Multi-algorithm comparison for predicting soil salinity

•Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No algorithm that is superior for all soil depths.•Best linear and non-linear algorithms were LMSLR and RF.•Complexity of the algorithm did not alwa...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 365; p. 114211
Main Authors Wang, Fei, Shi, Zhou, Biswas, Asim, Yang, Shengtian, Ding, Jianli
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2020
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2020.114211

Cover

Loading…
Abstract •Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No algorithm that is superior for all soil depths.•Best linear and non-linear algorithms were LMSLR and RF.•Complexity of the algorithm did not always increase the stability of the algorithm. Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant challenges due to strong spatial and temporal variability. Environmental covariates show promise in predicting salinity over large areas provided a reasonable relationship is developed with field measured salinity at few points. While simple regression-based approaches to complex data mining methods have been used in the prediction, a comprehensive comparison of their performances has not been explored, leading to uncertainty in which algorithms to select. This study compares thirteen popularly and non-popularly used algorithms and their performances following four criteria in predicting soil salinity from environmental covariates from Kuqa Oasis from Xinjiang, China. The environmental covariates used for the prediction include principal components of Landsat satellite images at multiple spectral bands, climate factors (referring to land surface temperature), vegetation indices, salinity and soil-related indices, soil moisture indices, DEM derived indices, land use, landform and soil type and categorized them under parameter categories of the SCORPAN (S, soils; C, climate; O, organisms, biotic factor; R, relief; P, parent material; A, age; and N, space) model. The predictive relationships were developed using the algorithms including some previously used ones such as Multiple Linear regression (MLR), Multi-Layer Perceptron-Artificial Neural Network (MLP-ANN), Stochastic Gradient Treeboost (SGT), M5 Model Tree (M5), Multivariate Adaptive Regression Splines (MARS), Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Regression (SVR) and some that have not previously been used in predicting salinity such as Alternating Model Tree (ATM), Gaussian Processes Regression (GPR), Gaussian Radial Basis Functions (GRBF), Least Median Squared Linear Regression (LMSLR), and Reduced Error Pruning Tree (REPTree). Here, 5-fold cross-validation and an independent dataset (30% overall samples) at three depths, 0–10 cm, 10–30 cm, 30–50 cm, were used for parameter optimization and evaluating the performance of algorithms. The performances of these algorithms were compared against multiple criteria, including the parameterization, error level/fitting accuracy (determination coefficient, R2; root mean squared error, RMSE), stability (based on the Pearson correlation coefficient, R; mean absolute percent error, MAPE; root mean squared error, RMSE; Lin’s concordance correlation coefficient, LCCC) and computational efficiency of the algorithms. Finally, the result showed that CSRI is most important parameter for the prediction of soil salinity at the 0–10 cm and 10–30 cm depths, whereas for the 30–50 cm depth interval, VD was the most important predictor. For depths of 0–10 cm, 10–30 cm and 30–50 cm across all models, the model R2 values ranged from 0.60 to 0.74, 0.15 to 0.31, and 0.30 to 0.47, and the RMSE values ranged from 18.87 to 23.49 dS m−1, 9.94 to 13.48 dS m−1 and 3.79 to 7.11 dS m−1. The optimal algorithms at three depths of 0–10 cm, 10–30 cm and 30–50 cm are RF, M5 and GRBF with considering accuracy and stability. After a comprehensive assessment of algorithm performance, we recommend RF for mapping salinity in an arid environment such as that of Xinjiang and elsewhere globally. However, there is no algorithm that can perform ideally for all datasets. Therefore, we suggest that the algorithm should be carefully chosen according to the purposes of the study.
AbstractList •Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No algorithm that is superior for all soil depths.•Best linear and non-linear algorithms were LMSLR and RF.•Complexity of the algorithm did not always increase the stability of the algorithm. Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant challenges due to strong spatial and temporal variability. Environmental covariates show promise in predicting salinity over large areas provided a reasonable relationship is developed with field measured salinity at few points. While simple regression-based approaches to complex data mining methods have been used in the prediction, a comprehensive comparison of their performances has not been explored, leading to uncertainty in which algorithms to select. This study compares thirteen popularly and non-popularly used algorithms and their performances following four criteria in predicting soil salinity from environmental covariates from Kuqa Oasis from Xinjiang, China. The environmental covariates used for the prediction include principal components of Landsat satellite images at multiple spectral bands, climate factors (referring to land surface temperature), vegetation indices, salinity and soil-related indices, soil moisture indices, DEM derived indices, land use, landform and soil type and categorized them under parameter categories of the SCORPAN (S, soils; C, climate; O, organisms, biotic factor; R, relief; P, parent material; A, age; and N, space) model. The predictive relationships were developed using the algorithms including some previously used ones such as Multiple Linear regression (MLR), Multi-Layer Perceptron-Artificial Neural Network (MLP-ANN), Stochastic Gradient Treeboost (SGT), M5 Model Tree (M5), Multivariate Adaptive Regression Splines (MARS), Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Regression (SVR) and some that have not previously been used in predicting salinity such as Alternating Model Tree (ATM), Gaussian Processes Regression (GPR), Gaussian Radial Basis Functions (GRBF), Least Median Squared Linear Regression (LMSLR), and Reduced Error Pruning Tree (REPTree). Here, 5-fold cross-validation and an independent dataset (30% overall samples) at three depths, 0–10 cm, 10–30 cm, 30–50 cm, were used for parameter optimization and evaluating the performance of algorithms. The performances of these algorithms were compared against multiple criteria, including the parameterization, error level/fitting accuracy (determination coefficient, R2; root mean squared error, RMSE), stability (based on the Pearson correlation coefficient, R; mean absolute percent error, MAPE; root mean squared error, RMSE; Lin’s concordance correlation coefficient, LCCC) and computational efficiency of the algorithms. Finally, the result showed that CSRI is most important parameter for the prediction of soil salinity at the 0–10 cm and 10–30 cm depths, whereas for the 30–50 cm depth interval, VD was the most important predictor. For depths of 0–10 cm, 10–30 cm and 30–50 cm across all models, the model R2 values ranged from 0.60 to 0.74, 0.15 to 0.31, and 0.30 to 0.47, and the RMSE values ranged from 18.87 to 23.49 dS m−1, 9.94 to 13.48 dS m−1 and 3.79 to 7.11 dS m−1. The optimal algorithms at three depths of 0–10 cm, 10–30 cm and 30–50 cm are RF, M5 and GRBF with considering accuracy and stability. After a comprehensive assessment of algorithm performance, we recommend RF for mapping salinity in an arid environment such as that of Xinjiang and elsewhere globally. However, there is no algorithm that can perform ideally for all datasets. Therefore, we suggest that the algorithm should be carefully chosen according to the purposes of the study.
Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant challenges due to strong spatial and temporal variability. Environmental covariates show promise in predicting salinity over large areas provided a reasonable relationship is developed with field measured salinity at few points. While simple regression-based approaches to complex data mining methods have been used in the prediction, a comprehensive comparison of their performances has not been explored, leading to uncertainty in which algorithms to select. This study compares thirteen popularly and non-popularly used algorithms and their performances following four criteria in predicting soil salinity from environmental covariates from Kuqa Oasis from Xinjiang, China. The environmental covariates used for the prediction include principal components of Landsat satellite images at multiple spectral bands, climate factors (referring to land surface temperature), vegetation indices, salinity and soil-related indices, soil moisture indices, DEM derived indices, land use, landform and soil type and categorized them under parameter categories of the SCORPAN (S, soils; C, climate; O, organisms, biotic factor; R, relief; P, parent material; A, age; and N, space) model. The predictive relationships were developed using the algorithms including some previously used ones such as Multiple Linear regression (MLR), Multi-Layer Perceptron-Artificial Neural Network (MLP-ANN), Stochastic Gradient Treeboost (SGT), M5 Model Tree (M5), Multivariate Adaptive Regression Splines (MARS), Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Regression (SVR) and some that have not previously been used in predicting salinity such as Alternating Model Tree (ATM), Gaussian Processes Regression (GPR), Gaussian Radial Basis Functions (GRBF), Least Median Squared Linear Regression (LMSLR), and Reduced Error Pruning Tree (REPTree). Here, 5-fold cross-validation and an independent dataset (30% overall samples) at three depths, 0–10 cm, 10–30 cm, 30–50 cm, were used for parameter optimization and evaluating the performance of algorithms. The performances of these algorithms were compared against multiple criteria, including the parameterization, error level/fitting accuracy (determination coefficient, R²; root mean squared error, RMSE), stability (based on the Pearson correlation coefficient, R; mean absolute percent error, MAPE; root mean squared error, RMSE; Lin’s concordance correlation coefficient, LCCC) and computational efficiency of the algorithms. Finally, the result showed that CSRI is most important parameter for the prediction of soil salinity at the 0–10 cm and 10–30 cm depths, whereas for the 30–50 cm depth interval, VD was the most important predictor. For depths of 0–10 cm, 10–30 cm and 30–50 cm across all models, the model R² values ranged from 0.60 to 0.74, 0.15 to 0.31, and 0.30 to 0.47, and the RMSE values ranged from 18.87 to 23.49 dS m⁻¹, 9.94 to 13.48 dS m⁻¹ and 3.79 to 7.11 dS m⁻¹. The optimal algorithms at three depths of 0–10 cm, 10–30 cm and 30–50 cm are RF, M5 and GRBF with considering accuracy and stability. After a comprehensive assessment of algorithm performance, we recommend RF for mapping salinity in an arid environment such as that of Xinjiang and elsewhere globally. However, there is no algorithm that can perform ideally for all datasets. Therefore, we suggest that the algorithm should be carefully chosen according to the purposes of the study.
ArticleNumber 114211
Author Ding, Jianli
Biswas, Asim
Wang, Fei
Yang, Shengtian
Shi, Zhou
Author_xml – sequence: 1
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046, China
– sequence: 2
  givenname: Zhou
  surname: Shi
  fullname: Shi, Zhou
  organization: Institute of Applied Remote Sensing and Information Technology, Zhejiang University, Hangzhou 310058, China
– sequence: 3
  givenname: Asim
  surname: Biswas
  fullname: Biswas, Asim
  organization: School of Environmental Sciences, University of Guelph, Ontario N1G2W1, Canada
– sequence: 4
  givenname: Shengtian
  surname: Yang
  fullname: Yang, Shengtian
  organization: Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046, China
– sequence: 5
  givenname: Jianli
  surname: Ding
  fullname: Ding, Jianli
  email: dingjianlixjdx@126.com
  organization: Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046, China
BookMark eNqFkD1PwzAQhi0EEm3hL6CMLCm2k_gciQFU8SUVscBsOY5TXDlxsF2k_ntcBRaWTqe7e9476Zmj08ENGqErgpcEE3azXW60a7Xv5ZJimoakpIScoBnhQHNGq_oUzXAic8CMnKN5CNvUQmJnCF53Nppc2o3zJn72mXL9KL0Jbsg657PR69aoaIZNFpyxWZDWDCbuL9BZJ23Ql791gT4eH95Xz_n67elldb_OZcF4zEsKLTCpW1rr9LCTTNe8bFouGW2ANF0FNVSywKyscaNKxgtIu6LjIAGqslig6-nu6N3XTocoehOUtlYO2u2CoAXnwEoASOjthCrvQvC6E8pEGY0bopfGCoLFwZfYij9f4uBLTL5SnP2Lj9700u-PB--moE4evo32IiijB5XEea2iaJ05duIHAvqKaQ
CitedBy_id crossref_primary_10_1016_j_compag_2022_107512
crossref_primary_10_1007_s42729_024_01968_7
crossref_primary_10_1016_j_jag_2024_104059
crossref_primary_10_3390_soilsystems7020047
crossref_primary_10_1016_j_still_2024_106124
crossref_primary_10_3390_agronomy11081535
crossref_primary_10_3390_land13060877
crossref_primary_10_1038_s41598_024_60033_6
crossref_primary_10_3390_rs16244812
crossref_primary_10_1002_ldr_5194
crossref_primary_10_1016_j_geoderma_2020_114858
crossref_primary_10_1080_01431161_2022_2155080
crossref_primary_10_1080_01431161_2023_2235640
crossref_primary_10_1007_s40808_020_01015_1
crossref_primary_10_3390_plants10020217
crossref_primary_10_1016_j_jag_2022_102839
crossref_primary_10_1016_j_jag_2022_102838
crossref_primary_10_3390_agronomy12020332
crossref_primary_10_1002_ldr_4655
crossref_primary_10_1007_s12665_025_12096_5
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_1111_sum_12772
crossref_primary_10_1117_1_JRS_17_018502
crossref_primary_10_1016_j_scitotenv_2020_142030
crossref_primary_10_1007_s40808_025_02331_0
crossref_primary_10_1016_j_jenvman_2023_118421
crossref_primary_10_1016_j_jaridenv_2025_105372
crossref_primary_10_3390_rs12162601
crossref_primary_10_3390_land13091488
crossref_primary_10_1016_j_scienta_2024_113036
crossref_primary_10_3390_rs15215254
crossref_primary_10_3390_rs14133020
crossref_primary_10_1016_j_catena_2025_108769
crossref_primary_10_3390_math11143141
crossref_primary_10_1038_s41598_023_27760_8
crossref_primary_10_1016_j_catena_2023_107197
crossref_primary_10_3390_rs14030512
crossref_primary_10_53897_RevAIA_23_27_70
crossref_primary_10_1016_j_ecoinf_2024_102647
crossref_primary_10_1016_j_asr_2021_10_024
crossref_primary_10_3390_agronomy13123074
crossref_primary_10_1002_ldr_4632
crossref_primary_10_1016_j_agwat_2025_109406
crossref_primary_10_1016_j_ecoinf_2023_102111
crossref_primary_10_1016_j_jenvman_2024_122640
crossref_primary_10_1016_j_catena_2024_107824
crossref_primary_10_3390_agriengineering7030089
crossref_primary_10_3390_agriculture11111129
crossref_primary_10_33961_jecst_2022_00871
crossref_primary_10_1016_j_envres_2022_114870
crossref_primary_10_3390_drones6090257
crossref_primary_10_1007_s11269_024_03796_x
crossref_primary_10_1016_j_agwat_2023_108172
crossref_primary_10_1007_s11104_024_06919_w
crossref_primary_10_3390_agriculture13081530
crossref_primary_10_3390_land11122148
crossref_primary_10_2139_ssrn_4020072
crossref_primary_10_3390_rs15041072
crossref_primary_10_31857_S0032180X23600609
crossref_primary_10_1002_ldr_4741
crossref_primary_10_3390_land12101932
crossref_primary_10_1007_s10661_024_13055_6
crossref_primary_10_3390_rs14225639
crossref_primary_10_1007_s11600_022_00738_2
crossref_primary_10_3390_stresses3010027
crossref_primary_10_1080_22797254_2021_1888657
crossref_primary_10_3390_plants13152094
crossref_primary_10_1590_2675_2824071_22044gf
crossref_primary_10_3390_s22197226
crossref_primary_10_1016_j_jenvman_2020_111383
crossref_primary_10_1016_j_jhydrol_2024_131589
crossref_primary_10_1016_j_coldregions_2024_104304
crossref_primary_10_1016_j_compag_2025_110055
crossref_primary_10_3390_land13101635
crossref_primary_10_3390_rs14112602
crossref_primary_10_1139_cjb_2024_0070
crossref_primary_10_1016_j_scitotenv_2022_156946
crossref_primary_10_1007_s11042_023_16956_9
crossref_primary_10_1016_j_geodrs_2021_e00424
crossref_primary_10_1016_j_jhydrol_2022_127775
crossref_primary_10_3390_rs14020347
crossref_primary_10_1016_j_ejrh_2025_102326
crossref_primary_10_1016_j_compag_2025_110108
crossref_primary_10_3390_w12123360
crossref_primary_10_1134_S1064229323601865
crossref_primary_10_1016_j_still_2023_105893
crossref_primary_10_3390_agronomy13071842
crossref_primary_10_3389_fmicb_2022_1020175
crossref_primary_10_1016_j_agwat_2025_109318
crossref_primary_10_3389_fpls_2023_1171594
crossref_primary_10_1016_j_catena_2023_107313
crossref_primary_10_1016_j_envres_2023_117608
crossref_primary_10_1134_S1064229322080075
crossref_primary_10_1016_j_nexus_2025_100374
crossref_primary_10_1016_j_ecolind_2023_110087
crossref_primary_10_1016_j_scitotenv_2023_168445
crossref_primary_10_3390_land13091438
crossref_primary_10_3390_rs12244118
crossref_primary_10_3390_rs13234825
crossref_primary_10_1016_j_catena_2022_106054
crossref_primary_10_1002_ldr_4398
crossref_primary_10_1016_j_geoderma_2022_115935
crossref_primary_10_1080_10106049_2022_2048905
crossref_primary_10_3390_land14030649
crossref_primary_10_1016_j_agwat_2023_108559
crossref_primary_10_1007_s10705_023_10293_x
crossref_primary_10_1016_j_scitotenv_2022_157416
Cites_doi 10.1016/j.ecolind.2016.11.043
10.1016/j.geoderma.2013.07.020
10.1016/j.catena.2015.05.019
10.5194/soil-2-111-2016
10.1016/j.still.2014.11.001
10.1016/j.geoderma.2017.03.013
10.1016/j.ecolind.2015.01.004
10.1061/(ASCE)1084-0699(2004)9:6(491)
10.1016/j.geoderma.2014.07.028
10.1016/S0016-7061(03)00223-4
10.1080/01621459.1984.10477105
10.1016/j.geomorph.2016.03.018
10.2136/sssaj2012.0317
10.1007/s11442-014-1082-6
10.1016/j.ecolind.2018.05.069
10.1016/j.cageo.2005.12.009
10.1016/j.ecolind.2018.02.041
10.1016/j.jag.2016.05.009
10.1016/j.geoderma.2016.10.019
10.1007/s11769-014-0718-x
10.1016/j.rse.2007.02.005
10.1016/S0304-3800(03)00147-9
10.1007/s11442-009-0600-4
10.1016/j.geoderma.2009.10.007
10.1145/2695664.2695848
10.1016/0375-6742(91)90006-G
10.1016/j.geodrs.2014.09.002
10.1016/j.scitotenv.2018.01.124
10.1371/journal.pone.0169748
10.1016/j.agwat.2013.07.017
10.2166/nh.2017.153
10.1016/j.geoderma.2015.11.014
10.1016/j.sjbs.2014.12.001
10.1016/j.rse.2011.11.002
10.1016/j.geoderma.2013.09.016
10.1016/j.chemolab.2015.05.019
10.1016/j.ecolmodel.2004.07.012
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s10661-017-6415-3
10.1016/j.agwat.2010.03.009
10.1016/j.geoderma.2018.08.006
10.1016/j.geodrs.2014.10.004
10.1214/aos/1176347963
10.1016/j.geoderma.2017.12.002
10.1016/j.geoderma.2014.09.019
10.1109/ICCSCE.2012.6487177
10.1080/22797254.2019.1596756
10.1016/j.catena.2016.09.007
10.1109/LGRS.2009.2039191
10.1016/j.geoderma.2011.01.010
10.1016/j.rse.2015.08.026
10.1023/A:1008841412857
10.1016/S0034-4257(02)00188-8
10.1016/j.envsoft.2011.09.004
10.1016/j.scitotenv.2019.05.037
10.1016/j.scitotenv.2017.02.136
10.2134/agronj2016.06.0368
10.1016/S0167-9473(01)00065-2
10.1016/j.jenvman.2018.03.089
10.1016/j.catena.2012.08.005
10.1016/j.biosystemseng.2012.08.009
10.3390/w10081030
10.1016/j.geoderma.2014.03.025
10.1016/j.agrformet.2018.08.019
10.2136/sssaj2009.0351
10.1023/A:1010933404324
10.1016/0167-9473(93)90135-G
10.1007/s10980-015-0323-0
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114211
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114211
S0016706119304112
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-427d76aed29e702fa6e984bd8a62b71bf57975a306490bc468378a63f87a77543
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 09:14:56 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Fri Feb 23 02:49:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Environmental covariates
Soil salinization
Random forest
Algorithms
Predictive mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-427d76aed29e702fa6e984bd8a62b71bf57975a306490bc468378a63f87a77543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388764777
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388764777
crossref_citationtrail_10_1016_j_geoderma_2020_114211
crossref_primary_10_1016_j_geoderma_2020_114211
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Mhaimeed, Al-Shafie, Ziadat, Dhehibi, Nangia, De Pauw (b0370) 2014; 2–3
Pasolli, Melgani, Blanzieri (b0245) 2010; 7
Ding, Yu (b0060) 2014; 235–236
Pham, Tien Bui, Prakash, Dholakia (b0255) 2017; 149
Shrivastava, Kumar (b0300) 2015; 22
Friedman (b0095) 1991; 19
Xu, Shiue (b0375) 1993; 16
Guo, Luh (b0135) 2003; 18
Jiang, Peng, Biswas, Hu, Zhao, He, Shi (b0165) 2019; 682
Metternicht (b0205) 2003; 168
Rousseeuw (b0270) 1984; 79
Goldshleger, Ben-Dor, Lugassi, Eshel (b0110) 2010; 74
Guo, Kelly, Graham (b0140) 2005; 182
Tian, Mai, Zhao (b0325) 2016; 36
Scudiero, Skaggs, Corwin (b0280) 2014; 2–3
McBratney, Mendonça Santos, Minasny (b0200) 2003; 117
Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (b0315) 2003; 43
Tibshirani (b0330) 1996; 58
Lu (b0190) 1999
Brungard, Boettinger, Duniway, Wills, Edwards (b0030) 2015; 239
Wang, Yang, Yang, Yang, Jianli (b0355) 2019; 52
Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0155) 2016; 265
Gong, Ran, He, Tiyip (b0115) 2015; 146
Scudiero, Skaggs, Corwin (b0290) 2017; 587–588
Tóth, Hermann, da Silva, Montanarella, Assessment (b0335) 2018; 190
Anderson, Das, Keller (b0010) 1998; 5
Guida-Johnson, Abraham, Cony (b0125) 2017; 49
Mohamed, W.N.H.W., Salleh, M.N.M., Omar, A.H., 2013. A comparative study of Reduced Error Pruning method in decision tree algorithms, 2012 IEEE International Conference on Control System, Computing and Engineering. IEEE, Penang, Malaysia.
Breiman (b0025) 2001; 45
Metternicht, Zinck (b0210) 2003; 85
Scudiero, Skaggs, Corwin (b0285) 2015; 169
Liu, Kuang, Zhang, Xu, Qin (b0185) 2014; 24
Singh (b0305) 2018; 89
Gorji, Sertel, Tanik (b0120) 2017; 74
Kempen, Brus, Stoorvogel (b0175) 2011; 162
Richards (b0265) 1954
Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (b0320) 2014; 213
Giordano, Liersch (b0105) 2012; 36
Chork (b0055) 1991; 41
FAO, 2015. Status of the World's Soil Resources:, FAO, Rome, Italy.
Hong, Pradhan, Xu, Tien Bui (b0160) 2015; 133
Vermeulen, Van Niekerk (b0340) 2017; 299
Whitney, Scudiero, El-Askary, Skaggs, Allali, Corwin (b0365) 2018; 93
Angileri, Conoscenti, Hochschild, Märker, Rotigliano, Agnesi (b0015) 2016; 262
Wang, Chen, Luo, Han (b0350) 2015; 25
Zhang, Tashpolat, Ding, Tian, Mamat (b0390) 2009; 22
Guio Blanco, Brito Gomez, Crespo, Ließ (b0130) 2018; 316
Yan, Yao (b0380) 2015; 146
Liu, Zhang, Sun, Zhao, Li (b0180) 2013; 77
Schillaci, Lombardo, Saia, Fantappiè, Märker, Acutis (b0275) 2017; 286
Mulla (b0225) 2013; 114
Chen, Gao, Bin, Jin, Jinya, Hailong, Zhao, Guo, Yang (b0045) 2014; 72
Peng, Biswas, Jiang, Zhao, Hu, Hu, Shi (b0250) 2018; 337
Yu, Liu, Xu, Zhu, Zhang, Qu, Liu, Li (b0385) 2010; 97
Shafizadeh-Moghadam, Valavi, Shahabi, Chapi, Shirzadi (b0295) 2018; 217
Fan, Yue, Wu, Zhang, Cai, Wang, Lu, Xiang (b0065) 2018; 263
Bharti, Pandey, Tripathi, Kumar (b0020) 2017; 48
Farifteh, Van der Meer, Atzberger, Carranza (b0080) 2007; 110
Friedman (b0100) 2002; 38
Verrelst, Muñoz, Alonso, Delegido, Rivera, Camps-Valls, Moreno (b0345) 2012; 118
Minasny, McBratney (b0215) 2006; 32
Butcher, Wick, DeSutter, Chatterjee, Harmon (b0035) 2016; 108
Chen, Peng, Hong, Shahabi, Pradhan, Liu, Zhu, Pei, Duan (b0050) 2018; 626
Zhang, Qi, Gao, Ouyang, Zeng, Zhao (b0395) 2015; 52
Keesstra, Bouma, Wallinga, Tittonell, Smith, Cerdà, Montanarella, Quinton, Pachepsky, van der Putten, Bardgett, Moolenaar, Mol, Jansen, Fresco (b0170) 2016; 2
Mullet, Gage, Morton, Huettmann (b0230) 2016; 31
Frank, E., Mayo, M., Kramer, S., 2015. Alternating model trees, SAC '15 Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM New York, Salamanca, Spain, pp. 871-878.
Fan, Weng, Tao (b0070) 2016; 52
Freund, Y., Mason, L., 1999. The Alternating Decision Tree Learning Algorithm, ICML '99 Proceedings of the Sixteenth International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 124–133.
Chai, Zhou, Chen, Cheng (b0040) 2009; 19
Nosetto, Acosta, Jayawickreme, Ballesteros, Jackson, Jobbágy (b0240) 2013; 129
Quinlan (b0260) 1996; 1
Allbed, Kumar, Aldakheel (b0005) 2014; 230–231
Wang, Li (b0360) 2013; 100
Malone, McBratney, Minasny, Laslett (b0195) 2009; 154
Heung, Bulmer, Schmidt (b0150) 2014; 214
Nachshon (b0235) 2018; 10
Solomatine, Xue (b0310) 2004; 9
Hengl, Mendes, d.J.J., Heuvelink, G.B., Ruiperez, G.M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauermarschallinger, B (b0145) 2017; 12
Kempen (10.1016/j.geoderma.2020.114211_b0175) 2011; 162
Lu (10.1016/j.geoderma.2020.114211_b0190) 1999
Nachshon (10.1016/j.geoderma.2020.114211_b0235) 2018; 10
Chai (10.1016/j.geoderma.2020.114211_b0040) 2009; 19
Yan (10.1016/j.geoderma.2020.114211_b0380) 2015; 146
10.1016/j.geoderma.2020.114211_b0220
Mulla (10.1016/j.geoderma.2020.114211_b0225) 2013; 114
Xu (10.1016/j.geoderma.2020.114211_b0375) 1993; 16
Liu (10.1016/j.geoderma.2020.114211_b0185) 2014; 24
Wang (10.1016/j.geoderma.2020.114211_b0350) 2015; 25
Zhang (10.1016/j.geoderma.2020.114211_b0395) 2015; 52
Heung (10.1016/j.geoderma.2020.114211_b0150) 2014; 214
Gong (10.1016/j.geoderma.2020.114211_b0115) 2015; 146
Schillaci (10.1016/j.geoderma.2020.114211_b0275) 2017; 286
Mullet (10.1016/j.geoderma.2020.114211_b0230) 2016; 31
Chen (10.1016/j.geoderma.2020.114211_b0045) 2014; 72
Tóth (10.1016/j.geoderma.2020.114211_b0335) 2018; 190
Ding (10.1016/j.geoderma.2020.114211_b0060) 2014; 235–236
Guio Blanco (10.1016/j.geoderma.2020.114211_b0130) 2018; 316
Giordano (10.1016/j.geoderma.2020.114211_b0105) 2012; 36
Jiang (10.1016/j.geoderma.2020.114211_b0165) 2019; 682
10.1016/j.geoderma.2020.114211_b0090
Solomatine (10.1016/j.geoderma.2020.114211_b0310) 2004; 9
Quinlan (10.1016/j.geoderma.2020.114211_b0260) 1996; 1
Svetnik (10.1016/j.geoderma.2020.114211_b0315) 2003; 43
Chork (10.1016/j.geoderma.2020.114211_b0055) 1991; 41
Friedman (10.1016/j.geoderma.2020.114211_b0095) 1991; 19
Hong (10.1016/j.geoderma.2020.114211_b0160) 2015; 133
Minasny (10.1016/j.geoderma.2020.114211_b0215) 2006; 32
Friedman (10.1016/j.geoderma.2020.114211_b0100) 2002; 38
Liu (10.1016/j.geoderma.2020.114211_b0180) 2013; 77
Metternicht (10.1016/j.geoderma.2020.114211_b0210) 2003; 85
Goldshleger (10.1016/j.geoderma.2020.114211_b0110) 2010; 74
Fan (10.1016/j.geoderma.2020.114211_b0070) 2016; 52
Whitney (10.1016/j.geoderma.2020.114211_b0365) 2018; 93
Allbed (10.1016/j.geoderma.2020.114211_b0005) 2014; 230–231
Shrivastava (10.1016/j.geoderma.2020.114211_b0300) 2015; 22
Tibshirani (10.1016/j.geoderma.2020.114211_b0330) 1996; 58
Brungard (10.1016/j.geoderma.2020.114211_b0030) 2015; 239
Guo (10.1016/j.geoderma.2020.114211_b0135) 2003; 18
10.1016/j.geoderma.2020.114211_b0085
Richards (10.1016/j.geoderma.2020.114211_b0265) 1954
Anderson (10.1016/j.geoderma.2020.114211_b0010) 1998; 5
Pasolli (10.1016/j.geoderma.2020.114211_b0245) 2010; 7
Peng (10.1016/j.geoderma.2020.114211_b0250) 2018; 337
Rousseeuw (10.1016/j.geoderma.2020.114211_b0270) 1984; 79
Zhang (10.1016/j.geoderma.2020.114211_b0390) 2009; 22
Gorji (10.1016/j.geoderma.2020.114211_b0120) 2017; 74
Metternicht (10.1016/j.geoderma.2020.114211_b0205) 2003; 168
Singh (10.1016/j.geoderma.2020.114211_b0305) 2018; 89
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114211_b0320) 2014; 213
Nosetto (10.1016/j.geoderma.2020.114211_b0240) 2013; 129
Verrelst (10.1016/j.geoderma.2020.114211_b0345) 2012; 118
Wang (10.1016/j.geoderma.2020.114211_b0360) 2013; 100
Guida-Johnson (10.1016/j.geoderma.2020.114211_b0125) 2017; 49
Tian (10.1016/j.geoderma.2020.114211_b0325) 2016; 36
Hengl (10.1016/j.geoderma.2020.114211_b0145) 2017; 12
Keesstra (10.1016/j.geoderma.2020.114211_b0170) 2016; 2
Fan (10.1016/j.geoderma.2020.114211_b0065) 2018; 263
Breiman (10.1016/j.geoderma.2020.114211_b0025) 2001; 45
Chen (10.1016/j.geoderma.2020.114211_b0050) 2018; 626
McBratney (10.1016/j.geoderma.2020.114211_b0200) 2003; 117
Scudiero (10.1016/j.geoderma.2020.114211_b0285) 2015; 169
Malone (10.1016/j.geoderma.2020.114211_b0195) 2009; 154
Wang (10.1016/j.geoderma.2020.114211_b0355) 2019; 52
Farifteh (10.1016/j.geoderma.2020.114211_b0080) 2007; 110
Scudiero (10.1016/j.geoderma.2020.114211_b0290) 2017; 587–588
10.1016/j.geoderma.2020.114211_b0075
Shafizadeh-Moghadam (10.1016/j.geoderma.2020.114211_b0295) 2018; 217
Wu (10.1016/j.geoderma.2020.114211_b0370) 2014; 2–3
Bharti (10.1016/j.geoderma.2020.114211_b0020) 2017; 48
Butcher (10.1016/j.geoderma.2020.114211_b0035) 2016; 108
Scudiero (10.1016/j.geoderma.2020.114211_b0280) 2014; 2–3
Yu (10.1016/j.geoderma.2020.114211_b0385) 2010; 97
Guo (10.1016/j.geoderma.2020.114211_b0140) 2005; 182
Angileri (10.1016/j.geoderma.2020.114211_b0015) 2016; 262
Heung (10.1016/j.geoderma.2020.114211_b0155) 2016; 265
Pham (10.1016/j.geoderma.2020.114211_b0255) 2017; 149
Vermeulen (10.1016/j.geoderma.2020.114211_b0340) 2017; 299
References_xml – volume: 337
  start-page: 1309
  year: 2018
  end-page: 1319
  ident: b0250
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
– volume: 25
  start-page: 321
  year: 2015
  end-page: 336
  ident: b0350
  article-title: Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management
  publication-title: Chin. Geogr. Sci.
– volume: 182
  start-page: 75
  year: 2005
  end-page: 90
  ident: b0140
  article-title: Support vector machines for predicting distribution of Sudden Oak Death in California
  publication-title: Ecol. Model.
– volume: 682
  start-page: 190
  year: 2019
  end-page: 199
  ident: b0165
  article-title: Characterising dryland salinity in three dimensions
  publication-title: Sci. Total. Environ.
– volume: 52
  start-page: 256
  year: 2019
  end-page: 276
  ident: b0355
  article-title: Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China
  publication-title: Eur. J. Remote. Sens.
– volume: 49
  start-page: 205
  year: 2017
  end-page: 215
  ident: b0125
  article-title: Salinization in irrigated drylands: prospects for restoration in Cuyo, Argentina
  publication-title: Revista De La Facultad De Ciencias Agrarias
– volume: 2–3
  start-page: 82
  year: 2014
  end-page: 90
  ident: b0280
  article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA
  publication-title: Geoderma Reg.
– volume: 149
  start-page: 52
  year: 2017
  end-page: 63
  ident: b0255
  article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS
  publication-title: Catena
– volume: 1
  start-page: 77
  year: 1996
  end-page: 90
  ident: b0260
  article-title: Improved Use of Continuous Attributes in C4.5
  publication-title: J. Aritif. Intell. Res.
– reference: Freund, Y., Mason, L., 1999. The Alternating Decision Tree Learning Algorithm, ICML '99 Proceedings of the Sixteenth International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 124–133.
– volume: 214
  start-page: 141
  year: 2014
  end-page: 154
  ident: b0150
  article-title: Predictive soil parent material mapping at a regional-scale: a Random Forest approach
  publication-title: Geoderma
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: b0200
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 129
  start-page: 120
  year: 2013
  end-page: 129
  ident: b0240
  article-title: Land-use and topography shape soil and groundwater salinity in central Argentina
  publication-title: Agric. Water. Manage.
– volume: 213
  start-page: 15
  year: 2014
  end-page: 28
  ident: b0320
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
– volume: 114
  start-page: 358
  year: 2013
  end-page: 371
  ident: b0225
  article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
  publication-title: Biosys. Eng.
– volume: 97
  start-page: 1952
  year: 2010
  end-page: 1960
  ident: b0385
  article-title: Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China
  publication-title: Agric. Water. Manage.
– volume: 48
  start-page: 1489
  year: 2017
  end-page: 1507
  ident: b0020
  article-title: Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models
  publication-title: Hydrol. Res.
– volume: 110
  start-page: 59
  year: 2007
  end-page: 78
  ident: b0080
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote. Sens. Environ.
– volume: 239
  start-page: 68
  year: 2015
  end-page: 83
  ident: b0030
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– volume: 108
  start-page: 2189
  year: 2016
  end-page: 2200
  ident: b0035
  article-title: Soil salinity: a threat to global food security
  publication-title: Agron. J.
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: b0100
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data An.
– volume: 36
  start-page: 49
  year: 2012
  end-page: 63
  ident: b0105
  article-title: A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring
  publication-title: Environ. Model. Software.
– volume: 12
  year: 2017
  ident: b0145
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS ONE
– volume: 19
  start-page: 600
  year: 2009
  end-page: 614
  ident: b0040
  article-title: Digital regionalization of geomorphology in Xinjiang
  publication-title: J. Geogr. Sci.
– volume: 286
  start-page: 35
  year: 2017
  end-page: 45
  ident: b0275
  article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region
  publication-title: Geoderma
– volume: 93
  start-page: 889
  year: 2018
  end-page: 898
  ident: b0365
  article-title: Validating the use of MODIS time series for salinity assessment over agricultural soils in California
  publication-title: USA. Ecol. Indic.
– volume: 79
  start-page: 871
  year: 1984
  end-page: 880
  ident: b0270
  article-title: Least median of squares regression
  publication-title: J. Am. Stat. Assoc.
– volume: 7
  start-page: 464
  year: 2010
  end-page: 468
  ident: b0245
  article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
  publication-title: IEEE Geosci. Remote. S.
– volume: 146
  start-page: 136
  year: 2015
  end-page: 146
  ident: b0380
  article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO)
  publication-title: Chemometer. Intell. Lab.
– volume: 235–236
  start-page: 316
  year: 2014
  end-page: 322
  ident: b0060
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
– volume: 9
  start-page: 491
  year: 2004
  end-page: 501
  ident: b0310
  article-title: M5 Model Trees and Neural Networks: application to Flood Forecasting in the Upper Reach of the Huai River in China
  publication-title: J. Hydrol. Eng.
– volume: 263
  start-page: 225
  year: 2018
  end-page: 241
  ident: b0065
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agr. Forest. Meteorol.
– volume: 146
  start-page: 223
  year: 2015
  end-page: 229
  ident: b0115
  article-title: A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang
  publication-title: China. Soil. Till. Res.
– volume: 74
  start-page: 384
  year: 2017
  end-page: 391
  ident: b0120
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
– volume: 626
  start-page: 1121
  year: 2018
  end-page: 1135
  ident: b0050
  article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province
  publication-title: China. Sci. Total. Environ.
– reference: Mohamed, W.N.H.W., Salleh, M.N.M., Omar, A.H., 2013. A comparative study of Reduced Error Pruning method in decision tree algorithms, 2012 IEEE International Conference on Control System, Computing and Engineering. IEEE, Penang, Malaysia.
– year: 1954
  ident: b0265
  article-title: Diagnosis and Improvement of Saline and Alkali Soils, 60
– volume: 587–588
  start-page: 273
  year: 2017
  end-page: 281
  ident: b0290
  article-title: Simplifying field-scale assessment of spatiotemporal changes of soil salinity
  publication-title: Sci. Total. Environ.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0330
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. Roy. Statist. Soc.
– volume: 22
  start-page: 123
  year: 2015
  end-page: 131
  ident: b0300
  article-title: Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation
  publication-title: Saudi. J. Biol. Sci.
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: b0215
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comp. Geosci.
– volume: 154
  start-page: 138
  year: 2009
  end-page: 152
  ident: b0195
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
– volume: 16
  start-page: 349
  year: 1993
  end-page: 362
  ident: b0375
  article-title: Parallel algorithms for least median of squares regression
  publication-title: Comput. Stat. Data. An.
– volume: 230–231
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0005
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region
  publication-title: Geoderma
– volume: 43
  start-page: 1947
  year: 2003
  end-page: 1958
  ident: b0315
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Model.
– volume: 2
  start-page: 111
  year: 2016
  end-page: 128
  ident: b0170
  article-title: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals
  publication-title: SOIL
– volume: 190
  start-page: 57
  year: 2018
  ident: b0335
  article-title: Monitoring soil for sustainable development and land degradation neutrality
  publication-title: Enviro. Monit. Assess.
– volume: 118
  start-page: 127
  year: 2012
  end-page: 139
  ident: b0345
  article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3
  publication-title: Remote. Sens. Environ.
– volume: 2–3
  start-page: 21
  year: 2014
  end-page: 31
  ident: b0370
  article-title: Mapping soil salinity changes using remote sensing in Central Iraq
  publication-title: Geoderma Reg.
– volume: 133
  start-page: 266
  year: 2015
  end-page: 281
  ident: b0160
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines
  publication-title: Catena
– volume: 52
  start-page: 32
  year: 2016
  end-page: 41
  ident: b0070
  article-title: Towards decadal soil salinity mapping using Landsat time series data
  publication-title: Int. J. Appl. Earth. Obs.
– volume: 265
  start-page: 62
  year: 2016
  end-page: 77
  ident: b0155
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
– volume: 85
  start-page: 1
  year: 2003
  end-page: 20
  ident: b0210
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote. Sens. Environ.
– volume: 100
  start-page: 50
  year: 2013
  end-page: 56
  ident: b0360
  article-title: Land exploitation resulting in soil salinization in a desert–oasis ecotone
  publication-title: Catena
– volume: 169
  start-page: 335
  year: 2015
  end-page: 343
  ident: b0285
  article-title: Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance
  publication-title: Remote. Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0025
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 299
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0340
  article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates
  publication-title: Geoderma
– volume: 5
  start-page: 421
  year: 1998
  end-page: 441
  ident: b0010
  article-title: Estimation of Spatiotemporal Neural Activity Using Radial Basis Function Networks
  publication-title: J. Comput. Neurosci.
– volume: 217
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0295
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manage.
– volume: 52
  start-page: 480
  year: 2015
  end-page: 489
  ident: b0395
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecol. Indic.
– volume: 24
  start-page: 195
  year: 2014
  end-page: 210
  ident: b0185
  article-title: Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s
  publication-title: J. Geogr. Sci.
– reference: FAO, 2015. Status of the World's Soil Resources:, FAO, Rome, Italy.
– volume: 316
  start-page: 100
  year: 2018
  end-page: 114
  ident: b0130
  article-title: Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest
  publication-title: Geoderma
– volume: 77
  start-page: 1241
  year: 2013
  end-page: 1253
  ident: b0180
  article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape
  publication-title: Soil Sci. Soc. Am. J.
– reference: Frank, E., Mayo, M., Kramer, S., 2015. Alternating model trees, SAC '15 Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM New York, Salamanca, Spain, pp. 871-878.
– volume: 36
  start-page: 7064
  year: 2016
  end-page: 7068
  ident: b0325
  article-title: Study on key technologies of ecological management of saline alkali land in arid area of Xinjiang
  publication-title: Acta. Ecol. Sin.
– volume: 72
  start-page: 7594
  year: 2014
  end-page: 7601
  ident: b0045
  article-title: Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang
  publication-title: Geogr. Res.
– volume: 262
  start-page: 61
  year: 2016
  end-page: 76
  ident: b0015
  article-title: Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)
  publication-title: Geomorphology
– volume: 18
  start-page: 665
  year: 2003
  end-page: 672
  ident: b0135
  article-title: Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction
  publication-title: IEEE. T. Power. Electr.
– volume: 89
  start-page: 584
  year: 2018
  end-page: 589
  ident: b0305
  article-title: Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques
  publication-title: Ecol. Indic.
– year: 1999
  ident: b0190
  article-title: Analytical Methods of Soil and Agricultural Chemistry
– volume: 168
  start-page: 371
  year: 2003
  end-page: 389
  ident: b0205
  article-title: Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios
  publication-title: Ecol. Model.
– volume: 74
  start-page: 1433
  year: 2010
  end-page: 1445
  ident: b0110
  article-title: Soil degradation monitoring by remote sensing: examples with three degradation processes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 10
  start-page: 1030
  year: 2018
  ident: b0235
  article-title: Cropland soil salinization and associated hydrology: trends, processes and examples
  publication-title: Water
– volume: 31
  start-page: 1117
  year: 2016
  end-page: 1137
  ident: b0230
  article-title: Temporal and spatial variation of a winter soundscape in south-central Alaska
  publication-title: Landscape. Ecol.
– volume: 41
  start-page: 325
  year: 1991
  end-page: 340
  ident: b0055
  article-title: An assessment of least median of squares regression in exploration geochemistry
  publication-title: J. Geochem. Explor.
– volume: 162
  start-page: 107
  year: 2011
  end-page: 123
  ident: b0175
  article-title: Three-dimensional mapping of soil organic matter content using soil type–specific depth functions
  publication-title: Geoderma
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: b0095
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 22
  start-page: 227
  year: 2009
  end-page: 235
  ident: b0390
  article-title: Relationships between soil salinization and spectra in the delta oasis of Weigan and Kuqa Rivers
  publication-title: Res. Environ. Sci.
– ident: 10.1016/j.geoderma.2020.114211_b0090
– volume: 74
  start-page: 384
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0120
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.11.043
– volume: 213
  start-page: 15
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0320
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– year: 1954
  ident: 10.1016/j.geoderma.2020.114211_b0265
– volume: 133
  start-page: 266
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0160
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2015.05.019
– volume: 2
  start-page: 111
  issue: 2
  year: 2016
  ident: 10.1016/j.geoderma.2020.114211_b0170
  article-title: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals
  publication-title: SOIL
  doi: 10.5194/soil-2-111-2016
– volume: 146
  start-page: 223
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0115
  article-title: A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang
  publication-title: China. Soil. Till. Res.
  doi: 10.1016/j.still.2014.11.001
– volume: 299
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0340
  article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.03.013
– volume: 52
  start-page: 480
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0395
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.01.004
– volume: 9
  start-page: 491
  issue: 6
  year: 2004
  ident: 10.1016/j.geoderma.2020.114211_b0310
  article-title: M5 Model Trees and Neural Networks: application to Flood Forecasting in the Upper Reach of the Huai River in China
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2004)9:6(491)
– volume: 235–236
  start-page: 316
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0060
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.028
– volume: 117
  start-page: 3
  issue: 1–2
  year: 2003
  ident: 10.1016/j.geoderma.2020.114211_b0200
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 79
  start-page: 871
  issue: 388
  year: 1984
  ident: 10.1016/j.geoderma.2020.114211_b0270
  article-title: Least median of squares regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1984.10477105
– volume: 262
  start-page: 61
  year: 2016
  ident: 10.1016/j.geoderma.2020.114211_b0015
  article-title: Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.03.018
– volume: 77
  start-page: 1241
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2020.114211_b0180
  article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0317
– volume: 24
  start-page: 195
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0185
  article-title: Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-014-1082-6
– volume: 22
  start-page: 227
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2020.114211_b0390
  article-title: Relationships between soil salinization and spectra in the delta oasis of Weigan and Kuqa Rivers
  publication-title: Res. Environ. Sci.
– volume: 93
  start-page: 889
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0365
  article-title: Validating the use of MODIS time series for salinity assessment over agricultural soils in California
  publication-title: USA. Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.05.069
– volume: 49
  start-page: 205
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0125
  article-title: Salinization in irrigated drylands: prospects for restoration in Cuyo, Argentina
  publication-title: Revista De La Facultad De Ciencias Agrarias
– volume: 32
  start-page: 1378
  issue: 9
  year: 2006
  ident: 10.1016/j.geoderma.2020.114211_b0215
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comp. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 89
  start-page: 584
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0305
  article-title: Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.02.041
– volume: 52
  start-page: 32
  year: 2016
  ident: 10.1016/j.geoderma.2020.114211_b0070
  article-title: Towards decadal soil salinity mapping using Landsat time series data
  publication-title: Int. J. Appl. Earth. Obs.
  doi: 10.1016/j.jag.2016.05.009
– volume: 286
  start-page: 35
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0275
  article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.019
– volume: 25
  start-page: 321
  issue: 3
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0350
  article-title: Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-014-0718-x
– volume: 110
  start-page: 59
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2020.114211_b0080
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2007.02.005
– volume: 168
  start-page: 371
  issue: 3
  year: 2003
  ident: 10.1016/j.geoderma.2020.114211_b0205
  article-title: Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(03)00147-9
– volume: 19
  start-page: 600
  issue: 5
  year: 2009
  ident: 10.1016/j.geoderma.2020.114211_b0040
  article-title: Digital regionalization of geomorphology in Xinjiang
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-009-0600-4
– volume: 154
  start-page: 138
  issue: 1–2
  year: 2009
  ident: 10.1016/j.geoderma.2020.114211_b0195
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– volume: 1
  start-page: 77
  year: 1996
  ident: 10.1016/j.geoderma.2020.114211_b0260
  article-title: Improved Use of Continuous Attributes in C4.5
  publication-title: J. Aritif. Intell. Res.
– ident: 10.1016/j.geoderma.2020.114211_b0085
  doi: 10.1145/2695664.2695848
– volume: 41
  start-page: 325
  issue: 3
  year: 1991
  ident: 10.1016/j.geoderma.2020.114211_b0055
  article-title: An assessment of least median of squares regression in exploration geochemistry
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(91)90006-G
– volume: 72
  start-page: 7594
  issue: 12
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0045
  article-title: Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang
  publication-title: Geogr. Res.
– volume: 2–3
  start-page: 21
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0370
  article-title: Mapping soil salinity changes using remote sensing in Central Iraq
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2014.09.002
– volume: 626
  start-page: 1121
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0050
  article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province
  publication-title: China. Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2018.01.124
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0145
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169748
– volume: 129
  start-page: 120
  year: 2013
  ident: 10.1016/j.geoderma.2020.114211_b0240
  article-title: Land-use and topography shape soil and groundwater salinity in central Argentina
  publication-title: Agric. Water. Manage.
  doi: 10.1016/j.agwat.2013.07.017
– volume: 48
  start-page: 1489
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0020
  article-title: Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2017.153
– volume: 265
  start-page: 62
  year: 2016
  ident: 10.1016/j.geoderma.2020.114211_b0155
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– volume: 22
  start-page: 123
  issue: 2
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0300
  article-title: Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation
  publication-title: Saudi. J. Biol. Sci.
  doi: 10.1016/j.sjbs.2014.12.001
– volume: 118
  start-page: 127
  year: 2012
  ident: 10.1016/j.geoderma.2020.114211_b0345
  article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2011.11.002
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 10.1016/j.geoderma.2020.114211_b0315
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Model.
– volume: 214
  start-page: 141
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0150
  article-title: Predictive soil parent material mapping at a regional-scale: a Random Forest approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.016
– volume: 146
  start-page: 136
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0380
  article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO)
  publication-title: Chemometer. Intell. Lab.
  doi: 10.1016/j.chemolab.2015.05.019
– volume: 182
  start-page: 75
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2020.114211_b0140
  article-title: Support vector machines for predicting distribution of Sudden Oak Death in California
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.07.012
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.geoderma.2020.114211_b0330
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. Roy. Statist. Soc.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 190
  start-page: 57
  issue: 2
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0335
  article-title: Monitoring soil for sustainable development and land degradation neutrality
  publication-title: Enviro. Monit. Assess.
  doi: 10.1007/s10661-017-6415-3
– volume: 97
  start-page: 1952
  issue: 12
  year: 2010
  ident: 10.1016/j.geoderma.2020.114211_b0385
  article-title: Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China
  publication-title: Agric. Water. Manage.
  doi: 10.1016/j.agwat.2010.03.009
– volume: 337
  start-page: 1309
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0250
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.006
– volume: 2–3
  start-page: 82
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0280
  article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2014.10.004
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.geoderma.2020.114211_b0095
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347963
– volume: 18
  start-page: 665
  issue: 2
  year: 2003
  ident: 10.1016/j.geoderma.2020.114211_b0135
  article-title: Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction
  publication-title: IEEE. T. Power. Electr.
– volume: 316
  start-page: 100
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0130
  article-title: Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.12.002
– volume: 36
  start-page: 7064
  issue: 22
  year: 2016
  ident: 10.1016/j.geoderma.2020.114211_b0325
  article-title: Study on key technologies of ecological management of saline alkali land in arid area of Xinjiang
  publication-title: Acta. Ecol. Sin.
– volume: 239
  start-page: 68
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0030
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– ident: 10.1016/j.geoderma.2020.114211_b0220
  doi: 10.1109/ICCSCE.2012.6487177
– volume: 52
  start-page: 256
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2020.114211_b0355
  article-title: Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China
  publication-title: Eur. J. Remote. Sens.
  doi: 10.1080/22797254.2019.1596756
– volume: 149
  start-page: 52
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0255
  article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS
  publication-title: Catena
  doi: 10.1016/j.catena.2016.09.007
– volume: 7
  start-page: 464
  issue: 3
  year: 2010
  ident: 10.1016/j.geoderma.2020.114211_b0245
  article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
  publication-title: IEEE Geosci. Remote. S.
  doi: 10.1109/LGRS.2009.2039191
– volume: 162
  start-page: 107
  issue: 1–2
  year: 2011
  ident: 10.1016/j.geoderma.2020.114211_b0175
  article-title: Three-dimensional mapping of soil organic matter content using soil type–specific depth functions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.01.010
– volume: 169
  start-page: 335
  year: 2015
  ident: 10.1016/j.geoderma.2020.114211_b0285
  article-title: Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2015.08.026
– volume: 5
  start-page: 421
  issue: 4
  year: 1998
  ident: 10.1016/j.geoderma.2020.114211_b0010
  article-title: Estimation of Spatiotemporal Neural Activity Using Radial Basis Function Networks
  publication-title: J. Comput. Neurosci.
  doi: 10.1023/A:1008841412857
– volume: 85
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2020.114211_b0210
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
– volume: 36
  start-page: 49
  year: 2012
  ident: 10.1016/j.geoderma.2020.114211_b0105
  article-title: A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring
  publication-title: Environ. Model. Software.
  doi: 10.1016/j.envsoft.2011.09.004
– volume: 682
  start-page: 190
  year: 2019
  ident: 10.1016/j.geoderma.2020.114211_b0165
  article-title: Characterising dryland salinity in three dimensions
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.05.037
– volume: 587–588
  start-page: 273
  year: 2017
  ident: 10.1016/j.geoderma.2020.114211_b0290
  article-title: Simplifying field-scale assessment of spatiotemporal changes of soil salinity
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2017.02.136
– volume: 108
  start-page: 2189
  issue: 6
  year: 2016
  ident: 10.1016/j.geoderma.2020.114211_b0035
  article-title: Soil salinity: a threat to global food security
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.06.0368
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.geoderma.2020.114211_b0100
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data An.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 217
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0295
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.03.089
– year: 1999
  ident: 10.1016/j.geoderma.2020.114211_b0190
– volume: 100
  start-page: 50
  year: 2013
  ident: 10.1016/j.geoderma.2020.114211_b0360
  article-title: Land exploitation resulting in soil salinization in a desert–oasis ecotone
  publication-title: Catena
  doi: 10.1016/j.catena.2012.08.005
– volume: 114
  start-page: 358
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2020.114211_b0225
  article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
  publication-title: Biosys. Eng.
  doi: 10.1016/j.biosystemseng.2012.08.009
– volume: 10
  start-page: 1030
  issue: 8
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0235
  article-title: Cropland soil salinization and associated hydrology: trends, processes and examples
  publication-title: Water
  doi: 10.3390/w10081030
– volume: 230–231
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2020.114211_b0005
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.025
– volume: 263
  start-page: 225
  year: 2018
  ident: 10.1016/j.geoderma.2020.114211_b0065
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agr. Forest. Meteorol.
  doi: 10.1016/j.agrformet.2018.08.019
– ident: 10.1016/j.geoderma.2020.114211_b0075
– volume: 74
  start-page: 1433
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2020.114211_b0110
  article-title: Soil degradation monitoring by remote sensing: examples with three degradation processes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0351
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2020.114211_b0025
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 16
  start-page: 349
  issue: 3
  year: 1993
  ident: 10.1016/j.geoderma.2020.114211_b0375
  article-title: Parallel algorithms for least median of squares regression
  publication-title: Comput. Stat. Data. An.
  doi: 10.1016/0167-9473(93)90135-G
– volume: 31
  start-page: 1117
  issue: 5
  year: 2016
  ident: 10.1016/j.geoderma.2020.114211_b0230
  article-title: Temporal and spatial variation of a winter soundscape in south-central Alaska
  publication-title: Landscape. Ecol.
  doi: 10.1007/s10980-015-0323-0
SSID ssj0017020
Score 2.5933268
Snippet •Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No...
Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114211
SubjectTerms Algorithms
biotic factors
China
climatic factors
data collection
dry environmental conditions
Environmental covariates
land degradation
land use
Landsat
monitoring
normal distribution
oases
prediction
Predictive mapping
pruning
Random forest
regression analysis
remote sensing
salinity
soil salinity
Soil salinization
soil types
soil water
surface temperature
temporal variation
uncertainty
vegetation index
Title Multi-algorithm comparison for predicting soil salinity
URI https://dx.doi.org/10.1016/j.geoderma.2020.114211
https://www.proquest.com/docview/2388764777
Volume 365
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqILEGhonjh2PVUVVQHSiUjfLTuzSqjRVmw4s_HZ8iVMBEurAEilRLkrOzt13urvvELpTXFmYnBnfHpVPrE_3E8OpjXkyGhjNIxNAg_PLkA5G5GkcjxuoV_fCQFmls_2VTS-ttbvScdrsLKdT6PHFlFl3ZCFIQHA5aZgQBrv8_nNb5oFZ4KgZMfXh7m9dwjO7RjBwrOQfCkva3BDjvxzUL1Nd-p_-ETp0wNHrVu92jBp6cYIOupOVI8_Qp4iV3bS-nE9yG_K_vXvpdsigZ7Gpt1xBVgbqnL11Pp17awltkcXHGRr1H157A98NRvBlRJPCJyHLGJU6C7m232ck1TwhKkskDRXDysSMs1hCcMEDlRIKrPGSRiZhEhjvonPUXOQLfYG8BMZjSmmMhVUEB0rFCuh7AkWoTrUKWiiutSFSxxoOwyvmoi4Pm4laiwK0KCottlBnK7eseDN2SvBa2eLHDhDWuO-Uva1XR9jfA3IecqHzzVpYRGLtPWGMXf7j-VdoH84gi4Tja9QsVht9Y8FIodrlbmujve7j82D4BY4A3bE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQDG2Hqk-VPlOpa0QSHDsZESoK5TGBxGbZiU1BNEEQhv77-hIHtZUqhi4ZEl2UnO2773R33yH0IkKhYXKibH0VNtY-3Q5USHTMkxBHybCtHGhwHo1JNMVvM39WQ92qFwbKKo3tL216Ya3NnZbRZmu9WECPr0uodkcagjjYhUnDDWCn8uuo0ekPovE-mUAdw87oEhsEvjUKL_UywcyxgoLIK5hzPdf9y0f9staFC-qdoVODHa1O-XnnqCbTC3TSmW8Mf4a8RLRoqLX5ap7pqP_9w4r3cwYtDU-t9QYSM1DqbG2zxcracuiMzD-v0LT3OulGtpmNYPM2CXIbezShhMvEC6X-P8WJDAMskoATT1BXKJ-G1OcQX4SOiDEB4nhO2iqgHEjv2teonmapvEFWABMyOVdKIyvsOkL4Ahh8HIGJjKVwmsivtMFiQxwO8ytWrKoQW7JKiwy0yEotNlFrL7cuqTMOSoSVstmPTcC0fT8o-1ytDtMnBNIePJXZbss0KNEmH1NKb__x_id0FE1GQzbsjwd36BieQFLJ9e9RPd_s5IPGJrl4NHvvCzLl4GI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-algorithm+comparison+for+predicting+soil+salinity&rft.jtitle=Geoderma&rft.au=Wang%2C+Fei&rft.au=Shi%2C+Zhou&rft.au=Biswas%2C+Asim&rft.au=Yang%2C+Shengtian&rft.date=2020-04-15&rft.issn=0016-7061&rft.volume=365+p.114211-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon