Applying biochar under topsoil facilitates soil carbon sequestration: A case study in a dryland agricultural system on the Loess Plateau

•The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at 0–10 cm.•Biochar incorporation into the 10–20 cm depth promoted soil C sequestration. The remarkable soil carbon sequestration and greenhouse gas...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 403; p. 115186
Main Authors Li, Shuailin, Ma, Qiang, Zhou, Changrui, Yu, Wantai, Shangguan, Zhouping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at 0–10 cm.•Biochar incorporation into the 10–20 cm depth promoted soil C sequestration. The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its benefits. However, it remains unclear how biochar application depth impacts soil carbon dioxide (CO2) emissions and methane (CH4) uptake in upland soil. Therefore, we carried out a 16-month field experiment in a dryland agricultural system to answer the above questions. Woody biochar (20 t ha−1) was mixed into three soil layers: 0–10 cm (BC0-10cm), 10–20 cm (BC10-20cm), and 0–20 cm (BC0-20cm). Soil without biochar addition was used as the control (CK). We monitored soil CO2 and CH4 fluxes continuously and determined the metabolic quotient (qCO2) and the sensitivity of soil respiration to temperature (Q10). The results indicated that CO2 emissions, CH4 uptake, qCO2 and Q10 were significantly affected by biochar application depth. Overall, compared with CK, BC0-10cm increased total CO2 emissions by 10.13%, while BC10-20cm and BC0-20cm showed no significant effect. BC0-10cm and BC0-20cm exhibited greater soil CH4 uptake enhancement than BC10-20cm, but the enhanced CH4 uptake resulted in limited net greenhouse gas mitigation. BC10-20cm and BC0-20cm had a lower qCO2 than the other treatments, which likely increased the carbon use efficiency and decreased the stress on soil microbes, but BC0-10cm showed the opposite effect. In addition, BC0-10cm significantly reduced Q10 mainly due to the enhanced lability of the native carbon and microbial activities. Changes in environmental factors in the 0–10 cm soil largely explained the variations in CO2 emissions, CH4 uptake and Q10 (>88%). Nevertheless, the enhanced microbial biomass in the 10–20 cm soil helped lower qCO2 in the whole 0–20 cm layer. In summary, adding biochar to surface soil (0–10 cm) likely accelerates carbon loss, due to the strong shift in the environment of the surface soil caused by complex interactions among hydrothermal conditions, nutrient levels (i.e., N, NH4+, NO3− and available P) and labile carbon. However, adding biochar to subsurface soil (10–20 cm) can effectively avoid severe disturbance of the surface soil environment and thus benefit soil carbon sequestration in the long term.
AbstractList •The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at 0–10 cm.•Biochar incorporation into the 10–20 cm depth promoted soil C sequestration. The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its benefits. However, it remains unclear how biochar application depth impacts soil carbon dioxide (CO2) emissions and methane (CH4) uptake in upland soil. Therefore, we carried out a 16-month field experiment in a dryland agricultural system to answer the above questions. Woody biochar (20 t ha−1) was mixed into three soil layers: 0–10 cm (BC0-10cm), 10–20 cm (BC10-20cm), and 0–20 cm (BC0-20cm). Soil without biochar addition was used as the control (CK). We monitored soil CO2 and CH4 fluxes continuously and determined the metabolic quotient (qCO2) and the sensitivity of soil respiration to temperature (Q10). The results indicated that CO2 emissions, CH4 uptake, qCO2 and Q10 were significantly affected by biochar application depth. Overall, compared with CK, BC0-10cm increased total CO2 emissions by 10.13%, while BC10-20cm and BC0-20cm showed no significant effect. BC0-10cm and BC0-20cm exhibited greater soil CH4 uptake enhancement than BC10-20cm, but the enhanced CH4 uptake resulted in limited net greenhouse gas mitigation. BC10-20cm and BC0-20cm had a lower qCO2 than the other treatments, which likely increased the carbon use efficiency and decreased the stress on soil microbes, but BC0-10cm showed the opposite effect. In addition, BC0-10cm significantly reduced Q10 mainly due to the enhanced lability of the native carbon and microbial activities. Changes in environmental factors in the 0–10 cm soil largely explained the variations in CO2 emissions, CH4 uptake and Q10 (>88%). Nevertheless, the enhanced microbial biomass in the 10–20 cm soil helped lower qCO2 in the whole 0–20 cm layer. In summary, adding biochar to surface soil (0–10 cm) likely accelerates carbon loss, due to the strong shift in the environment of the surface soil caused by complex interactions among hydrothermal conditions, nutrient levels (i.e., N, NH4+, NO3− and available P) and labile carbon. However, adding biochar to subsurface soil (10–20 cm) can effectively avoid severe disturbance of the surface soil environment and thus benefit soil carbon sequestration in the long term.
The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its benefits. However, it remains unclear how biochar application depth impacts soil carbon dioxide (CO₂) emissions and methane (CH₄) uptake in upland soil. Therefore, we carried out a 16-month field experiment in a dryland agricultural system to answer the above questions. Woody biochar (20 t ha⁻¹) was mixed into three soil layers: 0–10 cm (BC₀₋₁₀cₘ), 10–20 cm (BC₁₀₋₂₀cₘ), and 0–20 cm (BC₀₋₂₀cₘ). Soil without biochar addition was used as the control (CK). We monitored soil CO₂ and CH₄ fluxes continuously and determined the metabolic quotient (qCO₂) and the sensitivity of soil respiration to temperature (Q₁₀). The results indicated that CO₂ emissions, CH₄ uptake, qCO₂ and Q₁₀ were significantly affected by biochar application depth. Overall, compared with CK, BC₀₋₁₀cₘ increased total CO₂ emissions by 10.13%, while BC₁₀₋₂₀cₘ and BC₀₋₂₀cₘ showed no significant effect. BC₀₋₁₀cₘ and BC₀₋₂₀cₘ exhibited greater soil CH₄ uptake enhancement than BC₁₀₋₂₀cₘ, but the enhanced CH₄ uptake resulted in limited net greenhouse gas mitigation. BC₁₀₋₂₀cₘ and BC₀₋₂₀cₘ had a lower qCO₂ than the other treatments, which likely increased the carbon use efficiency and decreased the stress on soil microbes, but BC₀₋₁₀cₘ showed the opposite effect. In addition, BC₀₋₁₀cₘ significantly reduced Q₁₀ mainly due to the enhanced lability of the native carbon and microbial activities. Changes in environmental factors in the 0–10 cm soil largely explained the variations in CO₂ emissions, CH₄ uptake and Q₁₀ (>88%). Nevertheless, the enhanced microbial biomass in the 10–20 cm soil helped lower qCO₂ in the whole 0–20 cm layer. In summary, adding biochar to surface soil (0–10 cm) likely accelerates carbon loss, due to the strong shift in the environment of the surface soil caused by complex interactions among hydrothermal conditions, nutrient levels (i.e., N, NH₄⁺, NO₃⁻ and available P) and labile carbon. However, adding biochar to subsurface soil (10–20 cm) can effectively avoid severe disturbance of the surface soil environment and thus benefit soil carbon sequestration in the long term.
ArticleNumber 115186
Author Ma, Qiang
Zhou, Changrui
Yu, Wantai
Li, Shuailin
Shangguan, Zhouping
Author_xml – sequence: 1
  givenname: Shuailin
  surname: Li
  fullname: Li, Shuailin
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 2
  givenname: Qiang
  surname: Ma
  fullname: Ma, Qiang
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 3
  givenname: Changrui
  surname: Zhou
  fullname: Zhou, Changrui
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 4
  givenname: Wantai
  surname: Yu
  fullname: Yu, Wantai
  email: wtyu@iae.ac.cn
  organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 5
  givenname: Zhouping
  surname: Shangguan
  fullname: Shangguan, Zhouping
  email: shangguan@ms.iswc.ac.cn
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Shaanxi 712100, China
BookMark eNqFkM2OFCEUhYkZE3tGX8GwdFMtPwWUxoWdiTomnehi9oSCWz10aCiBMqk3mMeWntaNm1nd3Ms5J5zvGl3FFAGht5RsKaHy_XF7gOQgn8yWEUa3lAo6yBdoQwfFOsnEhyu0IU3ZKSLpK3RdyrGtijCyQY-7eQ6rjwc8-mQfTMZLbFm4prkkH_BkrA--mgoFPx2syWOKuMCvBUrNpvoUP-JduxfApS5uxT5ig11eg4kOm0P2dgl1ySbgspYKJ9z89QHwPkEp-Gdo4WZ5jV5OJhR483feoPuvX-5v77r9j2_fb3f7znA51E6oYeCUMyXGceJge8qdnKAXwIwSvZGM02kaHFcjiPbahJbxSVIKjijGb9C7S-yc01MDffLFQmh_hbQUzYTq-UBYL5r000Vqcyolw6TtGUTr22r7oCnRZ_76qP_x12f--sK_2eV_9jn7k8nr88bPFyM0DL89ZF2sh2jB-Qy2apf8cxF_AEfcqEo
CitedBy_id crossref_primary_10_1590_1678_992x_2023_0289
crossref_primary_10_1039_D1EE03523A
crossref_primary_10_54691_fse_v3i11_5707
crossref_primary_10_1016_j_soilbio_2024_109614
crossref_primary_10_1016_j_geoderma_2022_115768
crossref_primary_10_1016_j_resconrec_2025_108237
crossref_primary_10_1016_j_scitotenv_2022_157651
crossref_primary_10_1007_s11104_023_06016_4
crossref_primary_10_1016_j_jenvman_2025_124336
crossref_primary_10_3389_fpls_2024_1397552
crossref_primary_10_1016_j_geoderma_2021_115572
crossref_primary_10_1016_j_jclepro_2022_131791
Cites_doi 10.1111/ejss.12800
10.1007/s10533-020-00658-7
10.1016/j.jenvman.2016.12.066
10.1038/nature17174
10.1126/science.1097396
10.2136/sssabookser5.3.c34
10.1111/gcbb.12266
10.1111/1462-2920.12149
10.1111/gcb.13871
10.1016/j.jhydrol.2015.12.007
10.1111/ejss.12100
10.1111/gcbb.12561
10.1016/j.geoderma.2017.07.032
10.1016/j.soilbio.2017.09.004
10.1016/j.still.2017.07.005
10.1016/j.scitotenv.2017.06.275
10.3390/w11030499
10.1111/gcbb.12474
10.1111/gcbb.12402
10.1111/gcbb.12363
10.1016/j.still.2018.11.007
10.1016/j.agee.2017.02.029
10.1016/j.agee.2017.08.029
10.2136/sssaj2007.0122
10.1016/j.soilbio.2016.07.021
10.1016/0038-0717(90)90046-3
10.1038/nrmicro3109
10.1016/S0038-0717(00)00125-5
10.1016/S0167-8809(03)00088-4
10.1007/s11368-018-1994-3
10.1038/nclimate1796
10.1016/S0038-0717(00)00084-5
10.1016/j.scitotenv.2018.11.396
10.1111/j.1365-2486.2011.02496.x
10.1016/j.agee.2019.02.013
10.1016/0038-0717(87)90052-6
10.1016/j.foreco.2017.09.038
10.1016/j.still.2019.104437
10.1016/j.agee.2014.02.018
10.1016/j.still.2018.06.006
10.1016/j.fcr.2017.03.013
10.1016/j.still.2015.06.016
10.1016/j.soilbio.2011.11.016
10.1016/j.geoderma.2018.04.001
10.1038/nclimate2580
10.1016/j.apsoil.2016.08.018
10.1016/j.agrformet.2019.03.001
10.1016/j.apsoil.2019.04.021
10.1016/j.agee.2017.01.006
10.1016/j.agee.2016.12.026
10.1016/j.scitotenv.2019.06.277
10.1016/j.geoderma.2018.01.001
10.1038/s41564-018-0129-3
10.1038/nature04514
10.1016/j.soilbio.2010.06.026
10.7717/peerj.7130
10.1111/j.1365-2486.2009.02040.x
10.1016/j.soilbio.2011.04.022
10.1016/j.chemosphere.2017.12.025
10.1007/s00374-017-1253-6
10.1016/j.agee.2010.12.005
10.1016/j.soilbio.2014.10.006
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115186
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115186
S0016706121002664
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-5788313275bbf3ec413d6fe45e2a754a6231ff8d37be5c41275c23f611ed0723
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 08:28:23 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Tue Jul 01 04:04:55 EDT 2025
Fri Feb 23 02:39:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metabolic quotient (qCO2)
Methane uptake
Soil respiration
Biochar application depth
Temperature sensitivity (Q10)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-5788313275bbf3ec413d6fe45e2a754a6231ff8d37be5c41275c23f611ed0723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2574380245
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574380245
crossref_citationtrail_10_1016_j_geoderma_2021_115186
crossref_primary_10_1016_j_geoderma_2021_115186
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Zhang, Yan, Shangguan (b0190) 2018; 183
Vance, Brooks, Jenkinson (b0275) 1987; 19
Kuzyakov, Friedel, Stahr (b0150) 2000; 32
Zhalnina, Louie, Hao, Mansoori, da Rocha, Shi, Cho, Karaoz, Loque, Bowen, Firestone, Northen, Brodie (b0315) 2018; 3
Baumhardt, Ones, Schwartz (b0030) 2008; 72
Yu, Zhao, Jia, Niu, Sheng, Shi (b0310) 2017; 308
Nelson, D.W., Sommers, L.E., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1982. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis Part—chemical Methods, 961-1010.
Anderson, Domsch (b0010) 2010; 42
Grunwald, Kaiser, Junker, Marhan, Piepho, Poll, Bamminger, Ludwig (b0120) 2017; 241
Castellini, Giglio, Niedda, Palumbo, Ventrella (b0045) 2015; 154
Ge, Cao, Zhou, Wang, Yang, Li (b0115) 2019; 142
Ding, Gao, Qu, Jia, Hu, Li (b0075) 2019; 11
Karhu, Mattila, Bergstrom, Regina (b0140) 2011; 140
Schneider, Don, Hennings, Schmittmann, Seidel (b0265) 2017; 174
Fang, Singh, Singh (b0095) 2015; 80
Ramlow, Cotrufo (b0255) 2018; 10
Wu, Joergensen, Pommerening, Chaussod, Brookes (b0295) 1990; 22
Frey, Lee, Melillo, Six (b0110) 2013; 3
Jeffery, Verheijen, Kammann, Abalos (b0135) 2016; 101
Paustian, Lehmann, Ogle, Reay, Robertson, Smith (b0235) 2016; 532
Lal (b0155) 2004; 304
Feng, Xu, Yu, Xie, Lin (b0105) 2012; 46
Li, Wang, Fan, Wu, Shangguan (b0185) 2020; 196
Lu, Li, Wang, Singh, Hu, Luo, Li, Xiao, Cai, Li (b0215) 2019; 271
Hawthorne, Johnson, Jassal, Black, Grant, Smukler (b0125) 2017; 192
Liu, Li, Yue, Yan, Wang, Bloszies, Wang (b0210) 2018; 194
Chen, Wang, Zhang (b0055) 2019; 186
Cheng, Hill, Bastami, Jones (b0060) 2017; 9
Sun, Wang, Wang, Du, Zhao, Gao, Hu, Guo (b0270) 2018; 325
Liu, Mao, Li, Ma (b0200) 2019; 656
Li, Wang, Shangguan (b0180) 2019; 276
He, Du, Wang, Lu, Zhang (b0130) 2016; 108
Bradford, Watts, Davies (b0035) 2010; 16
Davidson, Janssens (b0070) 2006; 440
Zhou, Zhang, Wang, Liu, Cheng, Li, Zheng, Zhang, Zheng, Crowley, van Zwieten, Pan (b0320) 2017; 239
Xu, Cheng, Wu, Sun, Yue, Pan (b0300) 2019; 11
Li, Shangguan (b0170) 2018
Dutta, Kwon, Bhattacharya, Jeon, Deep, Uchimiya, Kim (b0080) 2017; 9
Li, Liang, Shangguan (b0175) 2017; 607
Fang, Singh, Singh (b0090) 2014; 191
Liu, Wang, Yan, Li, Jiao, Hu (b0205) 2017; 237
Philippot, Raaijmakers, Lemanceau, van der Putten (b0250) 2013; 11
Yao, Zhang, Tian, Zhao, Zhang, Zhao, Zeng, Yin (b0305) 2018; 218
Wang, Li, Dong, Wu, Hu, Zhang, Luo (b0280) 2018; 319
Bremner, Mulvaney (b0040) 1982
Pei, Zhuang, Cui, Li, Li, Wu, Fang (b0240) 2017; 249
Anderson (b0005) 2003; 98
Perveen, Ayub, Shahzad, Siddiq, Memon, Barot, Saeed, Xu (b0245) 2019; 7
Fang, Moncrieff (b0085) 2001; 33
Conant, Ryan, Agren, Birge, Davidson, Eliasson, Evans, Frey, Giardina, Hopkins, Hyvonen, Kirschbaum, Lavallee, Leifeld, Parton, Steinweg, Wallenstein, Wetterstedt, Bradford (b0065) 2011; 17
Fang, Singh, Matta, Cowie, Van Zwieten (b0100) 2017; 115
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (b0160) 2011; 43
Wang, Xiong, Kuzyakov (b0285) 2016; 8
Zhou, Zhou, Zhang, Du, He, Wang, Shao, Cao, Xue, Wang, Xu (b0325) 2017; 405
Chen, Sun, Zheng, Zhang, Liu, Bian, Li, Cheng, Zheng, Pan (b0050) 2018; 54
Ribas, Mattana, Llurba, Debouk, Sebastia, Domene (b0260) 2019; 685
Bai, Tao, Li, Shu, Yan, Wang, Ye, Guo, Wang, Hu (b0015) 2019; 70
Min, Berhe, Khoi, van Asperen, Gillabel, Six (b0220) 2020; 148
Keiluweit, Bougoure, Nico, Pett-Ridge, Weber, Kleber (b0145) 2015; 5
Liu, Dugan, Masiello, Barnes, Gallagher, Gonnermann (b0195) 2016; 533
Bao, S., 2001. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing (2001), pp. 39-61 In Chinese.
Nazaries, Murrell, Millard, Baggs, Singh (b0225) 2013; 15
Bamminger, Poll, Marhan (b0020) 2018; 24
Li, Wang, Wang, Zhang, Wang, Shangguan (b0165) 2016; 32
Watzinger, Feichtmair, Kitzler, Zehetner, Kloss, Wimmer, Zechmeister-Boltenstern, Soja (b0290) 2014; 65
Nazaries (10.1016/j.geoderma.2021.115186_b0225) 2013; 15
Pei (10.1016/j.geoderma.2021.115186_b0240) 2017; 249
Wang (10.1016/j.geoderma.2021.115186_b0285) 2016; 8
10.1016/j.geoderma.2021.115186_b0025
Liu (10.1016/j.geoderma.2021.115186_b0205) 2017; 237
Ding (10.1016/j.geoderma.2021.115186_b0075) 2019; 11
Li (10.1016/j.geoderma.2021.115186_b0175) 2017; 607
Li (10.1016/j.geoderma.2021.115186_b0190) 2018; 183
Li (10.1016/j.geoderma.2021.115186_b0170) 2018
Liu (10.1016/j.geoderma.2021.115186_b0210) 2018; 194
Zhou (10.1016/j.geoderma.2021.115186_b0325) 2017; 405
Jeffery (10.1016/j.geoderma.2021.115186_b0135) 2016; 101
Chen (10.1016/j.geoderma.2021.115186_b0050) 2018; 54
Wang (10.1016/j.geoderma.2021.115186_b0280) 2018; 319
Fang (10.1016/j.geoderma.2021.115186_b0095) 2015; 80
Ramlow (10.1016/j.geoderma.2021.115186_b0255) 2018; 10
Zhou (10.1016/j.geoderma.2021.115186_b0320) 2017; 239
Bradford (10.1016/j.geoderma.2021.115186_b0035) 2010; 16
Fang (10.1016/j.geoderma.2021.115186_b0100) 2017; 115
Anderson (10.1016/j.geoderma.2021.115186_b0005) 2003; 98
10.1016/j.geoderma.2021.115186_b0230
Liu (10.1016/j.geoderma.2021.115186_b0195) 2016; 533
Frey (10.1016/j.geoderma.2021.115186_b0110) 2013; 3
Bai (10.1016/j.geoderma.2021.115186_b0015) 2019; 70
Dutta (10.1016/j.geoderma.2021.115186_b0080) 2017; 9
Ribas (10.1016/j.geoderma.2021.115186_b0260) 2019; 685
Baumhardt (10.1016/j.geoderma.2021.115186_b0030) 2008; 72
Lal (10.1016/j.geoderma.2021.115186_b0155) 2004; 304
Liu (10.1016/j.geoderma.2021.115186_b0200) 2019; 656
Paustian (10.1016/j.geoderma.2021.115186_b0235) 2016; 532
Cheng (10.1016/j.geoderma.2021.115186_b0060) 2017; 9
Feng (10.1016/j.geoderma.2021.115186_b0105) 2012; 46
Chen (10.1016/j.geoderma.2021.115186_b0055) 2019; 186
Kuzyakov (10.1016/j.geoderma.2021.115186_b0150) 2000; 32
Bamminger (10.1016/j.geoderma.2021.115186_b0020) 2018; 24
Philippot (10.1016/j.geoderma.2021.115186_b0250) 2013; 11
Min (10.1016/j.geoderma.2021.115186_b0220) 2020; 148
Hawthorne (10.1016/j.geoderma.2021.115186_b0125) 2017; 192
Fang (10.1016/j.geoderma.2021.115186_b0090) 2014; 191
Watzinger (10.1016/j.geoderma.2021.115186_b0290) 2014; 65
He (10.1016/j.geoderma.2021.115186_b0130) 2016; 108
Li (10.1016/j.geoderma.2021.115186_b0165) 2016; 32
Davidson (10.1016/j.geoderma.2021.115186_b0070) 2006; 440
Conant (10.1016/j.geoderma.2021.115186_b0065) 2011; 17
Lu (10.1016/j.geoderma.2021.115186_b0215) 2019; 271
Vance (10.1016/j.geoderma.2021.115186_b0275) 1987; 19
Anderson (10.1016/j.geoderma.2021.115186_b0010) 2010; 42
Schneider (10.1016/j.geoderma.2021.115186_b0265) 2017; 174
Fang (10.1016/j.geoderma.2021.115186_b0085) 2001; 33
Keiluweit (10.1016/j.geoderma.2021.115186_b0145) 2015; 5
Yao (10.1016/j.geoderma.2021.115186_b0305) 2018; 218
Bremner (10.1016/j.geoderma.2021.115186_b0040) 1982
Xu (10.1016/j.geoderma.2021.115186_b0300) 2019; 11
Zhalnina (10.1016/j.geoderma.2021.115186_b0315) 2018; 3
Li (10.1016/j.geoderma.2021.115186_b0185) 2020; 196
Perveen (10.1016/j.geoderma.2021.115186_b0245) 2019; 7
Li (10.1016/j.geoderma.2021.115186_b0180) 2019; 276
Grunwald (10.1016/j.geoderma.2021.115186_b0120) 2017; 241
Wu (10.1016/j.geoderma.2021.115186_b0295) 1990; 22
Yu (10.1016/j.geoderma.2021.115186_b0310) 2017; 308
Lehmann (10.1016/j.geoderma.2021.115186_b0160) 2011; 43
Ge (10.1016/j.geoderma.2021.115186_b0115) 2019; 142
Karhu (10.1016/j.geoderma.2021.115186_b0140) 2011; 140
Sun (10.1016/j.geoderma.2021.115186_b0270) 2018; 325
Castellini (10.1016/j.geoderma.2021.115186_b0045) 2015; 154
References_xml – volume: 249
  start-page: 156
  year: 2017
  end-page: 164
  ident: b0240
  article-title: Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field
  publication-title: Agric. Ecosyst. Environ.
– volume: 9
  start-page: 990
  year: 2017
  end-page: 1004
  ident: b0080
  article-title: Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review
  publication-title: GCB Bioenergy
– volume: 108
  start-page: 204
  year: 2016
  end-page: 210
  ident: b0130
  article-title: Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands
  publication-title: Appl. Soil Ecol.
– volume: 15
  start-page: 2395
  year: 2013
  end-page: 2417
  ident: b0225
  article-title: Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions
  publication-title: Environ. Microbiol.
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: b0275
  article-title: An extraction method for measuring soil microbial biomass
  publication-title: Soil Biol. Biochem.
– volume: 241
  start-page: 79
  year: 2017
  end-page: 87
  ident: b0120
  article-title: Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil
  publication-title: Agric. Ecosyst. Environ.
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  ident: b0145
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Change
– reference: Bao, S., 2001. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing (2001), pp. 39-61 In Chinese.
– volume: 325
  start-page: 172
  year: 2018
  end-page: 182
  ident: b0270
  article-title: Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter?
  publication-title: Geoderma
– volume: 174
  start-page: 193
  year: 2017
  end-page: 204
  ident: b0265
  article-title: The effect of deep tillage on crop yield – What do we really know?
  publication-title: Soil Tillage Res.
– volume: 308
  start-page: 93
  year: 2017
  end-page: 103
  ident: b0310
  article-title: Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China
  publication-title: Geoderma
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: b0160
  article-title: Biochar effects on soil biota – A review
  publication-title: Soil Biol. Biochem.
– volume: 685
  start-page: 1075
  year: 2019
  end-page: 1086
  ident: b0260
  article-title: Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 395
  year: 2013
  end-page: 398
  ident: b0110
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nat. Clim. Change
– volume: 98
  start-page: 285
  year: 2003
  end-page: 293
  ident: b0005
  article-title: Microbial eco-physiological indicators to asses soil quality
  publication-title: Agric. Ecosyst. Environ.
– volume: 72
  start-page: 677
  year: 2008
  end-page: 682
  ident: b0030
  article-title: Long-term effects of profile-modifying deep plowing on soil properties and crop yield
  publication-title: Soil Sci. Soc. Am. J.
– reference: Nelson, D.W., Sommers, L.E., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1982. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis Part—chemical Methods, 961-1010.
– volume: 33
  start-page: 155
  year: 2001
  end-page: 165
  ident: b0085
  article-title: The dependence of soil CO2 efflux on temperature
  publication-title: Soil Biol. Biochem.
– volume: 70
  start-page: 1025
  year: 2019
  end-page: 1036
  ident: b0015
  article-title: Different microbial responses in top- and sub-soils to elevated temperature and substrate addition in a semiarid grassland on the Loess Plateau
  publication-title: Eur. J. Soil Sci.
– volume: 186
  start-page: 322
  year: 2019
  end-page: 332
  ident: b0055
  article-title: Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes
  publication-title: Soil Tillage Res.
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: b0155
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 154
  start-page: 1
  year: 2015
  end-page: 13
  ident: b0045
  article-title: Impact of biochar addition on the physical and hydraulic properties of a clay soil
  publication-title: Soil Tillage Res.
– volume: 194
  start-page: 495
  year: 2018
  end-page: 503
  ident: b0210
  article-title: Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil
  publication-title: Chemosphere
– volume: 192
  start-page: 203
  year: 2017
  end-page: 214
  ident: b0125
  article-title: Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil
  publication-title: J. Environ. Manage.
– volume: 533
  start-page: 461
  year: 2016
  end-page: 472
  ident: b0195
  article-title: Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures
  publication-title: J. Hydrol.
– volume: 276
  start-page: 21
  year: 2019
  end-page: 30
  ident: b0180
  article-title: Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen
  publication-title: Agric. Ecosyst. Environ.
– volume: 532
  start-page: 49
  year: 2016
  end-page: 57
  ident: b0235
  article-title: Climate-smart soils
  publication-title: Nature
– year: 2018
  ident: b0170
  article-title: Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions
  publication-title: J. Soils Sediments
– volume: 22
  start-page: 1167
  year: 1990
  end-page: 1169
  ident: b0295
  article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure
  publication-title: Soil Biol. Biochem.
– volume: 271
  start-page: 168
  year: 2019
  end-page: 179
  ident: b0215
  article-title: Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation
  publication-title: Agric. For. Meteorol.
– volume: 10
  start-page: 108
  year: 2018
  end-page: 122
  ident: b0255
  article-title: Woody biochar's greenhouse gas mitigation potential across fertilized and unfertilized agricultural soils and soil moisture regimes
  publication-title: GCB Bioenergy
– volume: 148
  start-page: 255
  year: 2020
  end-page: 269
  ident: b0220
  article-title: Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers
  publication-title: Biogeochemistry
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  ident: b0070
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 11
  start-page: 592
  year: 2019
  end-page: 605
  ident: b0300
  article-title: Greenhouse gas mitigation potential in crop production with biochar soil amendment-a carbon footprint assessment for cross-site field experiments from China
  publication-title: GCB Bioenergy
– volume: 65
  start-page: 40
  year: 2014
  end-page: 51
  ident: b0290
  article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized C-13-labelled biochar as revealed by C-13 PLFA analyses: results from a short-term incubation and pot experiment
  publication-title: Eur. J. Soil Sci.
– volume: 405
  start-page: 339
  year: 2017
  end-page: 349
  ident: b0325
  article-title: Biochar increased soil respiration in temperate forests but had no effects in subtropical forests
  publication-title: For. Ecol. Manage.
– volume: 656
  start-page: 969
  year: 2019
  end-page: 976
  ident: b0200
  article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis
  publication-title: Sci. Total Environ.
– volume: 196
  year: 2020
  ident: b0185
  article-title: Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community
  publication-title: Soil Tillage Res.
– volume: 319
  start-page: 100
  year: 2018
  end-page: 112
  ident: b0280
  article-title: Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China
  publication-title: Geoderma
– volume: 3
  start-page: 470
  year: 2018
  end-page: 480
  ident: b0315
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nat. Microbiol.
– volume: 11
  start-page: 789
  year: 2013
  end-page: 799
  ident: b0250
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nat. Rev. Microbiol.
– volume: 607
  start-page: 109
  year: 2017
  end-page: 119
  ident: b0175
  article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N
  publication-title: Sci. Total Environ.
– volume: 142
  start-page: 155
  year: 2019
  end-page: 165
  ident: b0115
  article-title: Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations
  publication-title: Appl. Soil Ecol.
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: b0140
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
– start-page: 595
  year: 1982
  end-page: 624
  ident: b0040
  article-title: Nitrogen – Total. Methods of soil analysis Part 2
  publication-title: Chem. Microbiol. Proper.
– volume: 183
  start-page: 100
  year: 2018
  end-page: 108
  ident: b0190
  article-title: Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil
  publication-title: Soil Tillage Res.
– volume: 17
  start-page: 3392
  year: 2011
  end-page: 3404
  ident: b0065
  article-title: Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward
  publication-title: Glob. Change Biol.
– volume: 11
  year: 2019
  ident: b0075
  article-title: Effects of biochar application and irrigation methods on soil temperature in farmland
  publication-title: Water
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  ident: b0150
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
– volume: 9
  start-page: 1110
  year: 2017
  end-page: 1121
  ident: b0060
  article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil
  publication-title: GCB Bioenergy
– volume: 7
  start-page: 15
  year: 2019
  ident: b0245
  article-title: Soil carbon mineralization in response to nitrogen enrichment in surface and subsurface layers in two land use types
  publication-title: PeerJ
– volume: 237
  start-page: 16
  year: 2017
  end-page: 23
  ident: b0205
  article-title: Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture
  publication-title: Agric. Ecosyst. Environ.
– volume: 218
  start-page: 254
  year: 2018
  end-page: 266
  ident: b0305
  article-title: Urea deep placement for minimizing NH3 loss in an intensive rice cropping system
  publication-title: Field Crops Res.
– volume: 115
  start-page: 346
  year: 2017
  end-page: 356
  ident: b0100
  article-title: Temperature sensitivity and priming of organic matter with different stabilities in a Vertisol with aged biochar
  publication-title: Soil Biol. Biochem.
– volume: 101
  start-page: 251
  year: 2016
  end-page: 258
  ident: b0135
  article-title: Biochar effects on methane emissions from soils: a meta-analysis
  publication-title: Soil Biol. Biochem.
– volume: 54
  start-page: 175
  year: 2018
  end-page: 188
  ident: b0050
  article-title: Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil
  publication-title: Biol. Fertility Soils
– volume: 32
  start-page: 135
  year: 2016
  end-page: 144
  ident: b0165
  article-title: Effects of application patterns and amount of biochar on water infiltration and evaporation
  publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng.
– volume: 42
  start-page: 2039
  year: 2010
  end-page: 2043
  ident: b0010
  article-title: Soil microbial biomass: The eco-physiological approach
  publication-title: Soil Biol. Biochem.
– volume: 239
  start-page: 80
  year: 2017
  end-page: 89
  ident: b0320
  article-title: Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis
  publication-title: Agric. Ecosyst. Environ.
– volume: 80
  start-page: 136
  year: 2015
  end-page: 145
  ident: b0095
  article-title: Effect of temperature on biochar priming effects and its stability in soils
  publication-title: Soil Biol. Biochem.
– volume: 24
  start-page: E318
  year: 2018
  end-page: E334
  ident: b0020
  article-title: Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application
  publication-title: Glob. Change Biol.
– volume: 46
  start-page: 80
  year: 2012
  end-page: 88
  ident: b0105
  article-title: Mechanisms of biochar decreasing methane emission from Chinese paddy soils
  publication-title: Soil Biol. Biochem.
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: b0285
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
– volume: 191
  start-page: 158
  year: 2014
  end-page: 167
  ident: b0090
  article-title: Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils
  publication-title: Agric. Ecosyst. Environ.
– volume: 16
  start-page: 1576
  year: 2010
  end-page: 1588
  ident: b0035
  article-title: Thermal adaptation of heterotrophic soil respiration in laboratory microcosms
  publication-title: Glob. Change Biol.
– volume: 70
  start-page: 1025
  issue: 5
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0015
  article-title: Different microbial responses in top- and sub-soils to elevated temperature and substrate addition in a semiarid grassland on the Loess Plateau
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12800
– volume: 148
  start-page: 255
  issue: 3
  year: 2020
  ident: 10.1016/j.geoderma.2021.115186_b0220
  article-title: Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-020-00658-7
– volume: 192
  start-page: 203
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0125
  article-title: Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.12.066
– volume: 532
  start-page: 49
  issue: 7597
  year: 2016
  ident: 10.1016/j.geoderma.2021.115186_b0235
  article-title: Climate-smart soils
  publication-title: Nature
  doi: 10.1038/nature17174
– volume: 304
  start-page: 1623
  issue: 5677
  year: 2004
  ident: 10.1016/j.geoderma.2021.115186_b0155
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– ident: 10.1016/j.geoderma.2021.115186_b0230
  doi: 10.2136/sssabookser5.3.c34
– volume: 8
  start-page: 512
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2021.115186_b0285
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12266
– volume: 15
  start-page: 2395
  issue: 9
  year: 2013
  ident: 10.1016/j.geoderma.2021.115186_b0225
  article-title: Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12149
– volume: 24
  start-page: E318
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0020
  article-title: Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13871
– volume: 533
  start-page: 461
  year: 2016
  ident: 10.1016/j.geoderma.2021.115186_b0195
  article-title: Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.007
– volume: 65
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2021.115186_b0290
  article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized C-13-labelled biochar as revealed by C-13 PLFA analyses: results from a short-term incubation and pot experiment
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12100
– volume: 11
  start-page: 592
  issue: 4
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0300
  article-title: Greenhouse gas mitigation potential in crop production with biochar soil amendment-a carbon footprint assessment for cross-site field experiments from China
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12561
– ident: 10.1016/j.geoderma.2021.115186_b0025
– volume: 308
  start-page: 93
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0310
  article-title: Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.07.032
– volume: 115
  start-page: 346
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0100
  article-title: Temperature sensitivity and priming of organic matter with different stabilities in a Vertisol with aged biochar
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.09.004
– volume: 174
  start-page: 193
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0265
  article-title: The effect of deep tillage on crop yield – What do we really know?
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2017.07.005
– volume: 607
  start-page: 109
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0175
  article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.06.275
– volume: 11
  issue: 3
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0075
  article-title: Effects of biochar application and irrigation methods on soil temperature in farmland
  publication-title: Water
  doi: 10.3390/w11030499
– volume: 10
  start-page: 108
  issue: 2
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0255
  article-title: Woody biochar's greenhouse gas mitigation potential across fertilized and unfertilized agricultural soils and soil moisture regimes
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12474
– volume: 9
  start-page: 1110
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0060
  article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12402
– volume: 9
  start-page: 990
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0080
  article-title: Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12363
– volume: 186
  start-page: 322
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0055
  article-title: Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.11.007
– volume: 241
  start-page: 79
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0120
  article-title: Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.02.029
– volume: 249
  start-page: 156
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0240
  article-title: Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.08.029
– volume: 72
  start-page: 677
  issue: 3
  year: 2008
  ident: 10.1016/j.geoderma.2021.115186_b0030
  article-title: Long-term effects of profile-modifying deep plowing on soil properties and crop yield
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0122
– volume: 101
  start-page: 251
  year: 2016
  ident: 10.1016/j.geoderma.2021.115186_b0135
  article-title: Biochar effects on methane emissions from soils: a meta-analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.021
– volume: 22
  start-page: 1167
  issue: 8
  year: 1990
  ident: 10.1016/j.geoderma.2021.115186_b0295
  article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90046-3
– volume: 11
  start-page: 789
  issue: 11
  year: 2013
  ident: 10.1016/j.geoderma.2021.115186_b0250
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3109
– volume: 33
  start-page: 155
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2021.115186_b0085
  article-title: The dependence of soil CO2 efflux on temperature
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00125-5
– volume: 98
  start-page: 285
  issue: 1–3
  year: 2003
  ident: 10.1016/j.geoderma.2021.115186_b0005
  article-title: Microbial eco-physiological indicators to asses soil quality
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(03)00088-4
– year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0170
  article-title: Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-018-1994-3
– volume: 32
  start-page: 135
  issue: 14
  year: 2016
  ident: 10.1016/j.geoderma.2021.115186_b0165
  article-title: Effects of application patterns and amount of biochar on water infiltration and evaporation
  publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng.
– volume: 3
  start-page: 395
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2021.115186_b0110
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1796
– volume: 32
  start-page: 1485
  issue: 11–12
  year: 2000
  ident: 10.1016/j.geoderma.2021.115186_b0150
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 656
  start-page: 969
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0200
  article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.396
– volume: 17
  start-page: 3392
  issue: 11
  year: 2011
  ident: 10.1016/j.geoderma.2021.115186_b0065
  article-title: Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2011.02496.x
– volume: 276
  start-page: 21
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0180
  article-title: Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2019.02.013
– volume: 19
  start-page: 703
  issue: 19
  year: 1987
  ident: 10.1016/j.geoderma.2021.115186_b0275
  article-title: An extraction method for measuring soil microbial biomass
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 405
  start-page: 339
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0325
  article-title: Biochar increased soil respiration in temperate forests but had no effects in subtropical forests
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2017.09.038
– volume: 196
  year: 2020
  ident: 10.1016/j.geoderma.2021.115186_b0185
  article-title: Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104437
– volume: 191
  start-page: 158
  year: 2014
  ident: 10.1016/j.geoderma.2021.115186_b0090
  article-title: Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.02.018
– volume: 183
  start-page: 100
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0190
  article-title: Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.06.006
– volume: 218
  start-page: 254
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0305
  article-title: Urea deep placement for minimizing NH3 loss in an intensive rice cropping system
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2017.03.013
– volume: 154
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2021.115186_b0045
  article-title: Impact of biochar addition on the physical and hydraulic properties of a clay soil
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.06.016
– volume: 46
  start-page: 80
  year: 2012
  ident: 10.1016/j.geoderma.2021.115186_b0105
  article-title: Mechanisms of biochar decreasing methane emission from Chinese paddy soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.11.016
– volume: 325
  start-page: 172
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0270
  article-title: Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.001
– volume: 5
  start-page: 588
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2021.115186_b0145
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2580
– start-page: 595
  year: 1982
  ident: 10.1016/j.geoderma.2021.115186_b0040
  article-title: Nitrogen – Total. Methods of soil analysis Part 2
  publication-title: Chem. Microbiol. Proper.
– volume: 108
  start-page: 204
  year: 2016
  ident: 10.1016/j.geoderma.2021.115186_b0130
  article-title: Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2016.08.018
– volume: 271
  start-page: 168
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0215
  article-title: Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.03.001
– volume: 142
  start-page: 155
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0115
  article-title: Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.04.021
– volume: 239
  start-page: 80
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0320
  article-title: Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.01.006
– volume: 237
  start-page: 16
  year: 2017
  ident: 10.1016/j.geoderma.2021.115186_b0205
  article-title: Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.12.026
– volume: 685
  start-page: 1075
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0260
  article-title: Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.277
– volume: 319
  start-page: 100
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0280
  article-title: Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.01.001
– volume: 3
  start-page: 470
  issue: 4
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0315
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0129-3
– volume: 440
  start-page: 165
  issue: 7081
  year: 2006
  ident: 10.1016/j.geoderma.2021.115186_b0070
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
  doi: 10.1038/nature04514
– volume: 42
  start-page: 2039
  issue: 12
  year: 2010
  ident: 10.1016/j.geoderma.2021.115186_b0010
  article-title: Soil microbial biomass: The eco-physiological approach
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.06.026
– volume: 7
  start-page: 15
  year: 2019
  ident: 10.1016/j.geoderma.2021.115186_b0245
  article-title: Soil carbon mineralization in response to nitrogen enrichment in surface and subsurface layers in two land use types
  publication-title: PeerJ
  doi: 10.7717/peerj.7130
– volume: 16
  start-page: 1576
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2021.115186_b0035
  article-title: Thermal adaptation of heterotrophic soil respiration in laboratory microcosms
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2009.02040.x
– volume: 43
  start-page: 1812
  issue: 9
  year: 2011
  ident: 10.1016/j.geoderma.2021.115186_b0160
  article-title: Biochar effects on soil biota – A review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 194
  start-page: 495
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0210
  article-title: Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.025
– volume: 54
  start-page: 175
  issue: 2
  year: 2018
  ident: 10.1016/j.geoderma.2021.115186_b0050
  article-title: Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil
  publication-title: Biol. Fertility Soils
  doi: 10.1007/s00374-017-1253-6
– volume: 140
  start-page: 309
  issue: 1–2
  year: 2011
  ident: 10.1016/j.geoderma.2021.115186_b0140
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 80
  start-page: 136
  year: 2015
  ident: 10.1016/j.geoderma.2021.115186_b0095
  article-title: Effect of temperature on biochar priming effects and its stability in soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.10.006
SSID ssj0017020
Score 2.418423
Snippet •The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at...
The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115186
SubjectTerms biochar
Biochar application depth
carbon dioxide
carbon sequestration
case studies
China
dryland farming
edaphic factors
field experimentation
labile carbon
Metabolic quotient (qCO2)
methane
Methane uptake
microbial biomass
pollution control
Soil respiration
subsurface soil layers
temperature
Temperature sensitivity (Q10)
topsoil
upland soils
Title Applying biochar under topsoil facilitates soil carbon sequestration: A case study in a dryland agricultural system on the Loess Plateau
URI https://dx.doi.org/10.1016/j.geoderma.2021.115186
https://www.proquest.com/docview/2574380245
Volume 403
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gIHRHmIFloNEtewceLHhtuqarW8Kg5F6s2yHRulWiWr7O6BC2d-NjNOsgKE1APHOB7H8md_Hisznxl7UwSh6yrmWaULlyFLxszlMmbecVfjqcWppFvw-Votv4oPt_L2gF1MuTAUVjly_8Dpia3Hktk4mrN101COL1c6TwpYeJBQpAkqhKZZ_vbHPsyD63yUZuQqo9q_ZQnfIUZ04VjSHyo4sofklFP97w3qL6pO-8_VY_ZodBxhMfTtmB2E9gl7uPjWj-IZ4Sn7SS4lpS2BazpKpwLKEOth2603XbOCaP2gyR02kAq87V3XQgqnnvRz38ECyzcBkvAsNC1YqPvvFAAJdv817MmgAQ1ojz4kfOqQMuHLChu3u2fs5ury5mKZjTctZLZU822Gy3ZOGo5aOhfL4BGzWsUgZCislsKij8RjnNeldkHiW6zoizIqzkOd66J8zg7brg0vGIRSqdx5L2qdC1e6SpZeVvNo6yCCiNUJk9PoGj-qkNNlGCszhZvdmQkVQ6iYAZUTNtvbrQcdjnstqgk888eMMrhZ3Gv7ekLb4HKjfyi2Dd1uY5DhSKO_EPL0P9p_yR7Q0xAW84odbvtdOEPnZuvO0-w9Z0eL9x-X178A4RH8OQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcoz0GCY9g4sZ0NEocVUG3ptuKwSL1ZtmNXqVbJKtkV6oUzv4dfyNhxVoCQekC92pnEmhl_Hisz3xDyOrOsqEqXJmWR6QRR0iU65S4xmuoKby1aBN6Ck1Mx_8o-n_GzPfJzrIXxaZUR-wdMD2gdRyZRm5N1XfsaXyqKNDBg4UVCsJhZeWwvv-G9rX9_9BGN_CbLDj8tP8yT2FogUbmYbhL006knLSy41i63BhdZCWcZt5kqOFMYFFDnplVeaMtxFh80We4EpbZKC092gLB_gyFa-K4Jb7_v0kpokUYqSCoSv7rfqpIv0Cd8g7PAd5RRRCtOfQ33vw_Ev46GcN4d3iV3YqAKs0EX98iebe6T27PzLpJ12Afkhw9hfZkU6Lr15VvgK9I62LTrvq1X4JQZOMBtD2HAqE63DYT07ZGv9x3McLy3EIhuoW5AQdVd-oRLULuv4UoGzmlAeYxZYdEiRMOXFb5cbR-S5XWo_xHZb9rGPiZgcyFSbQyripTpXJc8N7ycOlVZZpkrDwgftStNZD33zTdWckxvu5CjVaS3ihysckAmO7n1wPtxpUQ5Gk_-4cESD6crZV-N1pa4vf0_G9XYdttLRFTfEyBj_Ml_vP8luTlfnizk4uj0-Cm55WeGlJxnZH_Tbe1zDKw2-kXwZCDymnfOLxhsNiI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+biochar+under+topsoil+facilitates+soil+carbon+sequestration%3A+A+case+study+in+a+dryland+agricultural+system+on+the+Loess+Plateau&rft.jtitle=Geoderma&rft.au=Li%2C+Shuailin&rft.au=Ma%2C+Qiang&rft.au=Zhou%2C+Changrui&rft.au=Yu%2C+Wantai&rft.date=2021-12-01&rft.issn=0016-7061&rft.volume=403&rft.spage=115186&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2021_115186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon