Applying biochar under topsoil facilitates soil carbon sequestration: A case study in a dryland agricultural system on the Loess Plateau
•The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at 0–10 cm.•Biochar incorporation into the 10–20 cm depth promoted soil C sequestration. The remarkable soil carbon sequestration and greenhouse gas...
Saved in:
Published in | Geoderma Vol. 403; p. 115186 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at 0–10 cm.•Biochar incorporation into the 10–20 cm depth promoted soil C sequestration.
The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its benefits. However, it remains unclear how biochar application depth impacts soil carbon dioxide (CO2) emissions and methane (CH4) uptake in upland soil. Therefore, we carried out a 16-month field experiment in a dryland agricultural system to answer the above questions. Woody biochar (20 t ha−1) was mixed into three soil layers: 0–10 cm (BC0-10cm), 10–20 cm (BC10-20cm), and 0–20 cm (BC0-20cm). Soil without biochar addition was used as the control (CK). We monitored soil CO2 and CH4 fluxes continuously and determined the metabolic quotient (qCO2) and the sensitivity of soil respiration to temperature (Q10). The results indicated that CO2 emissions, CH4 uptake, qCO2 and Q10 were significantly affected by biochar application depth. Overall, compared with CK, BC0-10cm increased total CO2 emissions by 10.13%, while BC10-20cm and BC0-20cm showed no significant effect. BC0-10cm and BC0-20cm exhibited greater soil CH4 uptake enhancement than BC10-20cm, but the enhanced CH4 uptake resulted in limited net greenhouse gas mitigation. BC10-20cm and BC0-20cm had a lower qCO2 than the other treatments, which likely increased the carbon use efficiency and decreased the stress on soil microbes, but BC0-10cm showed the opposite effect. In addition, BC0-10cm significantly reduced Q10 mainly due to the enhanced lability of the native carbon and microbial activities. Changes in environmental factors in the 0–10 cm soil largely explained the variations in CO2 emissions, CH4 uptake and Q10 (>88%). Nevertheless, the enhanced microbial biomass in the 10–20 cm soil helped lower qCO2 in the whole 0–20 cm layer. In summary, adding biochar to surface soil (0–10 cm) likely accelerates carbon loss, due to the strong shift in the environment of the surface soil caused by complex interactions among hydrothermal conditions, nutrient levels (i.e., N, NH4+, NO3− and available P) and labile carbon. However, adding biochar to subsurface soil (10–20 cm) can effectively avoid severe disturbance of the surface soil environment and thus benefit soil carbon sequestration in the long term. |
---|---|
AbstractList | •The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at 0–10 cm.•Biochar incorporation into the 10–20 cm depth promoted soil C sequestration.
The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its benefits. However, it remains unclear how biochar application depth impacts soil carbon dioxide (CO2) emissions and methane (CH4) uptake in upland soil. Therefore, we carried out a 16-month field experiment in a dryland agricultural system to answer the above questions. Woody biochar (20 t ha−1) was mixed into three soil layers: 0–10 cm (BC0-10cm), 10–20 cm (BC10-20cm), and 0–20 cm (BC0-20cm). Soil without biochar addition was used as the control (CK). We monitored soil CO2 and CH4 fluxes continuously and determined the metabolic quotient (qCO2) and the sensitivity of soil respiration to temperature (Q10). The results indicated that CO2 emissions, CH4 uptake, qCO2 and Q10 were significantly affected by biochar application depth. Overall, compared with CK, BC0-10cm increased total CO2 emissions by 10.13%, while BC10-20cm and BC0-20cm showed no significant effect. BC0-10cm and BC0-20cm exhibited greater soil CH4 uptake enhancement than BC10-20cm, but the enhanced CH4 uptake resulted in limited net greenhouse gas mitigation. BC10-20cm and BC0-20cm had a lower qCO2 than the other treatments, which likely increased the carbon use efficiency and decreased the stress on soil microbes, but BC0-10cm showed the opposite effect. In addition, BC0-10cm significantly reduced Q10 mainly due to the enhanced lability of the native carbon and microbial activities. Changes in environmental factors in the 0–10 cm soil largely explained the variations in CO2 emissions, CH4 uptake and Q10 (>88%). Nevertheless, the enhanced microbial biomass in the 10–20 cm soil helped lower qCO2 in the whole 0–20 cm layer. In summary, adding biochar to surface soil (0–10 cm) likely accelerates carbon loss, due to the strong shift in the environment of the surface soil caused by complex interactions among hydrothermal conditions, nutrient levels (i.e., N, NH4+, NO3− and available P) and labile carbon. However, adding biochar to subsurface soil (10–20 cm) can effectively avoid severe disturbance of the surface soil environment and thus benefit soil carbon sequestration in the long term. The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its benefits. However, it remains unclear how biochar application depth impacts soil carbon dioxide (CO₂) emissions and methane (CH₄) uptake in upland soil. Therefore, we carried out a 16-month field experiment in a dryland agricultural system to answer the above questions. Woody biochar (20 t ha⁻¹) was mixed into three soil layers: 0–10 cm (BC₀₋₁₀cₘ), 10–20 cm (BC₁₀₋₂₀cₘ), and 0–20 cm (BC₀₋₂₀cₘ). Soil without biochar addition was used as the control (CK). We monitored soil CO₂ and CH₄ fluxes continuously and determined the metabolic quotient (qCO₂) and the sensitivity of soil respiration to temperature (Q₁₀). The results indicated that CO₂ emissions, CH₄ uptake, qCO₂ and Q₁₀ were significantly affected by biochar application depth. Overall, compared with CK, BC₀₋₁₀cₘ increased total CO₂ emissions by 10.13%, while BC₁₀₋₂₀cₘ and BC₀₋₂₀cₘ showed no significant effect. BC₀₋₁₀cₘ and BC₀₋₂₀cₘ exhibited greater soil CH₄ uptake enhancement than BC₁₀₋₂₀cₘ, but the enhanced CH₄ uptake resulted in limited net greenhouse gas mitigation. BC₁₀₋₂₀cₘ and BC₀₋₂₀cₘ had a lower qCO₂ than the other treatments, which likely increased the carbon use efficiency and decreased the stress on soil microbes, but BC₀₋₁₀cₘ showed the opposite effect. In addition, BC₀₋₁₀cₘ significantly reduced Q₁₀ mainly due to the enhanced lability of the native carbon and microbial activities. Changes in environmental factors in the 0–10 cm soil largely explained the variations in CO₂ emissions, CH₄ uptake and Q₁₀ (>88%). Nevertheless, the enhanced microbial biomass in the 10–20 cm soil helped lower qCO₂ in the whole 0–20 cm layer. In summary, adding biochar to surface soil (0–10 cm) likely accelerates carbon loss, due to the strong shift in the environment of the surface soil caused by complex interactions among hydrothermal conditions, nutrient levels (i.e., N, NH₄⁺, NO₃⁻ and available P) and labile carbon. However, adding biochar to subsurface soil (10–20 cm) can effectively avoid severe disturbance of the surface soil environment and thus benefit soil carbon sequestration in the long term. |
ArticleNumber | 115186 |
Author | Ma, Qiang Zhou, Changrui Yu, Wantai Li, Shuailin Shangguan, Zhouping |
Author_xml | – sequence: 1 givenname: Shuailin surname: Li fullname: Li, Shuailin organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 2 givenname: Qiang surname: Ma fullname: Ma, Qiang organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 3 givenname: Changrui surname: Zhou fullname: Zhou, Changrui organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 4 givenname: Wantai surname: Yu fullname: Yu, Wantai email: wtyu@iae.ac.cn organization: Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 5 givenname: Zhouping surname: Shangguan fullname: Shangguan, Zhouping email: shangguan@ms.iswc.ac.cn organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Shaanxi 712100, China |
BookMark | eNqFkM2OFCEUhYkZE3tGX8GwdFMtPwWUxoWdiTomnehi9oSCWz10aCiBMqk3mMeWntaNm1nd3Ms5J5zvGl3FFAGht5RsKaHy_XF7gOQgn8yWEUa3lAo6yBdoQwfFOsnEhyu0IU3ZKSLpK3RdyrGtijCyQY-7eQ6rjwc8-mQfTMZLbFm4prkkH_BkrA--mgoFPx2syWOKuMCvBUrNpvoUP-JduxfApS5uxT5ig11eg4kOm0P2dgl1ySbgspYKJ9z89QHwPkEp-Gdo4WZ5jV5OJhR483feoPuvX-5v77r9j2_fb3f7znA51E6oYeCUMyXGceJge8qdnKAXwIwSvZGM02kaHFcjiPbahJbxSVIKjijGb9C7S-yc01MDffLFQmh_hbQUzYTq-UBYL5r000Vqcyolw6TtGUTr22r7oCnRZ_76qP_x12f--sK_2eV_9jn7k8nr88bPFyM0DL89ZF2sh2jB-Qy2apf8cxF_AEfcqEo |
CitedBy_id | crossref_primary_10_1590_1678_992x_2023_0289 crossref_primary_10_1039_D1EE03523A crossref_primary_10_54691_fse_v3i11_5707 crossref_primary_10_1016_j_soilbio_2024_109614 crossref_primary_10_1016_j_geoderma_2022_115768 crossref_primary_10_1016_j_resconrec_2025_108237 crossref_primary_10_1016_j_scitotenv_2022_157651 crossref_primary_10_1007_s11104_023_06016_4 crossref_primary_10_1016_j_jenvman_2025_124336 crossref_primary_10_3389_fpls_2024_1397552 crossref_primary_10_1016_j_geoderma_2021_115572 crossref_primary_10_1016_j_jclepro_2022_131791 |
Cites_doi | 10.1111/ejss.12800 10.1007/s10533-020-00658-7 10.1016/j.jenvman.2016.12.066 10.1038/nature17174 10.1126/science.1097396 10.2136/sssabookser5.3.c34 10.1111/gcbb.12266 10.1111/1462-2920.12149 10.1111/gcb.13871 10.1016/j.jhydrol.2015.12.007 10.1111/ejss.12100 10.1111/gcbb.12561 10.1016/j.geoderma.2017.07.032 10.1016/j.soilbio.2017.09.004 10.1016/j.still.2017.07.005 10.1016/j.scitotenv.2017.06.275 10.3390/w11030499 10.1111/gcbb.12474 10.1111/gcbb.12402 10.1111/gcbb.12363 10.1016/j.still.2018.11.007 10.1016/j.agee.2017.02.029 10.1016/j.agee.2017.08.029 10.2136/sssaj2007.0122 10.1016/j.soilbio.2016.07.021 10.1016/0038-0717(90)90046-3 10.1038/nrmicro3109 10.1016/S0038-0717(00)00125-5 10.1016/S0167-8809(03)00088-4 10.1007/s11368-018-1994-3 10.1038/nclimate1796 10.1016/S0038-0717(00)00084-5 10.1016/j.scitotenv.2018.11.396 10.1111/j.1365-2486.2011.02496.x 10.1016/j.agee.2019.02.013 10.1016/0038-0717(87)90052-6 10.1016/j.foreco.2017.09.038 10.1016/j.still.2019.104437 10.1016/j.agee.2014.02.018 10.1016/j.still.2018.06.006 10.1016/j.fcr.2017.03.013 10.1016/j.still.2015.06.016 10.1016/j.soilbio.2011.11.016 10.1016/j.geoderma.2018.04.001 10.1038/nclimate2580 10.1016/j.apsoil.2016.08.018 10.1016/j.agrformet.2019.03.001 10.1016/j.apsoil.2019.04.021 10.1016/j.agee.2017.01.006 10.1016/j.agee.2016.12.026 10.1016/j.scitotenv.2019.06.277 10.1016/j.geoderma.2018.01.001 10.1038/s41564-018-0129-3 10.1038/nature04514 10.1016/j.soilbio.2010.06.026 10.7717/peerj.7130 10.1111/j.1365-2486.2009.02040.x 10.1016/j.soilbio.2011.04.022 10.1016/j.chemosphere.2017.12.025 10.1007/s00374-017-1253-6 10.1016/j.agee.2010.12.005 10.1016/j.soilbio.2014.10.006 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2021.115186 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2021_115186 S0016706121002664 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-5788313275bbf3ec413d6fe45e2a754a6231ff8d37be5c41275c23f611ed0723 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 08:28:23 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Tue Jul 01 04:04:55 EDT 2025 Fri Feb 23 02:39:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metabolic quotient (qCO2) Methane uptake Soil respiration Biochar application depth Temperature sensitivity (Q10) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-5788313275bbf3ec413d6fe45e2a754a6231ff8d37be5c41275c23f611ed0723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2574380245 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2574380245 crossref_citationtrail_10_1016_j_geoderma_2021_115186 crossref_primary_10_1016_j_geoderma_2021_115186 elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Zhang, Yan, Shangguan (b0190) 2018; 183 Vance, Brooks, Jenkinson (b0275) 1987; 19 Kuzyakov, Friedel, Stahr (b0150) 2000; 32 Zhalnina, Louie, Hao, Mansoori, da Rocha, Shi, Cho, Karaoz, Loque, Bowen, Firestone, Northen, Brodie (b0315) 2018; 3 Baumhardt, Ones, Schwartz (b0030) 2008; 72 Yu, Zhao, Jia, Niu, Sheng, Shi (b0310) 2017; 308 Nelson, D.W., Sommers, L.E., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1982. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis Part—chemical Methods, 961-1010. Anderson, Domsch (b0010) 2010; 42 Grunwald, Kaiser, Junker, Marhan, Piepho, Poll, Bamminger, Ludwig (b0120) 2017; 241 Castellini, Giglio, Niedda, Palumbo, Ventrella (b0045) 2015; 154 Ge, Cao, Zhou, Wang, Yang, Li (b0115) 2019; 142 Ding, Gao, Qu, Jia, Hu, Li (b0075) 2019; 11 Karhu, Mattila, Bergstrom, Regina (b0140) 2011; 140 Schneider, Don, Hennings, Schmittmann, Seidel (b0265) 2017; 174 Fang, Singh, Singh (b0095) 2015; 80 Ramlow, Cotrufo (b0255) 2018; 10 Wu, Joergensen, Pommerening, Chaussod, Brookes (b0295) 1990; 22 Frey, Lee, Melillo, Six (b0110) 2013; 3 Jeffery, Verheijen, Kammann, Abalos (b0135) 2016; 101 Paustian, Lehmann, Ogle, Reay, Robertson, Smith (b0235) 2016; 532 Lal (b0155) 2004; 304 Feng, Xu, Yu, Xie, Lin (b0105) 2012; 46 Li, Wang, Fan, Wu, Shangguan (b0185) 2020; 196 Lu, Li, Wang, Singh, Hu, Luo, Li, Xiao, Cai, Li (b0215) 2019; 271 Hawthorne, Johnson, Jassal, Black, Grant, Smukler (b0125) 2017; 192 Liu, Li, Yue, Yan, Wang, Bloszies, Wang (b0210) 2018; 194 Chen, Wang, Zhang (b0055) 2019; 186 Cheng, Hill, Bastami, Jones (b0060) 2017; 9 Sun, Wang, Wang, Du, Zhao, Gao, Hu, Guo (b0270) 2018; 325 Liu, Mao, Li, Ma (b0200) 2019; 656 Li, Wang, Shangguan (b0180) 2019; 276 He, Du, Wang, Lu, Zhang (b0130) 2016; 108 Bradford, Watts, Davies (b0035) 2010; 16 Davidson, Janssens (b0070) 2006; 440 Zhou, Zhang, Wang, Liu, Cheng, Li, Zheng, Zhang, Zheng, Crowley, van Zwieten, Pan (b0320) 2017; 239 Xu, Cheng, Wu, Sun, Yue, Pan (b0300) 2019; 11 Li, Shangguan (b0170) 2018 Dutta, Kwon, Bhattacharya, Jeon, Deep, Uchimiya, Kim (b0080) 2017; 9 Li, Liang, Shangguan (b0175) 2017; 607 Fang, Singh, Singh (b0090) 2014; 191 Liu, Wang, Yan, Li, Jiao, Hu (b0205) 2017; 237 Philippot, Raaijmakers, Lemanceau, van der Putten (b0250) 2013; 11 Yao, Zhang, Tian, Zhao, Zhang, Zhao, Zeng, Yin (b0305) 2018; 218 Wang, Li, Dong, Wu, Hu, Zhang, Luo (b0280) 2018; 319 Bremner, Mulvaney (b0040) 1982 Pei, Zhuang, Cui, Li, Li, Wu, Fang (b0240) 2017; 249 Anderson (b0005) 2003; 98 Perveen, Ayub, Shahzad, Siddiq, Memon, Barot, Saeed, Xu (b0245) 2019; 7 Fang, Moncrieff (b0085) 2001; 33 Conant, Ryan, Agren, Birge, Davidson, Eliasson, Evans, Frey, Giardina, Hopkins, Hyvonen, Kirschbaum, Lavallee, Leifeld, Parton, Steinweg, Wallenstein, Wetterstedt, Bradford (b0065) 2011; 17 Fang, Singh, Matta, Cowie, Van Zwieten (b0100) 2017; 115 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (b0160) 2011; 43 Wang, Xiong, Kuzyakov (b0285) 2016; 8 Zhou, Zhou, Zhang, Du, He, Wang, Shao, Cao, Xue, Wang, Xu (b0325) 2017; 405 Chen, Sun, Zheng, Zhang, Liu, Bian, Li, Cheng, Zheng, Pan (b0050) 2018; 54 Ribas, Mattana, Llurba, Debouk, Sebastia, Domene (b0260) 2019; 685 Bai, Tao, Li, Shu, Yan, Wang, Ye, Guo, Wang, Hu (b0015) 2019; 70 Min, Berhe, Khoi, van Asperen, Gillabel, Six (b0220) 2020; 148 Keiluweit, Bougoure, Nico, Pett-Ridge, Weber, Kleber (b0145) 2015; 5 Liu, Dugan, Masiello, Barnes, Gallagher, Gonnermann (b0195) 2016; 533 Bao, S., 2001. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing (2001), pp. 39-61 In Chinese. Nazaries, Murrell, Millard, Baggs, Singh (b0225) 2013; 15 Bamminger, Poll, Marhan (b0020) 2018; 24 Li, Wang, Wang, Zhang, Wang, Shangguan (b0165) 2016; 32 Watzinger, Feichtmair, Kitzler, Zehetner, Kloss, Wimmer, Zechmeister-Boltenstern, Soja (b0290) 2014; 65 Nazaries (10.1016/j.geoderma.2021.115186_b0225) 2013; 15 Pei (10.1016/j.geoderma.2021.115186_b0240) 2017; 249 Wang (10.1016/j.geoderma.2021.115186_b0285) 2016; 8 10.1016/j.geoderma.2021.115186_b0025 Liu (10.1016/j.geoderma.2021.115186_b0205) 2017; 237 Ding (10.1016/j.geoderma.2021.115186_b0075) 2019; 11 Li (10.1016/j.geoderma.2021.115186_b0175) 2017; 607 Li (10.1016/j.geoderma.2021.115186_b0190) 2018; 183 Li (10.1016/j.geoderma.2021.115186_b0170) 2018 Liu (10.1016/j.geoderma.2021.115186_b0210) 2018; 194 Zhou (10.1016/j.geoderma.2021.115186_b0325) 2017; 405 Jeffery (10.1016/j.geoderma.2021.115186_b0135) 2016; 101 Chen (10.1016/j.geoderma.2021.115186_b0050) 2018; 54 Wang (10.1016/j.geoderma.2021.115186_b0280) 2018; 319 Fang (10.1016/j.geoderma.2021.115186_b0095) 2015; 80 Ramlow (10.1016/j.geoderma.2021.115186_b0255) 2018; 10 Zhou (10.1016/j.geoderma.2021.115186_b0320) 2017; 239 Bradford (10.1016/j.geoderma.2021.115186_b0035) 2010; 16 Fang (10.1016/j.geoderma.2021.115186_b0100) 2017; 115 Anderson (10.1016/j.geoderma.2021.115186_b0005) 2003; 98 10.1016/j.geoderma.2021.115186_b0230 Liu (10.1016/j.geoderma.2021.115186_b0195) 2016; 533 Frey (10.1016/j.geoderma.2021.115186_b0110) 2013; 3 Bai (10.1016/j.geoderma.2021.115186_b0015) 2019; 70 Dutta (10.1016/j.geoderma.2021.115186_b0080) 2017; 9 Ribas (10.1016/j.geoderma.2021.115186_b0260) 2019; 685 Baumhardt (10.1016/j.geoderma.2021.115186_b0030) 2008; 72 Lal (10.1016/j.geoderma.2021.115186_b0155) 2004; 304 Liu (10.1016/j.geoderma.2021.115186_b0200) 2019; 656 Paustian (10.1016/j.geoderma.2021.115186_b0235) 2016; 532 Cheng (10.1016/j.geoderma.2021.115186_b0060) 2017; 9 Feng (10.1016/j.geoderma.2021.115186_b0105) 2012; 46 Chen (10.1016/j.geoderma.2021.115186_b0055) 2019; 186 Kuzyakov (10.1016/j.geoderma.2021.115186_b0150) 2000; 32 Bamminger (10.1016/j.geoderma.2021.115186_b0020) 2018; 24 Philippot (10.1016/j.geoderma.2021.115186_b0250) 2013; 11 Min (10.1016/j.geoderma.2021.115186_b0220) 2020; 148 Hawthorne (10.1016/j.geoderma.2021.115186_b0125) 2017; 192 Fang (10.1016/j.geoderma.2021.115186_b0090) 2014; 191 Watzinger (10.1016/j.geoderma.2021.115186_b0290) 2014; 65 He (10.1016/j.geoderma.2021.115186_b0130) 2016; 108 Li (10.1016/j.geoderma.2021.115186_b0165) 2016; 32 Davidson (10.1016/j.geoderma.2021.115186_b0070) 2006; 440 Conant (10.1016/j.geoderma.2021.115186_b0065) 2011; 17 Lu (10.1016/j.geoderma.2021.115186_b0215) 2019; 271 Vance (10.1016/j.geoderma.2021.115186_b0275) 1987; 19 Anderson (10.1016/j.geoderma.2021.115186_b0010) 2010; 42 Schneider (10.1016/j.geoderma.2021.115186_b0265) 2017; 174 Fang (10.1016/j.geoderma.2021.115186_b0085) 2001; 33 Keiluweit (10.1016/j.geoderma.2021.115186_b0145) 2015; 5 Yao (10.1016/j.geoderma.2021.115186_b0305) 2018; 218 Bremner (10.1016/j.geoderma.2021.115186_b0040) 1982 Xu (10.1016/j.geoderma.2021.115186_b0300) 2019; 11 Zhalnina (10.1016/j.geoderma.2021.115186_b0315) 2018; 3 Li (10.1016/j.geoderma.2021.115186_b0185) 2020; 196 Perveen (10.1016/j.geoderma.2021.115186_b0245) 2019; 7 Li (10.1016/j.geoderma.2021.115186_b0180) 2019; 276 Grunwald (10.1016/j.geoderma.2021.115186_b0120) 2017; 241 Wu (10.1016/j.geoderma.2021.115186_b0295) 1990; 22 Yu (10.1016/j.geoderma.2021.115186_b0310) 2017; 308 Lehmann (10.1016/j.geoderma.2021.115186_b0160) 2011; 43 Ge (10.1016/j.geoderma.2021.115186_b0115) 2019; 142 Karhu (10.1016/j.geoderma.2021.115186_b0140) 2011; 140 Sun (10.1016/j.geoderma.2021.115186_b0270) 2018; 325 Castellini (10.1016/j.geoderma.2021.115186_b0045) 2015; 154 |
References_xml | – volume: 249 start-page: 156 year: 2017 end-page: 164 ident: b0240 article-title: Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field publication-title: Agric. Ecosyst. Environ. – volume: 9 start-page: 990 year: 2017 end-page: 1004 ident: b0080 article-title: Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review publication-title: GCB Bioenergy – volume: 108 start-page: 204 year: 2016 end-page: 210 ident: b0130 article-title: Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands publication-title: Appl. Soil Ecol. – volume: 15 start-page: 2395 year: 2013 end-page: 2417 ident: b0225 article-title: Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions publication-title: Environ. Microbiol. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: b0275 article-title: An extraction method for measuring soil microbial biomass publication-title: Soil Biol. Biochem. – volume: 241 start-page: 79 year: 2017 end-page: 87 ident: b0120 article-title: Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil publication-title: Agric. Ecosyst. Environ. – volume: 5 start-page: 588 year: 2015 end-page: 595 ident: b0145 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Change – reference: Bao, S., 2001. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing (2001), pp. 39-61 In Chinese. – volume: 325 start-page: 172 year: 2018 end-page: 182 ident: b0270 article-title: Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter? publication-title: Geoderma – volume: 174 start-page: 193 year: 2017 end-page: 204 ident: b0265 article-title: The effect of deep tillage on crop yield – What do we really know? publication-title: Soil Tillage Res. – volume: 308 start-page: 93 year: 2017 end-page: 103 ident: b0310 article-title: Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China publication-title: Geoderma – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: b0160 article-title: Biochar effects on soil biota – A review publication-title: Soil Biol. Biochem. – volume: 685 start-page: 1075 year: 2019 end-page: 1086 ident: b0260 article-title: Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites publication-title: Sci. Total Environ. – volume: 3 start-page: 395 year: 2013 end-page: 398 ident: b0110 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nat. Clim. Change – volume: 98 start-page: 285 year: 2003 end-page: 293 ident: b0005 article-title: Microbial eco-physiological indicators to asses soil quality publication-title: Agric. Ecosyst. Environ. – volume: 72 start-page: 677 year: 2008 end-page: 682 ident: b0030 article-title: Long-term effects of profile-modifying deep plowing on soil properties and crop yield publication-title: Soil Sci. Soc. Am. J. – reference: Nelson, D.W., Sommers, L.E., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1982. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis Part—chemical Methods, 961-1010. – volume: 33 start-page: 155 year: 2001 end-page: 165 ident: b0085 article-title: The dependence of soil CO2 efflux on temperature publication-title: Soil Biol. Biochem. – volume: 70 start-page: 1025 year: 2019 end-page: 1036 ident: b0015 article-title: Different microbial responses in top- and sub-soils to elevated temperature and substrate addition in a semiarid grassland on the Loess Plateau publication-title: Eur. J. Soil Sci. – volume: 186 start-page: 322 year: 2019 end-page: 332 ident: b0055 article-title: Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes publication-title: Soil Tillage Res. – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: b0155 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 154 start-page: 1 year: 2015 end-page: 13 ident: b0045 article-title: Impact of biochar addition on the physical and hydraulic properties of a clay soil publication-title: Soil Tillage Res. – volume: 194 start-page: 495 year: 2018 end-page: 503 ident: b0210 article-title: Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil publication-title: Chemosphere – volume: 192 start-page: 203 year: 2017 end-page: 214 ident: b0125 article-title: Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil publication-title: J. Environ. Manage. – volume: 533 start-page: 461 year: 2016 end-page: 472 ident: b0195 article-title: Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures publication-title: J. Hydrol. – volume: 276 start-page: 21 year: 2019 end-page: 30 ident: b0180 article-title: Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen publication-title: Agric. Ecosyst. Environ. – volume: 532 start-page: 49 year: 2016 end-page: 57 ident: b0235 article-title: Climate-smart soils publication-title: Nature – year: 2018 ident: b0170 article-title: Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions publication-title: J. Soils Sediments – volume: 22 start-page: 1167 year: 1990 end-page: 1169 ident: b0295 article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure publication-title: Soil Biol. Biochem. – volume: 271 start-page: 168 year: 2019 end-page: 179 ident: b0215 article-title: Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation publication-title: Agric. For. Meteorol. – volume: 10 start-page: 108 year: 2018 end-page: 122 ident: b0255 article-title: Woody biochar's greenhouse gas mitigation potential across fertilized and unfertilized agricultural soils and soil moisture regimes publication-title: GCB Bioenergy – volume: 148 start-page: 255 year: 2020 end-page: 269 ident: b0220 article-title: Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers publication-title: Biogeochemistry – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: b0070 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 11 start-page: 592 year: 2019 end-page: 605 ident: b0300 article-title: Greenhouse gas mitigation potential in crop production with biochar soil amendment-a carbon footprint assessment for cross-site field experiments from China publication-title: GCB Bioenergy – volume: 65 start-page: 40 year: 2014 end-page: 51 ident: b0290 article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized C-13-labelled biochar as revealed by C-13 PLFA analyses: results from a short-term incubation and pot experiment publication-title: Eur. J. Soil Sci. – volume: 405 start-page: 339 year: 2017 end-page: 349 ident: b0325 article-title: Biochar increased soil respiration in temperate forests but had no effects in subtropical forests publication-title: For. Ecol. Manage. – volume: 656 start-page: 969 year: 2019 end-page: 976 ident: b0200 article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis publication-title: Sci. Total Environ. – volume: 196 year: 2020 ident: b0185 article-title: Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community publication-title: Soil Tillage Res. – volume: 319 start-page: 100 year: 2018 end-page: 112 ident: b0280 article-title: Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China publication-title: Geoderma – volume: 3 start-page: 470 year: 2018 end-page: 480 ident: b0315 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat. Microbiol. – volume: 11 start-page: 789 year: 2013 end-page: 799 ident: b0250 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nat. Rev. Microbiol. – volume: 607 start-page: 109 year: 2017 end-page: 119 ident: b0175 article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N publication-title: Sci. Total Environ. – volume: 142 start-page: 155 year: 2019 end-page: 165 ident: b0115 article-title: Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations publication-title: Appl. Soil Ecol. – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: b0140 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. – start-page: 595 year: 1982 end-page: 624 ident: b0040 article-title: Nitrogen – Total. Methods of soil analysis Part 2 publication-title: Chem. Microbiol. Proper. – volume: 183 start-page: 100 year: 2018 end-page: 108 ident: b0190 article-title: Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil publication-title: Soil Tillage Res. – volume: 17 start-page: 3392 year: 2011 end-page: 3404 ident: b0065 article-title: Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward publication-title: Glob. Change Biol. – volume: 11 year: 2019 ident: b0075 article-title: Effects of biochar application and irrigation methods on soil temperature in farmland publication-title: Water – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: b0150 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. – volume: 9 start-page: 1110 year: 2017 end-page: 1121 ident: b0060 article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil publication-title: GCB Bioenergy – volume: 7 start-page: 15 year: 2019 ident: b0245 article-title: Soil carbon mineralization in response to nitrogen enrichment in surface and subsurface layers in two land use types publication-title: PeerJ – volume: 237 start-page: 16 year: 2017 end-page: 23 ident: b0205 article-title: Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture publication-title: Agric. Ecosyst. Environ. – volume: 218 start-page: 254 year: 2018 end-page: 266 ident: b0305 article-title: Urea deep placement for minimizing NH3 loss in an intensive rice cropping system publication-title: Field Crops Res. – volume: 115 start-page: 346 year: 2017 end-page: 356 ident: b0100 article-title: Temperature sensitivity and priming of organic matter with different stabilities in a Vertisol with aged biochar publication-title: Soil Biol. Biochem. – volume: 101 start-page: 251 year: 2016 end-page: 258 ident: b0135 article-title: Biochar effects on methane emissions from soils: a meta-analysis publication-title: Soil Biol. Biochem. – volume: 54 start-page: 175 year: 2018 end-page: 188 ident: b0050 article-title: Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil publication-title: Biol. Fertility Soils – volume: 32 start-page: 135 year: 2016 end-page: 144 ident: b0165 article-title: Effects of application patterns and amount of biochar on water infiltration and evaporation publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. – volume: 42 start-page: 2039 year: 2010 end-page: 2043 ident: b0010 article-title: Soil microbial biomass: The eco-physiological approach publication-title: Soil Biol. Biochem. – volume: 239 start-page: 80 year: 2017 end-page: 89 ident: b0320 article-title: Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis publication-title: Agric. Ecosyst. Environ. – volume: 80 start-page: 136 year: 2015 end-page: 145 ident: b0095 article-title: Effect of temperature on biochar priming effects and its stability in soils publication-title: Soil Biol. Biochem. – volume: 24 start-page: E318 year: 2018 end-page: E334 ident: b0020 article-title: Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application publication-title: Glob. Change Biol. – volume: 46 start-page: 80 year: 2012 end-page: 88 ident: b0105 article-title: Mechanisms of biochar decreasing methane emission from Chinese paddy soils publication-title: Soil Biol. Biochem. – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: b0285 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy – volume: 191 start-page: 158 year: 2014 end-page: 167 ident: b0090 article-title: Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils publication-title: Agric. Ecosyst. Environ. – volume: 16 start-page: 1576 year: 2010 end-page: 1588 ident: b0035 article-title: Thermal adaptation of heterotrophic soil respiration in laboratory microcosms publication-title: Glob. Change Biol. – volume: 70 start-page: 1025 issue: 5 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0015 article-title: Different microbial responses in top- and sub-soils to elevated temperature and substrate addition in a semiarid grassland on the Loess Plateau publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12800 – volume: 148 start-page: 255 issue: 3 year: 2020 ident: 10.1016/j.geoderma.2021.115186_b0220 article-title: Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers publication-title: Biogeochemistry doi: 10.1007/s10533-020-00658-7 – volume: 192 start-page: 203 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0125 article-title: Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.12.066 – volume: 532 start-page: 49 issue: 7597 year: 2016 ident: 10.1016/j.geoderma.2021.115186_b0235 article-title: Climate-smart soils publication-title: Nature doi: 10.1038/nature17174 – volume: 304 start-page: 1623 issue: 5677 year: 2004 ident: 10.1016/j.geoderma.2021.115186_b0155 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – ident: 10.1016/j.geoderma.2021.115186_b0230 doi: 10.2136/sssabookser5.3.c34 – volume: 8 start-page: 512 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2021.115186_b0285 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: GCB Bioenergy doi: 10.1111/gcbb.12266 – volume: 15 start-page: 2395 issue: 9 year: 2013 ident: 10.1016/j.geoderma.2021.115186_b0225 article-title: Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12149 – volume: 24 start-page: E318 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0020 article-title: Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application publication-title: Glob. Change Biol. doi: 10.1111/gcb.13871 – volume: 533 start-page: 461 year: 2016 ident: 10.1016/j.geoderma.2021.115186_b0195 article-title: Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.12.007 – volume: 65 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2021.115186_b0290 article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized C-13-labelled biochar as revealed by C-13 PLFA analyses: results from a short-term incubation and pot experiment publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12100 – volume: 11 start-page: 592 issue: 4 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0300 article-title: Greenhouse gas mitigation potential in crop production with biochar soil amendment-a carbon footprint assessment for cross-site field experiments from China publication-title: GCB Bioenergy doi: 10.1111/gcbb.12561 – ident: 10.1016/j.geoderma.2021.115186_b0025 – volume: 308 start-page: 93 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0310 article-title: Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China publication-title: Geoderma doi: 10.1016/j.geoderma.2017.07.032 – volume: 115 start-page: 346 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0100 article-title: Temperature sensitivity and priming of organic matter with different stabilities in a Vertisol with aged biochar publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.09.004 – volume: 174 start-page: 193 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0265 article-title: The effect of deep tillage on crop yield – What do we really know? publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.07.005 – volume: 607 start-page: 109 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0175 article-title: Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.06.275 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0075 article-title: Effects of biochar application and irrigation methods on soil temperature in farmland publication-title: Water doi: 10.3390/w11030499 – volume: 10 start-page: 108 issue: 2 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0255 article-title: Woody biochar's greenhouse gas mitigation potential across fertilized and unfertilized agricultural soils and soil moisture regimes publication-title: GCB Bioenergy doi: 10.1111/gcbb.12474 – volume: 9 start-page: 1110 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0060 article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil publication-title: GCB Bioenergy doi: 10.1111/gcbb.12402 – volume: 9 start-page: 990 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0080 article-title: Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review publication-title: GCB Bioenergy doi: 10.1111/gcbb.12363 – volume: 186 start-page: 322 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0055 article-title: Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.11.007 – volume: 241 start-page: 79 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0120 article-title: Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.02.029 – volume: 249 start-page: 156 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0240 article-title: Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.08.029 – volume: 72 start-page: 677 issue: 3 year: 2008 ident: 10.1016/j.geoderma.2021.115186_b0030 article-title: Long-term effects of profile-modifying deep plowing on soil properties and crop yield publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0122 – volume: 101 start-page: 251 year: 2016 ident: 10.1016/j.geoderma.2021.115186_b0135 article-title: Biochar effects on methane emissions from soils: a meta-analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.07.021 – volume: 22 start-page: 1167 issue: 8 year: 1990 ident: 10.1016/j.geoderma.2021.115186_b0295 article-title: Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90046-3 – volume: 11 start-page: 789 issue: 11 year: 2013 ident: 10.1016/j.geoderma.2021.115186_b0250 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3109 – volume: 33 start-page: 155 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2021.115186_b0085 article-title: The dependence of soil CO2 efflux on temperature publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00125-5 – volume: 98 start-page: 285 issue: 1–3 year: 2003 ident: 10.1016/j.geoderma.2021.115186_b0005 article-title: Microbial eco-physiological indicators to asses soil quality publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(03)00088-4 – year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0170 article-title: Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions publication-title: J. Soils Sediments doi: 10.1007/s11368-018-1994-3 – volume: 32 start-page: 135 issue: 14 year: 2016 ident: 10.1016/j.geoderma.2021.115186_b0165 article-title: Effects of application patterns and amount of biochar on water infiltration and evaporation publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. – volume: 3 start-page: 395 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2021.115186_b0110 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nat. Clim. Change doi: 10.1038/nclimate1796 – volume: 32 start-page: 1485 issue: 11–12 year: 2000 ident: 10.1016/j.geoderma.2021.115186_b0150 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00084-5 – volume: 656 start-page: 969 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0200 article-title: Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.396 – volume: 17 start-page: 3392 issue: 11 year: 2011 ident: 10.1016/j.geoderma.2021.115186_b0065 article-title: Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02496.x – volume: 276 start-page: 21 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0180 article-title: Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2019.02.013 – volume: 19 start-page: 703 issue: 19 year: 1987 ident: 10.1016/j.geoderma.2021.115186_b0275 article-title: An extraction method for measuring soil microbial biomass publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 405 start-page: 339 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0325 article-title: Biochar increased soil respiration in temperate forests but had no effects in subtropical forests publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2017.09.038 – volume: 196 year: 2020 ident: 10.1016/j.geoderma.2021.115186_b0185 article-title: Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104437 – volume: 191 start-page: 158 year: 2014 ident: 10.1016/j.geoderma.2021.115186_b0090 article-title: Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.02.018 – volume: 183 start-page: 100 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0190 article-title: Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.06.006 – volume: 218 start-page: 254 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0305 article-title: Urea deep placement for minimizing NH3 loss in an intensive rice cropping system publication-title: Field Crops Res. doi: 10.1016/j.fcr.2017.03.013 – volume: 154 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2021.115186_b0045 article-title: Impact of biochar addition on the physical and hydraulic properties of a clay soil publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.06.016 – volume: 46 start-page: 80 year: 2012 ident: 10.1016/j.geoderma.2021.115186_b0105 article-title: Mechanisms of biochar decreasing methane emission from Chinese paddy soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.11.016 – volume: 325 start-page: 172 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0270 article-title: Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter? publication-title: Geoderma doi: 10.1016/j.geoderma.2018.04.001 – volume: 5 start-page: 588 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2021.115186_b0145 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Change doi: 10.1038/nclimate2580 – start-page: 595 year: 1982 ident: 10.1016/j.geoderma.2021.115186_b0040 article-title: Nitrogen – Total. Methods of soil analysis Part 2 publication-title: Chem. Microbiol. Proper. – volume: 108 start-page: 204 year: 2016 ident: 10.1016/j.geoderma.2021.115186_b0130 article-title: Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.08.018 – volume: 271 start-page: 168 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0215 article-title: Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.03.001 – volume: 142 start-page: 155 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0115 article-title: Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.04.021 – volume: 239 start-page: 80 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0320 article-title: Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.01.006 – volume: 237 start-page: 16 year: 2017 ident: 10.1016/j.geoderma.2021.115186_b0205 article-title: Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.12.026 – volume: 685 start-page: 1075 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0260 article-title: Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.277 – volume: 319 start-page: 100 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0280 article-title: Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.01.001 – volume: 3 start-page: 470 issue: 4 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0315 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0129-3 – volume: 440 start-page: 165 issue: 7081 year: 2006 ident: 10.1016/j.geoderma.2021.115186_b0070 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 42 start-page: 2039 issue: 12 year: 2010 ident: 10.1016/j.geoderma.2021.115186_b0010 article-title: Soil microbial biomass: The eco-physiological approach publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.06.026 – volume: 7 start-page: 15 year: 2019 ident: 10.1016/j.geoderma.2021.115186_b0245 article-title: Soil carbon mineralization in response to nitrogen enrichment in surface and subsurface layers in two land use types publication-title: PeerJ doi: 10.7717/peerj.7130 – volume: 16 start-page: 1576 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2021.115186_b0035 article-title: Thermal adaptation of heterotrophic soil respiration in laboratory microcosms publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2009.02040.x – volume: 43 start-page: 1812 issue: 9 year: 2011 ident: 10.1016/j.geoderma.2021.115186_b0160 article-title: Biochar effects on soil biota – A review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 194 start-page: 495 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0210 article-title: Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.025 – volume: 54 start-page: 175 issue: 2 year: 2018 ident: 10.1016/j.geoderma.2021.115186_b0050 article-title: Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil publication-title: Biol. Fertility Soils doi: 10.1007/s00374-017-1253-6 – volume: 140 start-page: 309 issue: 1–2 year: 2011 ident: 10.1016/j.geoderma.2021.115186_b0140 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – volume: 80 start-page: 136 year: 2015 ident: 10.1016/j.geoderma.2021.115186_b0095 article-title: Effect of temperature on biochar priming effects and its stability in soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.10.006 |
SSID | ssj0017020 |
Score | 2.418423 |
Snippet | •The effect of biochar application depth on soil CO2 and CH4 fluxes was examined.•Soil respiration and CH4 uptake highly depend on the soil environment at... The remarkable soil carbon sequestration and greenhouse gas mitigation effects of biochar have spurred great interest in exploring ways to maximize its... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115186 |
SubjectTerms | biochar Biochar application depth carbon dioxide carbon sequestration case studies China dryland farming edaphic factors field experimentation labile carbon Metabolic quotient (qCO2) methane Methane uptake microbial biomass pollution control Soil respiration subsurface soil layers temperature Temperature sensitivity (Q10) topsoil upland soils |
Title | Applying biochar under topsoil facilitates soil carbon sequestration: A case study in a dryland agricultural system on the Loess Plateau |
URI | https://dx.doi.org/10.1016/j.geoderma.2021.115186 https://www.proquest.com/docview/2574380245 |
Volume | 403 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gIHRHmIFloNEtewceLHhtuqarW8Kg5F6s2yHRulWiWr7O6BC2d-NjNOsgKE1APHOB7H8md_Hisznxl7UwSh6yrmWaULlyFLxszlMmbecVfjqcWppFvw-Votv4oPt_L2gF1MuTAUVjly_8Dpia3Hktk4mrN101COL1c6TwpYeJBQpAkqhKZZ_vbHPsyD63yUZuQqo9q_ZQnfIUZ04VjSHyo4sofklFP97w3qL6pO-8_VY_ZodBxhMfTtmB2E9gl7uPjWj-IZ4Sn7SS4lpS2BazpKpwLKEOth2603XbOCaP2gyR02kAq87V3XQgqnnvRz38ECyzcBkvAsNC1YqPvvFAAJdv817MmgAQ1ojz4kfOqQMuHLChu3u2fs5ury5mKZjTctZLZU822Gy3ZOGo5aOhfL4BGzWsUgZCislsKij8RjnNeldkHiW6zoizIqzkOd66J8zg7brg0vGIRSqdx5L2qdC1e6SpZeVvNo6yCCiNUJk9PoGj-qkNNlGCszhZvdmQkVQ6iYAZUTNtvbrQcdjnstqgk888eMMrhZ3Gv7ekLb4HKjfyi2Dd1uY5DhSKO_EPL0P9p_yR7Q0xAW84odbvtdOEPnZuvO0-w9Z0eL9x-X178A4RH8OQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcoz0GCY9g4sZ0NEocVUG3ptuKwSL1ZtmNXqVbJKtkV6oUzv4dfyNhxVoCQekC92pnEmhl_Hisz3xDyOrOsqEqXJmWR6QRR0iU65S4xmuoKby1aBN6Ck1Mx_8o-n_GzPfJzrIXxaZUR-wdMD2gdRyZRm5N1XfsaXyqKNDBg4UVCsJhZeWwvv-G9rX9_9BGN_CbLDj8tP8yT2FogUbmYbhL006knLSy41i63BhdZCWcZt5kqOFMYFFDnplVeaMtxFh80We4EpbZKC092gLB_gyFa-K4Jb7_v0kpokUYqSCoSv7rfqpIv0Cd8g7PAd5RRRCtOfQ33vw_Ev46GcN4d3iV3YqAKs0EX98iebe6T27PzLpJ12Afkhw9hfZkU6Lr15VvgK9I62LTrvq1X4JQZOMBtD2HAqE63DYT07ZGv9x3McLy3EIhuoW5AQdVd-oRLULuv4UoGzmlAeYxZYdEiRMOXFb5cbR-S5XWo_xHZb9rGPiZgcyFSbQyripTpXJc8N7ycOlVZZpkrDwgftStNZD33zTdWckxvu5CjVaS3ihysckAmO7n1wPtxpUQ5Gk_-4cESD6crZV-N1pa4vf0_G9XYdttLRFTfEyBj_Ml_vP8luTlfnizk4uj0-Cm55WeGlJxnZH_Tbe1zDKw2-kXwZCDymnfOLxhsNiI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+biochar+under+topsoil+facilitates+soil+carbon+sequestration%3A+A+case+study+in+a+dryland+agricultural+system+on+the+Loess+Plateau&rft.jtitle=Geoderma&rft.au=Li%2C+Shuailin&rft.au=Ma%2C+Qiang&rft.au=Zhou%2C+Changrui&rft.au=Yu%2C+Wantai&rft.date=2021-12-01&rft.issn=0016-7061&rft.volume=403&rft.spage=115186&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2021_115186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |