Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models

•Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The estimated prediction interval for SVR is wider than of W-SVR.•Remote sensing features control the spatial distribution of the salinity widely....

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 383; p. 114793
Main Authors Taghizadeh-Mehrjardi, Ruhollah, Schmidt, Karsten, Toomanian, Norair, Heung, Brandon, Behrens, Thorsten, Mosavi, Amirhosein, S. Band, Shahab, Amirian-Chakan, Alireza, Fathabadi, Aboalhasan, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The estimated prediction interval for SVR is wider than of W-SVR.•Remote sensing features control the spatial distribution of the salinity widely. The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural productivity, while preventing any further salinization, and implement effective soil reclamation programs, precise information about the spatial patterns and magnitude of soil salinity is essential. In this study, soil salinity was predicted and mapped using machine learning (ML) and digital soil mapping approaches. Specifically, support vector regression (SVR) was combined with wavelet transformation (W-SVR) of a wide range of environmental covariates derived from a digital elevation model, remote sensing, and climatic data. Predictions of soil salinity were carried out for six standard depth increments (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm). Cross-validation was carried out by partitioning the data into 70% used for training the model and 30% for testing the model. Uncertainty of the ML algorithms was quantified using the uncertainty estimation based on local errors and clustering (UNEEC) method. The results indicated that W-SVR performed better in predicting soil salinity for all six depth increments. The differences were most apparent for the lowest soil depth increments where W-SVR resulted in ~1.4 times higher correlation coefficient when compared to the SVR. At lower soil depths increments, covariate importance analysis indicated that topographic derivatives were the most relevant covariates in the models. For topsoil salinity, remote sensing covariates were the most relevant predictors of soil salinity. Regardless of soil depth, climatic predictors were the most important predictors. Uncertainty analysis also indicated that for all depth increments, the estimated prediction interval for SVR obtained by the UNEEC method was wider than that of W-SVR and further indicating the higher performance of W-SVR in comparison to the SVR. The predicted salinity maps showed the highest salinity for soils in the eastern parts of central Iran, which was consistent with the Agro-climatic Zoning of Isfahan Province.
AbstractList The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural productivity, while preventing any further salinization, and implement effective soil reclamation programs, precise information about the spatial patterns and magnitude of soil salinity is essential. In this study, soil salinity was predicted and mapped using machine learning (ML) and digital soil mapping approaches. Specifically, support vector regression (SVR) was combined with wavelet transformation (W-SVR) of a wide range of environmental covariates derived from a digital elevation model, remote sensing, and climatic data. Predictions of soil salinity were carried out for six standard depth increments (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm). Cross-validation was carried out by partitioning the data into 70% used for training the model and 30% for testing the model. Uncertainty of the ML algorithms was quantified using the uncertainty estimation based on local errors and clustering (UNEEC) method. The results indicated that W-SVR performed better in predicting soil salinity for all six depth increments. The differences were most apparent for the lowest soil depth increments where W-SVR resulted in ~1.4 times higher correlation coefficient when compared to the SVR. At lower soil depths increments, covariate importance analysis indicated that topographic derivatives were the most relevant covariates in the models. For topsoil salinity, remote sensing covariates were the most relevant predictors of soil salinity. Regardless of soil depth, climatic predictors were the most important predictors. Uncertainty analysis also indicated that for all depth increments, the estimated prediction interval for SVR obtained by the UNEEC method was wider than that of W-SVR and further indicating the higher performance of W-SVR in comparison to the SVR. The predicted salinity maps showed the highest salinity for soils in the eastern parts of central Iran, which was consistent with the Agro-climatic Zoning of Isfahan Province.
•Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The estimated prediction interval for SVR is wider than of W-SVR.•Remote sensing features control the spatial distribution of the salinity widely. The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural productivity, while preventing any further salinization, and implement effective soil reclamation programs, precise information about the spatial patterns and magnitude of soil salinity is essential. In this study, soil salinity was predicted and mapped using machine learning (ML) and digital soil mapping approaches. Specifically, support vector regression (SVR) was combined with wavelet transformation (W-SVR) of a wide range of environmental covariates derived from a digital elevation model, remote sensing, and climatic data. Predictions of soil salinity were carried out for six standard depth increments (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm). Cross-validation was carried out by partitioning the data into 70% used for training the model and 30% for testing the model. Uncertainty of the ML algorithms was quantified using the uncertainty estimation based on local errors and clustering (UNEEC) method. The results indicated that W-SVR performed better in predicting soil salinity for all six depth increments. The differences were most apparent for the lowest soil depth increments where W-SVR resulted in ~1.4 times higher correlation coefficient when compared to the SVR. At lower soil depths increments, covariate importance analysis indicated that topographic derivatives were the most relevant covariates in the models. For topsoil salinity, remote sensing covariates were the most relevant predictors of soil salinity. Regardless of soil depth, climatic predictors were the most important predictors. Uncertainty analysis also indicated that for all depth increments, the estimated prediction interval for SVR obtained by the UNEEC method was wider than that of W-SVR and further indicating the higher performance of W-SVR in comparison to the SVR. The predicted salinity maps showed the highest salinity for soils in the eastern parts of central Iran, which was consistent with the Agro-climatic Zoning of Isfahan Province.
ArticleNumber 114793
Author Behrens, Thorsten
Scholten, Thomas
Taghizadeh-Mehrjardi, Ruhollah
Mosavi, Amirhosein
Amirian-Chakan, Alireza
Fathabadi, Aboalhasan
Toomanian, Norair
Heung, Brandon
S. Band, Shahab
Schmidt, Karsten
Author_xml – sequence: 1
  givenname: Ruhollah
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
  email: taghizadeh-mehrjardi@mnf.uni-tuebingen.de
  organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, Tübingen, Germany
– sequence: 2
  givenname: Karsten
  surname: Schmidt
  fullname: Schmidt, Karsten
  organization: eScience Center, University of Tübingen, 72070 Tübingen, Germany
– sequence: 3
  givenname: Norair
  surname: Toomanian
  fullname: Toomanian, Norair
  organization: Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
– sequence: 4
  givenname: Brandon
  surname: Heung
  fullname: Heung, Brandon
  organization: Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Canada
– sequence: 5
  givenname: Thorsten
  surname: Behrens
  fullname: Behrens, Thorsten
  organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, Tübingen, Germany
– sequence: 6
  givenname: Amirhosein
  surname: Mosavi
  fullname: Mosavi, Amirhosein
  email: amir.mosavi@kvk.uni-obuda.hu
  organization: Thuringian Institute of Sustainability and Climate Protection, 07743 Jena, Germany
– sequence: 7
  givenname: Shahab
  surname: S. Band
  fullname: S. Band, Shahab
  organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
– sequence: 8
  givenname: Alireza
  surname: Amirian-Chakan
  fullname: Amirian-Chakan, Alireza
  organization: Department of Soil Science, Lorestan University, Khorramabad 6815144316, Iran
– sequence: 9
  givenname: Aboalhasan
  surname: Fathabadi
  fullname: Fathabadi, Aboalhasan
  organization: Department of Range and Watershed Management, Gonbad Kavous University, Gonbad Kavous, Golestan Province, Iran
– sequence: 10
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
  organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19-23, Tübingen, Germany
BookMark eNqFkU1vGyEQhlGVSHU-_kLEsZd1gTWsLfWQKErbSJF6ac-IhVkXi4Utgx3lnD9eNk4uueSEYN5nNPNwRk5iikDIFWdLzrj6ultuITnIo1kKJuojX3Wb9hNZ8HUnGiXk5oQsWE02HVP8MzlD3NVrV7ML8nw_TjkdfNzS8hcoTqZ4E-iUwXlbfIo0DRSTDxRN8NGXJ-ojNdk7mmFb60j3ONOP5gABCi3ZRBxSneaFNtFR3E9TyoUewJaUZy4D4lwd69wBL8jpYALC5et5Tv58v_t9-7N5-PXj_vbmoTGtWpdGtrKvU1smWxCyX8mBtaLvDKh-YMA3jnPOxJpZ1zLXC7fiSgxOyV6tOSjXt-fky7Fv3fjfHrDo0aOFEEyEtEctpOQb3tYWNaqOUZsTYoZBT9mPJj9pzvRsXe_0m3U9W9dH6xX89g60vryoqGJ8-Bi_PuJVCxw8ZI3WQ7T1N3K1p13yH7X4D8jMqA0
CitedBy_id crossref_primary_10_1016_j_compag_2022_107512
crossref_primary_10_1016_j_geoderma_2024_116873
crossref_primary_10_1080_01431161_2024_2412804
crossref_primary_10_1016_j_ecoleng_2021_106180
crossref_primary_10_3390_rs14133204
crossref_primary_10_1007_s11356_021_17677_y
crossref_primary_10_1016_j_asr_2024_04_042
crossref_primary_10_18599_grs_2022_1_8
crossref_primary_10_3390_land11122148
crossref_primary_10_3390_rs14215627
crossref_primary_10_1038_s41598_024_60033_6
crossref_primary_10_3390_rs16244812
crossref_primary_10_1016_j_envres_2023_115809
crossref_primary_10_3103_S0147687424700509
crossref_primary_10_3390_s23157003
crossref_primary_10_1002_ldr_4741
crossref_primary_10_1007_s10661_024_13055_6
crossref_primary_10_1016_j_compag_2025_109970
crossref_primary_10_1007_s11831_022_09748_1
crossref_primary_10_1016_j_geoderma_2024_116999
crossref_primary_10_1016_j_jafr_2025_101700
crossref_primary_10_3390_su151712874
crossref_primary_10_1016_j_catena_2022_106404
crossref_primary_10_3390_w13050658
crossref_primary_10_1080_10106049_2022_2060317
crossref_primary_10_1016_j_geoderma_2024_116888
crossref_primary_10_1002_ldr_4613
crossref_primary_10_1007_s11119_023_10109_6
crossref_primary_10_1016_j_jhydrol_2024_131589
crossref_primary_10_1002_ldr_5222
crossref_primary_10_3390_agronomy11112266
crossref_primary_10_3390_agronomy13020445
crossref_primary_10_1139_cjss_2021_0090
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_1016_j_geodrs_2021_e00440
crossref_primary_10_3390_rs14225803
crossref_primary_10_1007_s11368_024_03825_7
crossref_primary_10_1016_j_geoderma_2022_116094
crossref_primary_10_1016_j_geoderma_2023_116697
crossref_primary_10_1016_j_jenvman_2024_121311
crossref_primary_10_2139_ssrn_4156774
crossref_primary_10_1007_s40515_024_00514_3
crossref_primary_10_1016_j_ejrh_2025_102326
crossref_primary_10_3390_land12051056
crossref_primary_10_3390_rs16224304
crossref_primary_10_1007_s11356_024_33044_z
crossref_primary_10_1016_j_compag_2025_110108
crossref_primary_10_3390_rs15010114
crossref_primary_10_1016_j_still_2024_106220
crossref_primary_10_1109_ACCESS_2021_3135959
crossref_primary_10_1016_j_geoderma_2021_115567
crossref_primary_10_1016_j_catena_2023_107197
crossref_primary_10_3390_su151813996
crossref_primary_10_1016_j_apr_2021_101064
crossref_primary_10_1016_j_catena_2023_107319
crossref_primary_10_1007_s13762_022_04409_z
crossref_primary_10_1016_j_compag_2023_108269
crossref_primary_10_1007_s13369_024_08961_3
crossref_primary_10_1007_s10661_022_10434_9
crossref_primary_10_1109_JSTARS_2023_3274579
crossref_primary_10_1134_S1064229322080075
crossref_primary_10_32604_rig_2024_054197
crossref_primary_10_1016_j_nexus_2025_100374
crossref_primary_10_1016_j_rsase_2024_101318
crossref_primary_10_1007_s10661_021_09543_8
crossref_primary_10_1109_TGRS_2021_3109819
crossref_primary_10_1080_07038992_2022_2056435
crossref_primary_10_3390_agronomy12030628
crossref_primary_10_55959_MSU0137_0944_17_2024_79_4_170_183
crossref_primary_10_1016_j_scitotenv_2023_165730
crossref_primary_10_1016_j_envres_2022_113435
crossref_primary_10_1007_s40996_022_00928_4
crossref_primary_10_1016_j_geoderma_2023_116649
crossref_primary_10_2139_ssrn_4045839
crossref_primary_10_1007_s00500_021_05961_5
crossref_primary_10_1016_j_compag_2023_107821
Cites_doi 10.1016/j.isprsjprs.2006.10.001
10.1016/S0016-7061(99)00003-8
10.1016/j.geoderma.2015.07.017
10.1016/j.scitotenv.2019.134235
10.1515/FREQ.2001.55.3-4.75
10.1002/joc.5086
10.1080/10106040408542313
10.3390/rs11101184
10.1016/j.envdev.2018.12.007
10.1016/j.geoderma.2015.06.024
10.1029/2000JD900719
10.1029/2002WR001426
10.1016/j.isprsjprs.2015.02.015
10.1016/j.geomorph.2006.04.016
10.1080/136588100750022804
10.1016/j.geoderma.2011.07.002
10.1016/j.geoderma.2019.06.040
10.14358/PERS.72.10.1171
10.1016/j.geoderma.2013.07.002
10.1016/S0016-7061(97)00022-0
10.2136/sssaj2010.0280
10.5194/soil-6-35-2020
10.1016/j.geoderma.2015.11.014
10.1016/j.ecolmodel.2008.07.015
10.32614/CRAN.package.FSinR
10.1016/j.jhydrol.2014.03.057
10.1016/S0034-4257(96)00067-3
10.1111/j.1365-2389.1992.tb00127.x
10.1111/j.1365-2389.2009.01205.x
10.1016/j.ecolind.2014.12.028
10.1016/j.geoderma.2013.07.031
10.1016/j.geoderma.2005.10.009
10.1016/j.neunet.2006.01.012
10.3390/rs12071095
10.4236/ojg.2015.52006
10.1023/B:STCO.0000035301.49549.88
10.1080/00103620802432717
10.1016/j.agwat.2005.07.003
10.1016/j.geoderma.2008.05.010
10.1046/j.1365-2389.2002.00452.x
10.1016/j.geoderma.2020.114552
10.1016/j.geoderma.2020.114233
10.1590/18069657rbcs20170421
10.1016/j.geoderma.2013.06.003
10.1023/A:1009700614041
10.18637/jss.v028.i05
10.1109/LGRS.2011.2156759
10.1016/j.geoderma.2009.04.022
10.1177/1536867X1601600407
10.1016/j.geodrs.2014.10.005
10.1080/01431169008955053
10.1038/s41598-017-08066-y
10.1016/j.geoderma.2014.03.010
10.1016/j.envsoft.2014.09.017
10.1016/S0016-7061(03)00223-4
10.1016/j.geoderma.2009.07.010
10.1016/0034-4257(88)90106-X
10.1080/15324982.2015.1046092
10.1016/0034-4257(85)90102-6
10.1016/j.geoderma.2013.05.029
10.1007/BF00994018
10.1016/j.neucom.2017.04.053
10.5194/hess-19-3181-2015
10.1016/S0166-2481(08)00012-3
10.1046/j.1365-2389.1999.t01-1-00234.x
10.5194/hess-21-2301-2017
10.2166/wst.2005.0163
10.1016/j.ecss.2018.10.021
10.1007/s12517-018-4202-2
10.1016/0034-4257(90)90085-Z
10.1016/0304-3800(92)90087-U
10.1007/s00521-018-3796-3
10.1016/j.geoderma.2012.05.026
10.1016/j.geoderma.2017.03.013
10.1016/j.geodrs.2016.04.006
10.1016/j.geoderma.2010.11.013
10.1111/j.1365-2389.2004.00630.x
10.1002/ldr.818
10.1111/j.1365-2389.2005.00779.x
10.1016/j.geoderma.2017.05.017
10.1201/9780429187957-4
10.3390/rs2102369
10.1016/j.geoderma.2013.07.020
10.1016/j.geoderma.2005.02.003
10.1016/j.geoderma.2016.12.017
10.1111/ejss.12851
10.1002/joc.1835
10.1002/ldr.3148
10.1016/j.catena.2019.104424
10.2136/sssaj2009.0106
10.1016/0034-4257(94)90134-1
10.1007/s10668-012-9351-y
10.1007/s10661-017-5830-9
10.1016/j.advengsoft.2016.01.008
10.1016/j.scitotenv.2016.08.177
10.4141/S99-093
10.1071/SR14271
10.1016/j.geoderma.2009.10.007
10.2136/sssaj1989.03615995005300020020x
10.1371/journal.pone.0220881
10.1016/j.geoderma.2018.12.037
10.1016/j.geoderma.2014.09.011
10.1016/j.geoderma.2005.04.006
10.1016/j.ecolind.2016.06.015
10.1016/j.catena.2017.01.033
10.1016/j.rse.2017.06.031
10.1023/A:1009778500412
10.1080/03650340.2016.1193162
10.1016/0098-3004(91)90048-I
10.4236/ars.2013.24040
10.1016/j.geoderma.2017.09.015
10.1109/TGRS.1995.8746027
10.1080/02664763.2010.505956
10.1016/S0034-4257(02)00188-8
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114793
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114793
S0016706120325489
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-535b170c053e25b45f032b7ae6bf0e19d1110280cd30db2d4162fd65b681e6db3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 05:44:08 EDT 2025
Tue Jul 01 04:04:54 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector regression
Digital soil mapping
Wavelet transformation
Soil salinity
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-535b170c053e25b45f032b7ae6bf0e19d1110280cd30db2d4162fd65b681e6db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4875-2602
PQID 2551913280
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551913280
crossref_primary_10_1016_j_geoderma_2020_114793
crossref_citationtrail_10_1016_j_geoderma_2020_114793
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kuhn (b0310) 2008; 28
Were, Bui, Dick, Singh (b0670) 2015; 52
Todd, Hoffer (b0630) 1998; 64
Bannari, Guedon, El‐Harti, Cherkaoui, El‐Ghmari (b0065) 2008; 39
Behrens, Schmidt, MacMillan, Viscarra Rossel (b0095) 2018; 310
Taylor (b0625) 2001; 106
Vermeulen, Van Niekerk (b0660) 2017; 299
Zeraatpisheh, Jafari, Bodaghabadi, Ayoubi, Taghizadeh-Mehrjardi, Toomanian, Kerry, Xu (b0710) 2020; 188
de Pauw, E. D., Gaffari, A., Gasemi, V. 2002. Agro-climatic zone maps of Iran. Seed and Plant Improvement Research Institute (SPIRI), Karaj, Iran.
Taghizadeh-Mehrjardi, Mahdianpari, Mohammadimanesh, Behrens, Toomanian, Scholten, Schmidt (b0615) 2020; 376
Allbed, Kumar (b0025) 2013; 2
Kumar, Kumar (b0315) 2020; 32
Leutner, B., Horning, N., Leutner, M.B., 2019. Package ‘RStoolbox’. R Foundation for Statistical Computing, Version 0.1.
Sihag, Tiwari, Ranjan (b0575) 2018; 26
Minasny, McBratney (b0445) 2016; 264
Shahabi, Jafarzadeh, Neyshabouri, Ghorbani, Valizadeh Kamran (b0565) 2017; 63
Gao (b0270) 1996; 58
Eswaran, W.H., Lal, R., Reich, P.F., 2019. Land degradation: An overview, in: Bridges, E.M. (Eds.), Response to land degradation. CRC Press, Boca Raton, pp. 20–35. DOI:10.1201/9780429187957.
Salemi, H., Mamanpoush, A., Miranzadeh, M., Akbari, M., Torabi, M., Toomanian, N., Murray-Rust, H., Droogers, P., Sally, H., Gieske, A., 2000. Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran.
Freeman (b0260) 1991; 17
Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (b0605) 2014; 213
Daliakopoulos, Tsanis, Koutroulis, Kourgialas, Varouchakis, Karatzas, Ritsema (b0170) 2016; 573
Ascough, Maier, Ravalico, Strudley (b0045) 2008; 219
Lacoste, Minasny, McBratney, Michot, Viaud, Walter (b0320) 2014; 213
Minasny, McBratney (b0440) 2002
Florinsky, Kuryakova (b0255) 2000; 14
Werner (b0675) 2001; 55
Roozitalab, Toomanian, Dehkordi, Khormali (b0545) 2018
Biswas, Si (b0110) 2011; 165
Fathizad, Ali Hakimzadeh Ardakani, Sodaiezadeh, Kerry, Taghizadeh-Mehrjardi (b0235) 2020; 365
Fick, Hijmans (b0240) 2017; 37
Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0285) 2016; 265
Lark (b0330) 2006; 57
Crist (b0160) 1985; 17
McBratney, De Gruijter (b0400) 1992; 43
Cheng, Liu, Liu, Wang, Li (b0140) 2015; 104
Moameni, A., Stein, A., 2002. Modeling spatio-temporal changes in soil salinity and waterlogging in the Marvdasht Plain, Iran. 17 World Congress of Soil Science. 14-21 August 2002, Bangkok, Thailand. Transactions.
Douaik, Van Meirvenne, Tóth (b0195) 2005; 128
Malone, de Gruijter, McBratney, Minasny, Brus (b0380) 2011; 75
Scudiero, Skaggs, Corwin (b0560) 2016; 70
Sun, X.L., Wang, Y., Wang, H.L., Zhang, C., Wang, Z. 2019. Digital soil mapping based on empirical mode decomposition components of environmental covariates. Eur. J. Soil Sci. DOI:10.1111/ejss.12851.
Asfaw, Suryabhagavan, Argaw (b0050) 2018; 17
Padarian, Minasny, McBratney (b0500) 2020; 6
Malone, McBratney, Minasny (b0390) 2011; 160
Pal, Majumdar, Bhattacharya (b0505) 2007; 61
Litalien, Zeeb (b0355) 2020; 698
Meier, Souza, Francelino, Fernandes Filho, Schaefer (b0410) 2018; 42
Taghizadeh-Mehrjardi, Ayoubi, Namazi, Malone, Zolfaghari, Sadrabadi-Roustaei (b0610) 2016; 30
Taghizadeh-Mehrjardi, Schmidt, Amirian-Chakan, Rentschler, Zeraatpisheh, Sarmadian, Valavi, Davatgar, Behrens, Scholten (b0620) 2020; 12
Metternicht, Zinck (b0430) 2003; 85
Arian, Noroozpour (b0040) 2015; 5
Meng, Bao, Liu, Liu, Zhang, Zhang, Wang, Tang, Kong (b0420) 2020; 89
Williams, Goward, Arvidson (b0680) 2006; 72
Aldrich, E., 2020. Package ‘wavelets’. Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses, Version 0.3-0.2.
Crippen (b0155) 1990; 34
Curto, Pinto (b0165) 2011; 38
Olaya, V., Conrad, O., 2009. Geomorphometry in SAGA, in: Hengl, T., Reuter, H. (Eds.), Developments in soil science, Geomorphometry (Concepts, Software, Applications). Elsevier, Amsterdam, pp.293-308. DOI:10.1016/S0166-2481(08)00012-3.
Choi, H., Jeong, J., 2019. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sen. 11, 1184. DOI:10.3390/rs11101184.
El Harti, Lhissou, Chokmani, Ouzemou, Hassouna, Bachaoui, El Ghmari (b0210) 2016; 50
Deering (b0180) 1975
Biswas, Cresswell, Chau, Viscarra Rossel, Si (b0105) 2013; 209-210
Stumpf, Schmidt, Goebes, Behrens, Schönbrodt-Stitt, Wadoux, Xiang, Scholten (b0590) 2017; 153
Brown, J.D., Heuvelink, G.B., Refsgaard, J.C., 2005. An integrated methodology for recording uncertainties about environmental data. Water Sci. Tech. 52, 153-160. DOI:10.2166/wst.2005.0163.
Mallat (b0375) 1999
Dogulu, N., López, P.L., Solomatine, D.P., Weerts, A.H., Shrestha, D.L., 2015. Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol. Earth Syst. Sci. 19, 3181-3201. DOI:10.5194/hess-19-3181-2015.
Lagacherie, Cazemier, van Gaans, Burrough (b0325) 1997; 77
Zhou, Liu, Duan (b0715) 2020; 125127
Pasolli, Notarnicola, Bruzzone (b0515) 2011; 8
Sun, Wang, Zhao, Zhang, Zhang (b0600) 2017; 303
Wu, Zucca, Muhaimeed, Al-Shafie, Fadhil Al-Quraishi, Nangia, Zhu, Liu (b0700) 2018; 29
Emadodin, Narita, Bork (b0215) 2012; 14
Keskin, Grunwald, Harris (b0305) 2019; 339
Qadir, Qureshi, Cheraghi (b0525) 2008; 19
Mendonca-Santos, McBratney, Minasny (b0415) 2007
Lark, Webster (b0340) 2004; 55
Mirjalili, Lewis (b0450) 2016; 95
Motohka, Nasahara, Oguma, Tsuchida (b0470) 2010; 2
Tranter, Minasny, McBratney (b0645) 2010; 74
Uusitalo, Lehikoinen, Helle, Myrberg (b0650) 2015; 63
Baroni, Zink, Kumar, Samaniego, Attinger (b0070) 2017; 21
Gallant, Austin (b0265) 2015; 53
Odgers, Libohova, Thompson (b0490) 2012; 189
Gallant, Dowling (b9000) 2003; 39
Toomanian, Jalalian, Khademi, Eghbal, Papritz (b0635) 2006; 81
Lemon, J., Bolker, B., Oom, S., Klein, E., Rowlingson, B., Wickham, H., Tyagi, A., Eterradossi, O., Grothendieck, G., Toews, M. and Kane, J., 2020. Package ‘plotrix’. Various Plotting Functions, Version 3.7-8.
Amirian-Chakan, Taghizadeh-Mehrjardi, Kerry, Kumar, Khordehbin, Khanghah (b0030) 2017; 2017
Nourani, Baghanam, Adamowski, Kisi (b0485) 2014; 514
Vaysse, Lagacherie (b0655) 2017; 291
Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalization, in: Böhner, J., McCloy, K.R., Strobl, J. (Eds.), SAGA - Analyses and Modelling Applications, Göttinger Geographiche Abhandlungen, 115, pp.13-28.
Brady, Weil (b0125) 2008
McBratney (b0395) 1998; 50
Munyati (b0480) 2004; 19
Mohri, Rostamizadeh, Talwalkar (b0465) 2018
Wischmeier, Smith (b0690) 1978
Major, Baret, Guyot (b0370) 1990; 11
Mafarja, Mirjalili (b0365) 2017; 260
Behrens, T., Schmidt, K., Zhu, A.-X., Scholten, T., 2010. The ConMap approach for terrain‐based digital soil mapping. E. J. Soil Sci. 61, 133-143. DOI:10.1111/j.1365-2389.2009.01205.x.
Dilks, Canale, Meier (b0185) 1992; 62
Basak, Pal, Patranabis (b0075) 2007; 11
Moghadas, Taghizadeh-Mehrjardi, Triantafilis (b0460) 2016; 7
Smola, Schölkopf (b0580) 2004; 14
Muhammad, I.U., Muhammad, A. and Muhammad, M.I.U., 2020. Package ‘mctest’. Multicollinearity Diagnostic Measures, Version 1.3.1.
Ballabio (b0055) 2009; 151
Minasny, Mc Bratney (b0435) 2002; 53
McBratney, Santos, Minasny (b0405) 2003; 117
Shrestha, Solomatine (b0570) 2006; 19
Boettinger, Ramsey, Bodily, Cole, Kienast-Brown, Nield, Saunders, Stum (b0115) 2008
Fiener, Gottfried, Sommer, Steger (b0245) 2014; 2-3
Aldabaa, Weindorf, Chakraborty, Sharma, Li (b0015) 2015; 239-240
Toomanian N., 2020. Land Suitability Evaluation for Crop and horticultural products in Isfahan, Yazd, Markazi and Semnan Provinces. Report No. 57376. SWRI, AREEO, Iran.
Mesgaran, Madani, Hashemi, Azadi (b0425) 2017; 7
Bishop, McBratney, Laslett (b0100) 1999; 91
Yaghmaei, Soltani, Khodagholi (b0705) 2009; 29
Rentschler, Gries, Behrens, Bruelheide, Kühn, Seitz, Shi, Trogisch, Scholten, Schmidt (b0535) 2019; 14
Farifteh, Farshad, George (b0230) 2006; 130
Behrens, Schmidt, Ramirez-Lopez, Gallant, Zhu, Scholten (b0090) 2014; 213
Wang, Ding, Yu, Ma, Zhang, Ge, Teng, Li, Liang, Lizaga (b0665) 2019; 353
Chen, Fu, Zhang, Zhao (b0135) 2019; 217
(accessed 15 March 2020).
Rhoades, Manteghi, Shouse, Alves (b0540) 1989; 53
Schmidt, Behrens, Scholten (b0555) 2008; 146
Florinsky, Eilers, Lelyk (b0250) 2000; 80
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0275) 2017; 202
Guenther, Schonlau (b0280) 2016; 16
Wilson, Gallant (b0685) 2000
Malone, McBratney, Minasny, Laslett (b0385) 2009; 154
Banaei, Moameni, Bybordi, Malakouti (b0060) 2005
Douaoui, Nicolas, Walter (b0200) 2006; 134
Wood (b0695) 2009
Behrens, Zhu, Schmidt, Scholten (b0085) 2010; 155
Heuvelink (b0290) 1998; 50
Song, Brus, Liu, Li, Zhao, Yang, Zhang (b0585) 2016; 261
Hughes, McBratney, Minasny, Campbell (b0300) 2014; 226-227
Huete (b0295) 1988; 25
Qi, Chehbouni, Huete, Kerr, Sorooshian (b0530) 1994; 48
Aragón-Royón, F., Jiménez-Vílchez, A., Arauzo-Azofra, A., Benítez, J.M., 2020. FSinR: an exhaustive package for feature selection. arXiv preprint arXiv:2002.10330.
Lark, Webster (b0335) 1999; 50
Poggio, Gimona, Brewer (b0520) 2013; 209
Abdullah, Biswas, Chowdhury, Billah (b0010) 2019; 29
Abbas, A., Khan, S., 2007. Using remote sensing techniques for appraisal of irrigated soil salinity, in: Oxley, L., Kulasiri, D., (Eds.), MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, pp. 2632-2638.
El hafyani, Essahlaoui, El baghdadi, Teodoro, Mohajane, El hmaidi, El ouali (b0205) 2019; 12
Liu, Huete (b0360) 1995; 33
Pannell, Ewing (b0510) 2006; 80
Cortes, Vapnik (b0150) 1995; 20
Evans (b0225) 1980; 36
Farifteh (10.1016/j.geoderma.2020.114793_b0230) 2006; 130
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0605) 2014; 213
Allbed (10.1016/j.geoderma.2020.114793_b0025) 2013; 2
Shrestha (10.1016/j.geoderma.2020.114793_b0570) 2006; 19
Zeraatpisheh (10.1016/j.geoderma.2020.114793_b0710) 2020; 188
Wilson (10.1016/j.geoderma.2020.114793_b0685) 2000
Biswas (10.1016/j.geoderma.2020.114793_b0105) 2013; 209-210
Motohka (10.1016/j.geoderma.2020.114793_b0470) 2010; 2
10.1016/j.geoderma.2020.114793_b0640
Gallant (10.1016/j.geoderma.2020.114793_b9000) 2003; 39
10.1016/j.geoderma.2020.114793_b0005
Meng (10.1016/j.geoderma.2020.114793_b0420) 2020; 89
10.1016/j.geoderma.2020.114793_b0080
Cortes (10.1016/j.geoderma.2020.114793_b0150) 1995; 20
Abdullah (10.1016/j.geoderma.2020.114793_b0010) 2019; 29
10.1016/j.geoderma.2020.114793_b0120
Tranter (10.1016/j.geoderma.2020.114793_b0645) 2010; 74
Fathizad (10.1016/j.geoderma.2020.114793_b0235) 2020; 365
Stumpf (10.1016/j.geoderma.2020.114793_b0590) 2017; 153
Huete (10.1016/j.geoderma.2020.114793_b0295) 1988; 25
Florinsky (10.1016/j.geoderma.2020.114793_b0255) 2000; 14
Lacoste (10.1016/j.geoderma.2020.114793_b0320) 2014; 213
Padarian (10.1016/j.geoderma.2020.114793_b0500) 2020; 6
Guenther (10.1016/j.geoderma.2020.114793_b0280) 2016; 16
Behrens (10.1016/j.geoderma.2020.114793_b0095) 2018; 310
Cheng (10.1016/j.geoderma.2020.114793_b0140) 2015; 104
Vermeulen (10.1016/j.geoderma.2020.114793_b0660) 2017; 299
10.1016/j.geoderma.2020.114793_b0595
10.1016/j.geoderma.2020.114793_b0475
Douaik (10.1016/j.geoderma.2020.114793_b0195) 2005; 128
Wu (10.1016/j.geoderma.2020.114793_b0700) 2018; 29
Chen (10.1016/j.geoderma.2020.114793_b0135) 2019; 217
10.1016/j.geoderma.2020.114793_b0190
Smola (10.1016/j.geoderma.2020.114793_b0580) 2004; 14
Deering (10.1016/j.geoderma.2020.114793_b0180) 1975
10.1016/j.geoderma.2020.114793_b0350
Heuvelink (10.1016/j.geoderma.2020.114793_b0290) 1998; 50
Lagacherie (10.1016/j.geoderma.2020.114793_b0325) 1997; 77
Poggio (10.1016/j.geoderma.2020.114793_b0520) 2013; 209
Sun (10.1016/j.geoderma.2020.114793_b0600) 2017; 303
McBratney (10.1016/j.geoderma.2020.114793_b0405) 2003; 117
Aldabaa (10.1016/j.geoderma.2020.114793_b0015) 2015; 239-240
10.1016/j.geoderma.2020.114793_b0145
Daliakopoulos (10.1016/j.geoderma.2020.114793_b0170) 2016; 573
Todd (10.1016/j.geoderma.2020.114793_b0630) 1998; 64
Lark (10.1016/j.geoderma.2020.114793_b0340) 2004; 55
Metternicht (10.1016/j.geoderma.2020.114793_b0430) 2003; 85
10.1016/j.geoderma.2020.114793_b0020
Malone (10.1016/j.geoderma.2020.114793_b0385) 2009; 154
El Harti (10.1016/j.geoderma.2020.114793_b0210) 2016; 50
McBratney (10.1016/j.geoderma.2020.114793_b0395) 1998; 50
Minasny (10.1016/j.geoderma.2020.114793_b0440) 2002
Major (10.1016/j.geoderma.2020.114793_b0370) 1990; 11
Toomanian (10.1016/j.geoderma.2020.114793_b0635) 2006; 81
El hafyani (10.1016/j.geoderma.2020.114793_b0205) 2019; 12
Behrens (10.1016/j.geoderma.2020.114793_b0090) 2014; 213
Nourani (10.1016/j.geoderma.2020.114793_b0485) 2014; 514
Kuhn (10.1016/j.geoderma.2020.114793_b0310) 2008; 28
Fick (10.1016/j.geoderma.2020.114793_b0240) 2017; 37
10.1016/j.geoderma.2020.114793_b0495
Keskin (10.1016/j.geoderma.2020.114793_b0305) 2019; 339
Malone (10.1016/j.geoderma.2020.114793_b0380) 2011; 75
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0615) 2020; 376
Baroni (10.1016/j.geoderma.2020.114793_b0070) 2017; 21
Hughes (10.1016/j.geoderma.2020.114793_b0300) 2014; 226-227
Wood (10.1016/j.geoderma.2020.114793_b0695) 2009
Emadodin (10.1016/j.geoderma.2020.114793_b0215) 2012; 14
Meier (10.1016/j.geoderma.2020.114793_b0410) 2018; 42
Pasolli (10.1016/j.geoderma.2020.114793_b0515) 2011; 8
10.1016/j.geoderma.2020.114793_b0130
Kumar (10.1016/j.geoderma.2020.114793_b0315) 2020; 32
Qi (10.1016/j.geoderma.2020.114793_b0530) 1994; 48
Lark (10.1016/j.geoderma.2020.114793_b0335) 1999; 50
Mohri (10.1016/j.geoderma.2020.114793_b0465) 2018
Wischmeier (10.1016/j.geoderma.2020.114793_b0690) 1978
Qadir (10.1016/j.geoderma.2020.114793_b0525) 2008; 19
Gallant (10.1016/j.geoderma.2020.114793_b0265) 2015; 53
Heung (10.1016/j.geoderma.2020.114793_b0285) 2016; 265
Lark (10.1016/j.geoderma.2020.114793_b0330) 2006; 57
Pal (10.1016/j.geoderma.2020.114793_b0505) 2007; 61
Bannari (10.1016/j.geoderma.2020.114793_b0065) 2008; 39
Crippen (10.1016/j.geoderma.2020.114793_b0155) 1990; 34
Curto (10.1016/j.geoderma.2020.114793_b0165) 2011; 38
Evans (10.1016/j.geoderma.2020.114793_b0225) 1980; 36
McBratney (10.1016/j.geoderma.2020.114793_b0400) 1992; 43
Behrens (10.1016/j.geoderma.2020.114793_b0085) 2010; 155
Mirjalili (10.1016/j.geoderma.2020.114793_b0450) 2016; 95
Basak (10.1016/j.geoderma.2020.114793_b0075) 2007; 11
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0610) 2016; 30
Shahabi (10.1016/j.geoderma.2020.114793_b0565) 2017; 63
Freeman (10.1016/j.geoderma.2020.114793_b0260) 1991; 17
Florinsky (10.1016/j.geoderma.2020.114793_b0250) 2000; 80
Ascough (10.1016/j.geoderma.2020.114793_b0045) 2008; 219
Ballabio (10.1016/j.geoderma.2020.114793_b0055) 2009; 151
Dilks (10.1016/j.geoderma.2020.114793_b0185) 1992; 62
Roozitalab (10.1016/j.geoderma.2020.114793_b0545) 2018
Mallat (10.1016/j.geoderma.2020.114793_b0375) 1999
Song (10.1016/j.geoderma.2020.114793_b0585) 2016; 261
Odgers (10.1016/j.geoderma.2020.114793_b0490) 2012; 189
Schmidt (10.1016/j.geoderma.2020.114793_b0555) 2008; 146
Werner (10.1016/j.geoderma.2020.114793_b0675) 2001; 55
Douaoui (10.1016/j.geoderma.2020.114793_b0200) 2006; 134
Were (10.1016/j.geoderma.2020.114793_b0670) 2015; 52
Munyati (10.1016/j.geoderma.2020.114793_b0480) 2004; 19
10.1016/j.geoderma.2020.114793_b0550
Biswas (10.1016/j.geoderma.2020.114793_b0110) 2011; 165
Minasny (10.1016/j.geoderma.2020.114793_b0445) 2016; 264
10.1016/j.geoderma.2020.114793_b0035
Moghadas (10.1016/j.geoderma.2020.114793_b0460) 2016; 7
Uusitalo (10.1016/j.geoderma.2020.114793_b0650) 2015; 63
Asfaw (10.1016/j.geoderma.2020.114793_b0050) 2018; 17
Fiener (10.1016/j.geoderma.2020.114793_b0245) 2014; 2-3
Taylor (10.1016/j.geoderma.2020.114793_b0625) 2001; 106
Wang (10.1016/j.geoderma.2020.114793_b0665) 2019; 353
Zhou (10.1016/j.geoderma.2020.114793_b0715) 2020; 125127
Sihag (10.1016/j.geoderma.2020.114793_b0575) 2018; 26
Williams (10.1016/j.geoderma.2020.114793_b0680) 2006; 72
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114793_b0620) 2020; 12
Minasny (10.1016/j.geoderma.2020.114793_b0435) 2002; 53
Brady (10.1016/j.geoderma.2020.114793_b0125) 2008
Amirian-Chakan (10.1016/j.geoderma.2020.114793_b0030) 2017; 2017
Crist (10.1016/j.geoderma.2020.114793_b0160) 1985; 17
Arian (10.1016/j.geoderma.2020.114793_b0040) 2015; 5
Mafarja (10.1016/j.geoderma.2020.114793_b0365) 2017; 260
Mendonca-Santos (10.1016/j.geoderma.2020.114793_b0415) 2007
Scudiero (10.1016/j.geoderma.2020.114793_b0560) 2016; 70
10.1016/j.geoderma.2020.114793_b0220
Gao (10.1016/j.geoderma.2020.114793_b0270) 1996; 58
10.1016/j.geoderma.2020.114793_b0345
Vaysse (10.1016/j.geoderma.2020.114793_b0655) 2017; 291
Boettinger (10.1016/j.geoderma.2020.114793_b0115) 2008
Banaei (10.1016/j.geoderma.2020.114793_b0060) 2005
Bishop (10.1016/j.geoderma.2020.114793_b0100) 1999; 91
Malone (10.1016/j.geoderma.2020.114793_b0390) 2011; 160
Pannell (10.1016/j.geoderma.2020.114793_b0510) 2006; 80
Litalien (10.1016/j.geoderma.2020.114793_b0355) 2020; 698
Liu (10.1016/j.geoderma.2020.114793_b0360) 1995; 33
10.1016/j.geoderma.2020.114793_b0455
Gorelick (10.1016/j.geoderma.2020.114793_b0275) 2017; 202
Yaghmaei (10.1016/j.geoderma.2020.114793_b0705) 2009; 29
Rentschler (10.1016/j.geoderma.2020.114793_b0535) 2019; 14
Mesgaran (10.1016/j.geoderma.2020.114793_b0425) 2017; 7
Rhoades (10.1016/j.geoderma.2020.114793_b0540) 1989; 53
10.1016/j.geoderma.2020.114793_b0175
References_xml – volume: 155
  start-page: 175
  year: 2010
  end-page: 185
  ident: b0085
  article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping
  publication-title: Geoderma
– volume: 151
  start-page: 338
  year: 2009
  end-page: 350
  ident: b0055
  article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression
  publication-title: Geoderma
– reference: de Pauw, E. D., Gaffari, A., Gasemi, V. 2002. Agro-climatic zone maps of Iran. Seed and Plant Improvement Research Institute (SPIRI), Karaj, Iran.
– volume: 53
  start-page: 895
  year: 2015
  ident: b0265
  article-title: Derivation of terrain covariates for digital soil mapping in Australia
  publication-title: Soil Res.
– volume: 2
  start-page: 2369
  year: 2010
  end-page: 2387
  ident: b0470
  article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology
  publication-title: Remote Sens.
– volume: 217
  start-page: 281
  year: 2019
  end-page: 291
  ident: b0135
  article-title: Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 17
  start-page: 250
  year: 2018
  end-page: 258
  ident: b0050
  article-title: Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: b0275
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 49
  year: 2016
  end-page: 64
  ident: b0610
  article-title: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming
  publication-title: Arid Land Res. Manage.
– volume: 154
  start-page: 138
  year: 2009
  end-page: 152
  ident: b0385
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
– volume: 52
  start-page: 394
  year: 2015
  end-page: 403
  ident: b0670
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
– volume: 39
  start-page: 2795
  year: 2008
  end-page: 2811
  ident: b0065
  article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO‐1) sensor
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 213
  start-page: 578
  year: 2014
  end-page: 588
  ident: b0090
  article-title: Hyper-scale digital soil mapping and soil formation analysis
  publication-title: Geoderma
– volume: 36
  start-page: 274
  year: 1980
  end-page: 295
  ident: b0225
  article-title: An integrated system of terrain analysis and slope mapping
  publication-title: Zeitschrift für Geomorphologie. Supplementband Stuttgart
– start-page: 269
  year: 2007
  end-page: 278
  ident: b0415
  article-title: Soil prediction with spatially decomposed environmental factors
  publication-title: Digital Soil Mapping: An Introductory Perspective Developments in Soil Science
– reference: (accessed 15 March 2020).
– volume: 81
  start-page: 376
  year: 2006
  end-page: 393
  ident: b0635
  article-title: Pedodiversity and pedogenesis in Zayandeh-rud Valley, central Iran
  publication-title: Geomorphology
– reference: Brown, J.D., Heuvelink, G.B., Refsgaard, J.C., 2005. An integrated methodology for recording uncertainties about environmental data. Water Sci. Tech. 52, 153-160. DOI:10.2166/wst.2005.0163.
– volume: 226-227
  start-page: 365
  year: 2014
  end-page: 375
  ident: b0300
  article-title: End members, end points and extragrades in numerical soil classification
  publication-title: Geoderma
– volume: 219
  start-page: 383
  year: 2008
  end-page: 399
  ident: b0045
  article-title: Future research challenges for incorporation of uncertainty in environmental and ecological decision-making
  publication-title: Ecol. Model.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0150
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 34
  start-page: 71
  year: 1990
  end-page: 73
  ident: b0155
  article-title: Calculating the vegetation index faster
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: b0240
  article-title: WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– volume: 64
  start-page: 915
  year: 1998
  end-page: 922
  ident: b0630
  article-title: Responses of spectral indices to variations in vegetation cover and soil background
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 72
  start-page: 1171
  year: 2006
  end-page: 1178
  ident: b0680
  article-title: Landsat
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 239-240
  start-page: 34
  year: 2015
  end-page: 46
  ident: b0015
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
– reference: Dogulu, N., López, P.L., Solomatine, D.P., Weerts, A.H., Shrestha, D.L., 2015. Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol. Earth Syst. Sci. 19, 3181-3201. DOI:10.5194/hess-19-3181-2015.
– volume: 32
  start-page: 2095
  year: 2020
  end-page: 2123
  ident: b0315
  article-title: Binary whale optimization algorithm and its application to unit commitment problem
  publication-title: Neural. Comput. Appl.
– volume: 29
  start-page: 4005
  year: 2018
  end-page: 4014
  ident: b0700
  article-title: Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq
  publication-title: Land Degrad. Dev.
– volume: 7
  start-page: 230
  year: 2016
  end-page: 238
  ident: b0460
  article-title: Probabilistic inversion of EM38 data for 3D soil mapping in central Iran
  publication-title: Geoderma Reg.
– start-page: 193
  year: 2008
  end-page: 202
  ident: b0115
  article-title: Landsat spectral data for digital soil mapping
  publication-title: Digital Soil Mapping with Limited Data
– reference: Moameni, A., Stein, A., 2002. Modeling spatio-temporal changes in soil salinity and waterlogging in the Marvdasht Plain, Iran. 17 World Congress of Soil Science. 14-21 August 2002, Bangkok, Thailand. Transactions.
– volume: 8
  start-page: 1080
  year: 2011
  end-page: 1084
  ident: b0515
  article-title: Estimating soil moisture with the support vector regression technique
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0450
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  ident: b0270
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 125127
  year: 2020
  ident: b0715
  article-title: Coupling wavelet transform and artificial neural network for forecasting estuarine salinity
  publication-title: J. Hydrol.
– volume: 26
  start-page: 44
  year: 2018
  end-page: 50
  ident: b0575
  article-title: Support vector regression-based modeling of cumulative infiltration of sandy soil
  publication-title: ISH J. Hydraul. Eng.
– volume: 573
  start-page: 727
  year: 2016
  end-page: 739
  ident: b0170
  article-title: The threat of soil salinity: a European scale review
  publication-title: Sci. Total Environ.
– volume: 50
  start-page: 255
  year: 1998
  end-page: 264
  ident: b0290
  article-title: Uncertainty analysis in environmental modelling under a change of spatial scale
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 2-3
  start-page: 91
  year: 2014
  end-page: 101
  ident: b0245
  article-title: Soil organic carbon patterns under different land uses in South India
  publication-title: Geoderma Regional
– volume: 189
  start-page: 153
  year: 2012
  end-page: 163
  ident: b0490
  article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
– volume: 12
  year: 2019
  ident: b0205
  article-title: Modeling and mapping of soil salinity in Tafilalet plain (Morocco)
  publication-title: Arab. J. Geosci.
– start-page: 93
  year: 2018
  end-page: 147
  ident: b0545
  article-title: Major soils, properties, and classification
  publication-title: The Soils of Iran
– volume: 77
  start-page: 197
  year: 1997
  end-page: 216
  ident: b0325
  article-title: Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area
  publication-title: Geoderma
– volume: 303
  start-page: 118
  year: 2017
  end-page: 132
  ident: b0600
  article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates
  publication-title: Geoderma
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: b0485
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydro.
– volume: 7
  start-page: 7670
  year: 2017
  ident: b0425
  article-title: Iran’s land suitability for agriculture
  publication-title: Sci Rep.
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  ident: b0100
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
– volume: 14
  start-page: 611
  year: 2012
  end-page: 625
  ident: b0215
  article-title: Soil degradation and agricultural sustainability: an overview from Iran
  publication-title: Environ. Dev. Sustain.
– volume: 365
  start-page: 114233
  year: 2020
  ident: b0235
  article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran
  publication-title: Geoderma
– year: 2000
  ident: b0685
  article-title: Terrain Analysis: Principles and Applications
– volume: 42
  year: 2018
  ident: b0410
  article-title: Digital soil mapping using machine learning algorithms in a Tropical Mountainous Area
  publication-title: Rev. Bras. Ciênc. Solo
– volume: 50
  start-page: 64
  year: 2016
  end-page: 73
  ident: b0210
  article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 21
  start-page: 2301
  year: 2017
  end-page: 2320
  ident: b0070
  article-title: Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2008
  ident: b0125
  article-title: The nature and Properties of Soils
– volume: 130
  start-page: 191
  year: 2006
  end-page: 206
  ident: b0230
  article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics
  publication-title: Geoderma
– volume: 106
  start-page: 7183
  year: 2001
  end-page: 7192
  ident: b0625
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res-Atmos.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: b0405
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 146
  start-page: 138
  year: 2008
  end-page: 146
  ident: b0555
  article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping
  publication-title: Geoderma
– volume: 29
  start-page: 67
  year: 2019
  end-page: 80
  ident: b0010
  article-title: Modeling soil salinity using direct and indirect measurement techniques: a comparative analysis
  publication-title: Environ. Dev.
– volume: 213
  start-page: 296
  year: 2014
  end-page: 311
  ident: b0320
  article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape
  publication-title: Geoderma
– start-page: 481
  year: 2005
  ident: b0060
  article-title: The Soils of Iran: New Achievements in Perception, Management and Use
– volume: 2017
  start-page: 131
  year: 2017
  ident: b0030
  article-title: Spatial 3D distribution of soil organic carbon under different land use types
  publication-title: Environ. Monit. Assess.
– volume: 39
  start-page: 1347
  year: 2003
  ident: b9000
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
– volume: 70
  start-page: 276
  year: 2016
  end-page: 284
  ident: b0560
  article-title: Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance
  publication-title: Ecol. Indic.
– reference: Aldrich, E., 2020. Package ‘wavelets’. Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses, Version 0.3-0.2.
– reference: Behrens, T., Schmidt, K., Zhu, A.-X., Scholten, T., 2010. The ConMap approach for terrain‐based digital soil mapping. E. J. Soil Sci. 61, 133-143. DOI:10.1111/j.1365-2389.2009.01205.x.
– volume: 17
  start-page: 301
  year: 1985
  end-page: 306
  ident: b0160
  article-title: A TM Tasseled Cap equivalent transformation for reflectance factor data
  publication-title: Remote Sens. Environ.
– reference: Choi, H., Jeong, J., 2019. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sen. 11, 1184. DOI:10.3390/rs11101184.
– volume: 299
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0660
  article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates
  publication-title: Geoderma
– volume: 19
  start-page: 11
  year: 2004
  end-page: 22
  ident: b0480
  article-title: Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue Flats, Zambia
  publication-title: Geocarto Int.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0580
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 17
  start-page: 413
  year: 1991
  end-page: 422
  ident: b0260
  article-title: Calculating catchment area with divergent flow based on a regular grid
  publication-title: Comput. Geosci.
– volume: 63
  start-page: 151
  year: 2017
  end-page: 160
  ident: b0565
  article-title: Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods
  publication-title: Arch. Agron. Soil Sci.
– volume: 80
  start-page: 455
  year: 2000
  end-page: 463
  ident: b0250
  article-title: Prediction of soil salinity risk by digital terrain modeling in the Canadian prairies
  publication-title: Can. J. Soil. Sci.
– volume: 19
  start-page: 225
  year: 2006
  end-page: 235
  ident: b0570
  article-title: Machine learning approaches for estimation of prediction interval for the model output
  publication-title: Neural Networks
– year: 1978
  ident: b0690
  article-title: Predicting Rainfall Erosion Losses: A Guide to Conservation Planning
– start-page: 1169
  year: 1975
  end-page: 1198
  ident: b0180
  article-title: Measuring“ forage production” of grazing units from Landsat MSS data
  publication-title: Proceedings of the Tenth International Symposium of Remote Sensing of the Environment
– reference: Salemi, H., Mamanpoush, A., Miranzadeh, M., Akbari, M., Torabi, M., Toomanian, N., Murray-Rust, H., Droogers, P., Sally, H., Gieske, A., 2000. Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran.
– volume: 43
  start-page: 159
  year: 1992
  end-page: 175
  ident: b0400
  article-title: A continuum approach to soil classification by modified fuzzy k-means with extragrades
  publication-title: J. Soil Sci.
– volume: 57
  start-page: 868
  year: 2006
  end-page: 882
  ident: b0330
  article-title: The representation of complex soil variation on wavelet packet bases
  publication-title: Eur. J. Soil Sci.
– reference: Abbas, A., Khan, S., 2007. Using remote sensing techniques for appraisal of irrigated soil salinity, in: Oxley, L., Kulasiri, D., (Eds.), MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, pp. 2632-2638.
– reference: Toomanian N., 2020. Land Suitability Evaluation for Crop and horticultural products in Isfahan, Yazd, Markazi and Semnan Provinces. Report No. 57376. SWRI, AREEO, Iran.
– volume: 134
  start-page: 217
  year: 2006
  end-page: 230
  ident: b0200
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
– reference: Sun, X.L., Wang, Y., Wang, H.L., Zhang, C., Wang, Z. 2019. Digital soil mapping based on empirical mode decomposition components of environmental covariates. Eur. J. Soil Sci. DOI:10.1111/ejss.12851.
– volume: 2
  start-page: 373
  year: 2013
  end-page: 385
  ident: b0025
  article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review
  publication-title: ARS
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b0365
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 376
  year: 2020
  ident: b0615
  article-title: Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran
  publication-title: Geoderma
– volume: 19
  start-page: 214
  year: 2008
  end-page: 227
  ident: b0525
  article-title: Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management
  publication-title: Land Degrad. Dev.
– reference: Eswaran, W.H., Lal, R., Reich, P.F., 2019. Land degradation: An overview, in: Bridges, E.M. (Eds.), Response to land degradation. CRC Press, Boca Raton, pp. 20–35. DOI:10.1201/9780429187957.
– volume: 213
  start-page: 15
  year: 2014
  end-page: 28
  ident: b0605
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
– volume: 12
  start-page: 1095
  year: 2020
  ident: b0620
  article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space
  publication-title: Remote Sens.
– year: 2002
  ident: b0440
  article-title: FuzME version 3.0. Australian Centre for Precision Agriculture
– volume: 89
  year: 2020
  ident: b0420
  article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data
  publication-title: Int. J. Appl. Earth Obs.
– volume: 53
  start-page: 417
  year: 2002
  end-page: 429
  ident: b0435
  article-title: Uncertainty analysis for pedotransfer functions
  publication-title: E. J. Soil Sci.
– volume: 14
  start-page: 815
  year: 2000
  end-page: 832
  ident: b0255
  article-title: Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: b0310
  article-title: Building predictive models in R using the caret package
  publication-title: J. Stat. Softw.
– reference: Muhammad, I.U., Muhammad, A. and Muhammad, M.I.U., 2020. Package ‘mctest’. Multicollinearity Diagnostic Measures, Version 1.3.1.
– year: 2018
  ident: b0465
  article-title: Foundations of Machine Learning
– volume: 75
  start-page: 1032
  year: 2011
  end-page: 1043
  ident: b0380
  article-title: Using additional criteria for measuring the quality of predictions and their uncertainties in a digital soil mapping framework
  publication-title: Soil Sci. Soc. Am. J.
– volume: 48
  start-page: 119
  year: 1994
  end-page: 126
  ident: b0530
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
– volume: 261
  start-page: 11
  year: 2016
  end-page: 22
  ident: b0585
  article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China
  publication-title: Geoderma
– volume: 61
  start-page: 281
  year: 2007
  end-page: 297
  ident: b0505
  article-title: ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 33
  start-page: 457
  year: 1995
  end-page: 465
  ident: b0360
  article-title: A feedback based modification of the NDVI to minimize canopy background and atmospheric noise
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 63
  start-page: 24
  year: 2015
  end-page: 31
  ident: b0650
  article-title: An overview of methods to evaluate uncertainty of deterministic models in decision support
  publication-title: Environ. Modell. Softw.
– volume: 264
  start-page: 301
  year: 2016
  end-page: 311
  ident: b0445
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
– reference: Leutner, B., Horning, N., Leutner, M.B., 2019. Package ‘RStoolbox’. R Foundation for Statistical Computing, Version 0.1.
– reference: Aragón-Royón, F., Jiménez-Vílchez, A., Arauzo-Azofra, A., Benítez, J.M., 2020. FSinR: an exhaustive package for feature selection. arXiv preprint arXiv:2002.10330.
– volume: 14
  year: 2019
  ident: b0535
  article-title: Comparison of catchment scale 3D and 2.5 D modelling of soil organic carbon stocks in Jiangxi Province, PR China
  publication-title: PLoS One
– volume: 209-210
  start-page: 57
  year: 2013
  end-page: 64
  ident: b0105
  article-title: Separating scale-specific soil spatial variability: a comparison of multi-resolution analysis and empirical mode decomposition
  publication-title: Geoderma
– volume: 85
  start-page: 1
  year: 2003
  end-page: 20
  ident: b0430
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
– volume: 62
  start-page: 149
  year: 1992
  end-page: 162
  ident: b0185
  article-title: Development of Bayesian Monte Carlo techniques for water quality model uncertainty
  publication-title: Ecol. Model.
– volume: 50
  start-page: 185
  year: 1999
  end-page: 206
  ident: b0335
  article-title: Analysis and elucidation of soil variation using wavelets
  publication-title: Eur. J. Soil Sci.
– volume: 11
  start-page: 203
  year: 2007
  end-page: 224
  ident: b0075
  article-title: Support vector regression
  publication-title: Neu. Inf. Pro. Lett.
– volume: 160
  start-page: 614
  year: 2011
  end-page: 626
  ident: b0390
  article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes
  publication-title: Geoderma
– volume: 55
  start-page: 75
  year: 2001
  end-page: 79
  ident: b0675
  article-title: Shuttle radar topography mission (SRTM) mission overview
  publication-title: Frequenz
– volume: 310
  start-page: 128
  year: 2018
  end-page: 137
  ident: b0095
  article-title: Multiscale contextual spatial modelling with the Gaussian scale space
  publication-title: Geoderma
– volume: 153
  start-page: 30
  year: 2017
  end-page: 38
  ident: b0590
  article-title: Uncertainty-guided sampling to improve digital soil maps
  publication-title: Catena
– volume: 50
  start-page: 51
  year: 1998
  end-page: 62
  ident: b0395
  article-title: Some considerations on methods for spatially aggregating and disgaggregating soil information
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 265
  start-page: 62
  year: 2016
  end-page: 77
  ident: b0285
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
– reference: Lemon, J., Bolker, B., Oom, S., Klein, E., Rowlingson, B., Wickham, H., Tyagi, A., Eterradossi, O., Grothendieck, G., Toews, M. and Kane, J., 2020. Package ‘plotrix’. Various Plotting Functions, Version 3.7-8.
– volume: 353
  start-page: 172
  year: 2019
  end-page: 187
  ident: b0665
  article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China
  publication-title: Geoderma
– volume: 55
  start-page: 777
  year: 2004
  end-page: 797
  ident: b0340
  article-title: Analysing soil variation in two dimensions with the discrete wavelet transform
  publication-title: Eur. J. Soil Sci.
– volume: 209
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0520
  article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates
  publication-title: Geoderma
– volume: 698
  year: 2020
  ident: b0355
  article-title: Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 61
  year: 2015
  end-page: 72
  ident: b0040
  article-title: Tectonic Geomorphology of Iran’s Salt Structures
  publication-title: Open J. Geol.
– volume: 53
  start-page: 433
  year: 1989
  end-page: 439
  ident: b0540
  article-title: Soil electrical conductivity and soil salinity: new formulations and calibrations
  publication-title: Soil Sci. Soc. Am. J.
– volume: 16
  start-page: 917
  year: 2016
  end-page: 937
  ident: b0280
  article-title: Support vector machines
  publication-title: Stata J.
– volume: 80
  start-page: 41
  year: 2006
  end-page: 56
  ident: b0510
  article-title: Managing secondary dryland salinity: options and challenges
  publication-title: Agric. Water Manag.
– volume: 188
  year: 2020
  ident: b0710
  article-title: Conventional and digital soil mapping in Iran: past, present, and future
  publication-title: Catena
– volume: 128
  start-page: 234
  year: 2005
  end-page: 248
  ident: b0195
  article-title: Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data
  publication-title: Geoderma
– volume: 291
  start-page: 55
  year: 2017
  end-page: 64
  ident: b0655
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
– reference: Olaya, V., Conrad, O., 2009. Geomorphometry in SAGA, in: Hengl, T., Reuter, H. (Eds.), Developments in soil science, Geomorphometry (Concepts, Software, Applications). Elsevier, Amsterdam, pp.293-308. DOI:10.1016/S0166-2481(08)00012-3.
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: b0295
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– start-page: 333
  year: 2009
  end-page: 349
  ident: b0695
  article-title: Geomorphometry in landserf
  publication-title: Developments in soil science, Geomorphometry (Concepts, Software, Applications)
– volume: 165
  start-page: 50
  year: 2011
  end-page: 59
  ident: b0110
  article-title: Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency
  publication-title: Geoderma
– year: 1999
  ident: b0375
  article-title: A Wavelet Tour of Signal Processing
– volume: 104
  start-page: 158
  year: 2015
  end-page: 173
  ident: b0140
  article-title: Remote sensing image fusion via wavelet transform and sparse representation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 38
  start-page: 1499
  year: 2011
  end-page: 1507
  ident: b0165
  article-title: The corrected VIF (CVIF)
  publication-title: J. Appl. Statistics
– volume: 339
  start-page: 40
  year: 2019
  end-page: 58
  ident: b0305
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
– reference: Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalization, in: Böhner, J., McCloy, K.R., Strobl, J. (Eds.), SAGA - Analyses and Modelling Applications, Göttinger Geographiche Abhandlungen, 115, pp.13-28.
– volume: 6
  start-page: 35
  year: 2020
  end-page: 52
  ident: b0500
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: Soil
– volume: 74
  start-page: 1967
  year: 2010
  end-page: 1975
  ident: b0645
  article-title: Estimating pedotransfer function prediction limits using fuzzy k-means with extragrades
  publication-title: Soil Sci. Soc. Am. J.
– volume: 11
  start-page: 727
  year: 1990
  end-page: 740
  ident: b0370
  article-title: A ratio vegetation index adjusted for soil brightness
  publication-title: Int. J. Remote Sens.
– volume: 29
  start-page: 1850
  year: 2009
  end-page: 1861
  ident: b0705
  article-title: Bioclimatic classification of Isfahan province using multivariate statistical methods
  publication-title: Int. J. Climatol: Q J. Roy. Meteor. Soc.
– volume: 61
  start-page: 281
  year: 2007
  ident: 10.1016/j.geoderma.2020.114793_b0505
  article-title: ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2006.10.001
– volume: 91
  start-page: 27
  year: 1999
  ident: 10.1016/j.geoderma.2020.114793_b0100
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(99)00003-8
– volume: 264
  start-page: 301
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0445
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 698
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0355
  article-title: Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134235
– volume: 26
  start-page: 44
  year: 2018
  ident: 10.1016/j.geoderma.2020.114793_b0575
  article-title: Support vector regression-based modeling of cumulative infiltration of sandy soil
  publication-title: ISH J. Hydraul. Eng.
– volume: 55
  start-page: 75
  year: 2001
  ident: 10.1016/j.geoderma.2020.114793_b0675
  article-title: Shuttle radar topography mission (SRTM) mission overview
  publication-title: Frequenz
  doi: 10.1515/FREQ.2001.55.3-4.75
– volume: 37
  start-page: 4302
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0240
  article-title: WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– year: 2018
  ident: 10.1016/j.geoderma.2020.114793_b0465
– volume: 19
  start-page: 11
  year: 2004
  ident: 10.1016/j.geoderma.2020.114793_b0480
  article-title: Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue Flats, Zambia
  publication-title: Geocarto Int.
  doi: 10.1080/10106040408542313
– start-page: 193
  year: 2008
  ident: 10.1016/j.geoderma.2020.114793_b0115
  article-title: Landsat spectral data for digital soil mapping
– ident: 10.1016/j.geoderma.2020.114793_b0145
  doi: 10.3390/rs11101184
– volume: 29
  start-page: 67
  year: 2019
  ident: 10.1016/j.geoderma.2020.114793_b0010
  article-title: Modeling soil salinity using direct and indirect measurement techniques: a comparative analysis
  publication-title: Environ. Dev.
  doi: 10.1016/j.envdev.2018.12.007
– volume: 261
  start-page: 11
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0585
  article-title: Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.06.024
– volume: 106
  start-page: 7183
  year: 2001
  ident: 10.1016/j.geoderma.2020.114793_b0625
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res-Atmos.
  doi: 10.1029/2000JD900719
– volume: 39
  start-page: 1347
  issue: 12
  year: 2003
  ident: 10.1016/j.geoderma.2020.114793_b9000
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001426
– ident: 10.1016/j.geoderma.2020.114793_b0475
– volume: 104
  start-page: 158
  year: 2015
  ident: 10.1016/j.geoderma.2020.114793_b0140
  article-title: Remote sensing image fusion via wavelet transform and sparse representation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.015
– volume: 81
  start-page: 376
  year: 2006
  ident: 10.1016/j.geoderma.2020.114793_b0635
  article-title: Pedodiversity and pedogenesis in Zayandeh-rud Valley, central Iran
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.016
– volume: 14
  start-page: 815
  year: 2000
  ident: 10.1016/j.geoderma.2020.114793_b0255
  article-title: Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/136588100750022804
– volume: 165
  start-page: 50
  year: 2011
  ident: 10.1016/j.geoderma.2020.114793_b0110
  article-title: Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.07.002
– year: 2008
  ident: 10.1016/j.geoderma.2020.114793_b0125
– volume: 353
  start-page: 172
  year: 2019
  ident: 10.1016/j.geoderma.2020.114793_b0665
  article-title: Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.040
– volume: 72
  start-page: 1171
  year: 2006
  ident: 10.1016/j.geoderma.2020.114793_b0680
  article-title: Landsat
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.10.1171
– volume: 213
  start-page: 296
  year: 2014
  ident: 10.1016/j.geoderma.2020.114793_b0320
  article-title: High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.002
– volume: 77
  start-page: 197
  year: 1997
  ident: 10.1016/j.geoderma.2020.114793_b0325
  article-title: Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00022-0
– volume: 75
  start-page: 1032
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2020.114793_b0380
  article-title: Using additional criteria for measuring the quality of predictions and their uncertainties in a digital soil mapping framework
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0280
– volume: 6
  start-page: 35
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0500
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: Soil
  doi: 10.5194/soil-6-35-2020
– start-page: 269
  year: 2007
  ident: 10.1016/j.geoderma.2020.114793_b0415
  article-title: Soil prediction with spatially decomposed environmental factors
– volume: 265
  start-page: 62
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0285
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– volume: 219
  start-page: 383
  year: 2008
  ident: 10.1016/j.geoderma.2020.114793_b0045
  article-title: Future research challenges for incorporation of uncertainty in environmental and ecological decision-making
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2008.07.015
– ident: 10.1016/j.geoderma.2020.114793_b0035
  doi: 10.32614/CRAN.package.FSinR
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.geoderma.2020.114793_b0485
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydro.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 58
  start-page: 257
  year: 1996
  ident: 10.1016/j.geoderma.2020.114793_b0270
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 43
  start-page: 159
  year: 1992
  ident: 10.1016/j.geoderma.2020.114793_b0400
  article-title: A continuum approach to soil classification by modified fuzzy k-means with extragrades
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1992.tb00127.x
– ident: 10.1016/j.geoderma.2020.114793_b0080
  doi: 10.1111/j.1365-2389.2009.01205.x
– volume: 52
  start-page: 394
  year: 2015
  ident: 10.1016/j.geoderma.2020.114793_b0670
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 213
  start-page: 578
  year: 2014
  ident: 10.1016/j.geoderma.2020.114793_b0090
  article-title: Hyper-scale digital soil mapping and soil formation analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.031
– volume: 134
  start-page: 217
  year: 2006
  ident: 10.1016/j.geoderma.2020.114793_b0200
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.10.009
– volume: 19
  start-page: 225
  year: 2006
  ident: 10.1016/j.geoderma.2020.114793_b0570
  article-title: Machine learning approaches for estimation of prediction interval for the model output
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2006.01.012
– volume: 12
  start-page: 1095
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0620
  article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space
  publication-title: Remote Sens.
  doi: 10.3390/rs12071095
– ident: 10.1016/j.geoderma.2020.114793_b0005
– volume: 36
  start-page: 274
  year: 1980
  ident: 10.1016/j.geoderma.2020.114793_b0225
  article-title: An integrated system of terrain analysis and slope mapping
  publication-title: Zeitschrift für Geomorphologie. Supplementband Stuttgart
– volume: 5
  start-page: 61
  year: 2015
  ident: 10.1016/j.geoderma.2020.114793_b0040
  article-title: Tectonic Geomorphology of Iran’s Salt Structures
  publication-title: Open J. Geol.
  doi: 10.4236/ojg.2015.52006
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.geoderma.2020.114793_b0580
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 39
  start-page: 2795
  year: 2008
  ident: 10.1016/j.geoderma.2020.114793_b0065
  article-title: Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO‐1) sensor
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620802432717
– volume: 80
  start-page: 41
  year: 2006
  ident: 10.1016/j.geoderma.2020.114793_b0510
  article-title: Managing secondary dryland salinity: options and challenges
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2005.07.003
– start-page: 93
  year: 2018
  ident: 10.1016/j.geoderma.2020.114793_b0545
  article-title: Major soils, properties, and classification
– volume: 146
  start-page: 138
  year: 2008
  ident: 10.1016/j.geoderma.2020.114793_b0555
  article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.010
– start-page: 1169
  year: 1975
  ident: 10.1016/j.geoderma.2020.114793_b0180
  article-title: Measuring“ forage production” of grazing units from Landsat MSS data
– volume: 53
  start-page: 417
  year: 2002
  ident: 10.1016/j.geoderma.2020.114793_b0435
  article-title: Uncertainty analysis for pedotransfer functions
  publication-title: E. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2002.00452.x
– volume: 376
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0615
  article-title: Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114552
– volume: 365
  start-page: 114233
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0235
  article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114233
– volume: 42
  year: 2018
  ident: 10.1016/j.geoderma.2020.114793_b0410
  article-title: Digital soil mapping using machine learning algorithms in a Tropical Mountainous Area
  publication-title: Rev. Bras. Ciênc. Solo
  doi: 10.1590/18069657rbcs20170421
– volume: 209-210
  start-page: 57
  year: 2013
  ident: 10.1016/j.geoderma.2020.114793_b0105
  article-title: Separating scale-specific soil spatial variability: a comparison of multi-resolution analysis and empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.003
– volume: 50
  start-page: 255
  year: 1998
  ident: 10.1016/j.geoderma.2020.114793_b0290
  article-title: Uncertainty analysis in environmental modelling under a change of spatial scale
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1009700614041
– volume: 28
  start-page: 1
  year: 2008
  ident: 10.1016/j.geoderma.2020.114793_b0310
  article-title: Building predictive models in R using the caret package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– ident: 10.1016/j.geoderma.2020.114793_b0345
– volume: 8
  start-page: 1080
  year: 2011
  ident: 10.1016/j.geoderma.2020.114793_b0515
  article-title: Estimating soil moisture with the support vector regression technique
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2156759
– volume: 151
  start-page: 338
  year: 2009
  ident: 10.1016/j.geoderma.2020.114793_b0055
  article-title: Spatial prediction of soil properties in temperate mountain regions using support vector regression
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.022
– ident: 10.1016/j.geoderma.2020.114793_b0020
– ident: 10.1016/j.geoderma.2020.114793_b0175
– volume: 16
  start-page: 917
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0280
  article-title: Support vector machines
  publication-title: Stata J.
  doi: 10.1177/1536867X1601600407
– volume: 17
  start-page: 250
  year: 2018
  ident: 10.1016/j.geoderma.2020.114793_b0050
  article-title: Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 50
  start-page: 64
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0210
  article-title: Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 2-3
  start-page: 91
  year: 2014
  ident: 10.1016/j.geoderma.2020.114793_b0245
  article-title: Soil organic carbon patterns under different land uses in South India
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2014.10.005
– volume: 11
  start-page: 727
  year: 1990
  ident: 10.1016/j.geoderma.2020.114793_b0370
  article-title: A ratio vegetation index adjusted for soil brightness
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955053
– volume: 7
  start-page: 7670
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0425
  article-title: Iran’s land suitability for agriculture
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-08066-y
– volume: 226-227
  start-page: 365
  year: 2014
  ident: 10.1016/j.geoderma.2020.114793_b0300
  article-title: End members, end points and extragrades in numerical soil classification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.010
– volume: 63
  start-page: 24
  year: 2015
  ident: 10.1016/j.geoderma.2020.114793_b0650
  article-title: An overview of methods to evaluate uncertainty of deterministic models in decision support
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2014.09.017
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geoderma.2020.114793_b0405
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 155
  start-page: 175
  year: 2010
  ident: 10.1016/j.geoderma.2020.114793_b0085
  article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.07.010
– year: 2000
  ident: 10.1016/j.geoderma.2020.114793_b0685
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.geoderma.2020.114793_b0295
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 30
  start-page: 49
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0610
  article-title: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming
  publication-title: Arid Land Res. Manage.
  doi: 10.1080/15324982.2015.1046092
– volume: 17
  start-page: 301
  year: 1985
  ident: 10.1016/j.geoderma.2020.114793_b0160
  article-title: A TM Tasseled Cap equivalent transformation for reflectance factor data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(85)90102-6
– volume: 209
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2020.114793_b0520
  article-title: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.05.029
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.geoderma.2020.114793_b0150
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0365
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– ident: 10.1016/j.geoderma.2020.114793_b0190
  doi: 10.5194/hess-19-3181-2015
– ident: 10.1016/j.geoderma.2020.114793_b0495
  doi: 10.1016/S0166-2481(08)00012-3
– ident: 10.1016/j.geoderma.2020.114793_b0455
– volume: 50
  start-page: 185
  year: 1999
  ident: 10.1016/j.geoderma.2020.114793_b0335
  article-title: Analysis and elucidation of soil variation using wavelets
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.1999.t01-1-00234.x
– volume: 21
  start-page: 2301
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0070
  article-title: Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-2301-2017
– ident: 10.1016/j.geoderma.2020.114793_b0130
  doi: 10.2166/wst.2005.0163
– volume: 217
  start-page: 281
  year: 2019
  ident: 10.1016/j.geoderma.2020.114793_b0135
  article-title: Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2018.10.021
– volume: 12
  year: 2019
  ident: 10.1016/j.geoderma.2020.114793_b0205
  article-title: Modeling and mapping of soil salinity in Tafilalet plain (Morocco)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-4202-2
– volume: 34
  start-page: 71
  year: 1990
  ident: 10.1016/j.geoderma.2020.114793_b0155
  article-title: Calculating the vegetation index faster
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90085-Z
– volume: 62
  start-page: 149
  year: 1992
  ident: 10.1016/j.geoderma.2020.114793_b0185
  article-title: Development of Bayesian Monte Carlo techniques for water quality model uncertainty
  publication-title: Ecol. Model.
  doi: 10.1016/0304-3800(92)90087-U
– volume: 32
  start-page: 2095
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0315
  article-title: Binary whale optimization algorithm and its application to unit commitment problem
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-018-3796-3
– year: 1999
  ident: 10.1016/j.geoderma.2020.114793_b0375
– start-page: 481
  year: 2005
  ident: 10.1016/j.geoderma.2020.114793_b0060
– volume: 189
  start-page: 153
  year: 2012
  ident: 10.1016/j.geoderma.2020.114793_b0490
  article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.026
– volume: 299
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0660
  article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.03.013
– start-page: 333
  year: 2009
  ident: 10.1016/j.geoderma.2020.114793_b0695
  article-title: Geomorphometry in landserf
– volume: 7
  start-page: 230
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0460
  article-title: Probabilistic inversion of EM38 data for 3D soil mapping in central Iran
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2016.04.006
– ident: 10.1016/j.geoderma.2020.114793_b0350
– volume: 160
  start-page: 614
  year: 2011
  ident: 10.1016/j.geoderma.2020.114793_b0390
  article-title: Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.11.013
– volume: 55
  start-page: 777
  year: 2004
  ident: 10.1016/j.geoderma.2020.114793_b0340
  article-title: Analysing soil variation in two dimensions with the discrete wavelet transform
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2004.00630.x
– volume: 19
  start-page: 214
  year: 2008
  ident: 10.1016/j.geoderma.2020.114793_b0525
  article-title: Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.818
– volume: 57
  start-page: 868
  year: 2006
  ident: 10.1016/j.geoderma.2020.114793_b0330
  article-title: The representation of complex soil variation on wavelet packet bases
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2005.00779.x
– volume: 303
  start-page: 118
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0600
  article-title: Digital soil mapping based on wavelet decomposed components of environmental covariates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.017
– ident: 10.1016/j.geoderma.2020.114793_b0640
– ident: 10.1016/j.geoderma.2020.114793_b0220
  doi: 10.1201/9780429187957-4
– volume: 89
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0420
  article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data
  publication-title: Int. J. Appl. Earth Obs.
– volume: 2
  start-page: 2369
  year: 2010
  ident: 10.1016/j.geoderma.2020.114793_b0470
  article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology
  publication-title: Remote Sens.
  doi: 10.3390/rs2102369
– volume: 213
  start-page: 15
  year: 2014
  ident: 10.1016/j.geoderma.2020.114793_b0605
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 130
  start-page: 191
  year: 2006
  ident: 10.1016/j.geoderma.2020.114793_b0230
  article-title: Assessing salt-affected soils using remote sensing, solute modelling, and geophysics
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.02.003
– volume: 291
  start-page: 55
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0655
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.017
– ident: 10.1016/j.geoderma.2020.114793_b0595
  doi: 10.1111/ejss.12851
– volume: 29
  start-page: 1850
  year: 2009
  ident: 10.1016/j.geoderma.2020.114793_b0705
  article-title: Bioclimatic classification of Isfahan province using multivariate statistical methods
  publication-title: Int. J. Climatol: Q J. Roy. Meteor. Soc.
  doi: 10.1002/joc.1835
– volume: 29
  start-page: 4005
  issue: 11
  year: 2018
  ident: 10.1016/j.geoderma.2020.114793_b0700
  article-title: Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3148
– volume: 188
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0710
  article-title: Conventional and digital soil mapping in Iran: past, present, and future
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104424
– ident: 10.1016/j.geoderma.2020.114793_b0550
– ident: 10.1016/j.geoderma.2020.114793_b0120
– volume: 74
  start-page: 1967
  year: 2010
  ident: 10.1016/j.geoderma.2020.114793_b0645
  article-title: Estimating pedotransfer function prediction limits using fuzzy k-means with extragrades
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0106
– volume: 48
  start-page: 119
  year: 1994
  ident: 10.1016/j.geoderma.2020.114793_b0530
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90134-1
– volume: 14
  start-page: 611
  year: 2012
  ident: 10.1016/j.geoderma.2020.114793_b0215
  article-title: Soil degradation and agricultural sustainability: an overview from Iran
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-012-9351-y
– volume: 2017
  start-page: 131
  issue: 189
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0030
  article-title: Spatial 3D distribution of soil organic carbon under different land use types
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-5830-9
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0450
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 573
  start-page: 727
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0170
  article-title: The threat of soil salinity: a European scale review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.08.177
– volume: 80
  start-page: 455
  year: 2000
  ident: 10.1016/j.geoderma.2020.114793_b0250
  article-title: Prediction of soil salinity risk by digital terrain modeling in the Canadian prairies
  publication-title: Can. J. Soil. Sci.
  doi: 10.4141/S99-093
– volume: 53
  start-page: 895
  year: 2015
  ident: 10.1016/j.geoderma.2020.114793_b0265
  article-title: Derivation of terrain covariates for digital soil mapping in Australia
  publication-title: Soil Res.
  doi: 10.1071/SR14271
– volume: 154
  start-page: 138
  year: 2009
  ident: 10.1016/j.geoderma.2020.114793_b0385
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– volume: 53
  start-page: 433
  year: 1989
  ident: 10.1016/j.geoderma.2020.114793_b0540
  article-title: Soil electrical conductivity and soil salinity: new formulations and calibrations
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1989.03615995005300020020x
– volume: 14
  year: 2019
  ident: 10.1016/j.geoderma.2020.114793_b0535
  article-title: Comparison of catchment scale 3D and 2.5 D modelling of soil organic carbon stocks in Jiangxi Province, PR China
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0220881
– volume: 339
  start-page: 40
  year: 2019
  ident: 10.1016/j.geoderma.2020.114793_b0305
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.037
– year: 2002
  ident: 10.1016/j.geoderma.2020.114793_b0440
– volume: 239-240
  start-page: 34
  year: 2015
  ident: 10.1016/j.geoderma.2020.114793_b0015
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.011
– volume: 128
  start-page: 234
  year: 2005
  ident: 10.1016/j.geoderma.2020.114793_b0195
  article-title: Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.04.006
– volume: 70
  start-page: 276
  year: 2016
  ident: 10.1016/j.geoderma.2020.114793_b0560
  article-title: Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.06.015
– volume: 64
  start-page: 915
  year: 1998
  ident: 10.1016/j.geoderma.2020.114793_b0630
  article-title: Responses of spectral indices to variations in vegetation cover and soil background
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 11
  start-page: 203
  year: 2007
  ident: 10.1016/j.geoderma.2020.114793_b0075
  article-title: Support vector regression
  publication-title: Neu. Inf. Pro. Lett.
– volume: 153
  start-page: 30
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0590
  article-title: Uncertainty-guided sampling to improve digital soil maps
  publication-title: Catena
  doi: 10.1016/j.catena.2017.01.033
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0275
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 125127
  year: 2020
  ident: 10.1016/j.geoderma.2020.114793_b0715
  article-title: Coupling wavelet transform and artificial neural network for forecasting estuarine salinity
  publication-title: J. Hydrol.
– volume: 50
  start-page: 51
  year: 1998
  ident: 10.1016/j.geoderma.2020.114793_b0395
  article-title: Some considerations on methods for spatially aggregating and disgaggregating soil information
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1009778500412
– volume: 63
  start-page: 151
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2020.114793_b0565
  article-title: Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2016.1193162
– volume: 17
  start-page: 413
  year: 1991
  ident: 10.1016/j.geoderma.2020.114793_b0260
  article-title: Calculating catchment area with divergent flow based on a regular grid
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(91)90048-I
– volume: 2
  start-page: 373
  year: 2013
  ident: 10.1016/j.geoderma.2020.114793_b0025
  article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review
  publication-title: ARS
  doi: 10.4236/ars.2013.24040
– volume: 310
  start-page: 128
  year: 2018
  ident: 10.1016/j.geoderma.2020.114793_b0095
  article-title: Multiscale contextual spatial modelling with the Gaussian scale space
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.09.015
– year: 1978
  ident: 10.1016/j.geoderma.2020.114793_b0690
– volume: 33
  start-page: 457
  year: 1995
  ident: 10.1016/j.geoderma.2020.114793_b0360
  article-title: A feedback based modification of the NDVI to minimize canopy background and atmospheric noise
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1995.8746027
– volume: 38
  start-page: 1499
  issue: 7
  year: 2011
  ident: 10.1016/j.geoderma.2020.114793_b0165
  article-title: The corrected VIF (CVIF)
  publication-title: J. Appl. Statistics
  doi: 10.1080/02664763.2010.505956
– volume: 85
  start-page: 1
  year: 2003
  ident: 10.1016/j.geoderma.2020.114793_b0430
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
SSID ssj0017020
Score 2.5820782
Snippet •Soil salinity was predicted using machine learning algorithms in central Iran.•Wavelet-SVR indicated higher performance compared to the standalone SVR.•The...
The low potential of agricultural productivity in the majority of central Iran is mainly attributed to high levels of soil salinity. To increase agricultural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114793
SubjectTerms agricultural productivity
digital elevation models
Digital soil mapping
Iran
Machine learning
prediction
regression analysis
salinity
soil depth
soil restoration
Soil salinity
Support vector regression
topography
topsoil
uncertainty
uncertainty analysis
wavelet
Wavelet transformation
Title Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models
URI https://dx.doi.org/10.1016/j.geoderma.2020.114793
https://www.proquest.com/docview/2551913280
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_gsK3iNbR67SY5FlKrYk4K3ZR9TqUhamlTx4sU_7swmKSqIB68hs4T5Zmdms9_MMHYaWz8BJwxyAAgSm-aBMZAHYEViQaSpE1TgfDuUg_vk-kE8LLHzthaGaJWN7699uvfWzZNuo83udDymGt9QphShezGecjIq4kuSlKz87H1B8wjTXtOaMZQBvf2lSvgJMaKBY77_UOTb5qZ5_FuA-uGqffy53GDrTeLI-_W3bbIlKLbYWv9x1jTPgG32sfhDwDGt4yWRpVFkOqPLGAKAT0a8nIyfeampILJ64-OC42HZcZrPgPbHiQb_yF81jaOoePUlq0VpXThezqeUsfMX_7ef5GoibcH9TJ1yh91fXtydD4JmyEKgY5lVgYiFQSVZ3IwQCZOIEarTpBqkGfUgzB06Q7p-tS7uORM5TOCikZPCyCwE6Uy8y5aLSQF7jGfSRg7X0bgANfbTLkNAXGgghCjXdp-JVrPKNh3IaRDGs2qpZk-qRUQRIqpGZJ91F3LTugfHnxJ5C5z6Zk0KA8Wfsict0gq3Gt2f6AIm81Lh6QtPtzEq4-Af6x-y1Yh4MZ75fcSWq9kcjjGxqUzHW26HrfSvbgbDT1lf-_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB6VcgAOiPIQhUIHqT2G3Uwyk-TQQwVUW_o4tVJvwzy81VZVdrXJUvXChZ_EH8SeTFZtJdQD6jWSrch2_Ig_24xtZS5cwEmTCgCS3BVVYi1UCTiZO5BF4SUNOB8dq9Fp_v1Mnq2wP_0sDMEqo-_vfHrw1vHJIEpzMJtMaMY3VQVF6GGGVU5ZRWTlAVxfYd3W7Ox_RSVvC7H37eTLKImnBRKTqbJNZCZtWgwdmiAIaXM5Ria2MKDseAhp5dEFUNPR-WzorfCYtoixV9KqMgXlbYZ8H7HHOboLOpvw-dcSV4Jc4y7IVCX0ejfGki_QKOjCWVh4JMKe3qLK_hUR78SGEPD2XrDnMVPlu50w1tgK1C_Zs93zedzWAa_Y7-UvCY55JG8InY0kszl1f0jjfDrmzXRyyRtDE5jtNZ_UHKtzz-kgBBo8J9z9Ob8ydP-i5e2NNBqpTe15s5hRicB_hvYC0XXI3ZqHIz7Na3b6IKJ_w1braQ1vGS-VEx75GGRAmwSNL_O88KmFFERl3DqTvWS1iyvP6fLGpe6xbRe614gmjehOI-tssKSbdUs_7qWoesXpW-arMTLdS_up17TGb5saNqaG6aLRWO5hOZ2hMN79B_9N9mR0cnSoD_ePD96zp4JAOQF2vsFW2_kCPmBW1dqPwYo5-_HQn81f_Gs2uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+spatial+prediction+of+soil+salinity+in+arid+regions+using+wavelet+transformation+and+support+vector+regression+models&rft.jtitle=Geoderma&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Schmidt%2C+Karsten&rft.au=Toomanian%2C+Norair&rft.au=Heung%2C+Brandon&rft.date=2021-02-01&rft.issn=0016-7061&rft.volume=383&rft.spage=114793&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon