Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy
•Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear parameterization.•Non-linear models outperformed linear models in predicting soil properties.•Tuning hyperparameters in non-linear models is a soil propert...
Saved in:
Published in | Geoderma Vol. 365; p. 114227 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear parameterization.•Non-linear models outperformed linear models in predicting soil properties.•Tuning hyperparameters in non-linear models is a soil property- and dataset-specific process.•Tuned models often improve prediction accuracy in mid-DRIFTS of soils.
Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models using two contrasting and diverse sets of soils, one from northern Tanzania (n = 533) and another one from USA Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent validation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets. Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters differed among soil properties and also for the same soil property in distinct datasets, suggesting the need for parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We recommend that tuning should be included as a routine step when using SVM for estimating soil properties. |
---|---|
AbstractList | Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models using two contrasting and diverse sets of soils, one from northern Tanzania (n = 533) and another one from USA Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent validation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets. Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters differed among soil properties and also for the same soil property in distinct datasets, suggesting the need for parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We recommend that tuning should be included as a routine step when using SVM for estimating soil properties. •Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear parameterization.•Non-linear models outperformed linear models in predicting soil properties.•Tuning hyperparameters in non-linear models is a soil property- and dataset-specific process.•Tuned models often improve prediction accuracy in mid-DRIFTS of soils. Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models using two contrasting and diverse sets of soils, one from northern Tanzania (n = 533) and another one from USA Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent validation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets. Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters differed among soil properties and also for the same soil property in distinct datasets, suggesting the need for parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We recommend that tuning should be included as a routine step when using SVM for estimating soil properties. |
ArticleNumber | 114227 |
Author | Deiss, Leonardo Culman, Steve W. Demyan, M. Scott Margenot, Andrew J. |
Author_xml | – sequence: 1 givenname: Leonardo surname: Deiss fullname: Deiss, Leonardo email: deiss.8@osu.edu organization: School of Environment and Natural Resources, The Ohio State University, 414A, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA – sequence: 2 givenname: Andrew J. surname: Margenot fullname: Margenot, Andrew J. email: margenot@illinois.edu organization: Crop Sciences Department, University of Illinois Urbana-Champaign, 1201 S Dorner Dr, Urbana, IL 61801, USA – sequence: 3 givenname: Steve W. surname: Culman fullname: Culman, Steve W. email: culman.2@osu.edu organization: School of Environment and Natural Resources, The Ohio State University, 1680, Madison Ave, Wooster, OH 44691, USA – sequence: 4 givenname: M. Scott surname: Demyan fullname: Demyan, M. Scott email: demyan.4@osu.edu organization: School of Environment and Natural Resources, The Ohio State University, 408B, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA |
BookMark | eNqFkMtq4zAUhkVpoenlFYqWs3FGkm3ZhlnMEKbTQkqhpGshy8cZBVvySHIgb98TMt10k5XQ-S86-m7IpfMOCHngbMkZl993yy34DsKol4IJHPJCiOqCLHhdiUyKsrkkC4bOrGKSX5ObGHd4rdC7IGkzO-u2NM7T5EOiezDJBzpq89c6iDTANkCM1js64iNDpHacgt-jNAXorElHSRszB20O1Pc0ejug5icIyaLNOvry_EbjhM3BR-Onwx256vUQ4f7_eUveH39vVk_Z-vXP8-rXOtO5rFNWCJYXrczLVnPe8gZYV9V12xSl6NtGlMCLsil1X-qc94Xse9biQDad4F3TVm1-S76denGdfzPEpEYbDQyDduDnqERe15Wsec7Q-uNkNbhjDNArY5M-fi4FbQfFmTrCVjv1CVsdYasTbIzLL_Ep2FGHw_ngz1MQ0cLeQlDRWHAG0QYEpjpvz1V8AIYiof8 |
CitedBy_id | crossref_primary_10_1111_ejss_13370 crossref_primary_10_2139_ssrn_4087094 crossref_primary_10_1016_j_chemosphere_2021_130126 crossref_primary_10_2174_0115701794295930240902050855 crossref_primary_10_18599_grs_2022_1_8 crossref_primary_10_1109_ACCESS_2020_3048415 crossref_primary_10_1016_j_atech_2025_100857 crossref_primary_10_1016_j_geodrs_2024_e00805 crossref_primary_10_3390_app12178540 crossref_primary_10_3390_agronomy12030638 crossref_primary_10_1016_j_saa_2021_119626 crossref_primary_10_3390_machines11050530 crossref_primary_10_1080_10408347_2024_2351820 crossref_primary_10_3390_app11178099 crossref_primary_10_1016_j_catena_2024_108187 crossref_primary_10_1111_ejss_13323 crossref_primary_10_1002_saj2_20021 crossref_primary_10_1016_j_compag_2024_108643 crossref_primary_10_1016_j_compag_2022_107514 crossref_primary_10_1016_j_trac_2020_116166 crossref_primary_10_28978_nesciences_1575484 crossref_primary_10_1016_j_geoderma_2022_116162 crossref_primary_10_1080_15715124_2022_2153856 crossref_primary_10_1016_j_aichem_2024_100045 crossref_primary_10_1016_j_ecolind_2021_108384 crossref_primary_10_1016_j_scitotenv_2021_146253 crossref_primary_10_1155_2024_5555105 crossref_primary_10_1016_j_ecolind_2022_109013 crossref_primary_10_3390_agronomy11040659 crossref_primary_10_1016_j_ecoinf_2024_102982 crossref_primary_10_1016_j_still_2025_106555 crossref_primary_10_1109_JSTARS_2022_3164140 crossref_primary_10_1007_s12665_021_10092_z crossref_primary_10_3390_rs13020305 crossref_primary_10_1016_j_isprsjprs_2022_01_018 crossref_primary_10_3389_fnuen_2024_1411840 crossref_primary_10_3390_agronomy11112266 crossref_primary_10_1007_s10489_025_06292_w crossref_primary_10_1016_j_scitotenv_2022_156582 crossref_primary_10_19053_20278306_v12_n1_2022_14212 crossref_primary_10_3390_foods13203279 crossref_primary_10_3390_agriculture12050682 crossref_primary_10_1002_saj2_20194 crossref_primary_10_1021_acsomega_4c05464 crossref_primary_10_1039_D0AY01585G crossref_primary_10_1016_j_saa_2024_124856 crossref_primary_10_1016_j_jhydrol_2022_127805 crossref_primary_10_1007_s10661_023_11681_0 crossref_primary_10_1002_saj2_20205 crossref_primary_10_1016_j_saa_2023_122452 crossref_primary_10_1002_saj2_20564 crossref_primary_10_3389_fevo_2022_943299 crossref_primary_10_3390_environments9120149 crossref_primary_10_1016_j_geodrs_2024_e00901 crossref_primary_10_3390_rs15184623 crossref_primary_10_1016_j_jag_2021_102458 crossref_primary_10_1016_j_still_2025_106546 crossref_primary_10_2139_ssrn_4140109 crossref_primary_10_1002_joc_7988 crossref_primary_10_1016_j_fcr_2023_108930 crossref_primary_10_1016_j_fcr_2024_109624 crossref_primary_10_1007_s43153_023_00381_4 crossref_primary_10_1080_00103624_2022_2110891 crossref_primary_10_1016_j_jaridenv_2022_104805 crossref_primary_10_1111_ejss_13227 crossref_primary_10_3390_rs14205201 crossref_primary_10_1016_j_geodrs_2023_e00752 crossref_primary_10_1016_j_jwpe_2024_105937 crossref_primary_10_3390_s22072556 crossref_primary_10_1016_j_geoderma_2023_116487 crossref_primary_10_1016_j_geoderma_2024_117037 crossref_primary_10_1016_j_geoderma_2023_116521 crossref_primary_10_1016_j_biosystemseng_2022_07_012 crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_3390_pr10122525 crossref_primary_10_1002_agj2_20786 crossref_primary_10_1016_j_geodrs_2024_e00911 crossref_primary_10_1007_s10666_024_09973_x crossref_primary_10_1007_s42107_024_01073_1 crossref_primary_10_1039_D4NR00105B crossref_primary_10_1080_10106049_2022_2106315 crossref_primary_10_3390_su14094883 crossref_primary_10_1007_s00500_023_08237_2 crossref_primary_10_3390_rs13152934 crossref_primary_10_1007_s11119_023_10099_5 crossref_primary_10_1016_j_enbuild_2023_113004 crossref_primary_10_1016_j_geoderma_2022_115776 crossref_primary_10_1080_00103624_2024_2406484 crossref_primary_10_1016_j_geoderma_2023_116649 crossref_primary_10_3390_app13084934 crossref_primary_10_3390_agriengineering7030089 crossref_primary_10_1080_10106049_2022_2138565 |
Cites_doi | 10.1590/S0100-40422012000900007 10.2136/sssaj2001.652480x 10.1016/B978-0-12-800132-5.00001-8 10.1016/bs.agron.2015.02.002 10.1016/j.catena.2016.10.001 10.1080/00387010.2017.1297956 10.2136/sssaj2009.0218 10.3390/rs71215841 10.1007/s10705-015-9750-1 10.1016/j.geoderma.2005.03.007 10.2136/sssaj1992.03615995005600010021x 10.1007/s10040-016-1429-4 10.1039/C5RA12468A 10.1255/jnirs.716 10.18637/jss.v015.i09 10.1007/s11368-016-1374-9 10.1366/13-07288 10.1016/j.geoderma.2009.04.005 10.1016/S0065-2113(10)07005-7 10.18637/jss.v018.i02 10.1111/ejss.12345 10.1080/00401706.1969.10490666 10.1023/B:STCO.0000035301.49549.88 10.2136/sssaj2016.07.0216 10.1111/j.1525-1314.1998.00150.x 10.1016/j.geodrs.2017.10.002 10.1080/05704928.2013.811081 10.1071/SR9910049 10.1079/AJAA2003003 10.1007/s00216-017-0574-5 10.1021/ac00162a020 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114227 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114227 S0016706119321615 |
GeographicLocations | Midwestern United States Tanzania |
GeographicLocations_xml | – name: Tanzania – name: Midwestern United States |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a368t-42034b635ba11b19e0d788b9452fb925e14595af5a31f46ff0b45969d21d9b7b3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Tue Aug 05 10:05:18 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Error-grid RMSE Machine-learning Kernel FTIR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-42034b635ba11b19e0d788b9452fb925e14595af5a31f46ff0b45969d21d9b7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388768130 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388768130 crossref_citationtrail_10_1016_j_geoderma_2020_114227 crossref_primary_10_1016_j_geoderma_2020_114227 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dreimanis (b0060) 1962; 32 Haaland, Thomas (b0070) 1988; 60 (accessed 14 January 2019). Niemeyer, Chen, Bollag (b9000) 1992; 56 Babangida, Mustafa, Yusuf, Isa (b0015) 2016; 24 Terhoeven-Urselmans, Vagen, Spaargaren, Shepherd (b0210) 2010; 74 Kimber, Kazarian (b0100) 2017; 409 Stenberg, Viscarra Rossel, Mouazen, Wetterlind (b0200) 2010; 107 Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2015. e1071: Misc functions of the Department of Statistics. R Foundation for Statistical Computing. Martens, Naes (b0115) 1989 Kennard, Stone (b0090) 1969; 11 Deiss, Margenot, Demyan, Culman (b0055) 2019 Reeves (b0165) 2010; 158 Russell (b0170) 1987 Calderón, Culman, Six, Franzluebbers, Schipanski, Beniston, Grandy, Kong (b0025) 2017; 81 Fearn (b9005) 2008; 19 Chang, Laird, Mausbach, Hurburgh (b0035) 2001; 65 Smola, Schölkopf (b0185) 2004; 14 R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Schölkopf, Smola (b0175) 2002 (accessed 21 June 2017). Karatzoglou, A., Meyer, D., Hornik, K., 2006. Support vector machines in R. J. Stat. Softw. 15, 1–28. Winowiecki, Vågen, Massawe, Jelinski, Lyamchai, Sayula, Msoka (b0240) 2016; 105 . Varmuza, Filzmoser (b0220) 2009 Jia, Chen, Yang, Zhou, Yu, Shi (b0075) 2017; 7 Kodama, H., 1985. Infrared Spectra of Minerals. Reference Guide to Identification and Characterization of Minerals for the Study of Soils. Technical Bulletin 1985-1E, Research Branch, Agriculture Canada, Ottawa. Stevens, A., Ramirez-Lopez, L., 2015. An introduction to the prospectr package. GitHub. Ali, Greifeneder, Stamenkovic, Neumann, Notarnicola (b0005) 2015; 7 Weil, Islam, Stine, Gruver, Samson-Liebig (b0235) 2003; 18 Mevik, B.-H., Wehrens, R., 2007. The pls package: principal component and partial least squares regression in R. J. Stat. Softw. 18, 1–23. https://doi.org/10.18637/jss.v018.i02. Soriano-Disla, Janik, Viscarra Rossel, MacDonald, McLaughlin (b0190) 2014; 49 Deiss, Demyan, Culman (b0050) 2019 Nguyen, Janik, Raupach (b0145) 1991; 29 Vapnik (b0215) 1995 Mirhosseini (b0135) 2017; 63 Viscarra-Rossel, Walvoort, McBratney, Janik, Skjemstad (b0225) 2006; 131 Khlosi, Alhamdoosh, Douaik, Gabriels, Cornelis (b0095) 2016; 67 Kuhn, M., 2018. The Package ‘caret’: Reference Shepherd, Walsh (b0180) 2007; 15 Chen, Shi, Cai, Xu, Feng (b0040) 2015; 5 Parikh, Goyne, Margenot, Mukome, Calderón (b0155) 2014; 126 Nocita, Stevens, Wesemael, Aitkenhead, Bachmann, Barth, Dor, Brown, Clairotte, Csorba, Dardenne, Demattê, Genot, Guerrero, Knadel, Montanarella, Noon, Ramirez-lopez, Robertson, Sakai, Soriano-disla, Shepherd, Stenberg, Towett, Vargas, Wetterlind (b0150) 2015; 132 Massawe, Winowiecki, Meliyo, Mbogoni, Msanya, Kimaro, Deckers, Gulinck, Lyamchai, Sayula, Msoka, Vagen, Brush, Jelinski (b0120) 2017; 11 Culman, S.W., Freeman, M., Snapp, S.S., 2012. Procedure for the determination of permanganate oxidizable carbon. In: Kellogg Biological Station-Long Term Ecological Research Protocols. Hickory Corners, MI. Wu, Teng, Chen, Li (b0245) 2016; 16 manual. The Comprehensive R Archive Network. Mirzaeitalarposhti, Demyan, Rasche, Cadisch, Müller (b0140) 2017; 149 Gholizadeh, Luboš, Saberioon, Vašát (b0065) 2013; 67 Souza, Madari, Guimarães (b0195) 2012; 35 Kang, Gao, Yu (b0080) 2017; 50 Burt, R., 2011. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45 (Version 2.0). United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln. 530p. Campbell, Fernandes-Filho, Francelino, Demattê, Pereira, Guimarães, Pinto (b0030) 2018; 42 Wehrens (b0230) 2011 Appel, Moller, Schenk (b0010) 1998; 16 Mirhosseini (10.1016/j.geoderma.2020.114227_b0135) 2017; 63 Haaland (10.1016/j.geoderma.2020.114227_b0070) 1988; 60 Nocita (10.1016/j.geoderma.2020.114227_b0150) 2015; 132 Vapnik (10.1016/j.geoderma.2020.114227_b0215) 1995 Soriano-Disla (10.1016/j.geoderma.2020.114227_b0190) 2014; 49 Viscarra-Rossel (10.1016/j.geoderma.2020.114227_b0225) 2006; 131 Winowiecki (10.1016/j.geoderma.2020.114227_b0240) 2016; 105 Smola (10.1016/j.geoderma.2020.114227_b0185) 2004; 14 Schölkopf (10.1016/j.geoderma.2020.114227_b0175) 2002 Deiss (10.1016/j.geoderma.2020.114227_b0055) 2019 10.1016/j.geoderma.2020.114227_b0020 Parikh (10.1016/j.geoderma.2020.114227_b0155) 2014; 126 Shepherd (10.1016/j.geoderma.2020.114227_b0180) 2007; 15 Kennard (10.1016/j.geoderma.2020.114227_b0090) 1969; 11 Reeves (10.1016/j.geoderma.2020.114227_b0165) 2010; 158 10.1016/j.geoderma.2020.114227_b0105 Stenberg (10.1016/j.geoderma.2020.114227_b0200) 2010; 107 Wu (10.1016/j.geoderma.2020.114227_b0245) 2016; 16 Weil (10.1016/j.geoderma.2020.114227_b0235) 2003; 18 Kang (10.1016/j.geoderma.2020.114227_b0080) 2017; 50 Kimber (10.1016/j.geoderma.2020.114227_b0100) 2017; 409 10.1016/j.geoderma.2020.114227_b0110 Russell (10.1016/j.geoderma.2020.114227_b0170) 1987 Nguyen (10.1016/j.geoderma.2020.114227_b0145) 1991; 29 Fearn (10.1016/j.geoderma.2020.114227_b9005) 2008; 19 Chen (10.1016/j.geoderma.2020.114227_b0040) 2015; 5 Khlosi (10.1016/j.geoderma.2020.114227_b0095) 2016; 67 Wehrens (10.1016/j.geoderma.2020.114227_b0230) 2011 Mirzaeitalarposhti (10.1016/j.geoderma.2020.114227_b0140) 2017; 149 10.1016/j.geoderma.2020.114227_b0085 Souza (10.1016/j.geoderma.2020.114227_b0195) 2012; 35 10.1016/j.geoderma.2020.114227_b0160 Varmuza (10.1016/j.geoderma.2020.114227_b0220) 2009 10.1016/j.geoderma.2020.114227_b0045 Deiss (10.1016/j.geoderma.2020.114227_b0050) 2019 10.1016/j.geoderma.2020.114227_b0125 Calderón (10.1016/j.geoderma.2020.114227_b0025) 2017; 81 Dreimanis (10.1016/j.geoderma.2020.114227_b0060) 1962; 32 Campbell (10.1016/j.geoderma.2020.114227_b0030) 2018; 42 Gholizadeh (10.1016/j.geoderma.2020.114227_b0065) 2013; 67 10.1016/j.geoderma.2020.114227_b0205 Ali (10.1016/j.geoderma.2020.114227_b0005) 2015; 7 Chang (10.1016/j.geoderma.2020.114227_b0035) 2001; 65 Martens (10.1016/j.geoderma.2020.114227_b0115) 1989 Appel (10.1016/j.geoderma.2020.114227_b0010) 1998; 16 Babangida (10.1016/j.geoderma.2020.114227_b0015) 2016; 24 Niemeyer (10.1016/j.geoderma.2020.114227_b9000) 1992; 56 Jia (10.1016/j.geoderma.2020.114227_b0075) 2017; 7 Terhoeven-Urselmans (10.1016/j.geoderma.2020.114227_b0210) 2010; 74 Massawe (10.1016/j.geoderma.2020.114227_b0120) 2017; 11 10.1016/j.geoderma.2020.114227_b0130 |
References_xml | – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: b0035 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. – reference: Kodama, H., 1985. Infrared Spectra of Minerals. Reference Guide to Identification and Characterization of Minerals for the Study of Soils. Technical Bulletin 1985-1E, Research Branch, Agriculture Canada, Ottawa. – reference: R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing. – reference: (accessed 14 January 2019). – reference: Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2015. e1071: Misc functions of the Department of Statistics. R Foundation for Statistical Computing. – volume: 32 start-page: 520 year: 1962 end-page: 529 ident: b0060 article-title: Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus publication-title: J. Sediment. Res. – volume: 63 start-page: 115 year: 2017 end-page: 124 ident: b0135 article-title: Seismic response of soil-structure interaction using the support vector regression publication-title: Struct. Eng. Mech. – reference: manual. The Comprehensive R Archive Network. – volume: 107 start-page: 163 year: 2010 end-page: 215 ident: b0200 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. – volume: 132 start-page: 139 year: 2015 end-page: 159 ident: b0150 article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. – year: 2019 ident: b0050 article-title: Grinding and sample replication do not improve mid-DRIFTS predictions of soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 49 start-page: 139 year: 2014 end-page: 186 ident: b0190 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. – year: 2002 ident: b0175 article-title: Learning with Kernels – volume: 149 start-page: 283 year: 2017 end-page: 293 ident: b0140 article-title: Mid-infrared spectroscopy to support regional-scale digital soil mapping on selected croplands of South-West Germany publication-title: Catena – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b0185 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 29 start-page: 49 year: 1991 end-page: 67 ident: b0145 article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies publication-title: Soil Res. – volume: 67 start-page: 276 year: 2016 end-page: 284 ident: b0095 article-title: Enhanced pedotransfer functions with support vector machines to predict water retention of calcareous soil publication-title: Eur. J. Soil Sci. – reference: Mevik, B.-H., Wehrens, R., 2007. The pls package: principal component and partial least squares regression in R. J. Stat. Softw. 18, 1–23. https://doi.org/10.18637/jss.v018.i02. – volume: 18 start-page: 3 year: 2003 end-page: 17 ident: b0235 article-title: Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use publication-title: Am. J. Alternative. Agric. – volume: 11 start-page: 141 year: 2017 end-page: 154 ident: b0120 article-title: Assessing drivers of soil properties and classification in the West Usambara mountains, Tanzania publication-title: Geoderma Reg. – year: 1989 ident: b0115 article-title: Multivariate Calibration – volume: 35 start-page: 1738 year: 2012 end-page: 1745 ident: b0195 article-title: Aplicação de técnicas multivariadas e inteligência artificial na análise de espectros de infravermelho para determinação de matéria orgânica em amostras de solos publication-title: Quim. Nova – year: 2009 ident: b0220 article-title: Introduction to Multivariate Statistical Analysis in Chemometrics – volume: 24 start-page: 1821 year: 2016 end-page: 1833 ident: b0015 article-title: Prediction of pore-water pressure response to rainfall using support vector regression publication-title: Hydrogeol. J. – year: 2019 ident: b0055 article-title: Optimizing acquisition parameters in diffuse reflectance infrared Fourier transform spectroscopy of soils publication-title: Soil Sci. Soc. Am. J. – volume: 7 start-page: 1 year: 2017 end-page: 9 ident: b0075 article-title: Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape publication-title: Sci. Rep. – volume: 74 start-page: 1792 year: 2010 end-page: 1799 ident: b0210 article-title: Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library publication-title: Soil Sci. Soc. Am. J. – reference: Burt, R., 2011. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45 (Version 2.0). United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln. 530p. – volume: 409 start-page: 5813 year: 2017 end-page: 5820 ident: b0100 article-title: Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers publication-title: Anal. Bioanal. Chem. – volume: 7 start-page: 221 year: 2015 end-page: 236 ident: b0005 article-title: Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data publication-title: Remote Sens. – volume: 16 start-page: 1787 year: 2016 end-page: 1797 ident: b0245 article-title: Machine-learning models for on-site estimation of background concentrations of arsenic in soils using soil formation factors publication-title: J. Soils Sediment. – volume: 42 year: 2018 ident: b0030 article-title: Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data publication-title: Rev. Bras. Cienc. Solo – volume: 56 start-page: 135 year: 1992 end-page: 140 ident: b9000 article-title: Characterization of humic acid, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. – reference: Karatzoglou, A., Meyer, D., Hornik, K., 2006. Support vector machines in R. J. Stat. Softw. 15, 1–28. – volume: 60 start-page: 1193 year: 1988 end-page: 1202 ident: b0070 article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information publication-title: Anal. Chem. – volume: 126 start-page: 1 year: 2014 end-page: 148 ident: b0155 article-title: Soil chemical insights provided through vibrational spectroscopy publication-title: Adv. Agron. – volume: 50 start-page: 143 year: 2017 end-page: 149 ident: b0080 article-title: Evaluation of spectral pretreatments, spectral range, and regression methods for quantitative spectroscopic analysis of soil organic carbon composition publication-title: Spectrosc. Lett. – volume: 16 start-page: 491 year: 1998 end-page: 509 ident: b0010 article-title: High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T–t evidence against granulite formation by continent collision publication-title: J. Metamorph. Geol. – volume: 105 start-page: 263 year: 2016 end-page: 274 ident: b0240 article-title: Landscape-scale variability of soil health indicators: effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania publication-title: Nutr. Cycl. Agroecosystems – volume: 19 start-page: 16 year: 2008 end-page: 17 ident: b9005 article-title: The interaction between standard normal variate and derivatives publication-title: NIR news – volume: 158 start-page: 3 year: 2010 end-page: 14 ident: b0165 article-title: Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma – reference: Kuhn, M., 2018. The Package ‘caret’: Reference – year: 1987 ident: b0170 article-title: Infrared spectroscopy of inorganic compounds publication-title: Laboratory Methods in Infrared Spectroscopy – year: 2011 ident: b0230 article-title: Chemometrics with R: Multivariate Data Analysis in the Natural Sciences and Life Sciences – volume: 81 start-page: 277 year: 2017 end-page: 288 ident: b0025 article-title: Quantification of soil permanganate oxidizable C (POXC) using infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. – reference: Culman, S.W., Freeman, M., Snapp, S.S., 2012. Procedure for the determination of permanganate oxidizable carbon. In: Kellogg Biological Station-Long Term Ecological Research Protocols. Hickory Corners, MI. – reference: . – reference: (accessed 21 June 2017). – volume: 11 start-page: 137 year: 1969 end-page: 148 ident: b0090 article-title: Computer aided design of experiments publication-title: Technometrics – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: b0225 article-title: Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – volume: 67 start-page: 1349 year: 2013 end-page: 1362 ident: b0065 article-title: Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues publication-title: Appl. Spectrosc. – volume: 15 start-page: 1 year: 2007 end-page: 19 ident: b0180 article-title: Infrared spectroscopy: enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries publication-title: J. Near Infrared Spectrosc. – reference: Stevens, A., Ramirez-Lopez, L., 2015. An introduction to the prospectr package. GitHub. – year: 1995 ident: b0215 article-title: The Nature of Statistical Learning Theory – volume: 5 start-page: 80612 year: 2015 end-page: 80619 ident: b0040 article-title: Investigation of sample partitioning in quantitative near-infrared analysis of soil organic carbon based on parametric LS-SVR modeling publication-title: RSC Adv. – volume: 35 start-page: 1738 year: 2012 ident: 10.1016/j.geoderma.2020.114227_b0195 article-title: Aplicação de técnicas multivariadas e inteligência artificial na análise de espectros de infravermelho para determinação de matéria orgânica em amostras de solos publication-title: Quim. Nova doi: 10.1590/S0100-40422012000900007 – volume: 65 start-page: 480 year: 2001 ident: 10.1016/j.geoderma.2020.114227_b0035 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652480x – year: 2011 ident: 10.1016/j.geoderma.2020.114227_b0230 – year: 2019 ident: 10.1016/j.geoderma.2020.114227_b0055 article-title: Optimizing acquisition parameters in diffuse reflectance infrared Fourier transform spectroscopy of soils publication-title: Soil Sci. Soc. Am. J. – volume: 126 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2020.114227_b0155 article-title: Soil chemical insights provided through vibrational spectroscopy publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800132-5.00001-8 – ident: 10.1016/j.geoderma.2020.114227_b0205 – volume: 132 start-page: 139 year: 2015 ident: 10.1016/j.geoderma.2020.114227_b0150 article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. doi: 10.1016/bs.agron.2015.02.002 – year: 2009 ident: 10.1016/j.geoderma.2020.114227_b0220 – ident: 10.1016/j.geoderma.2020.114227_b0045 – volume: 149 start-page: 283 year: 2017 ident: 10.1016/j.geoderma.2020.114227_b0140 article-title: Mid-infrared spectroscopy to support regional-scale digital soil mapping on selected croplands of South-West Germany publication-title: Catena doi: 10.1016/j.catena.2016.10.001 – volume: 50 start-page: 143 year: 2017 ident: 10.1016/j.geoderma.2020.114227_b0080 article-title: Evaluation of spectral pretreatments, spectral range, and regression methods for quantitative spectroscopic analysis of soil organic carbon composition publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2017.1297956 – volume: 74 start-page: 1792 year: 2010 ident: 10.1016/j.geoderma.2020.114227_b0210 article-title: Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0218 – year: 1989 ident: 10.1016/j.geoderma.2020.114227_b0115 – ident: 10.1016/j.geoderma.2020.114227_b0130 – year: 1987 ident: 10.1016/j.geoderma.2020.114227_b0170 article-title: Infrared spectroscopy of inorganic compounds – volume: 7 start-page: 221 year: 2015 ident: 10.1016/j.geoderma.2020.114227_b0005 article-title: Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data publication-title: Remote Sens. doi: 10.3390/rs71215841 – volume: 19 start-page: 16 year: 2008 ident: 10.1016/j.geoderma.2020.114227_b9005 article-title: The interaction between standard normal variate and derivatives publication-title: NIR news – volume: 105 start-page: 263 year: 2016 ident: 10.1016/j.geoderma.2020.114227_b0240 article-title: Landscape-scale variability of soil health indicators: effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania publication-title: Nutr. Cycl. Agroecosystems doi: 10.1007/s10705-015-9750-1 – volume: 131 start-page: 59 year: 2006 ident: 10.1016/j.geoderma.2020.114227_b0225 article-title: Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – volume: 56 start-page: 135 year: 1992 ident: 10.1016/j.geoderma.2020.114227_b9000 article-title: Characterization of humic acid, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600010021x – volume: 24 start-page: 1821 year: 2016 ident: 10.1016/j.geoderma.2020.114227_b0015 article-title: Prediction of pore-water pressure response to rainfall using support vector regression publication-title: Hydrogeol. J. doi: 10.1007/s10040-016-1429-4 – year: 1995 ident: 10.1016/j.geoderma.2020.114227_b0215 – ident: 10.1016/j.geoderma.2020.114227_b0020 – volume: 5 start-page: 80612 year: 2015 ident: 10.1016/j.geoderma.2020.114227_b0040 article-title: Investigation of sample partitioning in quantitative near-infrared analysis of soil organic carbon based on parametric LS-SVR modeling publication-title: RSC Adv. doi: 10.1039/C5RA12468A – volume: 15 start-page: 1 year: 2007 ident: 10.1016/j.geoderma.2020.114227_b0180 article-title: Infrared spectroscopy: enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.716 – ident: 10.1016/j.geoderma.2020.114227_b0085 doi: 10.18637/jss.v015.i09 – volume: 32 start-page: 520 year: 1962 ident: 10.1016/j.geoderma.2020.114227_b0060 article-title: Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus publication-title: J. Sediment. Res. – ident: 10.1016/j.geoderma.2020.114227_b0110 – volume: 16 start-page: 1787 year: 2016 ident: 10.1016/j.geoderma.2020.114227_b0245 article-title: Machine-learning models for on-site estimation of background concentrations of arsenic in soils using soil formation factors publication-title: J. Soils Sediment. doi: 10.1007/s11368-016-1374-9 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114227_b0075 article-title: Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape publication-title: Sci. Rep. – volume: 67 start-page: 1349 year: 2013 ident: 10.1016/j.geoderma.2020.114227_b0065 article-title: Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues publication-title: Appl. Spectrosc. doi: 10.1366/13-07288 – volume: 158 start-page: 3 year: 2010 ident: 10.1016/j.geoderma.2020.114227_b0165 article-title: Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.005 – volume: 107 start-page: 163 year: 2010 ident: 10.1016/j.geoderma.2020.114227_b0200 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)07005-7 – ident: 10.1016/j.geoderma.2020.114227_b0125 doi: 10.18637/jss.v018.i02 – year: 2019 ident: 10.1016/j.geoderma.2020.114227_b0050 article-title: Grinding and sample replication do not improve mid-DRIFTS predictions of soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 67 start-page: 276 year: 2016 ident: 10.1016/j.geoderma.2020.114227_b0095 article-title: Enhanced pedotransfer functions with support vector machines to predict water retention of calcareous soil publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12345 – volume: 42 year: 2018 ident: 10.1016/j.geoderma.2020.114227_b0030 article-title: Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data publication-title: Rev. Bras. Cienc. Solo – volume: 11 start-page: 137 year: 1969 ident: 10.1016/j.geoderma.2020.114227_b0090 article-title: Computer aided design of experiments publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.geoderma.2020.114227_b0185 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 81 start-page: 277 year: 2017 ident: 10.1016/j.geoderma.2020.114227_b0025 article-title: Quantification of soil permanganate oxidizable C (POXC) using infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.07.0216 – year: 2002 ident: 10.1016/j.geoderma.2020.114227_b0175 – volume: 16 start-page: 491 year: 1998 ident: 10.1016/j.geoderma.2020.114227_b0010 article-title: High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T–t evidence against granulite formation by continent collision publication-title: J. Metamorph. Geol. doi: 10.1111/j.1525-1314.1998.00150.x – volume: 11 start-page: 141 year: 2017 ident: 10.1016/j.geoderma.2020.114227_b0120 article-title: Assessing drivers of soil properties and classification in the West Usambara mountains, Tanzania publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2017.10.002 – ident: 10.1016/j.geoderma.2020.114227_b0160 – volume: 49 start-page: 139 year: 2014 ident: 10.1016/j.geoderma.2020.114227_b0190 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2013.811081 – volume: 29 start-page: 49 year: 1991 ident: 10.1016/j.geoderma.2020.114227_b0145 article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies publication-title: Soil Res. doi: 10.1071/SR9910049 – volume: 18 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2020.114227_b0235 article-title: Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use publication-title: Am. J. Alternative. Agric. doi: 10.1079/AJAA2003003 – volume: 409 start-page: 5813 year: 2017 ident: 10.1016/j.geoderma.2020.114227_b0100 article-title: Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-017-0574-5 – volume: 63 start-page: 115 year: 2017 ident: 10.1016/j.geoderma.2020.114227_b0135 article-title: Seismic response of soil-structure interaction using the support vector regression publication-title: Struct. Eng. Mech. – ident: 10.1016/j.geoderma.2020.114227_b0105 – volume: 60 start-page: 1193 year: 1988 ident: 10.1016/j.geoderma.2020.114227_b0070 article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information publication-title: Anal. Chem. doi: 10.1021/ac00162a020 |
SSID | ssj0017020 |
Score | 2.5766926 |
Snippet | •Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear... Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114227 |
SubjectTerms | chemometrics clay data collection Error-grid Fourier transform infrared spectroscopy FTIR Kernel land use least squares Machine-learning Midwestern United States nonlinear models prediction RMSE sand soil properties statistical models support vector machines Tanzania total organic carbon |
Title | Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114227 https://www.proquest.com/docview/2388768130 |
Volume | 365 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-UwEA6iF_ewrLrLqqtE8Fpf0yZpc3yI8lT0IAreQpImUnHb0r4KXvZv30zaiorgwWPzo5R86cxkMvMNQoe5TYlhOYmMdiaiTptIaEujgpoisbxgJIdE4csrvril53fsbgUdT7kwEFY5yv5BpgdpPbbMxtWcNWUJOb6EZ14dgQkCdgtksNMMdvnRv5cwD5LFIzUj4RGMfpUl_OAxgoJjgX8oCbS5CVSX-VhBvRPVQf-c_kDfR8MRz4dv20ArttpE3-b37UieYbfQ8qYHLwfu-gasavwUPPL4b4iXtB1u7f0Q9VrhUACnw2VwKfiupoULGwAJK2P6VplnXDvc1eWj76sbiL72w8oKX55d45CeCTSYdfP8E92entwcL6KxqkKkUp4vI5rEKdXeztCKEE2EjQt_DNaCssRpkTBLKBNMOaZS4ih3Lta-gYsiIYXQmU5_odWqruxvhF0ca8YNJbkqaKJiUfDcZDqnhKT-xG62EZuWUpqRchwqXzzKKbbsQU4QSIBADhBso9nLvGYg3fh0hpiQkm-2j_Sa4dO5BxO00v9bcGGiKlv3nfTmjFcWuVfzO194_y5ahye4giLsD1pdtr3d85bMUu-HrbqP1uZnF4ur_-nK9mc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK_aQsFIcAwbO7Y3OXCoCtUu7faAtlJvxnbsKlVJomRTtBdeqi9Yj5NUgJB6QL3asRXNjGfGnm9mEHqf2oQYnpLIaGci5rSJMm1ZlDOTUytyTlJIFF4ci9kJ-3rKTzfQ1ZgLA7DKQff3Oj1o62FkMlBzUhcF5PgSMfXmCFwQ8FsGZOWhXf_097b20_yzZ_IHSg--LPdn0dBaIFKJSFcRo3HCtDe2WhGiSWbj3N8FdcY4dTqj3BLGM64cVwlxTDgXaz8gspySPNNTnfh976H7zKsLaJvw8dcNroRM46EWJBER_N5vacnnXiigw1koeERDnV4K7Wz-bRH_sg3B4B08QY8HTxXv9cR4ijZs-Qw92jtrhmod9jlaLTt4VsFtV4Mbjy9DCAD_CABN2-LGnvUw2xKHjjstLsIbhp-qG4gQgVRgZUzXKLPGlcNtVVz4uaoGuLf_rCjxYv4Nh3xQqLtZ1esX6OROaP0SbZZVabcQdnGsuTCMpCpnVMVZLlIz1SkjJLGamm3ER1JKM9Q4h1YbF3IEs53LkQUSWCB7Fmyjyc26uq_yceuKbOSU_ENepTdFt659N7JW-sMMERpV2qprpfefvHVKvV-x8x_7v0UPZsvFkTyaHx--Qg9hBuJfhL9Gm6ums7vejVrpN0FsMfp-1-fkGvxKMMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+support+vector+machines+regression+models+improves+prediction+accuracy+of+soil+properties+in+MIR+spectroscopy&rft.jtitle=Geoderma&rft.au=Deiss%2C+Leonardo&rft.au=Margenot%2C+Andrew+J&rft.au=Culman%2C+Steven+W&rft.au=Demyan%2C+M+Scott&rft.date=2020-04-15&rft.issn=0016-7061&rft.volume=365+p.114227-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114227&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |