Prediction of various soil properties for a national spatial dataset of Scottish soils based on four different chemometric approaches: A comparison of near infrared and mid-infrared spectroscopy
•ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction of carbon.•CNN-1D and cubist techniques generated higher predictive ability than other models.•Feature impacts on predicted values were expl...
Saved in:
Published in | Geoderma Vol. 396; p. 115071 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction of carbon.•CNN-1D and cubist techniques generated higher predictive ability than other models.•Feature impacts on predicted values were explored based on a game theory method.
Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in soil samples. This study aims to assess the performance of diffuse reflectance spectroscopy in the near-infrared (NIR) region and Attenuated Total Reflection Fourier Transform infrared spectroscopy (ATR-FTIR) in the mid-infrared (MIR) region to predict nine different soil properties: total carbon, total nitrogen, bulk density, clay, sand, silt, pH (in H2O), exchangeable Mg and exchangeable K using chemometric approaches. The predictive performance of four different regression methods i.e., Partial least square (PLS), support vector regression (SVR), Cubist and convolutional neural network (CNN) in combination with different pre-processing approaches were investigated. For CNN, the FTIR/NIR spectra were converted to spectrograms and fed into the CNN to examine the prediction accuracy of two-dimensional convolutional neural network (CNN-2D) and to compare its performance with one-dimensional convolutional neural networks (CNN-1D, spectral data as input). To achieve these objectives, we used a spectral library of 650 samples from National Soils Inventory of Scotland (NSIS) dataset collected in a 20 km grid throughout Scotland between 2007 and 2009. The FTIR and NIR data were both split into calibration (nc = 520) and validation (nv = 130) sets. Our results show that the regression models with FTIR data have better predictive performance than those created using NIR data for all the studied soil properties (improvement in root mean square error of prediction (RMSEP) of 3–61%), except for pH. Comparing the different chemometric approaches, for both the NIR and FTIR, the results indicated that the CNN-1D models performs better than PLS, SVR and CNN-2D for all the studied soil components in terms of RMSEP. We found that the CNN-1D models created using the NIR spectral dataset were superior (lower RMSEP values) to those developed using the Cubist approach for total carbon, total nitrogen, clay, silt, pH and exchangeable K, whereas the Cubist models for sand and exchangeable Mg performed slightly better than CNN-1D. For the FTIR data, Cubist models for total carbon and silt performed best (with lowest RMSEP and highest Residual Prediction Deviation (RPD) values), while for the rest of the components, CNN-1D outperformed the PLS, SVR, Cubist and CNN-2D. We also calculated the impact of the NIR and FTIR variables used by the Cubist and CNN-1D models in predicting different soil properties. We used the Shapley Additive Explanation (SHAP) values, a game theoretic approach, to interpret the output of the CNN-1D models. |
---|---|
AbstractList | Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in soil samples. This study aims to assess the performance of diffuse reflectance spectroscopy in the near-infrared (NIR) region and Attenuated Total Reflection Fourier Transform infrared spectroscopy (ATR-FTIR) in the mid-infrared (MIR) region to predict nine different soil properties: total carbon, total nitrogen, bulk density, clay, sand, silt, pH (in H₂O), exchangeable Mg and exchangeable K using chemometric approaches. The predictive performance of four different regression methods i.e., Partial least square (PLS), support vector regression (SVR), Cubist and convolutional neural network (CNN) in combination with different pre-processing approaches were investigated. For CNN, the FTIR/NIR spectra were converted to spectrograms and fed into the CNN to examine the prediction accuracy of two-dimensional convolutional neural network (CNN-2D) and to compare its performance with one-dimensional convolutional neural networks (CNN-1D, spectral data as input). To achieve these objectives, we used a spectral library of 650 samples from National Soils Inventory of Scotland (NSIS) dataset collected in a 20 km grid throughout Scotland between 2007 and 2009. The FTIR and NIR data were both split into calibration (nc = 520) and validation (nᵥ = 130) sets. Our results show that the regression models with FTIR data have better predictive performance than those created using NIR data for all the studied soil properties (improvement in root mean square error of prediction (RMSEP) of 3–61%), except for pH. Comparing the different chemometric approaches, for both the NIR and FTIR, the results indicated that the CNN-1D models performs better than PLS, SVR and CNN-2D for all the studied soil components in terms of RMSEP. We found that the CNN-1D models created using the NIR spectral dataset were superior (lower RMSEP values) to those developed using the Cubist approach for total carbon, total nitrogen, clay, silt, pH and exchangeable K, whereas the Cubist models for sand and exchangeable Mg performed slightly better than CNN-1D. For the FTIR data, Cubist models for total carbon and silt performed best (with lowest RMSEP and highest Residual Prediction Deviation (RPD) values), while for the rest of the components, CNN-1D outperformed the PLS, SVR, Cubist and CNN-2D. We also calculated the impact of the NIR and FTIR variables used by the Cubist and CNN-1D models in predicting different soil properties. We used the Shapley Additive Explanation (SHAP) values, a game theoretic approach, to interpret the output of the CNN-1D models. •ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction of carbon.•CNN-1D and cubist techniques generated higher predictive ability than other models.•Feature impacts on predicted values were explored based on a game theory method. Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in soil samples. This study aims to assess the performance of diffuse reflectance spectroscopy in the near-infrared (NIR) region and Attenuated Total Reflection Fourier Transform infrared spectroscopy (ATR-FTIR) in the mid-infrared (MIR) region to predict nine different soil properties: total carbon, total nitrogen, bulk density, clay, sand, silt, pH (in H2O), exchangeable Mg and exchangeable K using chemometric approaches. The predictive performance of four different regression methods i.e., Partial least square (PLS), support vector regression (SVR), Cubist and convolutional neural network (CNN) in combination with different pre-processing approaches were investigated. For CNN, the FTIR/NIR spectra were converted to spectrograms and fed into the CNN to examine the prediction accuracy of two-dimensional convolutional neural network (CNN-2D) and to compare its performance with one-dimensional convolutional neural networks (CNN-1D, spectral data as input). To achieve these objectives, we used a spectral library of 650 samples from National Soils Inventory of Scotland (NSIS) dataset collected in a 20 km grid throughout Scotland between 2007 and 2009. The FTIR and NIR data were both split into calibration (nc = 520) and validation (nv = 130) sets. Our results show that the regression models with FTIR data have better predictive performance than those created using NIR data for all the studied soil properties (improvement in root mean square error of prediction (RMSEP) of 3–61%), except for pH. Comparing the different chemometric approaches, for both the NIR and FTIR, the results indicated that the CNN-1D models performs better than PLS, SVR and CNN-2D for all the studied soil components in terms of RMSEP. We found that the CNN-1D models created using the NIR spectral dataset were superior (lower RMSEP values) to those developed using the Cubist approach for total carbon, total nitrogen, clay, silt, pH and exchangeable K, whereas the Cubist models for sand and exchangeable Mg performed slightly better than CNN-1D. For the FTIR data, Cubist models for total carbon and silt performed best (with lowest RMSEP and highest Residual Prediction Deviation (RPD) values), while for the rest of the components, CNN-1D outperformed the PLS, SVR, Cubist and CNN-2D. We also calculated the impact of the NIR and FTIR variables used by the Cubist and CNN-1D models in predicting different soil properties. We used the Shapley Additive Explanation (SHAP) values, a game theoretic approach, to interpret the output of the CNN-1D models. |
ArticleNumber | 115071 |
Author | Pérez-Fernández, E. Robertson, A.H.J. Haghi, R.K. |
Author_xml | – sequence: 1 givenname: R.K. surname: Haghi fullname: Haghi, R.K. email: Reza.Haghi@hutton.ac.uk organization: The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland – sequence: 2 givenname: E. surname: Pérez-Fernández fullname: Pérez-Fernández, E. organization: BÜCHI Labortechnik AG, Flawil, Switzerland – sequence: 3 givenname: A.H.J. surname: Robertson fullname: Robertson, A.H.J. organization: The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland |
BookMark | eNqFUctuFDEQtFAisUn4BeQjl1lsT-aFOBBFASJFIlLgbPXYbeLVjD20vZHye3wZ3gzkwCWntktV3aWqE3YUYkDG3kqxlUK273fbnxgt0gxbJZTcStmITr5iG9l3qmpVMxyxjSjMqhOtfM1OUtqVbyeU2LDft4TWm-xj4NHxByAf94mn6Ce-UFyQssfEXSQOPMCBBxNPS3mVaSFDwnxQ3pmYs0_3T9LEx4JbXpa6uCduvXNIGDI39zjHGTN5w2EpF6Ag6QO_4CbOS7meViMBgbgPjqD44xAsn72tnoG0oMkUk4nL4xk7djAlfPN3nrIfn6--X36tbr59ub68uKmgbvtcNa5TUrRo1Fj33QgK0GLdg-3P29rgAArHUbZmEPWII0IHUHdmcNY6I4fzoT5l79a9xfWvPaasZ58MThMELJlp1TRy6EWnVKF-XKmmeEyEThufn8LLBH7SUuhDdXqn_1WnD9Xptboib_-TL-RnoMeXhZ9WIZYcHjySTsZjMKViKoFpG_1LK_4AllPAjQ |
CitedBy_id | crossref_primary_10_1016_j_meatsci_2022_108900 crossref_primary_10_1016_j_geoderma_2024_117005 crossref_primary_10_1111_ejss_13370 crossref_primary_10_1016_j_geoderma_2025_117207 crossref_primary_10_1016_j_geoderma_2024_116799 crossref_primary_10_1016_j_renene_2022_05_097 crossref_primary_10_1007_s11104_024_06833_1 crossref_primary_10_1039_D2AY00736C crossref_primary_10_3390_agronomy12030638 crossref_primary_10_1002_agg2_20438 crossref_primary_10_2166_wst_2023_097 crossref_primary_10_1080_10408347_2024_2351820 crossref_primary_10_1111_ejss_13323 crossref_primary_10_1016_j_compag_2024_108643 crossref_primary_10_1016_j_measurement_2024_114270 crossref_primary_10_1016_j_geoderma_2022_116284 crossref_primary_10_1177_09670335231173140 crossref_primary_10_1016_j_saa_2024_124343 crossref_primary_10_3390_land13020154 crossref_primary_10_3390_molecules28196959 crossref_primary_10_1080_10408398_2023_2198015 crossref_primary_10_1016_j_jfca_2024_105996 crossref_primary_10_1016_j_geoderma_2023_116589 crossref_primary_10_1016_j_ecoinf_2024_102784 crossref_primary_10_1016_j_still_2024_106297 crossref_primary_10_1016_j_jhazmat_2024_135184 crossref_primary_10_1080_00103624_2023_2223657 crossref_primary_10_1016_j_catena_2025_108958 crossref_primary_10_1002_jrs_6435 crossref_primary_10_1016_j_jfca_2024_106200 crossref_primary_10_1021_acs_analchem_2c05094 crossref_primary_10_1016_j_microc_2023_109306 crossref_primary_10_1016_j_aca_2022_340238 crossref_primary_10_1016_j_jddst_2024_106424 crossref_primary_10_1016_j_ecolind_2023_111437 crossref_primary_10_1111_ejss_13438 crossref_primary_10_1002_saj2_70028 crossref_primary_10_1016_j_compag_2024_108627 crossref_primary_10_1111_ejss_13271 crossref_primary_10_3390_rs15174264 crossref_primary_10_1016_j_rsase_2022_100879 crossref_primary_10_1016_j_geoderma_2021_115366 crossref_primary_10_1016_j_saa_2024_125001 crossref_primary_10_1016_j_seh_2024_100113 crossref_primary_10_1016_j_compag_2023_108067 crossref_primary_10_3389_fbioe_2024_1228846 crossref_primary_10_1080_10095020_2024_2343021 crossref_primary_10_1016_j_geoderma_2022_116063 crossref_primary_10_3390_rs14020397 crossref_primary_10_7717_peerj_13740 crossref_primary_10_1038_s41598_024_65251_6 crossref_primary_10_1016_j_geoderma_2023_116487 crossref_primary_10_1016_j_geoderma_2024_117037 crossref_primary_10_1016_j_jenvman_2023_118854 crossref_primary_10_3389_fenvs_2021_809995 crossref_primary_10_1016_j_geoderma_2022_116102 crossref_primary_10_1016_j_still_2021_105284 crossref_primary_10_3390_su16198598 crossref_primary_10_3390_app15020503 crossref_primary_10_1016_j_geoderma_2024_116908 crossref_primary_10_3390_s23125495 |
Cites_doi | 10.1080/00401706.1969.10490666 10.1016/j.soilbio.2007.09.019 10.1016/S0146-6380(02)00208-5 10.1016/bs.agron.2015.02.002 10.1029/JB095iB08p12653 10.5194/soil-6-389-2020 10.1016/j.geoderma.2011.08.001 10.1016/j.compag.2019.02.003 10.1080/01431161.2015.1088676 10.5513/JCEA01/16.1.1535 10.1016/j.still.2014.11.002 10.1071/SR9910049 10.1515/9781400881970-018 10.1016/j.geoderma.2017.09.013 10.1016/S0144-8617(00)00245-9 10.1016/j.geoderma.2013.07.017 10.1255/jnirs.1229 10.1016/j.compag.2017.11.029 10.1017/S0021859602002836 10.1016/j.geoderma.2019.06.016 10.1016/j.foodchem.2004.08.039 10.1016/B978-0-12-800132-5.00001-8 10.1016/j.geoderma.2018.04.005 10.1016/j.biosystemseng.2016.04.018 10.1016/j.geoderma.2004.06.007 10.1109/ICASSP.1997.598826 10.1371/journal.pone.0107285 10.1016/j.soilbio.2008.04.003 10.1371/journal.pone.0066409 10.1016/j.saa.2017.10.052 10.1002/wics.51 10.1016/j.trac.2009.07.007 10.1080/10106040802556207 10.1016/j.geodrs.2018.e00198 10.1139/cjss-2016-0116 10.1051/0004-6361:20034526 10.2136/sssaj2015.11.0414 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115071 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115071 S0016706121001452 |
GeographicLocations | Scotland |
GeographicLocations_xml | – name: Scotland |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-5f72106ec2b387ba2aede38ad8463ce9a2ebb16c903bebea7aa37c9fddfc19493 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 09:59:01 EDT 2025 Tue Jul 01 04:04:55 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Fri Feb 23 02:42:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spectroscopy CNN SHAP ATR-FTIR NIR PLS Chemometric Cubist SVR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-5f72106ec2b387ba2aede38ad8463ce9a2ebb16c903bebea7aa37c9fddfc19493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2551980722 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551980722 crossref_citationtrail_10_1016_j_geoderma_2021_115071 crossref_primary_10_1016_j_geoderma_2021_115071 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-15 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Padarian, Minasny, McBratney (b0155) 2019; 16 Cozzolino, Moron (b0040) 2003; 140 Lilly, A., Bell, J., Hudson, G., Nolan, A., Towers, W., 2010. National Soil Inventory of Scotland 1 (NSIS_1): site location, sampling and profile description protocols (1978–1988). Technical Bulletin. Rinnan, van den Berg, Engelsen (b0175) 2009; 28 Lundberg, Lee (b0115) 2017 Shi, Wang, Liu, Wu (b0195) 2015; 36 Nocita, Stevens, van Wesemael, Aitkenhead, Bachmann, Barthès, Dor, Brown, Clairotte, Csorba, Robertson (b0145) 2015 Kuhn, Weston, Keefer, Coulter, Quinlan (b0100) 2014 Kačuráková, Wilson (bib256) 2001; 44 Lilly, Bell, Hudson, Nolan, Towers (b0110) 2011 Xu, Zhao, Wang, Shi (b0250) 2018; 310 Ng, Minasny, Montazerolghaem, Padarian, Ferguson, Bailey, McBratney (b0140) 2019; 352 Parikh, Goyne, Margenot, Mukome, Calderón (bib259) 2014; 126 Artz, Chapman, Robertson, Potts, Laggoun-Défarge, Gogo, Comont, Disnar, Francez (b0015) 2008; 40 Butler, O’Rourke, Hillier (b0025) 2018; 329 Farmer (b0055) 1974 Henderson, Bui, Moran, Simon (b0070) 2005; 124 Pérez-Fernández, Robertson (b0165) 2016; 24 Morellos, Pantazi, Moshou, Alexandridis, Whetton, Tziotzios, Wiebensohn, Bill, Mouazen (b0125) 2016; 152 Du, Zhou, Deng, Zhou (b0050) 2010 Singh, Grafe (b0205) 2010 Robertson, A.H.J., Hillier, S.J., Donald, C., Hill, H.R., Team, N., 2013b. A robust FTIR database for Scotland, Proceedings of the 3 rd Global Workshop on Proximal Soil Sensing, pp. 26-29. Basak, Pal, Patranabis (b0020) 2007; 11 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. Ng, Minasny, Malone, Sarathjith, Das (b0135) 2019; 158 Nguyen, Janik, Raupach (bib258) 1991; 29 Stenberg, Viscarra Rossel, Mouazen, Wetterlind (b0215) 2010; 107 de Santana, de Souza, Poppi (b0045) 2018; 191 Padarian, McBratney, Minasny (b0150) 2020; 6 Kennard, Stone (b0085) 1969; 11 Vohland, Besold, Hill, Fründ (b0240) 2011; 166 Matrajt, Borg, Raynal, Djouadi, d'Hendecourt, Flynn, Deboffle (b0120) 2004; 416 Clark, King, Klejwa, Swayze, Vergo (b0030) 1990; 95 Xu, Ma, Chen, Jiang, He, Shi (b0245) 2018; 144 Singh, Fang, Johnston (b0200) 2016; 80 Stevens, Nocita, Tóth, Montanarella, van Wesemael (b0220) 2013; 8 Vapnik (b0235) 1995 Abdi (b0010) 2010; 2 Im, Jensen, Coleman, Nelson (b0080) 2009; 24 Ge, Thomasson, Morgan (b0060) 2014; 213 Palacio, Aitkenhead, Escudero, Montserrat-Martí, Maestro, Robertson (b0160) 2014; 9 Zornoza, Guerrero, Mataix-Solera, Scow, Arcenegui, Mataix-Beneyto (b0255) 2008; 40 Müllertz, Perrie, Rades (b0130) 2016 Kuhn (b0095) 2008; 28 Yang, Irudayaraj, Paradkar (bib257) 2005; 93 Shapley, L.S., 1953. A value for n-person games. Contributions to the Theory of Games 2(28), 307-317. Robertson, Hill, Main (b0180) 2013 Team, R.C., 2014. R: A language and environment for statistical computing. Tinti, Tugnoli, Bonora, Francioso (b0230) 2015; 16 Greenberg, S., Kingsbury, B.E., 1997. The modulation spectrogram: In pursuit of an invariant representation of speech, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, pp. 1647-1650. Abdi, H., 2003. Partial least square regression (PLS regression). Encyclopedia for research methods for the social sciences 6(4), 792-795. Kuang, Tekin, Mouazen (b0090) 2015; 146 Quinlan (b0170) 1992 Sorenson, Small, Tappert, Quideau, Drozdowski, Underwood, Janz (b0210) 2017; 97 Cocozza, C., D'orazio, V., Miano, T., Shotyk, W., 2003. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Organ. Geochem. 34(1), 49-60. Parikh (10.1016/j.geoderma.2021.115071_bib259) 2014; 126 Stevens (10.1016/j.geoderma.2021.115071_b0220) 2013; 8 Xu (10.1016/j.geoderma.2021.115071_b0250) 2018; 310 Kuhn (10.1016/j.geoderma.2021.115071_b0100) 2014 Ng (10.1016/j.geoderma.2021.115071_b0135) 2019; 158 10.1016/j.geoderma.2021.115071_b0185 10.1016/j.geoderma.2021.115071_b0065 10.1016/j.geoderma.2021.115071_b0105 Robertson (10.1016/j.geoderma.2021.115071_b0180) 2013 Sorenson (10.1016/j.geoderma.2021.115071_b0210) 2017; 97 10.1016/j.geoderma.2021.115071_b0225 Cozzolino (10.1016/j.geoderma.2021.115071_b0040) 2003; 140 Clark (10.1016/j.geoderma.2021.115071_b0030) 1990; 95 Ng (10.1016/j.geoderma.2021.115071_b0140) 2019; 352 Im (10.1016/j.geoderma.2021.115071_b0080) 2009; 24 Pérez-Fernández (10.1016/j.geoderma.2021.115071_b0165) 2016; 24 Lundberg (10.1016/j.geoderma.2021.115071_b0115) 2017 Quinlan (10.1016/j.geoderma.2021.115071_b0170) 1992 Zornoza (10.1016/j.geoderma.2021.115071_b0255) 2008; 40 Ge (10.1016/j.geoderma.2021.115071_b0060) 2014; 213 Shi (10.1016/j.geoderma.2021.115071_b0195) 2015; 36 Abdi (10.1016/j.geoderma.2021.115071_b0010) 2010; 2 Kuang (10.1016/j.geoderma.2021.115071_b0090) 2015; 146 Rinnan (10.1016/j.geoderma.2021.115071_b0175) 2009; 28 Matrajt (10.1016/j.geoderma.2021.115071_b0120) 2004; 416 Vapnik (10.1016/j.geoderma.2021.115071_b0235) 1995 Müllertz (10.1016/j.geoderma.2021.115071_b0130) 2016 Vohland (10.1016/j.geoderma.2021.115071_b0240) 2011; 166 Kačuráková (10.1016/j.geoderma.2021.115071_bib256) 2001; 44 Morellos (10.1016/j.geoderma.2021.115071_b0125) 2016; 152 Xu (10.1016/j.geoderma.2021.115071_b0245) 2018; 144 Padarian (10.1016/j.geoderma.2021.115071_b0155) 2019; 16 10.1016/j.geoderma.2021.115071_b0005 Nguyen (10.1016/j.geoderma.2021.115071_bib258) 1991; 29 Tinti (10.1016/j.geoderma.2021.115071_b0230) 2015; 16 Yang (10.1016/j.geoderma.2021.115071_bib257) 2005; 93 Singh (10.1016/j.geoderma.2021.115071_b0200) 2016; 80 Singh (10.1016/j.geoderma.2021.115071_b0205) 2010 de Santana (10.1016/j.geoderma.2021.115071_b0045) 2018; 191 Stenberg (10.1016/j.geoderma.2021.115071_b0215) 2010; 107 10.1016/j.geoderma.2021.115071_b0190 Artz (10.1016/j.geoderma.2021.115071_b0015) 2008; 40 Basak (10.1016/j.geoderma.2021.115071_b0020) 2007; 11 10.1016/j.geoderma.2021.115071_b0075 Farmer (10.1016/j.geoderma.2021.115071_b0055) 1974 10.1016/j.geoderma.2021.115071_b0035 Butler (10.1016/j.geoderma.2021.115071_b0025) 2018; 329 Lilly (10.1016/j.geoderma.2021.115071_b0110) 2011 Palacio (10.1016/j.geoderma.2021.115071_b0160) 2014; 9 Du (10.1016/j.geoderma.2021.115071_b0050) 2010 Nocita (10.1016/j.geoderma.2021.115071_b0145) 2015 Henderson (10.1016/j.geoderma.2021.115071_b0070) 2005; 124 Kuhn (10.1016/j.geoderma.2021.115071_b0095) 2008; 28 Padarian (10.1016/j.geoderma.2021.115071_b0150) 2020; 6 Kennard (10.1016/j.geoderma.2021.115071_b0085) 1969; 11 |
References_xml | – volume: 8 year: 2013 ident: b0220 article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy publication-title: PLoS ONE – volume: 16 year: 2019 ident: b0155 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Regional – volume: 352 start-page: 251 year: 2019 end-page: 267 ident: b0140 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma – reference: Cocozza, C., D'orazio, V., Miano, T., Shotyk, W., 2003. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Organ. Geochem. 34(1), 49-60. – volume: 80 start-page: 613 year: 2016 end-page: 622 ident: b0200 article-title: A Fourier-transform infrared study of biochar aging in soils publication-title: Soil Sci. Soc. Am. J. – volume: 95 start-page: 12653 year: 1990 end-page: 12680 ident: b0030 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. Solid Earth – volume: 213 start-page: 57 year: 2014 end-page: 63 ident: b0060 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma – volume: 97 start-page: 241 year: 2017 end-page: 248 ident: b0210 article-title: Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy publication-title: Can. J. Soil Sci. – year: 2011 ident: b0110 article-title: National Soil Inventory of Scotland 2007–2009: Profile description and soil sampling protocols (NSIS_2) – reference: Abdi, H., 2003. Partial least square regression (PLS regression). Encyclopedia for research methods for the social sciences 6(4), 792-795. – reference: Greenberg, S., Kingsbury, B.E., 1997. The modulation spectrogram: In pursuit of an invariant representation of speech, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, pp. 1647-1650. – year: 1995 ident: b0235 article-title: The nature of statistical learning theory – volume: 28 start-page: 1201 year: 2009 end-page: 1222 ident: b0175 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC, Trends Anal. Chem. – volume: 44 start-page: 291 year: 2001 end-page: 303 ident: bib256 article-title: Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates publication-title: Carbohydrate polymers – start-page: 139 year: 2015 end-page: 159 ident: b0145 article-title: Soil spectroscopy: An alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. Elsevier – volume: 9 year: 2014 ident: b0160 article-title: Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils publication-title: PLoS ONE – volume: 146 start-page: 243 year: 2015 end-page: 252 ident: b0090 article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content publication-title: Soil Tillage Res. – volume: 158 start-page: 201 year: 2019 end-page: 210 ident: b0135 article-title: Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling publication-title: Comput. Electron. Agric. – year: 2016 ident: b0130 article-title: Analytical Techniques in the Pharmaceutical Sciences – reference: Robertson, A.H.J., Hillier, S.J., Donald, C., Hill, H.R., Team, N., 2013b. A robust FTIR database for Scotland, Proceedings of the 3 rd Global Workshop on Proximal Soil Sensing, pp. 26-29. – volume: 24 start-page: 305 year: 2016 end-page: 316 ident: b0165 article-title: Global and local calibrations to predict chemical and physical properties of a national spatial dataset of Scottish soils from their near infrared spectra publication-title: J. Near Infrared Spectrosc. – year: 2013 ident: b0180 publication-title: Analysis of Soil in the Field using portable FTIR, International Workshop “Soil Spectroscopy: the present and future of Soil Monitoring – reference: Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. – volume: 29 start-page: 49 year: 1991 end-page: 67 ident: bib258 article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies publication-title: Soil Research – volume: 40 start-page: 1923 year: 2008 end-page: 1930 ident: b0255 article-title: Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils publication-title: Soil Biol. Biochem. – volume: 329 start-page: 43 year: 2018 end-page: 53 ident: b0025 article-title: Using rule-based regression models to predict and interpret soil properties from X-ray powder diffraction data publication-title: Geoderma – volume: 6 start-page: 389 year: 2020 end-page: 397 ident: b0150 article-title: Game theory interpretation of digital soil mapping convolutional neural networks publication-title: Soil – volume: 36 start-page: 4652 year: 2015 end-page: 4667 ident: b0195 article-title: Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance publication-title: Int. J. Remote Sens. – volume: 93 start-page: 25 year: 2005 end-page: 32 ident: bib257 article-title: Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy publication-title: Food Chemistry – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: b0095 article-title: Caret package publication-title: J. Stat. Softw. – year: 2010 ident: b0205 article-title: Synchrotron-based techniques in soils and sediments, 34 – volume: 310 start-page: 29 year: 2018 end-page: 43 ident: b0250 article-title: Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by VIS–NIR spectroscopy publication-title: Geoderma – reference: Shapley, L.S., 1953. A value for n-person games. Contributions to the Theory of Games 2(28), 307-317. – volume: 416 start-page: 983 year: 2004 end-page: 990 ident: b0120 article-title: FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium publication-title: Astron. Astrophys. – start-page: 343 year: 1992 end-page: 348 ident: b0170 article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence publication-title: World Scientific – volume: 24 start-page: 293 year: 2009 end-page: 312 ident: b0080 article-title: Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments publication-title: Geocarto Int. – volume: 2 start-page: 97 year: 2010 end-page: 106 ident: b0010 article-title: Partial least squares regression and projection on latent structure regression (PLS Regression) publication-title: Wiley Interdiscip. Rev. Comput. Stat. – volume: 107 start-page: 163 year: 2010 end-page: 215 ident: b0215 article-title: Chapter Five-Visible and Near Infrared Spectroscopy publication-title: Soil Sci. Adv. Agron. – start-page: 4765 year: 2017 end-page: 4774 ident: b0115 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neur. Informat. Process. Syst. – reference: Lilly, A., Bell, J., Hudson, G., Nolan, A., Towers, W., 2010. National Soil Inventory of Scotland 1 (NSIS_1): site location, sampling and profile description protocols (1978–1988). Technical Bulletin. – volume: 166 start-page: 198 year: 2011 end-page: 205 ident: b0240 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma – reference: Team, R.C., 2014. R: A language and environment for statistical computing. – volume: 11 start-page: 137 year: 1969 end-page: 148 ident: b0085 article-title: Computer aided design of experiments publication-title: Technometrics – start-page: 18 year: 2014 ident: b0100 article-title: Cubist: rule-and instance-based regression modeling publication-title: R package version – volume: 140 start-page: 65 year: 2003 end-page: 71 ident: b0040 article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics publication-title: J. Agricult. Sci. – volume: 144 start-page: 1 year: 2018 end-page: 8 ident: b0245 article-title: Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy publication-title: Comput. Electron. Agric. – volume: 191 start-page: 454 year: 2018 end-page: 462 ident: b0045 article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. – year: 1974 ident: b0055 article-title: Infrared spectra of minerals publication-title: Mineral. Soc. – volume: 11 start-page: 203 year: 2007 end-page: 224 ident: b0020 article-title: Support vector regression publication-title: Neur. Inform. Process.-Lett. Rev. – volume: 40 start-page: 515 year: 2008 end-page: 527 ident: b0015 article-title: FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands publication-title: Soil Biol. Biochem. – volume: 152 start-page: 104 year: 2016 end-page: 116 ident: b0125 article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy publication-title: Biosyst. Eng. – volume: 124 start-page: 383 year: 2005 end-page: 398 ident: b0070 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma – start-page: 265 year: 2010 end-page: 268 ident: b0050 article-title: Characterization of soil clay minerals using mid-infrared spectroscopy, Molecular environmental soil science at the interfaces in the earth’s critical zone publication-title: Springer – volume: 16 year: 2015 ident: b0230 article-title: Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review publication-title: J. Central Eur. Agricult. – volume: 126 start-page: 1 year: 2014 end-page: 148 ident: bib259 article-title: Soil chemical insights provided through vibrational spectroscopy publication-title: Advances in agronomy – volume: 11 start-page: 137 issue: 1 year: 1969 ident: 10.1016/j.geoderma.2021.115071_b0085 article-title: Computer aided design of experiments publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – ident: 10.1016/j.geoderma.2021.115071_b0185 – volume: 40 start-page: 515 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2021.115071_b0015 article-title: FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.09.019 – ident: 10.1016/j.geoderma.2021.115071_b0035 doi: 10.1016/S0146-6380(02)00208-5 – year: 2010 ident: 10.1016/j.geoderma.2021.115071_b0205 – start-page: 139 year: 2015 ident: 10.1016/j.geoderma.2021.115071_b0145 article-title: Soil spectroscopy: An alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. Elsevier doi: 10.1016/bs.agron.2015.02.002 – volume: 95 start-page: 12653 issue: B8 year: 1990 ident: 10.1016/j.geoderma.2021.115071_b0030 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB095iB08p12653 – start-page: 4765 year: 2017 ident: 10.1016/j.geoderma.2021.115071_b0115 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neur. Informat. Process. Syst. – volume: 6 start-page: 389 issue: 2 year: 2020 ident: 10.1016/j.geoderma.2021.115071_b0150 article-title: Game theory interpretation of digital soil mapping convolutional neural networks publication-title: Soil doi: 10.5194/soil-6-389-2020 – ident: 10.1016/j.geoderma.2021.115071_b0105 – year: 2013 ident: 10.1016/j.geoderma.2021.115071_b0180 – year: 2011 ident: 10.1016/j.geoderma.2021.115071_b0110 – volume: 166 start-page: 198 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2021.115071_b0240 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.001 – volume: 158 start-page: 201 year: 2019 ident: 10.1016/j.geoderma.2021.115071_b0135 article-title: Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.02.003 – volume: 36 start-page: 4652 issue: 18 year: 2015 ident: 10.1016/j.geoderma.2021.115071_b0195 article-title: Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1088676 – volume: 16 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115071_b0230 article-title: Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review publication-title: J. Central Eur. Agricult. doi: 10.5513/JCEA01/16.1.1535 – ident: 10.1016/j.geoderma.2021.115071_b0225 – volume: 146 start-page: 243 year: 2015 ident: 10.1016/j.geoderma.2021.115071_b0090 article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content publication-title: Soil Tillage Res. doi: 10.1016/j.still.2014.11.002 – volume: 29 start-page: 49 issue: 1 year: 1991 ident: 10.1016/j.geoderma.2021.115071_bib258 article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies publication-title: Soil Research doi: 10.1071/SR9910049 – ident: 10.1016/j.geoderma.2021.115071_b0190 doi: 10.1515/9781400881970-018 – year: 1995 ident: 10.1016/j.geoderma.2021.115071_b0235 – start-page: 265 year: 2010 ident: 10.1016/j.geoderma.2021.115071_b0050 article-title: Characterization of soil clay minerals using mid-infrared spectroscopy, Molecular environmental soil science at the interfaces in the earth’s critical zone publication-title: Springer – volume: 310 start-page: 29 year: 2018 ident: 10.1016/j.geoderma.2021.115071_b0250 article-title: Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by VIS–NIR spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2017.09.013 – year: 2016 ident: 10.1016/j.geoderma.2021.115071_b0130 – volume: 44 start-page: 291 issue: 4 year: 2001 ident: 10.1016/j.geoderma.2021.115071_bib256 article-title: Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates publication-title: Carbohydrate polymers doi: 10.1016/S0144-8617(00)00245-9 – volume: 213 start-page: 57 year: 2014 ident: 10.1016/j.geoderma.2021.115071_b0060 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.017 – volume: 24 start-page: 305 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2021.115071_b0165 article-title: Global and local calibrations to predict chemical and physical properties of a national spatial dataset of Scottish soils from their near infrared spectra publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.1229 – volume: 144 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2021.115071_b0245 article-title: Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.11.029 – volume: 140 start-page: 65 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2021.115071_b0040 article-title: The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics publication-title: J. Agricult. Sci. doi: 10.1017/S0021859602002836 – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 10.1016/j.geoderma.2021.115071_b0095 article-title: Caret package publication-title: J. Stat. Softw. – volume: 352 start-page: 251 year: 2019 ident: 10.1016/j.geoderma.2021.115071_b0140 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.016 – volume: 93 start-page: 25 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2021.115071_bib257 article-title: Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy publication-title: Food Chemistry doi: 10.1016/j.foodchem.2004.08.039 – volume: 126 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2021.115071_bib259 article-title: Soil chemical insights provided through vibrational spectroscopy publication-title: Advances in agronomy doi: 10.1016/B978-0-12-800132-5.00001-8 – volume: 329 start-page: 43 year: 2018 ident: 10.1016/j.geoderma.2021.115071_b0025 article-title: Using rule-based regression models to predict and interpret soil properties from X-ray powder diffraction data publication-title: Geoderma doi: 10.1016/j.geoderma.2018.04.005 – volume: 152 start-page: 104 year: 2016 ident: 10.1016/j.geoderma.2021.115071_b0125 article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.04.018 – volume: 124 start-page: 383 issue: 3–4 year: 2005 ident: 10.1016/j.geoderma.2021.115071_b0070 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2004.06.007 – ident: 10.1016/j.geoderma.2021.115071_b0065 doi: 10.1109/ICASSP.1997.598826 – volume: 9 issue: 9 year: 2014 ident: 10.1016/j.geoderma.2021.115071_b0160 article-title: Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils publication-title: PLoS ONE doi: 10.1371/journal.pone.0107285 – volume: 40 start-page: 1923 issue: 7 year: 2008 ident: 10.1016/j.geoderma.2021.115071_b0255 article-title: Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.04.003 – year: 1974 ident: 10.1016/j.geoderma.2021.115071_b0055 article-title: Infrared spectra of minerals publication-title: Mineral. Soc. – volume: 107 start-page: 163 year: 2010 ident: 10.1016/j.geoderma.2021.115071_b0215 article-title: Chapter Five-Visible and Near Infrared Spectroscopy publication-title: Soil Sci. Adv. Agron. – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.geoderma.2021.115071_b0220 article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy publication-title: PLoS ONE doi: 10.1371/journal.pone.0066409 – ident: 10.1016/j.geoderma.2021.115071_b0075 – volume: 191 start-page: 454 year: 2018 ident: 10.1016/j.geoderma.2021.115071_b0045 article-title: Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.10.052 – volume: 2 start-page: 97 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2021.115071_b0010 article-title: Partial least squares regression and projection on latent structure regression (PLS Regression) publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.51 – start-page: 343 year: 1992 ident: 10.1016/j.geoderma.2021.115071_b0170 article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence publication-title: World Scientific – volume: 28 start-page: 1201 issue: 10 year: 2009 ident: 10.1016/j.geoderma.2021.115071_b0175 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 – volume: 24 start-page: 293 issue: 4 year: 2009 ident: 10.1016/j.geoderma.2021.115071_b0080 article-title: Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments publication-title: Geocarto Int. doi: 10.1080/10106040802556207 – volume: 16 year: 2019 ident: 10.1016/j.geoderma.2021.115071_b0155 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00198 – volume: 97 start-page: 241 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2021.115071_b0210 article-title: Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy publication-title: Can. J. Soil Sci. doi: 10.1139/cjss-2016-0116 – volume: 11 start-page: 203 issue: 10 year: 2007 ident: 10.1016/j.geoderma.2021.115071_b0020 article-title: Support vector regression publication-title: Neur. Inform. Process.-Lett. Rev. – start-page: 18 year: 2014 ident: 10.1016/j.geoderma.2021.115071_b0100 article-title: Cubist: rule-and instance-based regression modeling publication-title: R package version – volume: 416 start-page: 983 issue: 3 year: 2004 ident: 10.1016/j.geoderma.2021.115071_b0120 article-title: FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20034526 – volume: 80 start-page: 613 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2021.115071_b0200 article-title: A Fourier-transform infrared study of biochar aging in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.11.0414 – ident: 10.1016/j.geoderma.2021.115071_b0005 |
SSID | ssj0017020 |
Score | 2.5654624 |
Snippet | •ATR-FTIR in MIR outperformed DR spectroscopy in the NIR for prediction of soil properties.•ATR-FTIR data significantly improve the accuracy for the prediction... Infrared spectroscopic techniques, in combination with chemometric approaches, have been widely used to estimate different physical and chemical properties in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115071 |
SubjectTerms | ATR-FTIR bulk density carbon Chemometric chemometrics clay CNN Cubist data collection exchangeable magnesium exchangeable potassium Fourier transform infrared spectroscopy inventories least squares neural networks NIR PLS prediction reflectance spectroscopy sand Scotland SHAP silt spatial data spectral analysis Spectroscopy SVR total nitrogen |
Title | Prediction of various soil properties for a national spatial dataset of Scottish soils based on four different chemometric approaches: A comparison of near infrared and mid-infrared spectroscopy |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115071 https://www.proquest.com/docview/2551980722 |
Volume | 396 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6W9aIH8Ym76lKC1-zk2Q9vw-IyKiweXNhb6PRDs-wkQxIFL_44f5lVnfSgguzBU0hINU1XdT26q75i7DUXukqtEYlHcUrKMvVJIwn31otGuTxF9RCyfC_45rJ8f1VdHbCzWAtDaZWL7p91etDWy5fVspqrXdtSjW_GRRoQsOhujPRwWQqS8tMf-zSPTKQLNGPGE_r7tyrha-QRNRwL-EN5djo7R_8yUH-p6mB_zh-w-4vjCOt5bg_ZgesesXvrz8MCnuEes58fB7p2oaWG3sM3DIMxroexb29gR4fuA6GnArqpoCGeAsJIOdX4pFzR0U1EGbrct-OXQDoCWToLOKjHSUBsqTIB8nvbb6kll4GITe7GN7AGs-9uSMN1uJsAJXmgZHfQnYVta5P9h1DsSaCa_e77E3Z5_vbT2SZZejQkuuBySiqPIWTKncmbQopG59pZV0ht0a8pjFM6d02TcaPSokF50ULrQhjlrfUmU6UqnrLDru_cMwZSuLK03Bj0cMpcONkYy62XQqFbJiU_YlVkTG0WAHPqo3FTx0y16zoytCaG1jNDj9hqT7ebITxupVCR7_UfwlijnbmV9lUUlBp3Kl2_6M4ht2sM3jIlU5Hnx_8x_nN2l97oWDurXrDDafjqXqJfNDUnQfBP2J31uw-bi1_16ROw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcoz0GCY7qJk9gOEocVUG1pqZBopd6MYzuQqpuskhTUC3-Kf8AvYyaPFSChHlBPkRKNleQbz8Mef8PYcyFNGjorgwLVKUiSsAhyRby3hcwzz0M0D32V74FYHCXvjtPjDfZjOgtDZZWj7R9sem-txzuz8W_OVmVJZ3wjIcOeAYv2xvhYWbnnz79h3ta-2n2DIL_gfOft4etFMLYWCEwsVBekBWY-ofCW57GSueHGOx8r49Adx9Znhvs8j4TNwjjHzzTSmFjarHCusJj2EwMT2v0rCZoLapuw_X1dVxLJcOSCjERAr_fbseQTVArqcNYTHvFoe4jG_uUR__INvcPbuclujJEqzIefcYtt-Oo2uz7_3IxsHf4O-_mhoX0ewhbqAr5i3l2ftdDW5SmsaJW_IbpWwLgYDEzLjtBSETdeqTi19R1JfiSGiLL90ou2QK7VAQ5a4EvA1MOlA1SwZb2kHmAWJjJ0376EOdh1O0UarkKIAKdOQ9X1YCoHy9IF6xv96VJi8axX53fZ0aUgd49tVnXl7zNQ0ieJE9ZiSJVw6VVunXCFkhnGgUqJLZZOwGg7MqZT445TPZXGnegJUE2A6gHQLTZby60GzpALJbIJd_2H9mt0bBfKPpsURaNpoP0eU3lEW2O2GGUqlJw_-I_xn7Kri8P3-3p_92DvIbtGT2hNPUofsc2uOfOPMSjr8if9JAD26bJn3S-QkVIU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+various+soil+properties+for+a+national+spatial+dataset+of+Scottish+soils+based+on+four+different+chemometric+approaches%3A+A+comparison+of+near+infrared+and+mid-infrared+spectroscopy&rft.jtitle=Geoderma&rft.au=Haghi%2C+R.K.&rft.au=P%C3%A9rez-Fern%C3%A1ndez%2C+E.&rft.au=Robertson%2C+A.H.J.&rft.date=2021-08-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=396&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115071&rft.externalDocID=S0016706121001452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |