Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models
•Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The estimated prediction interval for SVR is wider than of W-SVR.•Remote sensing features control the spatial distribution of the salinity widely....
Saved in:
Published in | Geoderma Vol. 383; p. 114793 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The estimated prediction interval for SVR is wider than of W-SVR.•Remote sensing features control the spatial distribution of the salinity widely.
The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural productivity, while preventing any further salinization, and implement effective soil reclamation programs, precise information about the spatial patterns and magnitude of soil salinity is essential. In this study, soil salinity was predicted and mapped using machine learning (ML) and digital soil mapping approaches. Specifically, support vector regression (SVR) was combined with wavelet transformation (W-SVR) of a wide range of environmental covariates derived from a digital elevation model, remote sensing, and climatic data. Predictions of soil salinity were carried out for six standard depth increments (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm). Cross-validation was carried out by partitioning the data into 70% used for training the model and 30% for testing the model. Uncertainty of the ML algorithms was quantified using the uncertainty estimation based on local errors and clustering (UNEEC) method. The results indicated that W-SVR performed better in predicting soil salinity for all six depth increments. The differences were most apparent for the lowest soil depth increments where W-SVR resulted in ~1.4 times higher correlation coefficient when compared to the SVR. At lower soil depths increments, covariate importance analysis indicated that topographic derivatives were the most relevant covariates in the models. For topsoil salinity, remote sensing covariates were the most relevant predictors of soil salinity. Regardless of soil depth, climatic predictors were the most important predictors. Uncertainty analysis also indicated that for all depth increments, the estimated prediction interval for SVR obtained by the UNEEC method was wider than that of W-SVR and further indicating the higher performance of W-SVR in comparison to the SVR. The predicted salinity maps showed the highest salinity for soils in the eastern parts of central Iran, which was consistent with the Agro-climatic Zoning of Isfahan Province. |
---|---|
AbstractList | The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural productivity, while preventing any further salinization, and implement effective soil reclamation programs, precise information about the spatial patterns and magnitude of soil salinity is essential. In this study, soil salinity was predicted and mapped using machine learning (ML) and digital soil mapping approaches. Specifically, support vector regression (SVR) was combined with wavelet transformation (W-SVR) of a wide range of environmental covariates derived from a digital elevation model, remote sensing, and climatic data. Predictions of soil salinity were carried out for six standard depth increments (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm). Cross-validation was carried out by partitioning the data into 70% used for training the model and 30% for testing the model. Uncertainty of the ML algorithms was quantified using the uncertainty estimation based on local errors and clustering (UNEEC) method. The results indicated that W-SVR performed better in predicting soil salinity for all six depth increments. The differences were most apparent for the lowest soil depth increments where W-SVR resulted in ~1.4 times higher correlation coefficient when compared to the SVR. At lower soil depths increments, covariate importance analysis indicated that topographic derivatives were the most relevant covariates in the models. For topsoil salinity, remote sensing covariates were the most relevant predictors of soil salinity. Regardless of soil depth, climatic predictors were the most important predictors. Uncertainty analysis also indicated that for all depth increments, the estimated prediction interval for SVR obtained by the UNEEC method was wider than that of W-SVR and further indicating the higher performance of W-SVR in comparison to the SVR. The predicted salinity maps showed the highest salinity for soils in the eastern parts of central Iran, which was consistent with the Agro-climatic Zoning of Isfahan Province. •Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The estimated prediction interval for SVR is wider than of W-SVR.•Remote sensing features control the spatial distribution of the salinity widely. The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural productivity, while preventing any further salinization, and implement effective soil reclamation programs, precise information about the spatial patterns and magnitude of soil salinity is essential. In this study, soil salinity was predicted and mapped using machine learning (ML) and digital soil mapping approaches. Specifically, support vector regression (SVR) was combined with wavelet transformation (W-SVR) of a wide range of environmental covariates derived from a digital elevation model, remote sensing, and climatic data. Predictions of soil salinity were carried out for six standard depth increments (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm). Cross-validation was carried out by partitioning the data into 70% used for training the model and 30% for testing the model. Uncertainty of the ML algorithms was quantified using the uncertainty estimation based on local errors and clustering (UNEEC) method. The results indicated that W-SVR performed better in predicting soil salinity for all six depth increments. The differences were most apparent for the lowest soil depth increments where W-SVR resulted in ~1.4 times higher correlation coefficient when compared to the SVR. At lower soil depths increments, covariate importance analysis indicated that topographic derivatives were the most relevant covariates in the models. For topsoil salinity, remote sensing covariates were the most relevant predictors of soil salinity. Regardless of soil depth, climatic predictors were the most important predictors. Uncertainty analysis also indicated that for all depth increments, the estimated prediction interval for SVR obtained by the UNEEC method was wider than that of W-SVR and further indicating the higher performance of W-SVR in comparison to the SVR. The predicted salinity maps showed the highest salinity for soils in the eastern parts of central Iran, which was consistent with the Agro-climatic Zoning of Isfahan Province. |
ArticleNumber | 114793 |
Author | Behrens, Thorsten Scholten, Thomas Taghizadeh-Mehrjardi, Ruhollah Mosavi, Amirhosein Amirian-Chakan, Alireza Fathabadi, Aboalhasan Toomanian, Norair Heung, Brandon S. Band, Shahab Schmidt, Karsten |
Author_xml | – sequence: 1 givenname: Ruhollah surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah email: taghizadeh-mehrjardi@mnf.uni-tuebingen.de organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, Tübingen, Germany – sequence: 2 givenname: Karsten surname: Schmidt fullname: Schmidt, Karsten organization: eScience Center, University of Tübingen, 72070 Tübingen, Germany – sequence: 3 givenname: Norair surname: Toomanian fullname: Toomanian, Norair organization: Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran – sequence: 4 givenname: Brandon surname: Heung fullname: Heung, Brandon organization: Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Canada – sequence: 5 givenname: Thorsten surname: Behrens fullname: Behrens, Thorsten organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, Tübingen, Germany – sequence: 6 givenname: Amirhosein surname: Mosavi fullname: Mosavi, Amirhosein email: amir.mosavi@kvk.uni-obuda.hu organization: Thuringian Institute of Sustainability and Climate Protection, 07743 Jena, Germany – sequence: 7 givenname: Shahab surname: S. Band fullname: S. Band, Shahab organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam – sequence: 8 givenname: Alireza surname: Amirian-Chakan fullname: Amirian-Chakan, Alireza organization: Department of Soil Science, Lorestan University, Khorramabad 6815144316, Iran – sequence: 9 givenname: Aboalhasan surname: Fathabadi fullname: Fathabadi, Aboalhasan organization: Department of Range and Watershed Management, Gonbad Kavous University, Gonbad Kavous, Golestan Province, Iran – sequence: 10 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, Tübingen, Germany |
BookMark | eNqFkU1vGyEQhlGVSHU-_kLEsZd1gTWsLfWQKErbSJF6ac-IhVkXi4Utgx3lnD9eNk4uueSEYN5nNPNwRk5iikDIFWdLzrj6ultuITnIo1kKJuojX3Wb9hNZ8HUnGiXk5oQsWE02HVP8MzlD3NVrV7ML8nw_TjkdfNzS8hcoTqZ4E-iUwXlbfIo0DRSTDxRN8NGXJ-ojNdk7mmFb60j3ONOP5gABCi3ZRBxSneaFNtFR3E9TyoUewJaUZy4D4lwd69wBL8jpYALC5et5Tv58v_t9-7N5-PXj_vbmoTGtWpdGtrKvU1smWxCyX8mBtaLvDKh-YMA3jnPOxJpZ1zLXC7fiSgxOyV6tOSjXt-fky7Fv3fjfHrDo0aOFEEyEtEctpOQb3tYWNaqOUZsTYoZBT9mPJj9pzvRsXe_0m3U9W9dH6xX89g60vryoqGJ8-Bi_PuJVCxw8ZI3WQ7T1N3K1p13yH7X4D8jMqA0 |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107512 crossref_primary_10_1016_j_geoderma_2024_116873 crossref_primary_10_1080_01431161_2024_2412804 crossref_primary_10_1016_j_ecoleng_2021_106180 crossref_primary_10_3390_rs14133204 crossref_primary_10_1007_s11356_021_17677_y crossref_primary_10_1016_j_asr_2024_04_042 crossref_primary_10_18599_grs_2022_1_8 crossref_primary_10_3390_land11122148 crossref_primary_10_3390_rs14215627 crossref_primary_10_1038_s41598_024_60033_6 crossref_primary_10_3390_rs16244812 crossref_primary_10_1016_j_envres_2023_115809 crossref_primary_10_3103_S0147687424700509 crossref_primary_10_3390_s23157003 crossref_primary_10_1002_ldr_4741 crossref_primary_10_1007_s10661_024_13055_6 crossref_primary_10_1016_j_compag_2025_109970 crossref_primary_10_1007_s11831_022_09748_1 crossref_primary_10_1016_j_geoderma_2024_116999 crossref_primary_10_1016_j_jafr_2025_101700 crossref_primary_10_3390_su151712874 crossref_primary_10_1016_j_catena_2022_106404 crossref_primary_10_3390_w13050658 crossref_primary_10_1080_10106049_2022_2060317 crossref_primary_10_1016_j_geoderma_2024_116888 crossref_primary_10_1002_ldr_4613 crossref_primary_10_1007_s11119_023_10109_6 crossref_primary_10_1016_j_jhydrol_2024_131589 crossref_primary_10_1002_ldr_5222 crossref_primary_10_3390_agronomy11112266 crossref_primary_10_3390_agronomy13020445 crossref_primary_10_1139_cjss_2021_0090 crossref_primary_10_1016_j_geoderma_2021_115656 crossref_primary_10_1016_j_geodrs_2021_e00440 crossref_primary_10_3390_rs14225803 crossref_primary_10_1007_s11368_024_03825_7 crossref_primary_10_1016_j_geoderma_2022_116094 crossref_primary_10_1016_j_geoderma_2023_116697 crossref_primary_10_1016_j_jenvman_2024_121311 crossref_primary_10_2139_ssrn_4156774 crossref_primary_10_1007_s40515_024_00514_3 crossref_primary_10_1016_j_ejrh_2025_102326 crossref_primary_10_3390_land12051056 crossref_primary_10_3390_rs16224304 crossref_primary_10_1007_s11356_024_33044_z crossref_primary_10_1016_j_compag_2025_110108 crossref_primary_10_3390_rs15010114 crossref_primary_10_1016_j_still_2024_106220 crossref_primary_10_1109_ACCESS_2021_3135959 crossref_primary_10_1016_j_geoderma_2021_115567 crossref_primary_10_1016_j_catena_2023_107197 crossref_primary_10_3390_su151813996 crossref_primary_10_1016_j_apr_2021_101064 crossref_primary_10_1016_j_catena_2023_107319 crossref_primary_10_1007_s13762_022_04409_z crossref_primary_10_1016_j_compag_2023_108269 crossref_primary_10_1007_s13369_024_08961_3 crossref_primary_10_1007_s10661_022_10434_9 crossref_primary_10_1109_JSTARS_2023_3274579 crossref_primary_10_1134_S1064229322080075 crossref_primary_10_32604_rig_2024_054197 crossref_primary_10_1016_j_nexus_2025_100374 crossref_primary_10_1016_j_rsase_2024_101318 crossref_primary_10_1007_s10661_021_09543_8 crossref_primary_10_1109_TGRS_2021_3109819 crossref_primary_10_1080_07038992_2022_2056435 crossref_primary_10_3390_agronomy12030628 crossref_primary_10_55959_MSU0137_0944_17_2024_79_4_170_183 crossref_primary_10_1016_j_scitotenv_2023_165730 crossref_primary_10_1016_j_envres_2022_113435 crossref_primary_10_1007_s40996_022_00928_4 crossref_primary_10_1016_j_geoderma_2023_116649 crossref_primary_10_2139_ssrn_4045839 crossref_primary_10_1007_s00500_021_05961_5 crossref_primary_10_1016_j_compag_2023_107821 |
Cites_doi | 10.1016/j.isprsjprs.2006.10.001 10.1016/S0016-7061(99)00003-8 10.1016/j.geoderma.2015.07.017 10.1016/j.scitotenv.2019.134235 10.1515/FREQ.2001.55.3-4.75 10.1002/joc.5086 10.1080/10106040408542313 10.3390/rs11101184 10.1016/j.envdev.2018.12.007 10.1016/j.geoderma.2015.06.024 10.1029/2000JD900719 10.1029/2002WR001426 10.1016/j.isprsjprs.2015.02.015 10.1016/j.geomorph.2006.04.016 10.1080/136588100750022804 10.1016/j.geoderma.2011.07.002 10.1016/j.geoderma.2019.06.040 10.14358/PERS.72.10.1171 10.1016/j.geoderma.2013.07.002 10.1016/S0016-7061(97)00022-0 10.2136/sssaj2010.0280 10.5194/soil-6-35-2020 10.1016/j.geoderma.2015.11.014 10.1016/j.ecolmodel.2008.07.015 10.32614/CRAN.package.FSinR 10.1016/j.jhydrol.2014.03.057 10.1016/S0034-4257(96)00067-3 10.1111/j.1365-2389.1992.tb00127.x 10.1111/j.1365-2389.2009.01205.x 10.1016/j.ecolind.2014.12.028 10.1016/j.geoderma.2013.07.031 10.1016/j.geoderma.2005.10.009 10.1016/j.neunet.2006.01.012 10.3390/rs12071095 10.4236/ojg.2015.52006 10.1023/B:STCO.0000035301.49549.88 10.1080/00103620802432717 10.1016/j.agwat.2005.07.003 10.1016/j.geoderma.2008.05.010 10.1046/j.1365-2389.2002.00452.x 10.1016/j.geoderma.2020.114552 10.1016/j.geoderma.2020.114233 10.1590/18069657rbcs20170421 10.1016/j.geoderma.2013.06.003 10.1023/A:1009700614041 10.18637/jss.v028.i05 10.1109/LGRS.2011.2156759 10.1016/j.geoderma.2009.04.022 10.1177/1536867X1601600407 10.1016/j.geodrs.2014.10.005 10.1080/01431169008955053 10.1038/s41598-017-08066-y 10.1016/j.geoderma.2014.03.010 10.1016/j.envsoft.2014.09.017 10.1016/S0016-7061(03)00223-4 10.1016/j.geoderma.2009.07.010 10.1016/0034-4257(88)90106-X 10.1080/15324982.2015.1046092 10.1016/0034-4257(85)90102-6 10.1016/j.geoderma.2013.05.029 10.1007/BF00994018 10.1016/j.neucom.2017.04.053 10.5194/hess-19-3181-2015 10.1016/S0166-2481(08)00012-3 10.1046/j.1365-2389.1999.t01-1-00234.x 10.5194/hess-21-2301-2017 10.2166/wst.2005.0163 10.1016/j.ecss.2018.10.021 10.1007/s12517-018-4202-2 10.1016/0034-4257(90)90085-Z 10.1016/0304-3800(92)90087-U 10.1007/s00521-018-3796-3 10.1016/j.geoderma.2012.05.026 10.1016/j.geoderma.2017.03.013 10.1016/j.geodrs.2016.04.006 10.1016/j.geoderma.2010.11.013 10.1111/j.1365-2389.2004.00630.x 10.1002/ldr.818 10.1111/j.1365-2389.2005.00779.x 10.1016/j.geoderma.2017.05.017 10.1201/9780429187957-4 10.3390/rs2102369 10.1016/j.geoderma.2013.07.020 10.1016/j.geoderma.2005.02.003 10.1016/j.geoderma.2016.12.017 10.1111/ejss.12851 10.1002/joc.1835 10.1002/ldr.3148 10.1016/j.catena.2019.104424 10.2136/sssaj2009.0106 10.1016/0034-4257(94)90134-1 10.1007/s10668-012-9351-y 10.1007/s10661-017-5830-9 10.1016/j.advengsoft.2016.01.008 10.1016/j.scitotenv.2016.08.177 10.4141/S99-093 10.1071/SR14271 10.1016/j.geoderma.2009.10.007 10.2136/sssaj1989.03615995005300020020x 10.1371/journal.pone.0220881 10.1016/j.geoderma.2018.12.037 10.1016/j.geoderma.2014.09.011 10.1016/j.geoderma.2005.04.006 10.1016/j.ecolind.2016.06.015 10.1016/j.catena.2017.01.033 10.1016/j.rse.2017.06.031 10.1023/A:1009778500412 10.1080/03650340.2016.1193162 10.1016/0098-3004(91)90048-I 10.4236/ars.2013.24040 10.1016/j.geoderma.2017.09.015 10.1109/TGRS.1995.8746027 10.1080/02664763.2010.505956 10.1016/S0034-4257(02)00188-8 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114793 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114793 S0016706120325489 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-535b170c053e25b45f032b7ae6bf0e19d1110280cd30db2d4162fd65b681e6db3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 05:44:08 EDT 2025 Tue Jul 01 04:04:54 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector regression Digital soil mapping Wavelet transformation Soil salinity Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-535b170c053e25b45f032b7ae6bf0e19d1110280cd30db2d4162fd65b681e6db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4875-2602 |
PQID | 2551913280 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551913280 crossref_primary_10_1016_j_geoderma_2020_114793 crossref_citationtrail_10_1016_j_geoderma_2020_114793 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kuhn (b0310) 2008; 28 Were, Bui, Dick, Singh (b0670) 2015; 52 Todd, Hoffer (b0630) 1998; 64 Bannari, Guedon, El‐Harti, Cherkaoui, El‐Ghmari (b0065) 2008; 39 Behrens, Schmidt, MacMillan, Viscarra Rossel (b0095) 2018; 310 Taylor (b0625) 2001; 106 Vermeulen, Van Niekerk (b0660) 2017; 299 Zeraatpisheh, Jafari, Bodaghabadi, Ayoubi, Taghizadeh-Mehrjardi, Toomanian, Kerry, Xu (b0710) 2020; 188 de Pauw, E. D., Gaffari, A., Gasemi, V. 2002. Agro-climatic zone maps of Iran. Seed and Plant Improvement Research Institute (SPIRI), Karaj, Iran. Taghizadeh-Mehrjardi, Mahdianpari, Mohammadimanesh, Behrens, Toomanian, Scholten, Schmidt (b0615) 2020; 376 Allbed, Kumar (b0025) 2013; 2 Kumar, Kumar (b0315) 2020; 32 Leutner, B., Horning, N., Leutner, M.B., 2019. Package ‘RStoolbox’. R Foundation for Statistical Computing, Version 0.1. Sihag, Tiwari, Ranjan (b0575) 2018; 26 Minasny, McBratney (b0445) 2016; 264 Shahabi, Jafarzadeh, Neyshabouri, Ghorbani, Valizadeh Kamran (b0565) 2017; 63 Gao (b0270) 1996; 58 Eswaran, W.H., Lal, R., Reich, P.F., 2019. Land degradation: An overview, in: Bridges, E.M. (Eds.), Response to land degradation. CRC Press, Boca Raton, pp. 20–35. DOI:10.1201/9780429187957. Salemi, H., Mamanpoush, A., Miranzadeh, M., Akbari, M., Torabi, M., Toomanian, N., Murray-Rust, H., Droogers, P., Sally, H., Gieske, A., 2000. Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran. Freeman (b0260) 1991; 17 Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (b0605) 2014; 213 Daliakopoulos, Tsanis, Koutroulis, Kourgialas, Varouchakis, Karatzas, Ritsema (b0170) 2016; 573 Ascough, Maier, Ravalico, Strudley (b0045) 2008; 219 Lacoste, Minasny, McBratney, Michot, Viaud, Walter (b0320) 2014; 213 Minasny, McBratney (b0440) 2002 Florinsky, Kuryakova (b0255) 2000; 14 Werner (b0675) 2001; 55 Roozitalab, Toomanian, Dehkordi, Khormali (b0545) 2018 Biswas, Si (b0110) 2011; 165 Fathizad, Ali Hakimzadeh Ardakani, Sodaiezadeh, Kerry, Taghizadeh-Mehrjardi (b0235) 2020; 365 Fick, Hijmans (b0240) 2017; 37 Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0285) 2016; 265 Lark (b0330) 2006; 57 Crist (b0160) 1985; 17 McBratney, De Gruijter (b0400) 1992; 43 Cheng, Liu, Liu, Wang, Li (b0140) 2015; 104 Moameni, A., Stein, A., 2002. Modeling spatio-temporal changes in soil salinity and waterlogging in the Marvdasht Plain, Iran. 17 World Congress of Soil Science. 14-21 August 2002, Bangkok, Thailand. Transactions. Douaik, Van Meirvenne, Tóth (b0195) 2005; 128 Malone, de Gruijter, McBratney, Minasny, Brus (b0380) 2011; 75 Scudiero, Skaggs, Corwin (b0560) 2016; 70 Sun, X.L., Wang, Y., Wang, H.L., Zhang, C., Wang, Z. 2019. Digital soil mapping based on empirical mode decomposition components of environmental covariates. Eur. J. Soil Sci. DOI:10.1111/ejss.12851. Asfaw, Suryabhagavan, Argaw (b0050) 2018; 17 Padarian, Minasny, McBratney (b0500) 2020; 6 Malone, McBratney, Minasny (b0390) 2011; 160 Pal, Majumdar, Bhattacharya (b0505) 2007; 61 Litalien, Zeeb (b0355) 2020; 698 Meier, Souza, Francelino, Fernandes Filho, Schaefer (b0410) 2018; 42 Taghizadeh-Mehrjardi, Ayoubi, Namazi, Malone, Zolfaghari, Sadrabadi-Roustaei (b0610) 2016; 30 Taghizadeh-Mehrjardi, Schmidt, Amirian-Chakan, Rentschler, Zeraatpisheh, Sarmadian, Valavi, Davatgar, Behrens, Scholten (b0620) 2020; 12 Metternicht, Zinck (b0430) 2003; 85 Arian, Noroozpour (b0040) 2015; 5 Meng, Bao, Liu, Liu, Zhang, Zhang, Wang, Tang, Kong (b0420) 2020; 89 Williams, Goward, Arvidson (b0680) 2006; 72 Aldrich, E., 2020. Package ‘wavelets’. Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses, Version 0.3-0.2. Crippen (b0155) 1990; 34 Curto, Pinto (b0165) 2011; 38 Olaya, V., Conrad, O., 2009. Geomorphometry in SAGA, in: Hengl, T., Reuter, H. (Eds.), Developments in soil science, Geomorphometry (Concepts, Software, Applications). Elsevier, Amsterdam, pp.293-308. DOI:10.1016/S0166-2481(08)00012-3. Choi, H., Jeong, J., 2019. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sen. 11, 1184. DOI:10.3390/rs11101184. El Harti, Lhissou, Chokmani, Ouzemou, Hassouna, Bachaoui, El Ghmari (b0210) 2016; 50 Deering (b0180) 1975 Biswas, Cresswell, Chau, Viscarra Rossel, Si (b0105) 2013; 209-210 Stumpf, Schmidt, Goebes, Behrens, Schönbrodt-Stitt, Wadoux, Xiang, Scholten (b0590) 2017; 153 Brown, J.D., Heuvelink, G.B., Refsgaard, J.C., 2005. An integrated methodology for recording uncertainties about environmental data. Water Sci. Tech. 52, 153-160. DOI:10.2166/wst.2005.0163. Mallat (b0375) 1999 Dogulu, N., López, P.L., Solomatine, D.P., Weerts, A.H., Shrestha, D.L., 2015. Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol. Earth Syst. Sci. 19, 3181-3201. DOI:10.5194/hess-19-3181-2015. Lagacherie, Cazemier, van Gaans, Burrough (b0325) 1997; 77 Zhou, Liu, Duan (b0715) 2020; 125127 Pasolli, Notarnicola, Bruzzone (b0515) 2011; 8 Sun, Wang, Zhao, Zhang, Zhang (b0600) 2017; 303 Wu, Zucca, Muhaimeed, Al-Shafie, Fadhil Al-Quraishi, Nangia, Zhu, Liu (b0700) 2018; 29 Emadodin, Narita, Bork (b0215) 2012; 14 Keskin, Grunwald, Harris (b0305) 2019; 339 Qadir, Qureshi, Cheraghi (b0525) 2008; 19 Mendonca-Santos, McBratney, Minasny (b0415) 2007 Lark, Webster (b0340) 2004; 55 Mirjalili, Lewis (b0450) 2016; 95 Motohka, Nasahara, Oguma, Tsuchida (b0470) 2010; 2 Tranter, Minasny, McBratney (b0645) 2010; 74 Uusitalo, Lehikoinen, Helle, Myrberg (b0650) 2015; 63 Baroni, Zink, Kumar, Samaniego, Attinger (b0070) 2017; 21 Gallant, Austin (b0265) 2015; 53 Odgers, Libohova, Thompson (b0490) 2012; 189 Gallant, Dowling (b9000) 2003; 39 Toomanian, Jalalian, Khademi, Eghbal, Papritz (b0635) 2006; 81 Lemon, J., Bolker, B., Oom, S., Klein, E., Rowlingson, B., Wickham, H., Tyagi, A., Eterradossi, O., Grothendieck, G., Toews, M. and Kane, J., 2020. Package ‘plotrix’. Various Plotting Functions, Version 3.7-8. Amirian-Chakan, Taghizadeh-Mehrjardi, Kerry, Kumar, Khordehbin, Khanghah (b0030) 2017; 2017 Nourani, Baghanam, Adamowski, Kisi (b0485) 2014; 514 Vaysse, Lagacherie (b0655) 2017; 291 Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalization, in: Böhner, J., McCloy, K.R., Strobl, J. (Eds.), SAGA - Analyses and Modelling Applications, Göttinger Geographiche Abhandlungen, 115, pp.13-28. Brady, Weil (b0125) 2008 McBratney (b0395) 1998; 50 Munyati (b0480) 2004; 19 Mohri, Rostamizadeh, Talwalkar (b0465) 2018 Wischmeier, Smith (b0690) 1978 Major, Baret, Guyot (b0370) 1990; 11 Mafarja, Mirjalili (b0365) 2017; 260 Behrens, T., Schmidt, K., Zhu, A.-X., Scholten, T., 2010. The ConMap approach for terrain‐based digital soil mapping. E. J. Soil Sci. 61, 133-143. DOI:10.1111/j.1365-2389.2009.01205.x. Dilks, Canale, Meier (b0185) 1992; 62 Basak, Pal, Patranabis (b0075) 2007; 11 Moghadas, Taghizadeh-Mehrjardi, Triantafilis (b0460) 2016; 7 Smola, Schölkopf (b0580) 2004; 14 Muhammad, I.U., Muhammad, A. and Muhammad, M.I.U., 2020. Package ‘mctest’. Multicollinearity Diagnostic Measures, Version 1.3.1. Ballabio (b0055) 2009; 151 Minasny, Mc Bratney (b0435) 2002; 53 McBratney, Santos, Minasny (b0405) 2003; 117 Shrestha, Solomatine (b0570) 2006; 19 Boettinger, Ramsey, Bodily, Cole, Kienast-Brown, Nield, Saunders, Stum (b0115) 2008 Fiener, Gottfried, Sommer, Steger (b0245) 2014; 2-3 Aldabaa, Weindorf, Chakraborty, Sharma, Li (b0015) 2015; 239-240 Toomanian N., 2020. Land Suitability Evaluation for Crop and horticultural products in Isfahan, Yazd, Markazi and Semnan Provinces. Report No. 57376. SWRI, AREEO, Iran. Mesgaran, Madani, Hashemi, Azadi (b0425) 2017; 7 Bishop, McBratney, Laslett (b0100) 1999; 91 Yaghmaei, Soltani, Khodagholi (b0705) 2009; 29 Rentschler, Gries, Behrens, Bruelheide, Kühn, Seitz, Shi, Trogisch, Scholten, Schmidt (b0535) 2019; 14 Farifteh, Farshad, George (b0230) 2006; 130 Behrens, Schmidt, Ramirez-Lopez, Gallant, Zhu, Scholten (b0090) 2014; 213 Wang, Ding, Yu, Ma, Zhang, Ge, Teng, Li, Liang, Lizaga (b0665) 2019; 353 Chen, Fu, Zhang, Zhao (b0135) 2019; 217 (accessed 15 March 2020). Rhoades, Manteghi, Shouse, Alves (b0540) 1989; 53 Schmidt, Behrens, Scholten (b0555) 2008; 146 Florinsky, Eilers, Lelyk (b0250) 2000; 80 Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0275) 2017; 202 Guenther, Schonlau (b0280) 2016; 16 Wilson, Gallant (b0685) 2000 Malone, McBratney, Minasny, Laslett (b0385) 2009; 154 Banaei, Moameni, Bybordi, Malakouti (b0060) 2005 Douaoui, Nicolas, Walter (b0200) 2006; 134 Wood (b0695) 2009 Behrens, Zhu, Schmidt, Scholten (b0085) 2010; 155 Heuvelink (b0290) 1998; 50 Song, Brus, Liu, Li, Zhao, Yang, Zhang (b0585) 2016; 261 Hughes, McBratney, Minasny, Campbell (b0300) 2014; 226-227 Huete (b0295) 1988; 25 Qi, Chehbouni, Huete, Kerr, Sorooshian (b0530) 1994; 48 Aragón-Royón, F., Jiménez-Vílchez, A., Arauzo-Azofra, A., Benítez, J.M., 2020. FSinR: an exhaustive package for feature selection. arXiv preprint arXiv:2002.10330. Lark, Webster (b0335) 1999; 50 Poggio, Gimona, Brewer (b0520) 2013; 209 Abdullah, Biswas, Chowdhury, Billah (b0010) 2019; 29 Abbas, A., Khan, S., 2007. Using remote sensing techniques for appraisal of irrigated soil salinity, in: Oxley, L., Kulasiri, D., (Eds.), MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, pp. 2632-2638. El hafyani, Essahlaoui, El baghdadi, Teodoro, Mohajane, El hmaidi, El ouali (b0205) 2019; 12 Liu, Huete (b0360) 1995; 33 Pannell, Ewing (b0510) 2006; 80 Cortes, Vapnik (b0150) 1995; 20 Evans (b0225) 1980; 36 Farifteh (10.1016/j.geoderma.2020.114793_b0230) 2006; 130 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0605) 2014; 213 Allbed (10.1016/j.geoderma.2020.114793_b0025) 2013; 2 Shrestha (10.1016/j.geoderma.2020.114793_b0570) 2006; 19 Zeraatpisheh (10.1016/j.geoderma.2020.114793_b0710) 2020; 188 Wilson (10.1016/j.geoderma.2020.114793_b0685) 2000 Biswas (10.1016/j.geoderma.2020.114793_b0105) 2013; 209-210 Motohka (10.1016/j.geoderma.2020.114793_b0470) 2010; 2 10.1016/j.geoderma.2020.114793_b0640 Gallant (10.1016/j.geoderma.2020.114793_b9000) 2003; 39 10.1016/j.geoderma.2020.114793_b0005 Meng (10.1016/j.geoderma.2020.114793_b0420) 2020; 89 10.1016/j.geoderma.2020.114793_b0080 Cortes (10.1016/j.geoderma.2020.114793_b0150) 1995; 20 Abdullah (10.1016/j.geoderma.2020.114793_b0010) 2019; 29 10.1016/j.geoderma.2020.114793_b0120 Tranter (10.1016/j.geoderma.2020.114793_b0645) 2010; 74 Fathizad (10.1016/j.geoderma.2020.114793_b0235) 2020; 365 Stumpf (10.1016/j.geoderma.2020.114793_b0590) 2017; 153 Huete (10.1016/j.geoderma.2020.114793_b0295) 1988; 25 Florinsky (10.1016/j.geoderma.2020.114793_b0255) 2000; 14 Lacoste (10.1016/j.geoderma.2020.114793_b0320) 2014; 213 Padarian (10.1016/j.geoderma.2020.114793_b0500) 2020; 6 Guenther (10.1016/j.geoderma.2020.114793_b0280) 2016; 16 Behrens (10.1016/j.geoderma.2020.114793_b0095) 2018; 310 Cheng (10.1016/j.geoderma.2020.114793_b0140) 2015; 104 Vermeulen (10.1016/j.geoderma.2020.114793_b0660) 2017; 299 10.1016/j.geoderma.2020.114793_b0595 10.1016/j.geoderma.2020.114793_b0475 Douaik (10.1016/j.geoderma.2020.114793_b0195) 2005; 128 Wu (10.1016/j.geoderma.2020.114793_b0700) 2018; 29 Chen (10.1016/j.geoderma.2020.114793_b0135) 2019; 217 10.1016/j.geoderma.2020.114793_b0190 Smola (10.1016/j.geoderma.2020.114793_b0580) 2004; 14 Deering (10.1016/j.geoderma.2020.114793_b0180) 1975 10.1016/j.geoderma.2020.114793_b0350 Heuvelink (10.1016/j.geoderma.2020.114793_b0290) 1998; 50 Lagacherie (10.1016/j.geoderma.2020.114793_b0325) 1997; 77 Poggio (10.1016/j.geoderma.2020.114793_b0520) 2013; 209 Sun (10.1016/j.geoderma.2020.114793_b0600) 2017; 303 McBratney (10.1016/j.geoderma.2020.114793_b0405) 2003; 117 Aldabaa (10.1016/j.geoderma.2020.114793_b0015) 2015; 239-240 10.1016/j.geoderma.2020.114793_b0145 Daliakopoulos (10.1016/j.geoderma.2020.114793_b0170) 2016; 573 Todd (10.1016/j.geoderma.2020.114793_b0630) 1998; 64 Lark (10.1016/j.geoderma.2020.114793_b0340) 2004; 55 Metternicht (10.1016/j.geoderma.2020.114793_b0430) 2003; 85 10.1016/j.geoderma.2020.114793_b0020 Malone (10.1016/j.geoderma.2020.114793_b0385) 2009; 154 El Harti (10.1016/j.geoderma.2020.114793_b0210) 2016; 50 McBratney (10.1016/j.geoderma.2020.114793_b0395) 1998; 50 Minasny (10.1016/j.geoderma.2020.114793_b0440) 2002 Major (10.1016/j.geoderma.2020.114793_b0370) 1990; 11 Toomanian (10.1016/j.geoderma.2020.114793_b0635) 2006; 81 El hafyani (10.1016/j.geoderma.2020.114793_b0205) 2019; 12 Behrens (10.1016/j.geoderma.2020.114793_b0090) 2014; 213 Nourani (10.1016/j.geoderma.2020.114793_b0485) 2014; 514 Kuhn (10.1016/j.geoderma.2020.114793_b0310) 2008; 28 Fick (10.1016/j.geoderma.2020.114793_b0240) 2017; 37 10.1016/j.geoderma.2020.114793_b0495 Keskin (10.1016/j.geoderma.2020.114793_b0305) 2019; 339 Malone (10.1016/j.geoderma.2020.114793_b0380) 2011; 75 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0615) 2020; 376 Baroni (10.1016/j.geoderma.2020.114793_b0070) 2017; 21 Hughes (10.1016/j.geoderma.2020.114793_b0300) 2014; 226-227 Wood (10.1016/j.geoderma.2020.114793_b0695) 2009 Emadodin (10.1016/j.geoderma.2020.114793_b0215) 2012; 14 Meier (10.1016/j.geoderma.2020.114793_b0410) 2018; 42 Pasolli (10.1016/j.geoderma.2020.114793_b0515) 2011; 8 10.1016/j.geoderma.2020.114793_b0130 Kumar (10.1016/j.geoderma.2020.114793_b0315) 2020; 32 Qi (10.1016/j.geoderma.2020.114793_b0530) 1994; 48 Lark (10.1016/j.geoderma.2020.114793_b0335) 1999; 50 Mohri (10.1016/j.geoderma.2020.114793_b0465) 2018 Wischmeier (10.1016/j.geoderma.2020.114793_b0690) 1978 Qadir (10.1016/j.geoderma.2020.114793_b0525) 2008; 19 Gallant (10.1016/j.geoderma.2020.114793_b0265) 2015; 53 Heung (10.1016/j.geoderma.2020.114793_b0285) 2016; 265 Lark (10.1016/j.geoderma.2020.114793_b0330) 2006; 57 Pal (10.1016/j.geoderma.2020.114793_b0505) 2007; 61 Bannari (10.1016/j.geoderma.2020.114793_b0065) 2008; 39 Crippen (10.1016/j.geoderma.2020.114793_b0155) 1990; 34 Curto (10.1016/j.geoderma.2020.114793_b0165) 2011; 38 Evans (10.1016/j.geoderma.2020.114793_b0225) 1980; 36 McBratney (10.1016/j.geoderma.2020.114793_b0400) 1992; 43 Behrens (10.1016/j.geoderma.2020.114793_b0085) 2010; 155 Mirjalili (10.1016/j.geoderma.2020.114793_b0450) 2016; 95 Basak (10.1016/j.geoderma.2020.114793_b0075) 2007; 11 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0610) 2016; 30 Shahabi (10.1016/j.geoderma.2020.114793_b0565) 2017; 63 Freeman (10.1016/j.geoderma.2020.114793_b0260) 1991; 17 Florinsky (10.1016/j.geoderma.2020.114793_b0250) 2000; 80 Ascough (10.1016/j.geoderma.2020.114793_b0045) 2008; 219 Ballabio (10.1016/j.geoderma.2020.114793_b0055) 2009; 151 Dilks (10.1016/j.geoderma.2020.114793_b0185) 1992; 62 Roozitalab (10.1016/j.geoderma.2020.114793_b0545) 2018 Mallat (10.1016/j.geoderma.2020.114793_b0375) 1999 Song (10.1016/j.geoderma.2020.114793_b0585) 2016; 261 Odgers (10.1016/j.geoderma.2020.114793_b0490) 2012; 189 Schmidt (10.1016/j.geoderma.2020.114793_b0555) 2008; 146 Werner (10.1016/j.geoderma.2020.114793_b0675) 2001; 55 Douaoui (10.1016/j.geoderma.2020.114793_b0200) 2006; 134 Were (10.1016/j.geoderma.2020.114793_b0670) 2015; 52 Munyati (10.1016/j.geoderma.2020.114793_b0480) 2004; 19 10.1016/j.geoderma.2020.114793_b0550 Biswas (10.1016/j.geoderma.2020.114793_b0110) 2011; 165 Minasny (10.1016/j.geoderma.2020.114793_b0445) 2016; 264 10.1016/j.geoderma.2020.114793_b0035 Moghadas (10.1016/j.geoderma.2020.114793_b0460) 2016; 7 Uusitalo (10.1016/j.geoderma.2020.114793_b0650) 2015; 63 Asfaw (10.1016/j.geoderma.2020.114793_b0050) 2018; 17 Fiener (10.1016/j.geoderma.2020.114793_b0245) 2014; 2-3 Taylor (10.1016/j.geoderma.2020.114793_b0625) 2001; 106 Wang (10.1016/j.geoderma.2020.114793_b0665) 2019; 353 Zhou (10.1016/j.geoderma.2020.114793_b0715) 2020; 125127 Sihag (10.1016/j.geoderma.2020.114793_b0575) 2018; 26 Williams (10.1016/j.geoderma.2020.114793_b0680) 2006; 72 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0620) 2020; 12 Minasny (10.1016/j.geoderma.2020.114793_b0435) 2002; 53 Brady (10.1016/j.geoderma.2020.114793_b0125) 2008 Amirian-Chakan (10.1016/j.geoderma.2020.114793_b0030) 2017; 2017 Crist (10.1016/j.geoderma.2020.114793_b0160) 1985; 17 Arian (10.1016/j.geoderma.2020.114793_b0040) 2015; 5 Mafarja (10.1016/j.geoderma.2020.114793_b0365) 2017; 260 Mendonca-Santos (10.1016/j.geoderma.2020.114793_b0415) 2007 Scudiero (10.1016/j.geoderma.2020.114793_b0560) 2016; 70 10.1016/j.geoderma.2020.114793_b0220 Gao (10.1016/j.geoderma.2020.114793_b0270) 1996; 58 10.1016/j.geoderma.2020.114793_b0345 Vaysse (10.1016/j.geoderma.2020.114793_b0655) 2017; 291 Boettinger (10.1016/j.geoderma.2020.114793_b0115) 2008 Banaei (10.1016/j.geoderma.2020.114793_b0060) 2005 Bishop (10.1016/j.geoderma.2020.114793_b0100) 1999; 91 Malone (10.1016/j.geoderma.2020.114793_b0390) 2011; 160 Pannell (10.1016/j.geoderma.2020.114793_b0510) 2006; 80 Litalien (10.1016/j.geoderma.2020.114793_b0355) 2020; 698 Liu (10.1016/j.geoderma.2020.114793_b0360) 1995; 33 10.1016/j.geoderma.2020.114793_b0455 Gorelick (10.1016/j.geoderma.2020.114793_b0275) 2017; 202 Yaghmaei (10.1016/j.geoderma.2020.114793_b0705) 2009; 29 Rentschler (10.1016/j.geoderma.2020.114793_b0535) 2019; 14 Mesgaran (10.1016/j.geoderma.2020.114793_b0425) 2017; 7 Rhoades (10.1016/j.geoderma.2020.114793_b0540) 1989; 53 10.1016/j.geoderma.2020.114793_b0175 |
References_xml | – volume: 155 start-page: 175 year: 2010 end-page: 185 ident: b0085 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma – volume: 151 start-page: 338 year: 2009 end-page: 350 ident: b0055 article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression publication-title: Geoderma – reference: de Pauw, E. D., Gaffari, A., Gasemi, V. 2002. Agro-climatic zone maps of Iran. Seed and Plant Improvement Research Institute (SPIRI), Karaj, Iran. – volume: 53 start-page: 895 year: 2015 ident: b0265 article-title: Derivation of terrain covariates for digital soil mapping in Australia publication-title: Soil Res. – volume: 2 start-page: 2369 year: 2010 end-page: 2387 ident: b0470 article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology publication-title: Remote Sens. – volume: 217 start-page: 281 year: 2019 end-page: 291 ident: b0135 article-title: Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images publication-title: Estuar. Coast. Shelf Sci. – volume: 17 start-page: 250 year: 2018 end-page: 258 ident: b0050 article-title: Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia publication-title: J. Saudi Soc. Agric. Sci. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: b0275 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 30 start-page: 49 year: 2016 end-page: 64 ident: b0610 article-title: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming publication-title: Arid Land Res. Manage. – volume: 154 start-page: 138 year: 2009 end-page: 152 ident: b0385 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – volume: 52 start-page: 394 year: 2015 end-page: 403 ident: b0670 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. – volume: 39 start-page: 2795 year: 2008 end-page: 2811 ident: b0065 article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO‐1) sensor publication-title: Commun. Soil Sci. Plant Anal. – volume: 213 start-page: 578 year: 2014 end-page: 588 ident: b0090 article-title: Hyper-scale digital soil mapping and soil formation analysis publication-title: Geoderma – volume: 36 start-page: 274 year: 1980 end-page: 295 ident: b0225 article-title: An integrated system of terrain analysis and slope mapping publication-title: Zeitschrift für Geomorphologie. Supplementband Stuttgart – start-page: 269 year: 2007 end-page: 278 ident: b0415 article-title: Soil prediction with spatially decomposed environmental factors publication-title: Digital Soil Mapping: An Introductory Perspective Developments in Soil Science – reference: (accessed 15 March 2020). – volume: 81 start-page: 376 year: 2006 end-page: 393 ident: b0635 article-title: Pedodiversity and pedogenesis in Zayandeh-rud Valley, central Iran publication-title: Geomorphology – reference: Brown, J.D., Heuvelink, G.B., Refsgaard, J.C., 2005. An integrated methodology for recording uncertainties about environmental data. Water Sci. Tech. 52, 153-160. DOI:10.2166/wst.2005.0163. – volume: 226-227 start-page: 365 year: 2014 end-page: 375 ident: b0300 article-title: End members, end points and extragrades in numerical soil classification publication-title: Geoderma – volume: 219 start-page: 383 year: 2008 end-page: 399 ident: b0045 article-title: Future research challenges for incorporation of uncertainty in environmental and ecological decision-making publication-title: Ecol. Model. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0150 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 34 start-page: 71 year: 1990 end-page: 73 ident: b0155 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. – volume: 37 start-page: 4302 year: 2017 end-page: 4315 ident: b0240 article-title: WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 64 start-page: 915 year: 1998 end-page: 922 ident: b0630 article-title: Responses of spectral indices to variations in vegetation cover and soil background publication-title: Photogramm. Eng. Remote Sens. – volume: 72 start-page: 1171 year: 2006 end-page: 1178 ident: b0680 article-title: Landsat publication-title: Photogramm. Eng. Remote Sens. – volume: 239-240 start-page: 34 year: 2015 end-page: 46 ident: b0015 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma – reference: Dogulu, N., López, P.L., Solomatine, D.P., Weerts, A.H., Shrestha, D.L., 2015. Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol. Earth Syst. Sci. 19, 3181-3201. DOI:10.5194/hess-19-3181-2015. – volume: 32 start-page: 2095 year: 2020 end-page: 2123 ident: b0315 article-title: Binary whale optimization algorithm and its application to unit commitment problem publication-title: Neural. Comput. Appl. – volume: 29 start-page: 4005 year: 2018 end-page: 4014 ident: b0700 article-title: Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq publication-title: Land Degrad. Dev. – volume: 7 start-page: 230 year: 2016 end-page: 238 ident: b0460 article-title: Probabilistic inversion of EM38 data for 3D soil mapping in central Iran publication-title: Geoderma Reg. – start-page: 193 year: 2008 end-page: 202 ident: b0115 article-title: Landsat spectral data for digital soil mapping publication-title: Digital Soil Mapping with Limited Data – reference: Moameni, A., Stein, A., 2002. Modeling spatio-temporal changes in soil salinity and waterlogging in the Marvdasht Plain, Iran. 17 World Congress of Soil Science. 14-21 August 2002, Bangkok, Thailand. Transactions. – volume: 8 start-page: 1080 year: 2011 end-page: 1084 ident: b0515 article-title: Estimating soil moisture with the support vector regression technique publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0450 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 58 start-page: 257 year: 1996 end-page: 266 ident: b0270 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. – volume: 125127 year: 2020 ident: b0715 article-title: Coupling wavelet transform and artificial neural network for forecasting estuarine salinity publication-title: J. Hydrol. – volume: 26 start-page: 44 year: 2018 end-page: 50 ident: b0575 article-title: Support vector regression-based modeling of cumulative infiltration of sandy soil publication-title: ISH J. Hydraul. Eng. – volume: 573 start-page: 727 year: 2016 end-page: 739 ident: b0170 article-title: The threat of soil salinity: a European scale review publication-title: Sci. Total Environ. – volume: 50 start-page: 255 year: 1998 end-page: 264 ident: b0290 article-title: Uncertainty analysis in environmental modelling under a change of spatial scale publication-title: Nutr. Cycl. Agroecosyst. – volume: 2-3 start-page: 91 year: 2014 end-page: 101 ident: b0245 article-title: Soil organic carbon patterns under different land uses in South India publication-title: Geoderma Regional – volume: 189 start-page: 153 year: 2012 end-page: 163 ident: b0490 article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale publication-title: Geoderma – volume: 12 year: 2019 ident: b0205 article-title: Modeling and mapping of soil salinity in Tafilalet plain (Morocco) publication-title: Arab. J. Geosci. – start-page: 93 year: 2018 end-page: 147 ident: b0545 article-title: Major soils, properties, and classification publication-title: The Soils of Iran – volume: 77 start-page: 197 year: 1997 end-page: 216 ident: b0325 article-title: Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area publication-title: Geoderma – volume: 303 start-page: 118 year: 2017 end-page: 132 ident: b0600 article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates publication-title: Geoderma – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: b0485 article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review publication-title: J. Hydro. – volume: 7 start-page: 7670 year: 2017 ident: b0425 article-title: Iran’s land suitability for agriculture publication-title: Sci Rep. – volume: 91 start-page: 27 year: 1999 end-page: 45 ident: b0100 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma – volume: 14 start-page: 611 year: 2012 end-page: 625 ident: b0215 article-title: Soil degradation and agricultural sustainability: an overview from Iran publication-title: Environ. Dev. Sustain. – volume: 365 start-page: 114233 year: 2020 ident: b0235 article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran publication-title: Geoderma – year: 2000 ident: b0685 article-title: Terrain Analysis: Principles and Applications – volume: 42 year: 2018 ident: b0410 article-title: Digital soil mapping using machine learning algorithms in a Tropical Mountainous Area publication-title: Rev. Bras. Ciênc. Solo – volume: 50 start-page: 64 year: 2016 end-page: 73 ident: b0210 article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 21 start-page: 2301 year: 2017 end-page: 2320 ident: b0070 article-title: Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales publication-title: Hydrol. Earth Syst. Sci. – year: 2008 ident: b0125 article-title: The nature and Properties of Soils – volume: 130 start-page: 191 year: 2006 end-page: 206 ident: b0230 article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics publication-title: Geoderma – volume: 106 start-page: 7183 year: 2001 end-page: 7192 ident: b0625 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res-Atmos. – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: b0405 article-title: On digital soil mapping publication-title: Geoderma – volume: 146 start-page: 138 year: 2008 end-page: 146 ident: b0555 article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping publication-title: Geoderma – volume: 29 start-page: 67 year: 2019 end-page: 80 ident: b0010 article-title: Modeling soil salinity using direct and indirect measurement techniques: a comparative analysis publication-title: Environ. Dev. – volume: 213 start-page: 296 year: 2014 end-page: 311 ident: b0320 article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape publication-title: Geoderma – start-page: 481 year: 2005 ident: b0060 article-title: The Soils of Iran: New Achievements in Perception, Management and Use – volume: 2017 start-page: 131 year: 2017 ident: b0030 article-title: Spatial 3D distribution of soil organic carbon under different land use types publication-title: Environ. Monit. Assess. – volume: 39 start-page: 1347 year: 2003 ident: b9000 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. – volume: 70 start-page: 276 year: 2016 end-page: 284 ident: b0560 article-title: Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance publication-title: Ecol. Indic. – reference: Aldrich, E., 2020. Package ‘wavelets’. Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses, Version 0.3-0.2. – reference: Behrens, T., Schmidt, K., Zhu, A.-X., Scholten, T., 2010. The ConMap approach for terrain‐based digital soil mapping. E. J. Soil Sci. 61, 133-143. DOI:10.1111/j.1365-2389.2009.01205.x. – volume: 17 start-page: 301 year: 1985 end-page: 306 ident: b0160 article-title: A TM Tasseled Cap equivalent transformation for reflectance factor data publication-title: Remote Sens. Environ. – reference: Choi, H., Jeong, J., 2019. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sen. 11, 1184. DOI:10.3390/rs11101184. – volume: 299 start-page: 1 year: 2017 end-page: 12 ident: b0660 article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates publication-title: Geoderma – volume: 19 start-page: 11 year: 2004 end-page: 22 ident: b0480 article-title: Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue Flats, Zambia publication-title: Geocarto Int. – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b0580 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 17 start-page: 413 year: 1991 end-page: 422 ident: b0260 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Comput. Geosci. – volume: 63 start-page: 151 year: 2017 end-page: 160 ident: b0565 article-title: Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods publication-title: Arch. Agron. Soil Sci. – volume: 80 start-page: 455 year: 2000 end-page: 463 ident: b0250 article-title: Prediction of soil salinity risk by digital terrain modeling in the Canadian prairies publication-title: Can. J. Soil. Sci. – volume: 19 start-page: 225 year: 2006 end-page: 235 ident: b0570 article-title: Machine learning approaches for estimation of prediction interval for the model output publication-title: Neural Networks – year: 1978 ident: b0690 article-title: Predicting Rainfall Erosion Losses: A Guide to Conservation Planning – start-page: 1169 year: 1975 end-page: 1198 ident: b0180 article-title: Measuring“ forage production” of grazing units from Landsat MSS data publication-title: Proceedings of the Tenth International Symposium of Remote Sensing of the Environment – reference: Salemi, H., Mamanpoush, A., Miranzadeh, M., Akbari, M., Torabi, M., Toomanian, N., Murray-Rust, H., Droogers, P., Sally, H., Gieske, A., 2000. Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran. – volume: 43 start-page: 159 year: 1992 end-page: 175 ident: b0400 article-title: A continuum approach to soil classification by modified fuzzy k-means with extragrades publication-title: J. Soil Sci. – volume: 57 start-page: 868 year: 2006 end-page: 882 ident: b0330 article-title: The representation of complex soil variation on wavelet packet bases publication-title: Eur. J. Soil Sci. – reference: Abbas, A., Khan, S., 2007. Using remote sensing techniques for appraisal of irrigated soil salinity, in: Oxley, L., Kulasiri, D., (Eds.), MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, pp. 2632-2638. – reference: Toomanian N., 2020. Land Suitability Evaluation for Crop and horticultural products in Isfahan, Yazd, Markazi and Semnan Provinces. Report No. 57376. SWRI, AREEO, Iran. – volume: 134 start-page: 217 year: 2006 end-page: 230 ident: b0200 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma – reference: Sun, X.L., Wang, Y., Wang, H.L., Zhang, C., Wang, Z. 2019. Digital soil mapping based on empirical mode decomposition components of environmental covariates. Eur. J. Soil Sci. DOI:10.1111/ejss.12851. – volume: 2 start-page: 373 year: 2013 end-page: 385 ident: b0025 article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review publication-title: ARS – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b0365 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 376 year: 2020 ident: b0615 article-title: Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran publication-title: Geoderma – volume: 19 start-page: 214 year: 2008 end-page: 227 ident: b0525 article-title: Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management publication-title: Land Degrad. Dev. – reference: Eswaran, W.H., Lal, R., Reich, P.F., 2019. Land degradation: An overview, in: Bridges, E.M. (Eds.), Response to land degradation. CRC Press, Boca Raton, pp. 20–35. DOI:10.1201/9780429187957. – volume: 213 start-page: 15 year: 2014 end-page: 28 ident: b0605 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma – volume: 12 start-page: 1095 year: 2020 ident: b0620 article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space publication-title: Remote Sens. – year: 2002 ident: b0440 article-title: FuzME version 3.0. Australian Centre for Precision Agriculture – volume: 89 year: 2020 ident: b0420 article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data publication-title: Int. J. Appl. Earth Obs. – volume: 53 start-page: 417 year: 2002 end-page: 429 ident: b0435 article-title: Uncertainty analysis for pedotransfer functions publication-title: E. J. Soil Sci. – volume: 14 start-page: 815 year: 2000 end-page: 832 ident: b0255 article-title: Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale publication-title: Int. J. Geogr. Inf. Sci. – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: b0310 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. – reference: Muhammad, I.U., Muhammad, A. and Muhammad, M.I.U., 2020. Package ‘mctest’. Multicollinearity Diagnostic Measures, Version 1.3.1. – year: 2018 ident: b0465 article-title: Foundations of Machine Learning – volume: 75 start-page: 1032 year: 2011 end-page: 1043 ident: b0380 article-title: Using additional criteria for measuring the quality of predictions and their uncertainties in a digital soil mapping framework publication-title: Soil Sci. Soc. Am. J. – volume: 48 start-page: 119 year: 1994 end-page: 126 ident: b0530 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. – volume: 261 start-page: 11 year: 2016 end-page: 22 ident: b0585 article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China publication-title: Geoderma – volume: 61 start-page: 281 year: 2007 end-page: 297 ident: b0505 article-title: ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 33 start-page: 457 year: 1995 end-page: 465 ident: b0360 article-title: A feedback based modification of the NDVI to minimize canopy background and atmospheric noise publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 63 start-page: 24 year: 2015 end-page: 31 ident: b0650 article-title: An overview of methods to evaluate uncertainty of deterministic models in decision support publication-title: Environ. Modell. Softw. – volume: 264 start-page: 301 year: 2016 end-page: 311 ident: b0445 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma – reference: Leutner, B., Horning, N., Leutner, M.B., 2019. Package ‘RStoolbox’. R Foundation for Statistical Computing, Version 0.1. – reference: Aragón-Royón, F., Jiménez-Vílchez, A., Arauzo-Azofra, A., Benítez, J.M., 2020. FSinR: an exhaustive package for feature selection. arXiv preprint arXiv:2002.10330. – volume: 14 year: 2019 ident: b0535 article-title: Comparison of catchment scale 3D and 2.5 D modelling of soil organic carbon stocks in Jiangxi Province, PR China publication-title: PLoS One – volume: 209-210 start-page: 57 year: 2013 end-page: 64 ident: b0105 article-title: Separating scale-specific soil spatial variability: a comparison of multi-resolution analysis and empirical mode decomposition publication-title: Geoderma – volume: 85 start-page: 1 year: 2003 end-page: 20 ident: b0430 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sens. Environ. – volume: 62 start-page: 149 year: 1992 end-page: 162 ident: b0185 article-title: Development of Bayesian Monte Carlo techniques for water quality model uncertainty publication-title: Ecol. Model. – volume: 50 start-page: 185 year: 1999 end-page: 206 ident: b0335 article-title: Analysis and elucidation of soil variation using wavelets publication-title: Eur. J. Soil Sci. – volume: 11 start-page: 203 year: 2007 end-page: 224 ident: b0075 article-title: Support vector regression publication-title: Neu. Inf. Pro. Lett. – volume: 160 start-page: 614 year: 2011 end-page: 626 ident: b0390 article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes publication-title: Geoderma – volume: 55 start-page: 75 year: 2001 end-page: 79 ident: b0675 article-title: Shuttle radar topography mission (SRTM) mission overview publication-title: Frequenz – volume: 310 start-page: 128 year: 2018 end-page: 137 ident: b0095 article-title: Multiscale contextual spatial modelling with the Gaussian scale space publication-title: Geoderma – volume: 153 start-page: 30 year: 2017 end-page: 38 ident: b0590 article-title: Uncertainty-guided sampling to improve digital soil maps publication-title: Catena – volume: 50 start-page: 51 year: 1998 end-page: 62 ident: b0395 article-title: Some considerations on methods for spatially aggregating and disgaggregating soil information publication-title: Nutr. Cycl. Agroecosyst. – volume: 265 start-page: 62 year: 2016 end-page: 77 ident: b0285 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma – reference: Lemon, J., Bolker, B., Oom, S., Klein, E., Rowlingson, B., Wickham, H., Tyagi, A., Eterradossi, O., Grothendieck, G., Toews, M. and Kane, J., 2020. Package ‘plotrix’. Various Plotting Functions, Version 3.7-8. – volume: 353 start-page: 172 year: 2019 end-page: 187 ident: b0665 article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China publication-title: Geoderma – volume: 55 start-page: 777 year: 2004 end-page: 797 ident: b0340 article-title: Analysing soil variation in two dimensions with the discrete wavelet transform publication-title: Eur. J. Soil Sci. – volume: 209 start-page: 1 year: 2013 end-page: 14 ident: b0520 article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates publication-title: Geoderma – volume: 698 year: 2020 ident: b0355 article-title: Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation publication-title: Sci. Total Environ. – volume: 5 start-page: 61 year: 2015 end-page: 72 ident: b0040 article-title: Tectonic Geomorphology of Iran’s Salt Structures publication-title: Open J. Geol. – volume: 53 start-page: 433 year: 1989 end-page: 439 ident: b0540 article-title: Soil electrical conductivity and soil salinity: new formulations and calibrations publication-title: Soil Sci. Soc. Am. J. – volume: 16 start-page: 917 year: 2016 end-page: 937 ident: b0280 article-title: Support vector machines publication-title: Stata J. – volume: 80 start-page: 41 year: 2006 end-page: 56 ident: b0510 article-title: Managing secondary dryland salinity: options and challenges publication-title: Agric. Water Manag. – volume: 188 year: 2020 ident: b0710 article-title: Conventional and digital soil mapping in Iran: past, present, and future publication-title: Catena – volume: 128 start-page: 234 year: 2005 end-page: 248 ident: b0195 article-title: Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data publication-title: Geoderma – volume: 291 start-page: 55 year: 2017 end-page: 64 ident: b0655 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma – reference: Olaya, V., Conrad, O., 2009. Geomorphometry in SAGA, in: Hengl, T., Reuter, H. (Eds.), Developments in soil science, Geomorphometry (Concepts, Software, Applications). Elsevier, Amsterdam, pp.293-308. DOI:10.1016/S0166-2481(08)00012-3. – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: b0295 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – start-page: 333 year: 2009 end-page: 349 ident: b0695 article-title: Geomorphometry in landserf publication-title: Developments in soil science, Geomorphometry (Concepts, Software, Applications) – volume: 165 start-page: 50 year: 2011 end-page: 59 ident: b0110 article-title: Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency publication-title: Geoderma – year: 1999 ident: b0375 article-title: A Wavelet Tour of Signal Processing – volume: 104 start-page: 158 year: 2015 end-page: 173 ident: b0140 article-title: Remote sensing image fusion via wavelet transform and sparse representation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 38 start-page: 1499 year: 2011 end-page: 1507 ident: b0165 article-title: The corrected VIF (CVIF) publication-title: J. Appl. Statistics – volume: 339 start-page: 40 year: 2019 end-page: 58 ident: b0305 article-title: Digital mapping of soil carbon fractions with machine learning publication-title: Geoderma – reference: Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalization, in: Böhner, J., McCloy, K.R., Strobl, J. (Eds.), SAGA - Analyses and Modelling Applications, Göttinger Geographiche Abhandlungen, 115, pp.13-28. – volume: 6 start-page: 35 year: 2020 end-page: 52 ident: b0500 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil – volume: 74 start-page: 1967 year: 2010 end-page: 1975 ident: b0645 article-title: Estimating pedotransfer function prediction limits using fuzzy k-means with extragrades publication-title: Soil Sci. Soc. Am. J. – volume: 11 start-page: 727 year: 1990 end-page: 740 ident: b0370 article-title: A ratio vegetation index adjusted for soil brightness publication-title: Int. J. Remote Sens. – volume: 29 start-page: 1850 year: 2009 end-page: 1861 ident: b0705 article-title: Bioclimatic classification of Isfahan province using multivariate statistical methods publication-title: Int. J. Climatol: Q J. Roy. Meteor. Soc. – volume: 61 start-page: 281 year: 2007 ident: 10.1016/j.geoderma.2020.114793_b0505 article-title: ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2006.10.001 – volume: 91 start-page: 27 year: 1999 ident: 10.1016/j.geoderma.2020.114793_b0100 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma doi: 10.1016/S0016-7061(99)00003-8 – volume: 264 start-page: 301 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0445 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 – volume: 698 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0355 article-title: Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134235 – volume: 26 start-page: 44 year: 2018 ident: 10.1016/j.geoderma.2020.114793_b0575 article-title: Support vector regression-based modeling of cumulative infiltration of sandy soil publication-title: ISH J. Hydraul. Eng. – volume: 55 start-page: 75 year: 2001 ident: 10.1016/j.geoderma.2020.114793_b0675 article-title: Shuttle radar topography mission (SRTM) mission overview publication-title: Frequenz doi: 10.1515/FREQ.2001.55.3-4.75 – volume: 37 start-page: 4302 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0240 article-title: WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – year: 2018 ident: 10.1016/j.geoderma.2020.114793_b0465 – volume: 19 start-page: 11 year: 2004 ident: 10.1016/j.geoderma.2020.114793_b0480 article-title: Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue Flats, Zambia publication-title: Geocarto Int. doi: 10.1080/10106040408542313 – start-page: 193 year: 2008 ident: 10.1016/j.geoderma.2020.114793_b0115 article-title: Landsat spectral data for digital soil mapping – ident: 10.1016/j.geoderma.2020.114793_b0145 doi: 10.3390/rs11101184 – volume: 29 start-page: 67 year: 2019 ident: 10.1016/j.geoderma.2020.114793_b0010 article-title: Modeling soil salinity using direct and indirect measurement techniques: a comparative analysis publication-title: Environ. Dev. doi: 10.1016/j.envdev.2018.12.007 – volume: 261 start-page: 11 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0585 article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China publication-title: Geoderma doi: 10.1016/j.geoderma.2015.06.024 – volume: 106 start-page: 7183 year: 2001 ident: 10.1016/j.geoderma.2020.114793_b0625 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res-Atmos. doi: 10.1029/2000JD900719 – volume: 39 start-page: 1347 issue: 12 year: 2003 ident: 10.1016/j.geoderma.2020.114793_b9000 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. doi: 10.1029/2002WR001426 – ident: 10.1016/j.geoderma.2020.114793_b0475 – volume: 104 start-page: 158 year: 2015 ident: 10.1016/j.geoderma.2020.114793_b0140 article-title: Remote sensing image fusion via wavelet transform and sparse representation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.02.015 – volume: 81 start-page: 376 year: 2006 ident: 10.1016/j.geoderma.2020.114793_b0635 article-title: Pedodiversity and pedogenesis in Zayandeh-rud Valley, central Iran publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.04.016 – volume: 14 start-page: 815 year: 2000 ident: 10.1016/j.geoderma.2020.114793_b0255 article-title: Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/136588100750022804 – volume: 165 start-page: 50 year: 2011 ident: 10.1016/j.geoderma.2020.114793_b0110 article-title: Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency publication-title: Geoderma doi: 10.1016/j.geoderma.2011.07.002 – year: 2008 ident: 10.1016/j.geoderma.2020.114793_b0125 – volume: 353 start-page: 172 year: 2019 ident: 10.1016/j.geoderma.2020.114793_b0665 article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.040 – volume: 72 start-page: 1171 year: 2006 ident: 10.1016/j.geoderma.2020.114793_b0680 article-title: Landsat publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.10.1171 – volume: 213 start-page: 296 year: 2014 ident: 10.1016/j.geoderma.2020.114793_b0320 article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.002 – volume: 77 start-page: 197 year: 1997 ident: 10.1016/j.geoderma.2020.114793_b0325 article-title: Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area publication-title: Geoderma doi: 10.1016/S0016-7061(97)00022-0 – volume: 75 start-page: 1032 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2020.114793_b0380 article-title: Using additional criteria for measuring the quality of predictions and their uncertainties in a digital soil mapping framework publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0280 – volume: 6 start-page: 35 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0500 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil doi: 10.5194/soil-6-35-2020 – start-page: 269 year: 2007 ident: 10.1016/j.geoderma.2020.114793_b0415 article-title: Soil prediction with spatially decomposed environmental factors – volume: 265 start-page: 62 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0285 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – volume: 219 start-page: 383 year: 2008 ident: 10.1016/j.geoderma.2020.114793_b0045 article-title: Future research challenges for incorporation of uncertainty in environmental and ecological decision-making publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2008.07.015 – ident: 10.1016/j.geoderma.2020.114793_b0035 doi: 10.32614/CRAN.package.FSinR – volume: 514 start-page: 358 year: 2014 ident: 10.1016/j.geoderma.2020.114793_b0485 article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review publication-title: J. Hydro. doi: 10.1016/j.jhydrol.2014.03.057 – volume: 58 start-page: 257 year: 1996 ident: 10.1016/j.geoderma.2020.114793_b0270 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – volume: 43 start-page: 159 year: 1992 ident: 10.1016/j.geoderma.2020.114793_b0400 article-title: A continuum approach to soil classification by modified fuzzy k-means with extragrades publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1992.tb00127.x – ident: 10.1016/j.geoderma.2020.114793_b0080 doi: 10.1111/j.1365-2389.2009.01205.x – volume: 52 start-page: 394 year: 2015 ident: 10.1016/j.geoderma.2020.114793_b0670 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – volume: 213 start-page: 578 year: 2014 ident: 10.1016/j.geoderma.2020.114793_b0090 article-title: Hyper-scale digital soil mapping and soil formation analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.031 – volume: 134 start-page: 217 year: 2006 ident: 10.1016/j.geoderma.2020.114793_b0200 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma doi: 10.1016/j.geoderma.2005.10.009 – volume: 19 start-page: 225 year: 2006 ident: 10.1016/j.geoderma.2020.114793_b0570 article-title: Machine learning approaches for estimation of prediction interval for the model output publication-title: Neural Networks doi: 10.1016/j.neunet.2006.01.012 – volume: 12 start-page: 1095 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0620 article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space publication-title: Remote Sens. doi: 10.3390/rs12071095 – ident: 10.1016/j.geoderma.2020.114793_b0005 – volume: 36 start-page: 274 year: 1980 ident: 10.1016/j.geoderma.2020.114793_b0225 article-title: An integrated system of terrain analysis and slope mapping publication-title: Zeitschrift für Geomorphologie. Supplementband Stuttgart – volume: 5 start-page: 61 year: 2015 ident: 10.1016/j.geoderma.2020.114793_b0040 article-title: Tectonic Geomorphology of Iran’s Salt Structures publication-title: Open J. Geol. doi: 10.4236/ojg.2015.52006 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.geoderma.2020.114793_b0580 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 39 start-page: 2795 year: 2008 ident: 10.1016/j.geoderma.2020.114793_b0065 article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO‐1) sensor publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620802432717 – volume: 80 start-page: 41 year: 2006 ident: 10.1016/j.geoderma.2020.114793_b0510 article-title: Managing secondary dryland salinity: options and challenges publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2005.07.003 – start-page: 93 year: 2018 ident: 10.1016/j.geoderma.2020.114793_b0545 article-title: Major soils, properties, and classification – volume: 146 start-page: 138 year: 2008 ident: 10.1016/j.geoderma.2020.114793_b0555 article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.010 – start-page: 1169 year: 1975 ident: 10.1016/j.geoderma.2020.114793_b0180 article-title: Measuring“ forage production” of grazing units from Landsat MSS data – volume: 53 start-page: 417 year: 2002 ident: 10.1016/j.geoderma.2020.114793_b0435 article-title: Uncertainty analysis for pedotransfer functions publication-title: E. J. Soil Sci. doi: 10.1046/j.1365-2389.2002.00452.x – volume: 376 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0615 article-title: Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114552 – volume: 365 start-page: 114233 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0235 article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114233 – volume: 42 year: 2018 ident: 10.1016/j.geoderma.2020.114793_b0410 article-title: Digital soil mapping using machine learning algorithms in a Tropical Mountainous Area publication-title: Rev. Bras. Ciênc. Solo doi: 10.1590/18069657rbcs20170421 – volume: 209-210 start-page: 57 year: 2013 ident: 10.1016/j.geoderma.2020.114793_b0105 article-title: Separating scale-specific soil spatial variability: a comparison of multi-resolution analysis and empirical mode decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.003 – volume: 50 start-page: 255 year: 1998 ident: 10.1016/j.geoderma.2020.114793_b0290 article-title: Uncertainty analysis in environmental modelling under a change of spatial scale publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1009700614041 – volume: 28 start-page: 1 year: 2008 ident: 10.1016/j.geoderma.2020.114793_b0310 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – ident: 10.1016/j.geoderma.2020.114793_b0345 – volume: 8 start-page: 1080 year: 2011 ident: 10.1016/j.geoderma.2020.114793_b0515 article-title: Estimating soil moisture with the support vector regression technique publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2156759 – volume: 151 start-page: 338 year: 2009 ident: 10.1016/j.geoderma.2020.114793_b0055 article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.022 – ident: 10.1016/j.geoderma.2020.114793_b0020 – ident: 10.1016/j.geoderma.2020.114793_b0175 – volume: 16 start-page: 917 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0280 article-title: Support vector machines publication-title: Stata J. doi: 10.1177/1536867X1601600407 – volume: 17 start-page: 250 year: 2018 ident: 10.1016/j.geoderma.2020.114793_b0050 article-title: Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia publication-title: J. Saudi Soc. Agric. Sci. – volume: 50 start-page: 64 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0210 article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 2-3 start-page: 91 year: 2014 ident: 10.1016/j.geoderma.2020.114793_b0245 article-title: Soil organic carbon patterns under different land uses in South India publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2014.10.005 – volume: 11 start-page: 727 year: 1990 ident: 10.1016/j.geoderma.2020.114793_b0370 article-title: A ratio vegetation index adjusted for soil brightness publication-title: Int. J. Remote Sens. doi: 10.1080/01431169008955053 – volume: 7 start-page: 7670 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0425 article-title: Iran’s land suitability for agriculture publication-title: Sci Rep. doi: 10.1038/s41598-017-08066-y – volume: 226-227 start-page: 365 year: 2014 ident: 10.1016/j.geoderma.2020.114793_b0300 article-title: End members, end points and extragrades in numerical soil classification publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.010 – volume: 63 start-page: 24 year: 2015 ident: 10.1016/j.geoderma.2020.114793_b0650 article-title: An overview of methods to evaluate uncertainty of deterministic models in decision support publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2014.09.017 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2020.114793_b0405 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 155 start-page: 175 year: 2010 ident: 10.1016/j.geoderma.2020.114793_b0085 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2009.07.010 – year: 2000 ident: 10.1016/j.geoderma.2020.114793_b0685 – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.geoderma.2020.114793_b0295 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 30 start-page: 49 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0610 article-title: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming publication-title: Arid Land Res. Manage. doi: 10.1080/15324982.2015.1046092 – volume: 17 start-page: 301 year: 1985 ident: 10.1016/j.geoderma.2020.114793_b0160 article-title: A TM Tasseled Cap equivalent transformation for reflectance factor data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(85)90102-6 – volume: 209 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2020.114793_b0520 article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates publication-title: Geoderma doi: 10.1016/j.geoderma.2013.05.029 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.geoderma.2020.114793_b0150 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0365 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – ident: 10.1016/j.geoderma.2020.114793_b0190 doi: 10.5194/hess-19-3181-2015 – ident: 10.1016/j.geoderma.2020.114793_b0495 doi: 10.1016/S0166-2481(08)00012-3 – ident: 10.1016/j.geoderma.2020.114793_b0455 – volume: 50 start-page: 185 year: 1999 ident: 10.1016/j.geoderma.2020.114793_b0335 article-title: Analysis and elucidation of soil variation using wavelets publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.1999.t01-1-00234.x – volume: 21 start-page: 2301 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0070 article-title: Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-2301-2017 – ident: 10.1016/j.geoderma.2020.114793_b0130 doi: 10.2166/wst.2005.0163 – volume: 217 start-page: 281 year: 2019 ident: 10.1016/j.geoderma.2020.114793_b0135 article-title: Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2018.10.021 – volume: 12 year: 2019 ident: 10.1016/j.geoderma.2020.114793_b0205 article-title: Modeling and mapping of soil salinity in Tafilalet plain (Morocco) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-018-4202-2 – volume: 34 start-page: 71 year: 1990 ident: 10.1016/j.geoderma.2020.114793_b0155 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90085-Z – volume: 62 start-page: 149 year: 1992 ident: 10.1016/j.geoderma.2020.114793_b0185 article-title: Development of Bayesian Monte Carlo techniques for water quality model uncertainty publication-title: Ecol. Model. doi: 10.1016/0304-3800(92)90087-U – volume: 32 start-page: 2095 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0315 article-title: Binary whale optimization algorithm and its application to unit commitment problem publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-018-3796-3 – year: 1999 ident: 10.1016/j.geoderma.2020.114793_b0375 – start-page: 481 year: 2005 ident: 10.1016/j.geoderma.2020.114793_b0060 – volume: 189 start-page: 153 year: 2012 ident: 10.1016/j.geoderma.2020.114793_b0490 article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.026 – volume: 299 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0660 article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates publication-title: Geoderma doi: 10.1016/j.geoderma.2017.03.013 – start-page: 333 year: 2009 ident: 10.1016/j.geoderma.2020.114793_b0695 article-title: Geomorphometry in landserf – volume: 7 start-page: 230 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0460 article-title: Probabilistic inversion of EM38 data for 3D soil mapping in central Iran publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2016.04.006 – ident: 10.1016/j.geoderma.2020.114793_b0350 – volume: 160 start-page: 614 year: 2011 ident: 10.1016/j.geoderma.2020.114793_b0390 article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes publication-title: Geoderma doi: 10.1016/j.geoderma.2010.11.013 – volume: 55 start-page: 777 year: 2004 ident: 10.1016/j.geoderma.2020.114793_b0340 article-title: Analysing soil variation in two dimensions with the discrete wavelet transform publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2004.00630.x – volume: 19 start-page: 214 year: 2008 ident: 10.1016/j.geoderma.2020.114793_b0525 article-title: Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management publication-title: Land Degrad. Dev. doi: 10.1002/ldr.818 – volume: 57 start-page: 868 year: 2006 ident: 10.1016/j.geoderma.2020.114793_b0330 article-title: The representation of complex soil variation on wavelet packet bases publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2005.00779.x – volume: 303 start-page: 118 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0600 article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.017 – ident: 10.1016/j.geoderma.2020.114793_b0640 – ident: 10.1016/j.geoderma.2020.114793_b0220 doi: 10.1201/9780429187957-4 – volume: 89 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0420 article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data publication-title: Int. J. Appl. Earth Obs. – volume: 2 start-page: 2369 year: 2010 ident: 10.1016/j.geoderma.2020.114793_b0470 article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology publication-title: Remote Sens. doi: 10.3390/rs2102369 – volume: 213 start-page: 15 year: 2014 ident: 10.1016/j.geoderma.2020.114793_b0605 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 130 start-page: 191 year: 2006 ident: 10.1016/j.geoderma.2020.114793_b0230 article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics publication-title: Geoderma doi: 10.1016/j.geoderma.2005.02.003 – volume: 291 start-page: 55 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0655 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.017 – ident: 10.1016/j.geoderma.2020.114793_b0595 doi: 10.1111/ejss.12851 – volume: 29 start-page: 1850 year: 2009 ident: 10.1016/j.geoderma.2020.114793_b0705 article-title: Bioclimatic classification of Isfahan province using multivariate statistical methods publication-title: Int. J. Climatol: Q J. Roy. Meteor. Soc. doi: 10.1002/joc.1835 – volume: 29 start-page: 4005 issue: 11 year: 2018 ident: 10.1016/j.geoderma.2020.114793_b0700 article-title: Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3148 – volume: 188 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0710 article-title: Conventional and digital soil mapping in Iran: past, present, and future publication-title: Catena doi: 10.1016/j.catena.2019.104424 – ident: 10.1016/j.geoderma.2020.114793_b0550 – ident: 10.1016/j.geoderma.2020.114793_b0120 – volume: 74 start-page: 1967 year: 2010 ident: 10.1016/j.geoderma.2020.114793_b0645 article-title: Estimating pedotransfer function prediction limits using fuzzy k-means with extragrades publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0106 – volume: 48 start-page: 119 year: 1994 ident: 10.1016/j.geoderma.2020.114793_b0530 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90134-1 – volume: 14 start-page: 611 year: 2012 ident: 10.1016/j.geoderma.2020.114793_b0215 article-title: Soil degradation and agricultural sustainability: an overview from Iran publication-title: Environ. Dev. Sustain. doi: 10.1007/s10668-012-9351-y – volume: 2017 start-page: 131 issue: 189 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0030 article-title: Spatial 3D distribution of soil organic carbon under different land use types publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-5830-9 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0450 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 573 start-page: 727 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0170 article-title: The threat of soil salinity: a European scale review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.08.177 – volume: 80 start-page: 455 year: 2000 ident: 10.1016/j.geoderma.2020.114793_b0250 article-title: Prediction of soil salinity risk by digital terrain modeling in the Canadian prairies publication-title: Can. J. Soil. Sci. doi: 10.4141/S99-093 – volume: 53 start-page: 895 year: 2015 ident: 10.1016/j.geoderma.2020.114793_b0265 article-title: Derivation of terrain covariates for digital soil mapping in Australia publication-title: Soil Res. doi: 10.1071/SR14271 – volume: 154 start-page: 138 year: 2009 ident: 10.1016/j.geoderma.2020.114793_b0385 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume: 53 start-page: 433 year: 1989 ident: 10.1016/j.geoderma.2020.114793_b0540 article-title: Soil electrical conductivity and soil salinity: new formulations and calibrations publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300020020x – volume: 14 year: 2019 ident: 10.1016/j.geoderma.2020.114793_b0535 article-title: Comparison of catchment scale 3D and 2.5 D modelling of soil organic carbon stocks in Jiangxi Province, PR China publication-title: PLoS One doi: 10.1371/journal.pone.0220881 – volume: 339 start-page: 40 year: 2019 ident: 10.1016/j.geoderma.2020.114793_b0305 article-title: Digital mapping of soil carbon fractions with machine learning publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.037 – year: 2002 ident: 10.1016/j.geoderma.2020.114793_b0440 – volume: 239-240 start-page: 34 year: 2015 ident: 10.1016/j.geoderma.2020.114793_b0015 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.011 – volume: 128 start-page: 234 year: 2005 ident: 10.1016/j.geoderma.2020.114793_b0195 article-title: Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data publication-title: Geoderma doi: 10.1016/j.geoderma.2005.04.006 – volume: 70 start-page: 276 year: 2016 ident: 10.1016/j.geoderma.2020.114793_b0560 article-title: Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2016.06.015 – volume: 64 start-page: 915 year: 1998 ident: 10.1016/j.geoderma.2020.114793_b0630 article-title: Responses of spectral indices to variations in vegetation cover and soil background publication-title: Photogramm. Eng. Remote Sens. – volume: 11 start-page: 203 year: 2007 ident: 10.1016/j.geoderma.2020.114793_b0075 article-title: Support vector regression publication-title: Neu. Inf. Pro. Lett. – volume: 153 start-page: 30 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0590 article-title: Uncertainty-guided sampling to improve digital soil maps publication-title: Catena doi: 10.1016/j.catena.2017.01.033 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0275 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 125127 year: 2020 ident: 10.1016/j.geoderma.2020.114793_b0715 article-title: Coupling wavelet transform and artificial neural network for forecasting estuarine salinity publication-title: J. Hydrol. – volume: 50 start-page: 51 year: 1998 ident: 10.1016/j.geoderma.2020.114793_b0395 article-title: Some considerations on methods for spatially aggregating and disgaggregating soil information publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1009778500412 – volume: 63 start-page: 151 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2020.114793_b0565 article-title: Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2016.1193162 – volume: 17 start-page: 413 year: 1991 ident: 10.1016/j.geoderma.2020.114793_b0260 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Comput. Geosci. doi: 10.1016/0098-3004(91)90048-I – volume: 2 start-page: 373 year: 2013 ident: 10.1016/j.geoderma.2020.114793_b0025 article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review publication-title: ARS doi: 10.4236/ars.2013.24040 – volume: 310 start-page: 128 year: 2018 ident: 10.1016/j.geoderma.2020.114793_b0095 article-title: Multiscale contextual spatial modelling with the Gaussian scale space publication-title: Geoderma doi: 10.1016/j.geoderma.2017.09.015 – year: 1978 ident: 10.1016/j.geoderma.2020.114793_b0690 – volume: 33 start-page: 457 year: 1995 ident: 10.1016/j.geoderma.2020.114793_b0360 article-title: A feedback based modification of the NDVI to minimize canopy background and atmospheric noise publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1995.8746027 – volume: 38 start-page: 1499 issue: 7 year: 2011 ident: 10.1016/j.geoderma.2020.114793_b0165 article-title: The corrected VIF (CVIF) publication-title: J. Appl. Statistics doi: 10.1080/02664763.2010.505956 – volume: 85 start-page: 1 year: 2003 ident: 10.1016/j.geoderma.2020.114793_b0430 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00188-8 |
SSID | ssj0017020 |
Score | 2.5820782 |
Snippet | •Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The... The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114793 |
SubjectTerms | agricultural productivity digital elevation models Digital soil mapping Iran Machine learning prediction regression analysis salinity soil depth soil restoration Soil salinity Support vector regression topography topsoil uncertainty uncertainty analysis wavelet Wavelet transformation |
Title | Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114793 https://www.proquest.com/docview/2551913280 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_gsK3iNbR67SY5FlKrYk4K3ZR9TqUhamlTx4sU_7swmKSqIB68hs4T5Zmdms9_MMHYaWz8BJwxyAAgSm-aBMZAHYEViQaSpE1TgfDuUg_vk-kE8LLHzthaGaJWN7699uvfWzZNuo83udDymGt9QphShezGecjIq4kuSlKz87H1B8wjTXtOaMZQBvf2lSvgJMaKBY77_UOTb5qZ5_FuA-uGqffy53GDrTeLI-_W3bbIlKLbYWv9x1jTPgG32sfhDwDGt4yWRpVFkOqPLGAKAT0a8nIyfeampILJ64-OC42HZcZrPgPbHiQb_yF81jaOoePUlq0VpXThezqeUsfMX_7ef5GoibcH9TJ1yh91fXtydD4JmyEKgY5lVgYiFQSVZ3IwQCZOIEarTpBqkGfUgzB06Q7p-tS7uORM5TOCikZPCyCwE6Uy8y5aLSQF7jGfSRg7X0bgANfbTLkNAXGgghCjXdp-JVrPKNh3IaRDGs2qpZk-qRUQRIqpGZJ91F3LTugfHnxJ5C5z6Zk0KA8Wfsict0gq3Gt2f6AIm81Lh6QtPtzEq4-Af6x-y1Yh4MZ75fcSWq9kcjjGxqUzHW26HrfSvbgbDT1lf-_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB6VcgAOiPIQhUIHqT2G3Uwyk-TQQwVUW_o4tVJvwzy81VZVdrXJUvXChZ_EH8SeTFZtJdQD6jWSrch2_Ig_24xtZS5cwEmTCgCS3BVVYi1UCTiZO5BF4SUNOB8dq9Fp_v1Mnq2wP_0sDMEqo-_vfHrw1vHJIEpzMJtMaMY3VQVF6GGGVU5ZRWTlAVxfYd3W7Ox_RSVvC7H37eTLKImnBRKTqbJNZCZtWgwdmiAIaXM5Ria2MKDseAhp5dEFUNPR-WzorfCYtoixV9KqMgXlbYZ8H7HHOboLOpvw-dcSV4Jc4y7IVCX0ejfGki_QKOjCWVh4JMKe3qLK_hUR78SGEPD2XrDnMVPlu50w1tgK1C_Zs93zedzWAa_Y7-UvCY55JG8InY0kszl1f0jjfDrmzXRyyRtDE5jtNZ_UHKtzz-kgBBo8J9z9Ob8ydP-i5e2NNBqpTe15s5hRicB_hvYC0XXI3ZqHIz7Na3b6IKJ_w1braQ1vGS-VEx75GGRAmwSNL_O88KmFFERl3DqTvWS1iyvP6fLGpe6xbRe614gmjehOI-tssKSbdUs_7qWoesXpW-arMTLdS_up17TGb5saNqaG6aLRWO5hOZ2hMN79B_9N9mR0cnSoD_ePD96zp4JAOQF2vsFW2_kCPmBW1dqPwYo5-_HQn81f_Gs2uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+spatial+prediction+of+soil+salinity+in+arid+regions+using+wavelet+transformation+and+support+vector+regression+models&rft.jtitle=Geoderma&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Schmidt%2C+Karsten&rft.au=Toomanian%2C+Norair&rft.au=Heung%2C+Brandon&rft.date=2021-02-01&rft.issn=0016-7061&rft.volume=383&rft.spage=114793&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |