Multi-algorithm comparison for predicting soil salinity
•Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No algorithm that is superior for all soil depths.•Best linear and non-linear algorithms were LMSLR and RF.•Complexity of the algorithm did not alwa...
Saved in:
Published in | Geoderma Vol. 365; p. 114211 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2020.114211 |
Cover
Loading…
Abstract | •Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No algorithm that is superior for all soil depths.•Best linear and non-linear algorithms were LMSLR and RF.•Complexity of the algorithm did not always increase the stability of the algorithm.
Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant challenges due to strong spatial and temporal variability. Environmental covariates show promise in predicting salinity over large areas provided a reasonable relationship is developed with field measured salinity at few points. While simple regression-based approaches to complex data mining methods have been used in the prediction, a comprehensive comparison of their performances has not been explored, leading to uncertainty in which algorithms to select. This study compares thirteen popularly and non-popularly used algorithms and their performances following four criteria in predicting soil salinity from environmental covariates from Kuqa Oasis from Xinjiang, China. The environmental covariates used for the prediction include principal components of Landsat satellite images at multiple spectral bands, climate factors (referring to land surface temperature), vegetation indices, salinity and soil-related indices, soil moisture indices, DEM derived indices, land use, landform and soil type and categorized them under parameter categories of the SCORPAN (S, soils; C, climate; O, organisms, biotic factor; R, relief; P, parent material; A, age; and N, space) model. The predictive relationships were developed using the algorithms including some previously used ones such as Multiple Linear regression (MLR), Multi-Layer Perceptron-Artificial Neural Network (MLP-ANN), Stochastic Gradient Treeboost (SGT), M5 Model Tree (M5), Multivariate Adaptive Regression Splines (MARS), Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Regression (SVR) and some that have not previously been used in predicting salinity such as Alternating Model Tree (ATM), Gaussian Processes Regression (GPR), Gaussian Radial Basis Functions (GRBF), Least Median Squared Linear Regression (LMSLR), and Reduced Error Pruning Tree (REPTree). Here, 5-fold cross-validation and an independent dataset (30% overall samples) at three depths, 0–10 cm, 10–30 cm, 30–50 cm, were used for parameter optimization and evaluating the performance of algorithms. The performances of these algorithms were compared against multiple criteria, including the parameterization, error level/fitting accuracy (determination coefficient, R2; root mean squared error, RMSE), stability (based on the Pearson correlation coefficient, R; mean absolute percent error, MAPE; root mean squared error, RMSE; Lin’s concordance correlation coefficient, LCCC) and computational efficiency of the algorithms. Finally, the result showed that CSRI is most important parameter for the prediction of soil salinity at the 0–10 cm and 10–30 cm depths, whereas for the 30–50 cm depth interval, VD was the most important predictor. For depths of 0–10 cm, 10–30 cm and 30–50 cm across all models, the model R2 values ranged from 0.60 to 0.74, 0.15 to 0.31, and 0.30 to 0.47, and the RMSE values ranged from 18.87 to 23.49 dS m−1, 9.94 to 13.48 dS m−1 and 3.79 to 7.11 dS m−1. The optimal algorithms at three depths of 0–10 cm, 10–30 cm and 30–50 cm are RF, M5 and GRBF with considering accuracy and stability. After a comprehensive assessment of algorithm performance, we recommend RF for mapping salinity in an arid environment such as that of Xinjiang and elsewhere globally. However, there is no algorithm that can perform ideally for all datasets. Therefore, we suggest that the algorithm should be carefully chosen according to the purposes of the study. |
---|---|
AbstractList | •Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No algorithm that is superior for all soil depths.•Best linear and non-linear algorithms were LMSLR and RF.•Complexity of the algorithm did not always increase the stability of the algorithm.
Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant challenges due to strong spatial and temporal variability. Environmental covariates show promise in predicting salinity over large areas provided a reasonable relationship is developed with field measured salinity at few points. While simple regression-based approaches to complex data mining methods have been used in the prediction, a comprehensive comparison of their performances has not been explored, leading to uncertainty in which algorithms to select. This study compares thirteen popularly and non-popularly used algorithms and their performances following four criteria in predicting soil salinity from environmental covariates from Kuqa Oasis from Xinjiang, China. The environmental covariates used for the prediction include principal components of Landsat satellite images at multiple spectral bands, climate factors (referring to land surface temperature), vegetation indices, salinity and soil-related indices, soil moisture indices, DEM derived indices, land use, landform and soil type and categorized them under parameter categories of the SCORPAN (S, soils; C, climate; O, organisms, biotic factor; R, relief; P, parent material; A, age; and N, space) model. The predictive relationships were developed using the algorithms including some previously used ones such as Multiple Linear regression (MLR), Multi-Layer Perceptron-Artificial Neural Network (MLP-ANN), Stochastic Gradient Treeboost (SGT), M5 Model Tree (M5), Multivariate Adaptive Regression Splines (MARS), Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Regression (SVR) and some that have not previously been used in predicting salinity such as Alternating Model Tree (ATM), Gaussian Processes Regression (GPR), Gaussian Radial Basis Functions (GRBF), Least Median Squared Linear Regression (LMSLR), and Reduced Error Pruning Tree (REPTree). Here, 5-fold cross-validation and an independent dataset (30% overall samples) at three depths, 0–10 cm, 10–30 cm, 30–50 cm, were used for parameter optimization and evaluating the performance of algorithms. The performances of these algorithms were compared against multiple criteria, including the parameterization, error level/fitting accuracy (determination coefficient, R2; root mean squared error, RMSE), stability (based on the Pearson correlation coefficient, R; mean absolute percent error, MAPE; root mean squared error, RMSE; Lin’s concordance correlation coefficient, LCCC) and computational efficiency of the algorithms. Finally, the result showed that CSRI is most important parameter for the prediction of soil salinity at the 0–10 cm and 10–30 cm depths, whereas for the 30–50 cm depth interval, VD was the most important predictor. For depths of 0–10 cm, 10–30 cm and 30–50 cm across all models, the model R2 values ranged from 0.60 to 0.74, 0.15 to 0.31, and 0.30 to 0.47, and the RMSE values ranged from 18.87 to 23.49 dS m−1, 9.94 to 13.48 dS m−1 and 3.79 to 7.11 dS m−1. The optimal algorithms at three depths of 0–10 cm, 10–30 cm and 30–50 cm are RF, M5 and GRBF with considering accuracy and stability. After a comprehensive assessment of algorithm performance, we recommend RF for mapping salinity in an arid environment such as that of Xinjiang and elsewhere globally. However, there is no algorithm that can perform ideally for all datasets. Therefore, we suggest that the algorithm should be carefully chosen according to the purposes of the study. Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant challenges due to strong spatial and temporal variability. Environmental covariates show promise in predicting salinity over large areas provided a reasonable relationship is developed with field measured salinity at few points. While simple regression-based approaches to complex data mining methods have been used in the prediction, a comprehensive comparison of their performances has not been explored, leading to uncertainty in which algorithms to select. This study compares thirteen popularly and non-popularly used algorithms and their performances following four criteria in predicting soil salinity from environmental covariates from Kuqa Oasis from Xinjiang, China. The environmental covariates used for the prediction include principal components of Landsat satellite images at multiple spectral bands, climate factors (referring to land surface temperature), vegetation indices, salinity and soil-related indices, soil moisture indices, DEM derived indices, land use, landform and soil type and categorized them under parameter categories of the SCORPAN (S, soils; C, climate; O, organisms, biotic factor; R, relief; P, parent material; A, age; and N, space) model. The predictive relationships were developed using the algorithms including some previously used ones such as Multiple Linear regression (MLR), Multi-Layer Perceptron-Artificial Neural Network (MLP-ANN), Stochastic Gradient Treeboost (SGT), M5 Model Tree (M5), Multivariate Adaptive Regression Splines (MARS), Classification and Regression Tree (CART), Random Forest (RF), and Support Vector Regression (SVR) and some that have not previously been used in predicting salinity such as Alternating Model Tree (ATM), Gaussian Processes Regression (GPR), Gaussian Radial Basis Functions (GRBF), Least Median Squared Linear Regression (LMSLR), and Reduced Error Pruning Tree (REPTree). Here, 5-fold cross-validation and an independent dataset (30% overall samples) at three depths, 0–10 cm, 10–30 cm, 30–50 cm, were used for parameter optimization and evaluating the performance of algorithms. The performances of these algorithms were compared against multiple criteria, including the parameterization, error level/fitting accuracy (determination coefficient, R²; root mean squared error, RMSE), stability (based on the Pearson correlation coefficient, R; mean absolute percent error, MAPE; root mean squared error, RMSE; Lin’s concordance correlation coefficient, LCCC) and computational efficiency of the algorithms. Finally, the result showed that CSRI is most important parameter for the prediction of soil salinity at the 0–10 cm and 10–30 cm depths, whereas for the 30–50 cm depth interval, VD was the most important predictor. For depths of 0–10 cm, 10–30 cm and 30–50 cm across all models, the model R² values ranged from 0.60 to 0.74, 0.15 to 0.31, and 0.30 to 0.47, and the RMSE values ranged from 18.87 to 23.49 dS m⁻¹, 9.94 to 13.48 dS m⁻¹ and 3.79 to 7.11 dS m⁻¹. The optimal algorithms at three depths of 0–10 cm, 10–30 cm and 30–50 cm are RF, M5 and GRBF with considering accuracy and stability. After a comprehensive assessment of algorithm performance, we recommend RF for mapping salinity in an arid environment such as that of Xinjiang and elsewhere globally. However, there is no algorithm that can perform ideally for all datasets. Therefore, we suggest that the algorithm should be carefully chosen according to the purposes of the study. |
ArticleNumber | 114211 |
Author | Ding, Jianli Biswas, Asim Wang, Fei Yang, Shengtian Shi, Zhou |
Author_xml | – sequence: 1 givenname: Fei surname: Wang fullname: Wang, Fei organization: Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046, China – sequence: 2 givenname: Zhou surname: Shi fullname: Shi, Zhou organization: Institute of Applied Remote Sensing and Information Technology, Zhejiang University, Hangzhou 310058, China – sequence: 3 givenname: Asim surname: Biswas fullname: Biswas, Asim organization: School of Environmental Sciences, University of Guelph, Ontario N1G2W1, Canada – sequence: 4 givenname: Shengtian surname: Yang fullname: Yang, Shengtian organization: Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046, China – sequence: 5 givenname: Jianli surname: Ding fullname: Ding, Jianli email: dingjianlixjdx@126.com organization: Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046, China |
BookMark | eNqFkD1PwzAQhi0EEm3hL6CMLCm2k_gciQFU8SUVscBsOY5TXDlxsF2k_ntcBRaWTqe7e9476Zmj08ENGqErgpcEE3azXW60a7Xv5ZJimoakpIScoBnhQHNGq_oUzXAic8CMnKN5CNvUQmJnCF53Nppc2o3zJn72mXL9KL0Jbsg657PR69aoaIZNFpyxWZDWDCbuL9BZJ23Ql791gT4eH95Xz_n67elldb_OZcF4zEsKLTCpW1rr9LCTTNe8bFouGW2ANF0FNVSywKyscaNKxgtIu6LjIAGqslig6-nu6N3XTocoehOUtlYO2u2CoAXnwEoASOjthCrvQvC6E8pEGY0bopfGCoLFwZfYij9f4uBLTL5SnP2Lj9700u-PB--moE4evo32IiijB5XEea2iaJ05duIHAvqKaQ |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107512 crossref_primary_10_1007_s42729_024_01968_7 crossref_primary_10_1016_j_jag_2024_104059 crossref_primary_10_3390_soilsystems7020047 crossref_primary_10_1016_j_still_2024_106124 crossref_primary_10_3390_agronomy11081535 crossref_primary_10_3390_land13060877 crossref_primary_10_1038_s41598_024_60033_6 crossref_primary_10_3390_rs16244812 crossref_primary_10_1002_ldr_5194 crossref_primary_10_1016_j_geoderma_2020_114858 crossref_primary_10_1080_01431161_2022_2155080 crossref_primary_10_1080_01431161_2023_2235640 crossref_primary_10_1007_s40808_020_01015_1 crossref_primary_10_3390_plants10020217 crossref_primary_10_1016_j_jag_2022_102839 crossref_primary_10_1016_j_jag_2022_102838 crossref_primary_10_3390_agronomy12020332 crossref_primary_10_1002_ldr_4655 crossref_primary_10_1007_s12665_025_12096_5 crossref_primary_10_1016_j_geoderma_2021_115656 crossref_primary_10_1111_sum_12772 crossref_primary_10_1117_1_JRS_17_018502 crossref_primary_10_1016_j_scitotenv_2020_142030 crossref_primary_10_1007_s40808_025_02331_0 crossref_primary_10_1016_j_jenvman_2023_118421 crossref_primary_10_1016_j_jaridenv_2025_105372 crossref_primary_10_3390_rs12162601 crossref_primary_10_3390_land13091488 crossref_primary_10_1016_j_scienta_2024_113036 crossref_primary_10_3390_rs15215254 crossref_primary_10_3390_rs14133020 crossref_primary_10_1016_j_catena_2025_108769 crossref_primary_10_3390_math11143141 crossref_primary_10_1038_s41598_023_27760_8 crossref_primary_10_1016_j_catena_2023_107197 crossref_primary_10_3390_rs14030512 crossref_primary_10_53897_RevAIA_23_27_70 crossref_primary_10_1016_j_ecoinf_2024_102647 crossref_primary_10_1016_j_asr_2021_10_024 crossref_primary_10_3390_agronomy13123074 crossref_primary_10_1002_ldr_4632 crossref_primary_10_1016_j_agwat_2025_109406 crossref_primary_10_1016_j_ecoinf_2023_102111 crossref_primary_10_1016_j_jenvman_2024_122640 crossref_primary_10_1016_j_catena_2024_107824 crossref_primary_10_3390_agriengineering7030089 crossref_primary_10_3390_agriculture11111129 crossref_primary_10_33961_jecst_2022_00871 crossref_primary_10_1016_j_envres_2022_114870 crossref_primary_10_3390_drones6090257 crossref_primary_10_1007_s11269_024_03796_x crossref_primary_10_1016_j_agwat_2023_108172 crossref_primary_10_1007_s11104_024_06919_w crossref_primary_10_3390_agriculture13081530 crossref_primary_10_3390_land11122148 crossref_primary_10_2139_ssrn_4020072 crossref_primary_10_3390_rs15041072 crossref_primary_10_31857_S0032180X23600609 crossref_primary_10_1002_ldr_4741 crossref_primary_10_3390_land12101932 crossref_primary_10_1007_s10661_024_13055_6 crossref_primary_10_3390_rs14225639 crossref_primary_10_1007_s11600_022_00738_2 crossref_primary_10_3390_stresses3010027 crossref_primary_10_1080_22797254_2021_1888657 crossref_primary_10_3390_plants13152094 crossref_primary_10_1590_2675_2824071_22044gf crossref_primary_10_3390_s22197226 crossref_primary_10_1016_j_jenvman_2020_111383 crossref_primary_10_1016_j_jhydrol_2024_131589 crossref_primary_10_1016_j_coldregions_2024_104304 crossref_primary_10_1016_j_compag_2025_110055 crossref_primary_10_3390_land13101635 crossref_primary_10_3390_rs14112602 crossref_primary_10_1139_cjb_2024_0070 crossref_primary_10_1016_j_scitotenv_2022_156946 crossref_primary_10_1007_s11042_023_16956_9 crossref_primary_10_1016_j_geodrs_2021_e00424 crossref_primary_10_1016_j_jhydrol_2022_127775 crossref_primary_10_3390_rs14020347 crossref_primary_10_1016_j_ejrh_2025_102326 crossref_primary_10_1016_j_compag_2025_110108 crossref_primary_10_3390_w12123360 crossref_primary_10_1134_S1064229323601865 crossref_primary_10_1016_j_still_2023_105893 crossref_primary_10_3390_agronomy13071842 crossref_primary_10_3389_fmicb_2022_1020175 crossref_primary_10_1016_j_agwat_2025_109318 crossref_primary_10_3389_fpls_2023_1171594 crossref_primary_10_1016_j_catena_2023_107313 crossref_primary_10_1016_j_envres_2023_117608 crossref_primary_10_1134_S1064229322080075 crossref_primary_10_1016_j_nexus_2025_100374 crossref_primary_10_1016_j_ecolind_2023_110087 crossref_primary_10_1016_j_scitotenv_2023_168445 crossref_primary_10_3390_land13091438 crossref_primary_10_3390_rs12244118 crossref_primary_10_3390_rs13234825 crossref_primary_10_1016_j_catena_2022_106054 crossref_primary_10_1002_ldr_4398 crossref_primary_10_1016_j_geoderma_2022_115935 crossref_primary_10_1080_10106049_2022_2048905 crossref_primary_10_3390_land14030649 crossref_primary_10_1016_j_agwat_2023_108559 crossref_primary_10_1007_s10705_023_10293_x crossref_primary_10_1016_j_scitotenv_2022_157416 |
Cites_doi | 10.1016/j.ecolind.2016.11.043 10.1016/j.geoderma.2013.07.020 10.1016/j.catena.2015.05.019 10.5194/soil-2-111-2016 10.1016/j.still.2014.11.001 10.1016/j.geoderma.2017.03.013 10.1016/j.ecolind.2015.01.004 10.1061/(ASCE)1084-0699(2004)9:6(491) 10.1016/j.geoderma.2014.07.028 10.1016/S0016-7061(03)00223-4 10.1080/01621459.1984.10477105 10.1016/j.geomorph.2016.03.018 10.2136/sssaj2012.0317 10.1007/s11442-014-1082-6 10.1016/j.ecolind.2018.05.069 10.1016/j.cageo.2005.12.009 10.1016/j.ecolind.2018.02.041 10.1016/j.jag.2016.05.009 10.1016/j.geoderma.2016.10.019 10.1007/s11769-014-0718-x 10.1016/j.rse.2007.02.005 10.1016/S0304-3800(03)00147-9 10.1007/s11442-009-0600-4 10.1016/j.geoderma.2009.10.007 10.1145/2695664.2695848 10.1016/0375-6742(91)90006-G 10.1016/j.geodrs.2014.09.002 10.1016/j.scitotenv.2018.01.124 10.1371/journal.pone.0169748 10.1016/j.agwat.2013.07.017 10.2166/nh.2017.153 10.1016/j.geoderma.2015.11.014 10.1016/j.sjbs.2014.12.001 10.1016/j.rse.2011.11.002 10.1016/j.geoderma.2013.09.016 10.1016/j.chemolab.2015.05.019 10.1016/j.ecolmodel.2004.07.012 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s10661-017-6415-3 10.1016/j.agwat.2010.03.009 10.1016/j.geoderma.2018.08.006 10.1016/j.geodrs.2014.10.004 10.1214/aos/1176347963 10.1016/j.geoderma.2017.12.002 10.1016/j.geoderma.2014.09.019 10.1109/ICCSCE.2012.6487177 10.1080/22797254.2019.1596756 10.1016/j.catena.2016.09.007 10.1109/LGRS.2009.2039191 10.1016/j.geoderma.2011.01.010 10.1016/j.rse.2015.08.026 10.1023/A:1008841412857 10.1016/S0034-4257(02)00188-8 10.1016/j.envsoft.2011.09.004 10.1016/j.scitotenv.2019.05.037 10.1016/j.scitotenv.2017.02.136 10.2134/agronj2016.06.0368 10.1016/S0167-9473(01)00065-2 10.1016/j.jenvman.2018.03.089 10.1016/j.catena.2012.08.005 10.1016/j.biosystemseng.2012.08.009 10.3390/w10081030 10.1016/j.geoderma.2014.03.025 10.1016/j.agrformet.2018.08.019 10.2136/sssaj2009.0351 10.1023/A:1010933404324 10.1016/0167-9473(93)90135-G 10.1007/s10980-015-0323-0 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114211 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114211 S0016706119304112 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-427d76aed29e702fa6e984bd8a62b71bf57975a306490bc468378a63f87a77543 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 09:14:56 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Environmental covariates Soil salinization Random forest Algorithms Predictive mapping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-427d76aed29e702fa6e984bd8a62b71bf57975a306490bc468378a63f87a77543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388764777 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388764777 crossref_citationtrail_10_1016_j_geoderma_2020_114211 crossref_primary_10_1016_j_geoderma_2020_114211 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wu, Mhaimeed, Al-Shafie, Ziadat, Dhehibi, Nangia, De Pauw (b0370) 2014; 2–3 Pasolli, Melgani, Blanzieri (b0245) 2010; 7 Ding, Yu (b0060) 2014; 235–236 Pham, Tien Bui, Prakash, Dholakia (b0255) 2017; 149 Shrivastava, Kumar (b0300) 2015; 22 Friedman (b0095) 1991; 19 Xu, Shiue (b0375) 1993; 16 Guo, Luh (b0135) 2003; 18 Jiang, Peng, Biswas, Hu, Zhao, He, Shi (b0165) 2019; 682 Metternicht (b0205) 2003; 168 Rousseeuw (b0270) 1984; 79 Goldshleger, Ben-Dor, Lugassi, Eshel (b0110) 2010; 74 Guo, Kelly, Graham (b0140) 2005; 182 Tian, Mai, Zhao (b0325) 2016; 36 Scudiero, Skaggs, Corwin (b0280) 2014; 2–3 McBratney, Mendonça Santos, Minasny (b0200) 2003; 117 Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (b0315) 2003; 43 Tibshirani (b0330) 1996; 58 Lu (b0190) 1999 Brungard, Boettinger, Duniway, Wills, Edwards (b0030) 2015; 239 Wang, Yang, Yang, Yang, Jianli (b0355) 2019; 52 Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0155) 2016; 265 Gong, Ran, He, Tiyip (b0115) 2015; 146 Scudiero, Skaggs, Corwin (b0290) 2017; 587–588 Tóth, Hermann, da Silva, Montanarella, Assessment (b0335) 2018; 190 Anderson, Das, Keller (b0010) 1998; 5 Guida-Johnson, Abraham, Cony (b0125) 2017; 49 Mohamed, W.N.H.W., Salleh, M.N.M., Omar, A.H., 2013. A comparative study of Reduced Error Pruning method in decision tree algorithms, 2012 IEEE International Conference on Control System, Computing and Engineering. IEEE, Penang, Malaysia. Breiman (b0025) 2001; 45 Metternicht, Zinck (b0210) 2003; 85 Scudiero, Skaggs, Corwin (b0285) 2015; 169 Liu, Kuang, Zhang, Xu, Qin (b0185) 2014; 24 Singh (b0305) 2018; 89 Gorji, Sertel, Tanik (b0120) 2017; 74 Kempen, Brus, Stoorvogel (b0175) 2011; 162 Richards (b0265) 1954 Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (b0320) 2014; 213 Giordano, Liersch (b0105) 2012; 36 Chork (b0055) 1991; 41 FAO, 2015. Status of the World's Soil Resources:, FAO, Rome, Italy. Hong, Pradhan, Xu, Tien Bui (b0160) 2015; 133 Vermeulen, Van Niekerk (b0340) 2017; 299 Whitney, Scudiero, El-Askary, Skaggs, Allali, Corwin (b0365) 2018; 93 Angileri, Conoscenti, Hochschild, Märker, Rotigliano, Agnesi (b0015) 2016; 262 Wang, Chen, Luo, Han (b0350) 2015; 25 Zhang, Tashpolat, Ding, Tian, Mamat (b0390) 2009; 22 Guio Blanco, Brito Gomez, Crespo, Ließ (b0130) 2018; 316 Yan, Yao (b0380) 2015; 146 Liu, Zhang, Sun, Zhao, Li (b0180) 2013; 77 Schillaci, Lombardo, Saia, Fantappiè, Märker, Acutis (b0275) 2017; 286 Mulla (b0225) 2013; 114 Chen, Gao, Bin, Jin, Jinya, Hailong, Zhao, Guo, Yang (b0045) 2014; 72 Peng, Biswas, Jiang, Zhao, Hu, Hu, Shi (b0250) 2018; 337 Yu, Liu, Xu, Zhu, Zhang, Qu, Liu, Li (b0385) 2010; 97 Shafizadeh-Moghadam, Valavi, Shahabi, Chapi, Shirzadi (b0295) 2018; 217 Fan, Yue, Wu, Zhang, Cai, Wang, Lu, Xiang (b0065) 2018; 263 Bharti, Pandey, Tripathi, Kumar (b0020) 2017; 48 Farifteh, Van der Meer, Atzberger, Carranza (b0080) 2007; 110 Friedman (b0100) 2002; 38 Verrelst, Muñoz, Alonso, Delegido, Rivera, Camps-Valls, Moreno (b0345) 2012; 118 Minasny, McBratney (b0215) 2006; 32 Butcher, Wick, DeSutter, Chatterjee, Harmon (b0035) 2016; 108 Chen, Peng, Hong, Shahabi, Pradhan, Liu, Zhu, Pei, Duan (b0050) 2018; 626 Zhang, Qi, Gao, Ouyang, Zeng, Zhao (b0395) 2015; 52 Keesstra, Bouma, Wallinga, Tittonell, Smith, Cerdà, Montanarella, Quinton, Pachepsky, van der Putten, Bardgett, Moolenaar, Mol, Jansen, Fresco (b0170) 2016; 2 Mullet, Gage, Morton, Huettmann (b0230) 2016; 31 Frank, E., Mayo, M., Kramer, S., 2015. Alternating model trees, SAC '15 Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM New York, Salamanca, Spain, pp. 871-878. Fan, Weng, Tao (b0070) 2016; 52 Freund, Y., Mason, L., 1999. The Alternating Decision Tree Learning Algorithm, ICML '99 Proceedings of the Sixteenth International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 124–133. Chai, Zhou, Chen, Cheng (b0040) 2009; 19 Nosetto, Acosta, Jayawickreme, Ballesteros, Jackson, Jobbágy (b0240) 2013; 129 Quinlan (b0260) 1996; 1 Allbed, Kumar, Aldakheel (b0005) 2014; 230–231 Wang, Li (b0360) 2013; 100 Malone, McBratney, Minasny, Laslett (b0195) 2009; 154 Heung, Bulmer, Schmidt (b0150) 2014; 214 Nachshon (b0235) 2018; 10 Solomatine, Xue (b0310) 2004; 9 Hengl, Mendes, d.J.J., Heuvelink, G.B., Ruiperez, G.M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauermarschallinger, B (b0145) 2017; 12 Kempen (10.1016/j.geoderma.2020.114211_b0175) 2011; 162 Lu (10.1016/j.geoderma.2020.114211_b0190) 1999 Nachshon (10.1016/j.geoderma.2020.114211_b0235) 2018; 10 Chai (10.1016/j.geoderma.2020.114211_b0040) 2009; 19 Yan (10.1016/j.geoderma.2020.114211_b0380) 2015; 146 10.1016/j.geoderma.2020.114211_b0220 Mulla (10.1016/j.geoderma.2020.114211_b0225) 2013; 114 Xu (10.1016/j.geoderma.2020.114211_b0375) 1993; 16 Liu (10.1016/j.geoderma.2020.114211_b0185) 2014; 24 Wang (10.1016/j.geoderma.2020.114211_b0350) 2015; 25 Zhang (10.1016/j.geoderma.2020.114211_b0395) 2015; 52 Heung (10.1016/j.geoderma.2020.114211_b0150) 2014; 214 Gong (10.1016/j.geoderma.2020.114211_b0115) 2015; 146 Schillaci (10.1016/j.geoderma.2020.114211_b0275) 2017; 286 Mullet (10.1016/j.geoderma.2020.114211_b0230) 2016; 31 Chen (10.1016/j.geoderma.2020.114211_b0045) 2014; 72 Tóth (10.1016/j.geoderma.2020.114211_b0335) 2018; 190 Ding (10.1016/j.geoderma.2020.114211_b0060) 2014; 235–236 Guio Blanco (10.1016/j.geoderma.2020.114211_b0130) 2018; 316 Giordano (10.1016/j.geoderma.2020.114211_b0105) 2012; 36 Jiang (10.1016/j.geoderma.2020.114211_b0165) 2019; 682 10.1016/j.geoderma.2020.114211_b0090 Solomatine (10.1016/j.geoderma.2020.114211_b0310) 2004; 9 Quinlan (10.1016/j.geoderma.2020.114211_b0260) 1996; 1 Svetnik (10.1016/j.geoderma.2020.114211_b0315) 2003; 43 Chork (10.1016/j.geoderma.2020.114211_b0055) 1991; 41 Friedman (10.1016/j.geoderma.2020.114211_b0095) 1991; 19 Hong (10.1016/j.geoderma.2020.114211_b0160) 2015; 133 Minasny (10.1016/j.geoderma.2020.114211_b0215) 2006; 32 Friedman (10.1016/j.geoderma.2020.114211_b0100) 2002; 38 Liu (10.1016/j.geoderma.2020.114211_b0180) 2013; 77 Metternicht (10.1016/j.geoderma.2020.114211_b0210) 2003; 85 Goldshleger (10.1016/j.geoderma.2020.114211_b0110) 2010; 74 Fan (10.1016/j.geoderma.2020.114211_b0070) 2016; 52 Whitney (10.1016/j.geoderma.2020.114211_b0365) 2018; 93 Allbed (10.1016/j.geoderma.2020.114211_b0005) 2014; 230–231 Shrivastava (10.1016/j.geoderma.2020.114211_b0300) 2015; 22 Tibshirani (10.1016/j.geoderma.2020.114211_b0330) 1996; 58 Brungard (10.1016/j.geoderma.2020.114211_b0030) 2015; 239 Guo (10.1016/j.geoderma.2020.114211_b0135) 2003; 18 10.1016/j.geoderma.2020.114211_b0085 Richards (10.1016/j.geoderma.2020.114211_b0265) 1954 Anderson (10.1016/j.geoderma.2020.114211_b0010) 1998; 5 Pasolli (10.1016/j.geoderma.2020.114211_b0245) 2010; 7 Peng (10.1016/j.geoderma.2020.114211_b0250) 2018; 337 Rousseeuw (10.1016/j.geoderma.2020.114211_b0270) 1984; 79 Zhang (10.1016/j.geoderma.2020.114211_b0390) 2009; 22 Gorji (10.1016/j.geoderma.2020.114211_b0120) 2017; 74 Metternicht (10.1016/j.geoderma.2020.114211_b0205) 2003; 168 Singh (10.1016/j.geoderma.2020.114211_b0305) 2018; 89 Taghizadeh-Mehrjardi (10.1016/j.geoderma.2020.114211_b0320) 2014; 213 Nosetto (10.1016/j.geoderma.2020.114211_b0240) 2013; 129 Verrelst (10.1016/j.geoderma.2020.114211_b0345) 2012; 118 Wang (10.1016/j.geoderma.2020.114211_b0360) 2013; 100 Guida-Johnson (10.1016/j.geoderma.2020.114211_b0125) 2017; 49 Tian (10.1016/j.geoderma.2020.114211_b0325) 2016; 36 Hengl (10.1016/j.geoderma.2020.114211_b0145) 2017; 12 Keesstra (10.1016/j.geoderma.2020.114211_b0170) 2016; 2 Fan (10.1016/j.geoderma.2020.114211_b0065) 2018; 263 Breiman (10.1016/j.geoderma.2020.114211_b0025) 2001; 45 Chen (10.1016/j.geoderma.2020.114211_b0050) 2018; 626 McBratney (10.1016/j.geoderma.2020.114211_b0200) 2003; 117 Scudiero (10.1016/j.geoderma.2020.114211_b0285) 2015; 169 Malone (10.1016/j.geoderma.2020.114211_b0195) 2009; 154 Wang (10.1016/j.geoderma.2020.114211_b0355) 2019; 52 Farifteh (10.1016/j.geoderma.2020.114211_b0080) 2007; 110 Scudiero (10.1016/j.geoderma.2020.114211_b0290) 2017; 587–588 10.1016/j.geoderma.2020.114211_b0075 Shafizadeh-Moghadam (10.1016/j.geoderma.2020.114211_b0295) 2018; 217 Wu (10.1016/j.geoderma.2020.114211_b0370) 2014; 2–3 Bharti (10.1016/j.geoderma.2020.114211_b0020) 2017; 48 Butcher (10.1016/j.geoderma.2020.114211_b0035) 2016; 108 Scudiero (10.1016/j.geoderma.2020.114211_b0280) 2014; 2–3 Yu (10.1016/j.geoderma.2020.114211_b0385) 2010; 97 Guo (10.1016/j.geoderma.2020.114211_b0140) 2005; 182 Angileri (10.1016/j.geoderma.2020.114211_b0015) 2016; 262 Heung (10.1016/j.geoderma.2020.114211_b0155) 2016; 265 Pham (10.1016/j.geoderma.2020.114211_b0255) 2017; 149 Vermeulen (10.1016/j.geoderma.2020.114211_b0340) 2017; 299 |
References_xml | – volume: 337 start-page: 1309 year: 2018 end-page: 1319 ident: b0250 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma – volume: 25 start-page: 321 year: 2015 end-page: 336 ident: b0350 article-title: Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management publication-title: Chin. Geogr. Sci. – volume: 182 start-page: 75 year: 2005 end-page: 90 ident: b0140 article-title: Support vector machines for predicting distribution of Sudden Oak Death in California publication-title: Ecol. Model. – volume: 682 start-page: 190 year: 2019 end-page: 199 ident: b0165 article-title: Characterising dryland salinity in three dimensions publication-title: Sci. Total. Environ. – volume: 52 start-page: 256 year: 2019 end-page: 276 ident: b0355 article-title: Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China publication-title: Eur. J. Remote. Sens. – volume: 49 start-page: 205 year: 2017 end-page: 215 ident: b0125 article-title: Salinization in irrigated drylands: prospects for restoration in Cuyo, Argentina publication-title: Revista De La Facultad De Ciencias Agrarias – volume: 2–3 start-page: 82 year: 2014 end-page: 90 ident: b0280 article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA publication-title: Geoderma Reg. – volume: 149 start-page: 52 year: 2017 end-page: 63 ident: b0255 article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS publication-title: Catena – volume: 1 start-page: 77 year: 1996 end-page: 90 ident: b0260 article-title: Improved Use of Continuous Attributes in C4.5 publication-title: J. Aritif. Intell. Res. – reference: Freund, Y., Mason, L., 1999. The Alternating Decision Tree Learning Algorithm, ICML '99 Proceedings of the Sixteenth International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 124–133. – volume: 214 start-page: 141 year: 2014 end-page: 154 ident: b0150 article-title: Predictive soil parent material mapping at a regional-scale: a Random Forest approach publication-title: Geoderma – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: b0200 article-title: On digital soil mapping publication-title: Geoderma – volume: 129 start-page: 120 year: 2013 end-page: 129 ident: b0240 article-title: Land-use and topography shape soil and groundwater salinity in central Argentina publication-title: Agric. Water. Manage. – volume: 213 start-page: 15 year: 2014 end-page: 28 ident: b0320 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma – volume: 114 start-page: 358 year: 2013 end-page: 371 ident: b0225 article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps publication-title: Biosys. Eng. – volume: 97 start-page: 1952 year: 2010 end-page: 1960 ident: b0385 article-title: Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China publication-title: Agric. Water. Manage. – volume: 48 start-page: 1489 year: 2017 end-page: 1507 ident: b0020 article-title: Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models publication-title: Hydrol. Res. – volume: 110 start-page: 59 year: 2007 end-page: 78 ident: b0080 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote. Sens. Environ. – volume: 239 start-page: 68 year: 2015 end-page: 83 ident: b0030 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – volume: 108 start-page: 2189 year: 2016 end-page: 2200 ident: b0035 article-title: Soil salinity: a threat to global food security publication-title: Agron. J. – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: b0100 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data An. – volume: 36 start-page: 49 year: 2012 end-page: 63 ident: b0105 article-title: A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring publication-title: Environ. Model. Software. – volume: 12 year: 2017 ident: b0145 article-title: SoilGrids250m: Global gridded soil information based on machine learning publication-title: PLoS ONE – volume: 19 start-page: 600 year: 2009 end-page: 614 ident: b0040 article-title: Digital regionalization of geomorphology in Xinjiang publication-title: J. Geogr. Sci. – volume: 286 start-page: 35 year: 2017 end-page: 45 ident: b0275 article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region publication-title: Geoderma – volume: 93 start-page: 889 year: 2018 end-page: 898 ident: b0365 article-title: Validating the use of MODIS time series for salinity assessment over agricultural soils in California publication-title: USA. Ecol. Indic. – volume: 79 start-page: 871 year: 1984 end-page: 880 ident: b0270 article-title: Least median of squares regression publication-title: J. Am. Stat. Assoc. – volume: 7 start-page: 464 year: 2010 end-page: 468 ident: b0245 article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data publication-title: IEEE Geosci. Remote. S. – volume: 146 start-page: 136 year: 2015 end-page: 146 ident: b0380 article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO) publication-title: Chemometer. Intell. Lab. – volume: 235–236 start-page: 316 year: 2014 end-page: 322 ident: b0060 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma – volume: 9 start-page: 491 year: 2004 end-page: 501 ident: b0310 article-title: M5 Model Trees and Neural Networks: application to Flood Forecasting in the Upper Reach of the Huai River in China publication-title: J. Hydrol. Eng. – volume: 263 start-page: 225 year: 2018 end-page: 241 ident: b0065 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agr. Forest. Meteorol. – volume: 146 start-page: 223 year: 2015 end-page: 229 ident: b0115 article-title: A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang publication-title: China. Soil. Till. Res. – volume: 74 start-page: 384 year: 2017 end-page: 391 ident: b0120 article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey publication-title: Ecol. Indic. – volume: 626 start-page: 1121 year: 2018 end-page: 1135 ident: b0050 article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province publication-title: China. Sci. Total. Environ. – reference: Mohamed, W.N.H.W., Salleh, M.N.M., Omar, A.H., 2013. A comparative study of Reduced Error Pruning method in decision tree algorithms, 2012 IEEE International Conference on Control System, Computing and Engineering. IEEE, Penang, Malaysia. – year: 1954 ident: b0265 article-title: Diagnosis and Improvement of Saline and Alkali Soils, 60 – volume: 587–588 start-page: 273 year: 2017 end-page: 281 ident: b0290 article-title: Simplifying field-scale assessment of spatiotemporal changes of soil salinity publication-title: Sci. Total. Environ. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0330 article-title: Regression shrinkage and selection via the Lasso publication-title: J. Roy. Statist. Soc. – volume: 22 start-page: 123 year: 2015 end-page: 131 ident: b0300 article-title: Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation publication-title: Saudi. J. Biol. Sci. – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: b0215 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comp. Geosci. – volume: 154 start-page: 138 year: 2009 end-page: 152 ident: b0195 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – volume: 16 start-page: 349 year: 1993 end-page: 362 ident: b0375 article-title: Parallel algorithms for least median of squares regression publication-title: Comput. Stat. Data. An. – volume: 230–231 start-page: 1 year: 2014 end-page: 8 ident: b0005 article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region publication-title: Geoderma – volume: 43 start-page: 1947 year: 2003 end-page: 1958 ident: b0315 article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling publication-title: J. Chem. Inf. Model. – volume: 2 start-page: 111 year: 2016 end-page: 128 ident: b0170 article-title: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals publication-title: SOIL – volume: 190 start-page: 57 year: 2018 ident: b0335 article-title: Monitoring soil for sustainable development and land degradation neutrality publication-title: Enviro. Monit. Assess. – volume: 118 start-page: 127 year: 2012 end-page: 139 ident: b0345 article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3 publication-title: Remote. Sens. Environ. – volume: 2–3 start-page: 21 year: 2014 end-page: 31 ident: b0370 article-title: Mapping soil salinity changes using remote sensing in Central Iraq publication-title: Geoderma Reg. – volume: 133 start-page: 266 year: 2015 end-page: 281 ident: b0160 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena – volume: 52 start-page: 32 year: 2016 end-page: 41 ident: b0070 article-title: Towards decadal soil salinity mapping using Landsat time series data publication-title: Int. J. Appl. Earth. Obs. – volume: 265 start-page: 62 year: 2016 end-page: 77 ident: b0155 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma – volume: 85 start-page: 1 year: 2003 end-page: 20 ident: b0210 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote. Sens. Environ. – volume: 100 start-page: 50 year: 2013 end-page: 56 ident: b0360 article-title: Land exploitation resulting in soil salinization in a desert–oasis ecotone publication-title: Catena – volume: 169 start-page: 335 year: 2015 end-page: 343 ident: b0285 article-title: Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance publication-title: Remote. Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0025 article-title: Random forests publication-title: Mach. Learn. – volume: 299 start-page: 1 year: 2017 end-page: 12 ident: b0340 article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates publication-title: Geoderma – volume: 5 start-page: 421 year: 1998 end-page: 441 ident: b0010 article-title: Estimation of Spatiotemporal Neural Activity Using Radial Basis Function Networks publication-title: J. Comput. Neurosci. – volume: 217 start-page: 1 year: 2018 end-page: 11 ident: b0295 article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping publication-title: J. Environ. Manage. – volume: 52 start-page: 480 year: 2015 end-page: 489 ident: b0395 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecol. Indic. – volume: 24 start-page: 195 year: 2014 end-page: 210 ident: b0185 article-title: Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s publication-title: J. Geogr. Sci. – reference: FAO, 2015. Status of the World's Soil Resources:, FAO, Rome, Italy. – volume: 316 start-page: 100 year: 2018 end-page: 114 ident: b0130 article-title: Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest publication-title: Geoderma – volume: 77 start-page: 1241 year: 2013 end-page: 1253 ident: b0180 article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape publication-title: Soil Sci. Soc. Am. J. – reference: Frank, E., Mayo, M., Kramer, S., 2015. Alternating model trees, SAC '15 Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM New York, Salamanca, Spain, pp. 871-878. – volume: 36 start-page: 7064 year: 2016 end-page: 7068 ident: b0325 article-title: Study on key technologies of ecological management of saline alkali land in arid area of Xinjiang publication-title: Acta. Ecol. Sin. – volume: 72 start-page: 7594 year: 2014 end-page: 7601 ident: b0045 article-title: Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang publication-title: Geogr. Res. – volume: 262 start-page: 61 year: 2016 end-page: 76 ident: b0015 article-title: Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy) publication-title: Geomorphology – volume: 18 start-page: 665 year: 2003 end-page: 672 ident: b0135 article-title: Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction publication-title: IEEE. T. Power. Electr. – volume: 89 start-page: 584 year: 2018 end-page: 589 ident: b0305 article-title: Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques publication-title: Ecol. Indic. – year: 1999 ident: b0190 article-title: Analytical Methods of Soil and Agricultural Chemistry – volume: 168 start-page: 371 year: 2003 end-page: 389 ident: b0205 article-title: Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios publication-title: Ecol. Model. – volume: 74 start-page: 1433 year: 2010 end-page: 1445 ident: b0110 article-title: Soil degradation monitoring by remote sensing: examples with three degradation processes publication-title: Soil Sci. Soc. Am. J. – volume: 10 start-page: 1030 year: 2018 ident: b0235 article-title: Cropland soil salinization and associated hydrology: trends, processes and examples publication-title: Water – volume: 31 start-page: 1117 year: 2016 end-page: 1137 ident: b0230 article-title: Temporal and spatial variation of a winter soundscape in south-central Alaska publication-title: Landscape. Ecol. – volume: 41 start-page: 325 year: 1991 end-page: 340 ident: b0055 article-title: An assessment of least median of squares regression in exploration geochemistry publication-title: J. Geochem. Explor. – volume: 162 start-page: 107 year: 2011 end-page: 123 ident: b0175 article-title: Three-dimensional mapping of soil organic matter content using soil type–specific depth functions publication-title: Geoderma – volume: 19 start-page: 1 year: 1991 end-page: 67 ident: b0095 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 22 start-page: 227 year: 2009 end-page: 235 ident: b0390 article-title: Relationships between soil salinization and spectra in the delta oasis of Weigan and Kuqa Rivers publication-title: Res. Environ. Sci. – ident: 10.1016/j.geoderma.2020.114211_b0090 – volume: 74 start-page: 384 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0120 article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2016.11.043 – volume: 213 start-page: 15 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0320 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – year: 1954 ident: 10.1016/j.geoderma.2020.114211_b0265 – volume: 133 start-page: 266 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0160 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena doi: 10.1016/j.catena.2015.05.019 – volume: 2 start-page: 111 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2020.114211_b0170 article-title: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals publication-title: SOIL doi: 10.5194/soil-2-111-2016 – volume: 146 start-page: 223 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0115 article-title: A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang publication-title: China. Soil. Till. Res. doi: 10.1016/j.still.2014.11.001 – volume: 299 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0340 article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates publication-title: Geoderma doi: 10.1016/j.geoderma.2017.03.013 – volume: 52 start-page: 480 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0395 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.01.004 – volume: 9 start-page: 491 issue: 6 year: 2004 ident: 10.1016/j.geoderma.2020.114211_b0310 article-title: M5 Model Trees and Neural Networks: application to Flood Forecasting in the Upper Reach of the Huai River in China publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2004)9:6(491) – volume: 235–236 start-page: 316 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0060 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma doi: 10.1016/j.geoderma.2014.07.028 – volume: 117 start-page: 3 issue: 1–2 year: 2003 ident: 10.1016/j.geoderma.2020.114211_b0200 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 79 start-page: 871 issue: 388 year: 1984 ident: 10.1016/j.geoderma.2020.114211_b0270 article-title: Least median of squares regression publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1984.10477105 – volume: 262 start-page: 61 year: 2016 ident: 10.1016/j.geoderma.2020.114211_b0015 article-title: Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.03.018 – volume: 77 start-page: 1241 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2020.114211_b0180 article-title: Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0317 – volume: 24 start-page: 195 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0185 article-title: Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s publication-title: J. Geogr. Sci. doi: 10.1007/s11442-014-1082-6 – volume: 22 start-page: 227 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2020.114211_b0390 article-title: Relationships between soil salinization and spectra in the delta oasis of Weigan and Kuqa Rivers publication-title: Res. Environ. Sci. – volume: 93 start-page: 889 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0365 article-title: Validating the use of MODIS time series for salinity assessment over agricultural soils in California publication-title: USA. Ecol. Indic. doi: 10.1016/j.ecolind.2018.05.069 – volume: 49 start-page: 205 issue: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0125 article-title: Salinization in irrigated drylands: prospects for restoration in Cuyo, Argentina publication-title: Revista De La Facultad De Ciencias Agrarias – volume: 32 start-page: 1378 issue: 9 year: 2006 ident: 10.1016/j.geoderma.2020.114211_b0215 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comp. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 89 start-page: 584 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0305 article-title: Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.02.041 – volume: 52 start-page: 32 year: 2016 ident: 10.1016/j.geoderma.2020.114211_b0070 article-title: Towards decadal soil salinity mapping using Landsat time series data publication-title: Int. J. Appl. Earth. Obs. doi: 10.1016/j.jag.2016.05.009 – volume: 286 start-page: 35 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0275 article-title: Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region publication-title: Geoderma doi: 10.1016/j.geoderma.2016.10.019 – volume: 25 start-page: 321 issue: 3 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0350 article-title: Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-014-0718-x – volume: 110 start-page: 59 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2020.114211_b0080 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2007.02.005 – volume: 168 start-page: 371 issue: 3 year: 2003 ident: 10.1016/j.geoderma.2020.114211_b0205 article-title: Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios publication-title: Ecol. Model. doi: 10.1016/S0304-3800(03)00147-9 – volume: 19 start-page: 600 issue: 5 year: 2009 ident: 10.1016/j.geoderma.2020.114211_b0040 article-title: Digital regionalization of geomorphology in Xinjiang publication-title: J. Geogr. Sci. doi: 10.1007/s11442-009-0600-4 – volume: 154 start-page: 138 issue: 1–2 year: 2009 ident: 10.1016/j.geoderma.2020.114211_b0195 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume: 1 start-page: 77 year: 1996 ident: 10.1016/j.geoderma.2020.114211_b0260 article-title: Improved Use of Continuous Attributes in C4.5 publication-title: J. Aritif. Intell. Res. – ident: 10.1016/j.geoderma.2020.114211_b0085 doi: 10.1145/2695664.2695848 – volume: 41 start-page: 325 issue: 3 year: 1991 ident: 10.1016/j.geoderma.2020.114211_b0055 article-title: An assessment of least median of squares regression in exploration geochemistry publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(91)90006-G – volume: 72 start-page: 7594 issue: 12 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0045 article-title: Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang publication-title: Geogr. Res. – volume: 2–3 start-page: 21 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0370 article-title: Mapping soil salinity changes using remote sensing in Central Iraq publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.09.002 – volume: 626 start-page: 1121 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0050 article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province publication-title: China. Sci. Total. Environ. doi: 10.1016/j.scitotenv.2018.01.124 – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0145 article-title: SoilGrids250m: Global gridded soil information based on machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0169748 – volume: 129 start-page: 120 year: 2013 ident: 10.1016/j.geoderma.2020.114211_b0240 article-title: Land-use and topography shape soil and groundwater salinity in central Argentina publication-title: Agric. Water. Manage. doi: 10.1016/j.agwat.2013.07.017 – volume: 48 start-page: 1489 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0020 article-title: Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models publication-title: Hydrol. Res. doi: 10.2166/nh.2017.153 – volume: 265 start-page: 62 year: 2016 ident: 10.1016/j.geoderma.2020.114211_b0155 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – volume: 22 start-page: 123 issue: 2 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0300 article-title: Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation publication-title: Saudi. J. Biol. Sci. doi: 10.1016/j.sjbs.2014.12.001 – volume: 118 start-page: 127 year: 2012 ident: 10.1016/j.geoderma.2020.114211_b0345 article-title: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3 publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2011.11.002 – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 10.1016/j.geoderma.2020.114211_b0315 article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling publication-title: J. Chem. Inf. Model. – volume: 214 start-page: 141 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0150 article-title: Predictive soil parent material mapping at a regional-scale: a Random Forest approach publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.016 – volume: 146 start-page: 136 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0380 article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO) publication-title: Chemometer. Intell. Lab. doi: 10.1016/j.chemolab.2015.05.019 – volume: 182 start-page: 75 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2020.114211_b0140 article-title: Support vector machines for predicting distribution of Sudden Oak Death in California publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.07.012 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.geoderma.2020.114211_b0330 article-title: Regression shrinkage and selection via the Lasso publication-title: J. Roy. Statist. Soc. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 190 start-page: 57 issue: 2 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0335 article-title: Monitoring soil for sustainable development and land degradation neutrality publication-title: Enviro. Monit. Assess. doi: 10.1007/s10661-017-6415-3 – volume: 97 start-page: 1952 issue: 12 year: 2010 ident: 10.1016/j.geoderma.2020.114211_b0385 article-title: Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China publication-title: Agric. Water. Manage. doi: 10.1016/j.agwat.2010.03.009 – volume: 337 start-page: 1309 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0250 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.006 – volume: 2–3 start-page: 82 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0280 article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.10.004 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.geoderma.2020.114211_b0095 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. doi: 10.1214/aos/1176347963 – volume: 18 start-page: 665 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2020.114211_b0135 article-title: Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction publication-title: IEEE. T. Power. Electr. – volume: 316 start-page: 100 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0130 article-title: Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest publication-title: Geoderma doi: 10.1016/j.geoderma.2017.12.002 – volume: 36 start-page: 7064 issue: 22 year: 2016 ident: 10.1016/j.geoderma.2020.114211_b0325 article-title: Study on key technologies of ecological management of saline alkali land in arid area of Xinjiang publication-title: Acta. Ecol. Sin. – volume: 239 start-page: 68 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0030 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – ident: 10.1016/j.geoderma.2020.114211_b0220 doi: 10.1109/ICCSCE.2012.6487177 – volume: 52 start-page: 256 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114211_b0355 article-title: Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China publication-title: Eur. J. Remote. Sens. doi: 10.1080/22797254.2019.1596756 – volume: 149 start-page: 52 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0255 article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS publication-title: Catena doi: 10.1016/j.catena.2016.09.007 – volume: 7 start-page: 464 issue: 3 year: 2010 ident: 10.1016/j.geoderma.2020.114211_b0245 article-title: Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data publication-title: IEEE Geosci. Remote. S. doi: 10.1109/LGRS.2009.2039191 – volume: 162 start-page: 107 issue: 1–2 year: 2011 ident: 10.1016/j.geoderma.2020.114211_b0175 article-title: Three-dimensional mapping of soil organic matter content using soil type–specific depth functions publication-title: Geoderma doi: 10.1016/j.geoderma.2011.01.010 – volume: 169 start-page: 335 year: 2015 ident: 10.1016/j.geoderma.2020.114211_b0285 article-title: Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2015.08.026 – volume: 5 start-page: 421 issue: 4 year: 1998 ident: 10.1016/j.geoderma.2020.114211_b0010 article-title: Estimation of Spatiotemporal Neural Activity Using Radial Basis Function Networks publication-title: J. Comput. Neurosci. doi: 10.1023/A:1008841412857 – volume: 85 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2020.114211_b0210 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote. Sens. Environ. doi: 10.1016/S0034-4257(02)00188-8 – volume: 36 start-page: 49 year: 2012 ident: 10.1016/j.geoderma.2020.114211_b0105 article-title: A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring publication-title: Environ. Model. Software. doi: 10.1016/j.envsoft.2011.09.004 – volume: 682 start-page: 190 year: 2019 ident: 10.1016/j.geoderma.2020.114211_b0165 article-title: Characterising dryland salinity in three dimensions publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.05.037 – volume: 587–588 start-page: 273 year: 2017 ident: 10.1016/j.geoderma.2020.114211_b0290 article-title: Simplifying field-scale assessment of spatiotemporal changes of soil salinity publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2017.02.136 – volume: 108 start-page: 2189 issue: 6 year: 2016 ident: 10.1016/j.geoderma.2020.114211_b0035 article-title: Soil salinity: a threat to global food security publication-title: Agron. J. doi: 10.2134/agronj2016.06.0368 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.geoderma.2020.114211_b0100 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data An. doi: 10.1016/S0167-9473(01)00065-2 – volume: 217 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0295 article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.03.089 – year: 1999 ident: 10.1016/j.geoderma.2020.114211_b0190 – volume: 100 start-page: 50 year: 2013 ident: 10.1016/j.geoderma.2020.114211_b0360 article-title: Land exploitation resulting in soil salinization in a desert–oasis ecotone publication-title: Catena doi: 10.1016/j.catena.2012.08.005 – volume: 114 start-page: 358 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2020.114211_b0225 article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps publication-title: Biosys. Eng. doi: 10.1016/j.biosystemseng.2012.08.009 – volume: 10 start-page: 1030 issue: 8 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0235 article-title: Cropland soil salinization and associated hydrology: trends, processes and examples publication-title: Water doi: 10.3390/w10081030 – volume: 230–231 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2020.114211_b0005 article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region publication-title: Geoderma doi: 10.1016/j.geoderma.2014.03.025 – volume: 263 start-page: 225 year: 2018 ident: 10.1016/j.geoderma.2020.114211_b0065 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agr. Forest. Meteorol. doi: 10.1016/j.agrformet.2018.08.019 – ident: 10.1016/j.geoderma.2020.114211_b0075 – volume: 74 start-page: 1433 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2020.114211_b0110 article-title: Soil degradation monitoring by remote sensing: examples with three degradation processes publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0351 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2020.114211_b0025 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 16 start-page: 349 issue: 3 year: 1993 ident: 10.1016/j.geoderma.2020.114211_b0375 article-title: Parallel algorithms for least median of squares regression publication-title: Comput. Stat. Data. An. doi: 10.1016/0167-9473(93)90135-G – volume: 31 start-page: 1117 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2020.114211_b0230 article-title: Temporal and spatial variation of a winter soundscape in south-central Alaska publication-title: Landscape. Ecol. doi: 10.1007/s10980-015-0323-0 |
SSID | ssj0017020 |
Score | 2.5933268 |
Snippet | •Soil-landscape relationship is dominant factor for accurate predicting soil salinity.•RF was recommended for mapping soil salinity in Xinjiang, China.•No... Soil salinization is one of the most predominant processes responsible for land degradation globally. However, monitoring large areas presents significant... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114211 |
SubjectTerms | Algorithms biotic factors China climatic factors data collection dry environmental conditions Environmental covariates land degradation land use Landsat monitoring normal distribution oases prediction Predictive mapping pruning Random forest regression analysis remote sensing salinity soil salinity Soil salinization soil types soil water surface temperature temporal variation uncertainty vegetation index |
Title | Multi-algorithm comparison for predicting soil salinity |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114211 https://www.proquest.com/docview/2388764777 |
Volume | 365 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqILEGhonjh2PVUVVQHSiUjfLTuzSqjRVmw4s_HZ8iVMBEurAEilRLkrOzt13urvvELpTXFmYnBnfHpVPrE_3E8OpjXkyGhjNIxNAg_PLkA5G5GkcjxuoV_fCQFmls_2VTS-ttbvScdrsLKdT6PHFlFl3ZCFIQHA5aZgQBrv8_nNb5oFZ4KgZMfXh7m9dwjO7RjBwrOQfCkva3BDjvxzUL1Nd-p_-ETp0wNHrVu92jBp6cYIOupOVI8_Qp4iV3bS-nE9yG_K_vXvpdsigZ7Gpt1xBVgbqnL11Pp17awltkcXHGRr1H157A98NRvBlRJPCJyHLGJU6C7m232ck1TwhKkskDRXDysSMs1hCcMEDlRIKrPGSRiZhEhjvonPUXOQLfYG8BMZjSmmMhVUEB0rFCuh7AkWoTrUKWiiutSFSxxoOwyvmoi4Pm4laiwK0KCottlBnK7eseDN2SvBa2eLHDhDWuO-Uva1XR9jfA3IecqHzzVpYRGLtPWGMXf7j-VdoH84gi4Tja9QsVht9Y8FIodrlbmujve7j82D4BY4A3bE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQDG2Hqk-VPlOpa0QSHDsZESoK5TGBxGbZiU1BNEEQhv77-hIHtZUqhi4ZEl2UnO2773R33yH0IkKhYXKibH0VNtY-3Q5USHTMkxBHybCtHGhwHo1JNMVvM39WQ92qFwbKKo3tL216Ya3NnZbRZmu9WECPr0uodkcagjjYhUnDDWCn8uuo0ekPovE-mUAdw87oEhsEvjUKL_UywcyxgoLIK5hzPdf9y0f9staFC-qdoVODHa1O-XnnqCbTC3TSmW8Mf4a8RLRoqLX5ap7pqP_9w4r3cwYtDU-t9QYSM1DqbG2zxcracuiMzD-v0LT3OulGtpmNYPM2CXIbezShhMvEC6X-P8WJDAMskoATT1BXKJ-G1OcQX4SOiDEB4nhO2iqgHEjv2teonmapvEFWABMyOVdKIyvsOkL4Ahh8HIGJjKVwmsivtMFiQxwO8ytWrKoQW7JKiwy0yEotNlFrL7cuqTMOSoSVstmPTcC0fT8o-1ytDtMnBNIePJXZbss0KNEmH1NKb__x_id0FE1GQzbsjwd36BieQFLJ9e9RPd_s5IPGJrl4NHvvCzLl4GI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-algorithm+comparison+for+predicting+soil+salinity&rft.jtitle=Geoderma&rft.au=Wang%2C+Fei&rft.au=Shi%2C+Zhou&rft.au=Biswas%2C+Asim&rft.au=Yang%2C+Shengtian&rft.date=2020-04-15&rft.issn=0016-7061&rft.volume=365+p.114211-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114211&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |