.geoderma.2021.115071_b0065
10.1016/j.geoderma.2021.115071_b0105
Robertson (10.1016/j.geoderma.2021.115071_b0180) 2013
Sorenson (10.1016/j.geoderma.2021.115071_b0210) 2017; 97
10.1016/j.geoderma.2021.115071_b0225
Cozzolino (10.1016/j.geoderma.2021.115071_b0040) 2003; 140
Clark (10.1016/j.geoderma.2021.115071_b0030) 1990; 95
Ng (10.1016/j.geoderma.2021.115071_b0140) 2019; 352
Im (10.1016/j.geoderma.2021.115071_b0080) 2009; 24
Pérez-Fernández (10.1016/j.geoderma.2021.115071_b0165) 2016; 24
Lundberg (10.1016/j.geoderma.2021.115071_b0115) 2017
Quinlan (10.1016/j.geoderma.2021.115071_b0170) 1992
Zornoza (10.1016/j.geoderma.2021.115071_b0255) 2008; 40
Ge (10.1016/j.geoderma.2021.115071_b0060) 2014; 213
Shi (10.1016/j.geoderma.2021.115071_b0195) 2015; 36
Abdi (10.1016/j.geoderma.2021.115071_b0010) 2010; 2
Kuang (10.1016/j.geoderma.2021.115071_b0090) 2015; 146
Rinnan (10.1016/j.geoderma.2021.115071_b0175) 2009; 28
Matrajt (10.1016/j.geoderma.2021.115071_b0120) 2004; 416
Vapnik (10.1016/j.geoderma.2021.115071_b0235) 1995
Müllertz (10.1016/j.geoderma.2021.115071_b0130) 2016
Vohland (10.1016/j.geoderma.2021.115071_b0240) 2011; 166
Kačuráková (10.1016/j.geoderma.2021.115071_bib256) 2001; 44
Morellos (10.1016/j.geoderma.2021.115071_b0125) 2016; 152
Xu (10.1016/j.geoderma.2021.115071_b0245) 2018; 144
Padarian (10.1016/j.geoderma.2021.115071_b0155) 2019; 16
10.1016/j.geoderma.2021.115071_b0005
Nguyen (10.1016/j.geoderma.2021.115071_bib258) 1991; 29
Tinti (10.1016/j.geoderma.2021.115071_b0230) 2015; 16
Yang (10.1016/j.geoderma.2021.115071_bib257) 2005; 93
Singh (10.1016/j.geoderma.2021.115071_b0200) 2016; 80
Singh (10.1016/j.geoderma.2021.115071_b0205) 2010
de Santana (10.1016/j.geoderma.2021.115071_b0045) 2018; 191
Stenberg (10.1016/j.geoderma.2021.115071_b0215) 2010; 107
10.1016/j.geoderma.2021.115071_b0190
Artz (10.1016/j.geoderma.2021.115071_b0015) 2008; 40
Basak (10.1016/j.geoderma.2021.115071_b0020) 2007; 11
10.1016/j.geoderma.2021.115071_b0075
Farmer (10.1016/j.geoderma.2021.115071_b0055) 1974
10.1016/j.geoderma.2021.115071_b0035
Butler (10.1016/j.geoderma.2021.115071_b0025) 2018; 329
Lilly (10.1016/j.geoderma.2021.115071_b0110) 2011
Palacio (10.1016/j.geoderma.2021.115071_b0160) 2014; 9
Du (10.1016/j.geoderma.2021.115071_b0050) 2010
Nocita (10.1016/j.geoderma.2021.115071_b0145) 2015
Henderson (10.1016/j.geoderma.2021.115071_b0070) 2005; 124
Kuhn (10.1016/j.geoderma.2021.115071_b0095) 2008; 28
Padarian (10.1016/j.geoderma.2021.115071_b0150) 2020; 6
Kennard (10.1016/j.geoderma.2021.115071_b0085) 1969; 11
References_xml – volume: 8
  year: 2013
  ident: b0220
  article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy
  publication-title: PLoS ONE
– volume: 16
  year: 2019
  ident: b0155
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Regional
– volume: 352
  start-page: 251
  year: 2019
  end-page: 267
  ident: b0140
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
– reference: Cocozza, C., D'orazio, V., Miano, T., Shotyk, W., 2003. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Organ. Geochem. 34(1), 49-60.
– volume: 80
  start-page: 613
  year: 2016
  end-page: 622
  ident: b0200
  article-title: A Fourier-transform infrared study of biochar aging in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 95
  start-page: 12653
  year: 1990
  end-page: 12680
  ident: b0030
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res. Solid Earth
– volume: 213
  start-page: 57
  year: 2014
  end-page: 63
  ident: b0060
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
– volume: 97
  start-page: 241
  year: 2017
  end-page: 248
  ident: b0210
  article-title: Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy
  publication-title: Can. J. Soil Sci.
– year: 2011
  ident: b0110
  article-title: National Soil Inventory of Scotland 2007–2009: Profile description and soil sampling protocols (NSIS_2)
– reference: Abdi, H., 2003. Partial least square regression (PLS regression). Encyclopedia for research methods for the social sciences 6(4), 792-795.
– reference: Greenberg, S., Kingsbury, B.E., 1997. The modulation spectrogram: In pursuit of an invariant representation of speech, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, pp. 1647-1650.
– year: 1995
  ident: b0235
  article-title: The nature of statistical learning theory
– volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  ident: b0175
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
– volume: 44
  start-page: 291
  year: 2001
  end-page: 303
  ident: bib256
  article-title: Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates
  publication-title: Carbohydrate polymers
– start-page: 139
  year: 2015
  end-page: 159
  ident: b0145
  article-title: Soil spectroscopy: An alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron. Elsevier
– volume: 9
  year: 2014
  ident: b0160
  article-title: Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils
  publication-title: PLoS ONE
– volume: 146
  start-page: 243
  year: 2015
  end-page: 252
  ident: b0090
  article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content
  publication-title: Soil Tillage Res.
– volume: 158
  start-page: 201
  year: 2019
  end-page: 210
  ident: b0135
  article-title: Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling
  publication-title: Comput. Electron. Agric.
– year: 2016
  ident: b0130
  article-title: Analytical Techniques in the Pharmaceutical Sciences
– reference: Robertson, A.H.J., Hillier, S.J., Donald, C., Hill, H.R., Team, N., 2013b. A robust FTIR database for Scotland, Proceedings of the 3 rd Global Workshop on Proximal Soil Sensing, pp. 26-29.
– volume: 24
  start-page: 305
  year: 2016
  end-page: 316
  ident: b0165
  article-title: Global and local calibrations to predict chemical and physical properties of a national spatial dataset of Scottish soils from their near infrared spectra
  publication-title: J. Near Infrared Spectrosc.
– year: 2013
  ident: b0180
  publication-title: Analysis of Soil in the Field using portable FTIR, International Workshop “Soil Spectroscopy: the present and future of Soil Monitoring
– reference: Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
– volume: 29
  start-page: 49
  year: 1991
  end-page: 67
  ident: bib258
  article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Soil Research
– volume: 40
  start-page: 1923
  year: 2008
  end-page: 1930
  ident: b0255
  article-title: Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils
  publication-title: Soil Biol. Biochem.
– volume: 329
  start-page: 43
  year: 2018
  end-page: 53
  ident: b0025
  article-title: Using rule-based regression models to predict and interpret soil properties from X-ray powder diffraction data
  publication-title: Geoderma
– volume: 6
  start-page: 389
  year: 2020
  end-page: 397
  ident: b0150
  article-title: Game theory interpretation of digital soil mapping convolutional neural networks
  publication-title: Soil
– volume: 36
  start-page: 4652
  year: 2015
  end-page: 4667
  ident: b0195
  article-title: Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance
  publication-title: Int. J. Remote Sens.
– volume: 93
  start-page: 25
  year: 2005
  end-page: 32
  ident: bib257
  article-title: Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy
  publication-title: Food Chemistry
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: b0095
  article-title: Caret package
  publication-title: J. Stat. Softw.
– year: 2010
  ident: b0205
  article-title: Synchrotron-based techniques in soils and sediments, 34
– volume: 310
  start-page: 29
  year: 2018
  end-page: 43
  ident: b0250
  article-title: Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by VIS–NIR spectroscopy
  publication-title: Geoderma
– reference: Shapley, L.S., 1953. A value for n-person games. Contributions to the Theory of Games 2(28), 307-317.
– volume: 416
  start-page: 983
  year: 2004
  end-page: 990
  ident: b0120
  article-title: FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium
  publication-title: Astron. Astrophys.
– start-page: 343
  year: 1992
  end-page: 348
  ident: b0170
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Scientific
– volume: 24
  start-page: 293
  year: 2009
  end-page: 312
  ident: b0080
  article-title: Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments
  publication-title: Geocarto Int.
– volume: 2
  start-page: 97
  year: 2010
  end-page: 106
  ident: b0010
  article-title: Partial least squares regression and projection on latent structure regression (PLS Regression)
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  ident: b0215
  article-title: Chapter Five-Visible and Near Infrared Spectroscopy
  publication-title: Soil Sci. Adv. Agron.
– start-page: 4765
  year: 2017
  end-page: 4774
  ident: b0115
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neur. Informat. Process. Syst.
– reference: Lilly, A., Bell, J., Hudson, G., Nolan, A., Towers, W., 2010. National Soil Inventory of Scotland 1 (NSIS_1): site location, sampling and profile description protocols (1978–1988). Technical Bulletin.
– volume: 166
  start-page: 198
  year: 2011
  end-page: 205
  ident: b0240
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
– reference: Team, R.C., 2014. R: A language and environment for statistical computing.
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  ident: b0085
  article-title: Computer aided design of experiments
  publication-title: Technometrics
– start-page: 18
  year: 2014
  ident: b0100
  article-title: Cubist: rule-and instance-based regression modeling
  publication-title: R package version
– volume: 140
  start-page: 65
  year: 2003
  end-page: 71
  ident: b0040
  article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics
  publication-title: J. Agricult. Sci.
– volume: 144
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0245
  article-title: Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy
  publication-title: Comput. Electron. Agric.
– volume: 191
  start-page: 454
  year: 2018
  end-page: 462
  ident: b0045
  article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– year: 1974
  ident: b0055
  article-title: Infrared spectra of minerals
  publication-title: Mineral. Soc.
– volume: 11
  start-page: 203
  year: 2007
  end-page: 224
  ident: b0020
  article-title: Support vector regression
  publication-title: Neur. Inform. Process.-Lett. Rev.
– volume: 40
  start-page: 515
  year: 2008
  end-page: 527
  ident: b0015
  article-title: FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands
  publication-title: Soil Biol. Biochem.
– volume: 152
  start-page: 104
  year: 2016
  end-page: 116
  ident: b0125
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
  publication-title: Biosyst. Eng.
– volume: 124
  start-page: 383
  year: 2005
  end-page: 398
  ident: b0070
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
– start-page: 265
  year: 2010
  end-page: 268
  ident: b0050
  article-title: Characterization of soil clay minerals using mid-infrared spectroscopy, Molecular environmental soil science at the interfaces in the earth’s critical zone
  publication-title: Springer
– volume: 16
  year: 2015
  ident: b0230
  article-title: Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review
  publication-title: J. Central Eur. Agricult.
– volume: 126
  start-page: 1
  year: 2014
  end-page: 148
  ident: bib259
  article-title: Soil chemical insights provided through vibrational spectroscopy
  publication-title: Advances in agronomy
– volume: 11
  start-page: 137
  issue: 1
  year: 1969
  ident: 10.1016/j.geoderma.2021.115071_b0085
  article-title: Computer aided design of experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– ident: 10.1016/j.geoderma.2021.115071_b0185
– volume: 40
  start-page: 515
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2021.115071_b0015
  article-title: FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.09.019
– ident: 10.1016/j.geoderma.2021.115071_b0035
  doi: 10.1016/S0146-6380(02)00208-5
– year: 2010
  ident: 10.1016/j.geoderma.2021.115071_b0205
– start-page: 139
  year: 2015
  ident: 10.1016/j.geoderma.2021.115071_b0145
  article-title: Soil spectroscopy: An alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron. Elsevier
  doi: 10.1016/bs.agron.2015.02.002
– volume: 95
  start-page: 12653
  issue: B8
  year: 1990
  ident: 10.1016/j.geoderma.2021.115071_b0030
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB095iB08p12653
– start-page: 4765
  year: 2017
  ident: 10.1016/j.geoderma.2021.115071_b0115
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neur. Informat. Process. Syst.
– volume: 6
  start-page: 389
  issue: 2
  year: 2020
  ident: 10.1016/j.geoderma.2021.115071_b0150
  article-title: Game theory interpretation of digital soil mapping convolutional neural networks
  publication-title: Soil
  doi: 10.5194/soil-6-389-2020
– ident: 10.1016/j.geoderma.2021.115071_b0105
– year: 2013
  ident: 10.1016/j.geoderma.2021.115071_b0180
– year: 2011
  ident: 10.1016/j.geoderma.2021.115071_b0110
– volume: 166
  start-page: 198
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2021.115071_b0240
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.001
– volume: 158
  start-page: 201
  year: 2019
  ident: 10.1016/j.geoderma.2021.115071_b0135
  article-title: Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.02.003
– volume: 36
  start-page: 4652
  issue: 18
  year: 2015
  ident: 10.1016/j.geoderma.2021.115071_b0195
  article-title: Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1088676
– volume: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115071_b0230
  article-title: Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review
  publication-title: J. Central Eur. Agricult.
  doi: 10.5513/JCEA01/16.1.1535
– ident: 10.1016/j.geoderma.2021.115071_b0225
– volume: 146
  start-page: 243
  year: 2015
  ident: 10.1016/j.geoderma.2021.115071_b0090
  article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2014.11.002
– volume: 29
  start-page: 49
  issue: 1
  year: 1991
  ident: 10.1016/j.geoderma.2021.115071_bib258
  article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Soil Research
  doi: 10.1071/SR9910049
– ident: 10.1016/j.geoderma.2021.115071_b0190
  doi: 10.1515/9781400881970-018
– year: 1995
  ident: 10.1016/j.geoderma.2021.115071_b0235
– start-page: 265
  year: 2010
  ident: 10.1016/j.geoderma.2021.115071_b0050
  article-title: Characterization of soil clay minerals using mid-infrared spectroscopy, Molecular environmental soil science at the interfaces in the earth’s critical zone
  publication-title: Springer
– volume: 310
  start-page: 29
  year: 2018
  ident: 10.1016/j.geoderma.2021.115071_b0250
  article-title: Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by VIS–NIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.09.013
– year: 2016
  ident: 10.1016/j.geoderma.2021.115071_b0130
– volume: 44
  start-page: 291
  issue: 4
  year: 2001
  ident: 10.1016/j.geoderma.2021.115071_bib256
  article-title: Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates
  publication-title: Carbohydrate polymers
  doi: 10.1016/S0144-8617(00)00245-9
– volume: 213
  start-page: 57
  year: 2014
  ident: 10.1016/j.geoderma.2021.115071_b0060
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.017
– volume: 24
  start-page: 305
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2021.115071_b0165
  article-title: Global and local calibrations to predict chemical and physical properties of a national spatial dataset of Scottish soils from their near infrared spectra
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.1229
– volume: 144
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2021.115071_b0245
  article-title: Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.11.029
– volume: 140
  start-page: 65
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2021.115071_b0040
  article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics
  publication-title: J. Agricult. Sci.
  doi: 10.1017/S0021859602002836
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 10.1016/j.geoderma.2021.115071_b0095
  article-title: Caret package
  publication-title: J. Stat. Softw.
– volume: 352
  start-page: 251
  year: 2019
  ident: 10.1016/j.geoderma.2021.115071_b0140
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.016
– volume: 93
  start-page: 25
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2021.115071_bib257
  article-title: Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2004.08.039
– volume: 126
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2021.115071_bib259
  article-title: Soil chemical insights provided through vibrational spectroscopy
  publication-title: Advances in agronomy
  doi: 10.1016/B978-0-12-800132-5.00001-8
– volume: 329
  start-page: 43
  year: 2018
  ident: 10.1016/j.geoderma.2021.115071_b0025
  article-title: Using rule-based regression models to predict and interpret soil properties from X-ray powder diffraction data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.005
– volume: 152
  start-page: 104
  year: 2016
  ident: 10.1016/j.geoderma.2021.115071_b0125
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.04.018
– volume: 124
  start-page: 383
  issue: 3–4
  year: 2005
  ident: 10.1016/j.geoderma.2021.115071_b0070
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– ident: 10.1016/j.geoderma.2021.115071_b0065
  doi: 10.1109/ICASSP.1997.598826
– volume: 9
  issue: 9
  year: 2014
  ident: 10.1016/j.geoderma.2021.115071_b0160
  article-title: Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0107285
– volume: 40
  start-page: 1923
  issue: 7
  year: 2008
  ident: 10.1016/j.geoderma.2021.115071_b0255
  article-title: Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.04.003
– year: 1974
  ident: 10.1016/j.geoderma.2021.115071_b0055
  article-title: Infrared spectra of minerals
  publication-title: Mineral. Soc.
– volume: 107
  start-page: 163
  year: 2010
  ident: 10.1016/j.geoderma.2021.115071_b0215
  article-title: Chapter Five-Visible and Near Infrared Spectroscopy
  publication-title: Soil Sci. Adv. Agron.
– volume: 8
  issue: 6
  year: 2013
  ident: 10.1016/j.geoderma.2021.115071_b0220
  article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0066409
– ident: 10.1016/j.geoderma.2021.115071_b0075
– volume: 191
  start-page: 454
  year: 2018
  ident: 10.1016/j.geoderma.2021.115071_b0045
  article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.10.052
– volume: 2
  start-page: 97
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2021.115071_b0010
  article-title: Partial least squares regression and projection on latent structure regression (PLS Regression)
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.51
– start-page: 343
  year: 1992
  ident: 10.1016/j.geoderma.2021.115071_b0170
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Scientific
– volume: 28
  start-page: 1201
  issue: 10
  year: 2009
  ident: 10.1016/j.geoderma.2021.115071_b0175
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– volume: 24
  start-page: 293
  issue: 4
  year: 2009
  ident: 10.1016/j.geoderma.2021.115071_b0080
  article-title: Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments
  publication-title: Geocarto Int.
  doi: 10.1080/10106040802556207
– volume: 16
  year: 2019
  ident: 10.1016/j.geoderma.2021.115071_b0155
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00198
– volume: 97
  start-page: 241
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2021.115071_b0210
  article-title: Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy
  publication-title: Can. J. Soil Sci.
  doi: 10.1139/cjss-2016-0116
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: 10.1016/j.geoderma.2021.115071_b0020
  article-title: Support vector regression
  publication-title: Neur. Inform. Process.-Lett. Rev.
– start-page: 18
  year: 2014
  ident: 10.1016/j.geoderma.2021.115071_b0100
  article-title: Cubist: rule-and instance-based regression modeling
  publication-title: R package version
– volume: 416
  start-page: 983
  issue: 3
  year: 2004
  ident: 10.1016/j.geoderma.2021.115071_b0120
  article-title: FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20034526
– volume: 80
  start-page: 613
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2021.115071_b0200
  article-title: A Fourier-transform infrared study of biochar aging in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.11.0414
– ident: 10.1016/j.geoderma.2021.115071_b0005
SSID ssj0017020
Score 2.5654624
Snippet •ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction...
Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115071
SubjectTerms ATR-FTIR
bulk density
carbon
Chemometric
chemometrics
clay
CNN
Cubist
data collection
exchangeable magnesium
exchangeable potassium
Fourier transform infrared spectroscopy
inventories
least squares
neural networks
NIR
PLS
prediction
reflectance spectroscopy
sand
Scotland
SHAP
silt
spatial data
spectral analysis
Spectroscopy
SVR
total nitrogen
Title Prediction of various soil properties for a national spatial dataset of Scottish soils based on four different chemometric approaches: A comparison of near infrared and mid-infrared spectroscopy
URI https://dx.doi.org/10.1016/j.geoderma.2021.115071
https://www.proquest.com/docview/2551980722
Volume 396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6W9aIH8Ym76lKC1-zk2Q9vw-IyKiweXNhb6PRDs-wkQxIFL_44f5lVnfSgguzBU0hINU1XdT26q75i7DUXukqtEYlHcUrKMvVJIwn31otGuTxF9RCyfC_45rJ8f1VdHbCzWAtDaZWL7p91etDWy5fVspqrXdtSjW_GRRoQsOhujPRwWQqS8tMf-zSPTKQLNGPGE_r7tyrha-QRNRwL-EN5djo7R_8yUH-p6mB_zh-w-4vjCOt5bg_ZgesesXvrz8MCnuEes58fB7p2oaWG3sM3DIMxroexb29gR4fuA6GnArqpoCGeAsJIOdX4pFzR0U1EGbrct-OXQDoCWToLOKjHSUBsqTIB8nvbb6kll4GITe7GN7AGs-9uSMN1uJsAJXmgZHfQnYVta5P9h1DsSaCa_e77E3Z5_vbT2SZZejQkuuBySiqPIWTKncmbQopG59pZV0ht0a8pjFM6d02TcaPSokF50ULrQhjlrfUmU6UqnrLDru_cMwZSuLK03Bj0cMpcONkYy62XQqFbJiU_YlVkTG0WAHPqo3FTx0y16zoytCaG1jNDj9hqT7ebITxupVCR7_UfwlijnbmV9lUUlBp3Kl2_6M4ht2sM3jIlU5Hnx_8x_nN2l97oWDurXrDDafjqXqJfNDUnQfBP2J31uw-bi1_16ROw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcoz0GCY7qJk9gOEocVUG1pqZBopd6MYzuQqpuskhTUC3-Kf8AvYyaPFSChHlBPkRKNleQbz8Mef8PYcyFNGjorgwLVKUiSsAhyRby3hcwzz0M0D32V74FYHCXvjtPjDfZjOgtDZZWj7R9sem-txzuz8W_OVmVJZ3wjIcOeAYv2xvhYWbnnz79h3ta-2n2DIL_gfOft4etFMLYWCEwsVBekBWY-ofCW57GSueHGOx8r49Adx9Znhvs8j4TNwjjHzzTSmFjarHCusJj2EwMT2v0rCZoLapuw_X1dVxLJcOSCjERAr_fbseQTVArqcNYTHvFoe4jG_uUR__INvcPbuclujJEqzIefcYtt-Oo2uz7_3IxsHf4O-_mhoX0ewhbqAr5i3l2ftdDW5SmsaJW_IbpWwLgYDEzLjtBSETdeqTi19R1JfiSGiLL90ou2QK7VAQ5a4EvA1MOlA1SwZb2kHmAWJjJ0376EOdh1O0UarkKIAKdOQ9X1YCoHy9IF6xv96VJi8axX53fZ0aUgd49tVnXl7zNQ0ieJE9ZiSJVw6VVunXCFkhnGgUqJLZZOwGg7MqZT445TPZXGnegJUE2A6gHQLTZby60GzpALJbIJd_2H9mt0bBfKPpsURaNpoP0eU3lEW2O2GGUqlJw_-I_xn7Kri8P3-3p_92DvIbtGT2hNPUofsc2uOfOPMSjr8if9JAD26bJn3S-QkVIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+various+soil+properties+for+a+national+spatial+dataset+of+Scottish+soils+based+on+four+different+chemometric+approaches%3A+A+comparison+of+near+infrared+and+mid-infrared+spectroscopy&rft.jtitle=Geoderma&rft.au=Haghi%2C+R.K.&rft.au=P%C3%A9rez-Fern%C3%A1ndez%2C+E.&rft.au=Robertson%2C+A.H.J.&rft.date=2021-08-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=396&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115071&rft.externalDocID=S0016706121001452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon