Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy

•Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear parameterization.•Non-linear models outperformed linear models in predicting soil properties.•Tuning hyperparameters in non-linear models is a soil propert...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 365; p. 114227
Main Authors Deiss, Leonardo, Margenot, Andrew J., Culman, Steve W., Demyan, M. Scott
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear parameterization.•Non-linear models outperformed linear models in predicting soil properties.•Tuning hyperparameters in non-linear models is a soil property- and dataset-specific process.•Tuned models often improve prediction accuracy in mid-DRIFTS of soils. Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models using two contrasting and diverse sets of soils, one from northern Tanzania (n = 533) and another one from USA Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent validation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets. Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters differed among soil properties and also for the same soil property in distinct datasets, suggesting the need for parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We recommend that tuning should be included as a routine step when using SVM for estimating soil properties.
AbstractList Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models using two contrasting and diverse sets of soils, one from northern Tanzania (n = 533) and another one from USA Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent validation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets. Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters differed among soil properties and also for the same soil property in distinct datasets, suggesting the need for parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We recommend that tuning should be included as a routine step when using SVM for estimating soil properties.
•Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear parameterization.•Non-linear models outperformed linear models in predicting soil properties.•Tuning hyperparameters in non-linear models is a soil property- and dataset-specific process.•Tuned models often improve prediction accuracy in mid-DRIFTS of soils. Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling (chemometrics) to predict soil properties from spectra. Modeling approaches can have major impacts on prediction accuracy. However, the impact of selecting best parameters for an algorithm (tuning), to optimize non-linear models for predicting soil properties, is relatively unexplored in the domain of soil sciences. This study aimed to evaluate the predictive performance of linear (partial least squares, PLS) and non-linear (support vector machines, SVM) multivariate regression models in estimating soil physical, chemical, and biological properties with mid-DRIFTS. We evaluated the impact of optimizing two hyperparameters (epsilon and cost) based on the noise tolerance in the ε-insensitive loss function of SVM models using two contrasting and diverse sets of soils, one from northern Tanzania (n = 533) and another one from USA Midwest (n = 400). Regression models were trained on calibration sets (75%) and tested on independent validation sets (25%) separately for each dataset. Support vector machines outperformed PLS models for all tested soil properties (clay, sand, pH, total organic carbon, and permanganate oxidizable carbon) in both datasets. Tuning hyperparameters epsilon and cost maintained or improved prediction accuracy of SVM models based on root mean squared errors of independent validation sets. Support vector machines tuned hyperparameters differed among soil properties and also for the same soil property in distinct datasets, suggesting the need for parameterizing non-linear models for specific soil properties and datasets. Optimizing SVM regression models in mid-DRIFTS improves prediction accuracy of soil properties and therefore will likely enable obtaining more robust predictive outcomes even in datasets with diverse land uses, parent materials, and/or soil orders. We recommend that tuning should be included as a routine step when using SVM for estimating soil properties.
ArticleNumber 114227
Author Deiss, Leonardo
Culman, Steve W.
Demyan, M. Scott
Margenot, Andrew J.
Author_xml – sequence: 1
  givenname: Leonardo
  surname: Deiss
  fullname: Deiss, Leonardo
  email: deiss.8@osu.edu
  organization: School of Environment and Natural Resources, The Ohio State University, 414A, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
– sequence: 2
  givenname: Andrew J.
  surname: Margenot
  fullname: Margenot, Andrew J.
  email: margenot@illinois.edu
  organization: Crop Sciences Department, University of Illinois Urbana-Champaign, 1201 S Dorner Dr, Urbana, IL 61801, USA
– sequence: 3
  givenname: Steve W.
  surname: Culman
  fullname: Culman, Steve W.
  email: culman.2@osu.edu
  organization: School of Environment and Natural Resources, The Ohio State University, 1680, Madison Ave, Wooster, OH 44691, USA
– sequence: 4
  givenname: M. Scott
  surname: Demyan
  fullname: Demyan, M. Scott
  email: demyan.4@osu.edu
  organization: School of Environment and Natural Resources, The Ohio State University, 408B, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
BookMark eNqFkMtq4zAUhkVpoenlFYqWs3FGkm3ZhlnMEKbTQkqhpGshy8cZBVvySHIgb98TMt10k5XQ-S86-m7IpfMOCHngbMkZl993yy34DsKol4IJHPJCiOqCLHhdiUyKsrkkC4bOrGKSX5ObGHd4rdC7IGkzO-u2NM7T5EOiezDJBzpq89c6iDTANkCM1js64iNDpHacgt-jNAXorElHSRszB20O1Pc0ejug5icIyaLNOvry_EbjhM3BR-Onwx256vUQ4f7_eUveH39vVk_Z-vXP8-rXOtO5rFNWCJYXrczLVnPe8gZYV9V12xSl6NtGlMCLsil1X-qc94Xse9biQDad4F3TVm1-S76denGdfzPEpEYbDQyDduDnqERe15Wsec7Q-uNkNbhjDNArY5M-fi4FbQfFmTrCVjv1CVsdYasTbIzLL_Ep2FGHw_ngz1MQ0cLeQlDRWHAG0QYEpjpvz1V8AIYiof8
CitedBy_id crossref_primary_10_1111_ejss_13370
crossref_primary_10_2139_ssrn_4087094
crossref_primary_10_1016_j_chemosphere_2021_130126
crossref_primary_10_2174_0115701794295930240902050855
crossref_primary_10_18599_grs_2022_1_8
crossref_primary_10_1109_ACCESS_2020_3048415
crossref_primary_10_1016_j_atech_2025_100857
crossref_primary_10_1016_j_geodrs_2024_e00805
crossref_primary_10_3390_app12178540
crossref_primary_10_3390_agronomy12030638
crossref_primary_10_1016_j_saa_2021_119626
crossref_primary_10_3390_machines11050530
crossref_primary_10_1080_10408347_2024_2351820
crossref_primary_10_3390_app11178099
crossref_primary_10_1016_j_catena_2024_108187
crossref_primary_10_1111_ejss_13323
crossref_primary_10_1002_saj2_20021
crossref_primary_10_1016_j_compag_2024_108643
crossref_primary_10_1016_j_compag_2022_107514
crossref_primary_10_1016_j_trac_2020_116166
crossref_primary_10_28978_nesciences_1575484
crossref_primary_10_1016_j_geoderma_2022_116162
crossref_primary_10_1080_15715124_2022_2153856
crossref_primary_10_1016_j_aichem_2024_100045
crossref_primary_10_1016_j_ecolind_2021_108384
crossref_primary_10_1016_j_scitotenv_2021_146253
crossref_primary_10_1155_2024_5555105
crossref_primary_10_1016_j_ecolind_2022_109013
crossref_primary_10_3390_agronomy11040659
crossref_primary_10_1016_j_ecoinf_2024_102982
crossref_primary_10_1016_j_still_2025_106555
crossref_primary_10_1109_JSTARS_2022_3164140
crossref_primary_10_1007_s12665_021_10092_z
crossref_primary_10_3390_rs13020305
crossref_primary_10_1016_j_isprsjprs_2022_01_018
crossref_primary_10_3389_fnuen_2024_1411840
crossref_primary_10_3390_agronomy11112266
crossref_primary_10_1007_s10489_025_06292_w
crossref_primary_10_1016_j_scitotenv_2022_156582
crossref_primary_10_19053_20278306_v12_n1_2022_14212
crossref_primary_10_3390_foods13203279
crossref_primary_10_3390_agriculture12050682
crossref_primary_10_1002_saj2_20194
crossref_primary_10_1021_acsomega_4c05464
crossref_primary_10_1039_D0AY01585G
crossref_primary_10_1016_j_saa_2024_124856
crossref_primary_10_1016_j_jhydrol_2022_127805
crossref_primary_10_1007_s10661_023_11681_0
crossref_primary_10_1002_saj2_20205
crossref_primary_10_1016_j_saa_2023_122452
crossref_primary_10_1002_saj2_20564
crossref_primary_10_3389_fevo_2022_943299
crossref_primary_10_3390_environments9120149
crossref_primary_10_1016_j_geodrs_2024_e00901
crossref_primary_10_3390_rs15184623
crossref_primary_10_1016_j_jag_2021_102458
crossref_primary_10_1016_j_still_2025_106546
crossref_primary_10_2139_ssrn_4140109
crossref_primary_10_1002_joc_7988
crossref_primary_10_1016_j_fcr_2023_108930
crossref_primary_10_1016_j_fcr_2024_109624
crossref_primary_10_1007_s43153_023_00381_4
crossref_primary_10_1080_00103624_2022_2110891
crossref_primary_10_1016_j_jaridenv_2022_104805
crossref_primary_10_1111_ejss_13227
crossref_primary_10_3390_rs14205201
crossref_primary_10_1016_j_geodrs_2023_e00752
crossref_primary_10_1016_j_jwpe_2024_105937
crossref_primary_10_3390_s22072556
crossref_primary_10_1016_j_geoderma_2023_116487
crossref_primary_10_1016_j_geoderma_2024_117037
crossref_primary_10_1016_j_geoderma_2023_116521
crossref_primary_10_1016_j_biosystemseng_2022_07_012
crossref_primary_10_1016_j_aiia_2024_12_004
crossref_primary_10_3390_pr10122525
crossref_primary_10_1002_agj2_20786
crossref_primary_10_1016_j_geodrs_2024_e00911
crossref_primary_10_1007_s10666_024_09973_x
crossref_primary_10_1007_s42107_024_01073_1
crossref_primary_10_1039_D4NR00105B
crossref_primary_10_1080_10106049_2022_2106315
crossref_primary_10_3390_su14094883
crossref_primary_10_1007_s00500_023_08237_2
crossref_primary_10_3390_rs13152934
crossref_primary_10_1007_s11119_023_10099_5
crossref_primary_10_1016_j_enbuild_2023_113004
crossref_primary_10_1016_j_geoderma_2022_115776
crossref_primary_10_1080_00103624_2024_2406484
crossref_primary_10_1016_j_geoderma_2023_116649
crossref_primary_10_3390_app13084934
crossref_primary_10_3390_agriengineering7030089
crossref_primary_10_1080_10106049_2022_2138565
Cites_doi 10.1590/S0100-40422012000900007
10.2136/sssaj2001.652480x
10.1016/B978-0-12-800132-5.00001-8
10.1016/bs.agron.2015.02.002
10.1016/j.catena.2016.10.001
10.1080/00387010.2017.1297956
10.2136/sssaj2009.0218
10.3390/rs71215841
10.1007/s10705-015-9750-1
10.1016/j.geoderma.2005.03.007
10.2136/sssaj1992.03615995005600010021x
10.1007/s10040-016-1429-4
10.1039/C5RA12468A
10.1255/jnirs.716
10.18637/jss.v015.i09
10.1007/s11368-016-1374-9
10.1366/13-07288
10.1016/j.geoderma.2009.04.005
10.1016/S0065-2113(10)07005-7
10.18637/jss.v018.i02
10.1111/ejss.12345
10.1080/00401706.1969.10490666
10.1023/B:STCO.0000035301.49549.88
10.2136/sssaj2016.07.0216
10.1111/j.1525-1314.1998.00150.x
10.1016/j.geodrs.2017.10.002
10.1080/05704928.2013.811081
10.1071/SR9910049
10.1079/AJAA2003003
10.1007/s00216-017-0574-5
10.1021/ac00162a020
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114227
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114227
S0016706119321615
GeographicLocations Midwestern United States
Tanzania
GeographicLocations_xml – name: Tanzania
– name: Midwestern United States
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a368t-42034b635ba11b19e0d788b9452fb925e14595af5a31f46ff0b45969d21d9b7b3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Aug 05 10:05:18 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Fri Feb 23 02:49:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Error-grid
RMSE
Machine-learning
Kernel
FTIR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-42034b635ba11b19e0d788b9452fb925e14595af5a31f46ff0b45969d21d9b7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388768130
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388768130
crossref_citationtrail_10_1016_j_geoderma_2020_114227
crossref_primary_10_1016_j_geoderma_2020_114227
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dreimanis (b0060) 1962; 32
Haaland, Thomas (b0070) 1988; 60
(accessed 14 January 2019).
Niemeyer, Chen, Bollag (b9000) 1992; 56
Babangida, Mustafa, Yusuf, Isa (b0015) 2016; 24
Terhoeven-Urselmans, Vagen, Spaargaren, Shepherd (b0210) 2010; 74
Kimber, Kazarian (b0100) 2017; 409
Stenberg, Viscarra Rossel, Mouazen, Wetterlind (b0200) 2010; 107
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2015. e1071: Misc functions of the Department of Statistics. R Foundation for Statistical Computing.
Martens, Naes (b0115) 1989
Kennard, Stone (b0090) 1969; 11
Deiss, Margenot, Demyan, Culman (b0055) 2019
Reeves (b0165) 2010; 158
Russell (b0170) 1987
Calderón, Culman, Six, Franzluebbers, Schipanski, Beniston, Grandy, Kong (b0025) 2017; 81
Fearn (b9005) 2008; 19
Chang, Laird, Mausbach, Hurburgh (b0035) 2001; 65
Smola, Schölkopf (b0185) 2004; 14
R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Schölkopf, Smola (b0175) 2002
(accessed 21 June 2017).
Karatzoglou, A., Meyer, D., Hornik, K., 2006. Support vector machines in R. J. Stat. Softw. 15, 1–28.
Winowiecki, Vågen, Massawe, Jelinski, Lyamchai, Sayula, Msoka (b0240) 2016; 105
.
Varmuza, Filzmoser (b0220) 2009
Jia, Chen, Yang, Zhou, Yu, Shi (b0075) 2017; 7
Kodama, H., 1985. Infrared Spectra of Minerals. Reference Guide to Identification and Characterization of Minerals for the Study of Soils. Technical Bulletin 1985-1E, Research Branch, Agriculture Canada, Ottawa.
Stevens, A., Ramirez-Lopez, L., 2015. An introduction to the prospectr package. GitHub.
Ali, Greifeneder, Stamenkovic, Neumann, Notarnicola (b0005) 2015; 7
Weil, Islam, Stine, Gruver, Samson-Liebig (b0235) 2003; 18
Mevik, B.-H., Wehrens, R., 2007. The pls package: principal component and partial least squares regression in R. J. Stat. Softw. 18, 1–23. https://doi.org/10.18637/jss.v018.i02.
Soriano-Disla, Janik, Viscarra Rossel, MacDonald, McLaughlin (b0190) 2014; 49
Deiss, Demyan, Culman (b0050) 2019
Nguyen, Janik, Raupach (b0145) 1991; 29
Vapnik (b0215) 1995
Mirhosseini (b0135) 2017; 63
Viscarra-Rossel, Walvoort, McBratney, Janik, Skjemstad (b0225) 2006; 131
Khlosi, Alhamdoosh, Douaik, Gabriels, Cornelis (b0095) 2016; 67
Kuhn, M., 2018. The Package ‘caret’: Reference
Shepherd, Walsh (b0180) 2007; 15
Chen, Shi, Cai, Xu, Feng (b0040) 2015; 5
Parikh, Goyne, Margenot, Mukome, Calderón (b0155) 2014; 126
Nocita, Stevens, Wesemael, Aitkenhead, Bachmann, Barth, Dor, Brown, Clairotte, Csorba, Dardenne, Demattê, Genot, Guerrero, Knadel, Montanarella, Noon, Ramirez-lopez, Robertson, Sakai, Soriano-disla, Shepherd, Stenberg, Towett, Vargas, Wetterlind (b0150) 2015; 132
Massawe, Winowiecki, Meliyo, Mbogoni, Msanya, Kimaro, Deckers, Gulinck, Lyamchai, Sayula, Msoka, Vagen, Brush, Jelinski (b0120) 2017; 11
Culman, S.W., Freeman, M., Snapp, S.S., 2012. Procedure for the determination of permanganate oxidizable carbon. In: Kellogg Biological Station-Long Term Ecological Research Protocols. Hickory Corners, MI.
Wu, Teng, Chen, Li (b0245) 2016; 16
manual. The Comprehensive R Archive Network.
Mirzaeitalarposhti, Demyan, Rasche, Cadisch, Müller (b0140) 2017; 149
Gholizadeh, Luboš, Saberioon, Vašát (b0065) 2013; 67
Souza, Madari, Guimarães (b0195) 2012; 35
Kang, Gao, Yu (b0080) 2017; 50
Burt, R., 2011. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45 (Version 2.0). United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln. 530p.
Campbell, Fernandes-Filho, Francelino, Demattê, Pereira, Guimarães, Pinto (b0030) 2018; 42
Wehrens (b0230) 2011
Appel, Moller, Schenk (b0010) 1998; 16
Mirhosseini (10.1016/j.geoderma.2020.114227_b0135) 2017; 63
Haaland (10.1016/j.geoderma.2020.114227_b0070) 1988; 60
Nocita (10.1016/j.geoderma.2020.114227_b0150) 2015; 132
Vapnik (10.1016/j.geoderma.2020.114227_b0215) 1995
Soriano-Disla (10.1016/j.geoderma.2020.114227_b0190) 2014; 49
Viscarra-Rossel (10.1016/j.geoderma.2020.114227_b0225) 2006; 131
Winowiecki (10.1016/j.geoderma.2020.114227_b0240) 2016; 105
Smola (10.1016/j.geoderma.2020.114227_b0185) 2004; 14
Schölkopf (10.1016/j.geoderma.2020.114227_b0175) 2002
Deiss (10.1016/j.geoderma.2020.114227_b0055) 2019
10.1016/j.geoderma.2020.114227_b0020
Parikh (10.1016/j.geoderma.2020.114227_b0155) 2014; 126
Shepherd (10.1016/j.geoderma.2020.114227_b0180) 2007; 15
Kennard (10.1016/j.geoderma.2020.114227_b0090) 1969; 11
Reeves (10.1016/j.geoderma.2020.114227_b0165) 2010; 158
10.1016/j.geoderma.2020.114227_b0105
Stenberg (10.1016/j.geoderma.2020.114227_b0200) 2010; 107
Wu (10.1016/j.geoderma.2020.114227_b0245) 2016; 16
Weil (10.1016/j.geoderma.2020.114227_b0235) 2003; 18
Kang (10.1016/j.geoderma.2020.114227_b0080) 2017; 50
Kimber (10.1016/j.geoderma.2020.114227_b0100) 2017; 409
10.1016/j.geoderma.2020.114227_b0110
Russell (10.1016/j.geoderma.2020.114227_b0170) 1987
Nguyen (10.1016/j.geoderma.2020.114227_b0145) 1991; 29
Fearn (10.1016/j.geoderma.2020.114227_b9005) 2008; 19
Chen (10.1016/j.geoderma.2020.114227_b0040) 2015; 5
Khlosi (10.1016/j.geoderma.2020.114227_b0095) 2016; 67
Wehrens (10.1016/j.geoderma.2020.114227_b0230) 2011
Mirzaeitalarposhti (10.1016/j.geoderma.2020.114227_b0140) 2017; 149
10.1016/j.geoderma.2020.114227_b0085
Souza (10.1016/j.geoderma.2020.114227_b0195) 2012; 35
10.1016/j.geoderma.2020.114227_b0160
Varmuza (10.1016/j.geoderma.2020.114227_b0220) 2009
10.1016/j.geoderma.2020.114227_b0045
Deiss (10.1016/j.geoderma.2020.114227_b0050) 2019
10.1016/j.geoderma.2020.114227_b0125
Calderón (10.1016/j.geoderma.2020.114227_b0025) 2017; 81
Dreimanis (10.1016/j.geoderma.2020.114227_b0060) 1962; 32
Campbell (10.1016/j.geoderma.2020.114227_b0030) 2018; 42
Gholizadeh (10.1016/j.geoderma.2020.114227_b0065) 2013; 67
10.1016/j.geoderma.2020.114227_b0205
Ali (10.1016/j.geoderma.2020.114227_b0005) 2015; 7
Chang (10.1016/j.geoderma.2020.114227_b0035) 2001; 65
Martens (10.1016/j.geoderma.2020.114227_b0115) 1989
Appel (10.1016/j.geoderma.2020.114227_b0010) 1998; 16
Babangida (10.1016/j.geoderma.2020.114227_b0015) 2016; 24
Niemeyer (10.1016/j.geoderma.2020.114227_b9000) 1992; 56
Jia (10.1016/j.geoderma.2020.114227_b0075) 2017; 7
Terhoeven-Urselmans (10.1016/j.geoderma.2020.114227_b0210) 2010; 74
Massawe (10.1016/j.geoderma.2020.114227_b0120) 2017; 11
10.1016/j.geoderma.2020.114227_b0130
References_xml – volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: b0035
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– reference: Kodama, H., 1985. Infrared Spectra of Minerals. Reference Guide to Identification and Characterization of Minerals for the Study of Soils. Technical Bulletin 1985-1E, Research Branch, Agriculture Canada, Ottawa.
– reference: R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
– reference: (accessed 14 January 2019).
– reference: Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2015. e1071: Misc functions of the Department of Statistics. R Foundation for Statistical Computing.
– volume: 32
  start-page: 520
  year: 1962
  end-page: 529
  ident: b0060
  article-title: Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus
  publication-title: J. Sediment. Res.
– volume: 63
  start-page: 115
  year: 2017
  end-page: 124
  ident: b0135
  article-title: Seismic response of soil-structure interaction using the support vector regression
  publication-title: Struct. Eng. Mech.
– reference: manual. The Comprehensive R Archive Network.
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  ident: b0200
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
– volume: 132
  start-page: 139
  year: 2015
  end-page: 159
  ident: b0150
  article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron.
– year: 2019
  ident: b0050
  article-title: Grinding and sample replication do not improve mid-DRIFTS predictions of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 49
  start-page: 139
  year: 2014
  end-page: 186
  ident: b0190
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
– year: 2002
  ident: b0175
  article-title: Learning with Kernels
– volume: 149
  start-page: 283
  year: 2017
  end-page: 293
  ident: b0140
  article-title: Mid-infrared spectroscopy to support regional-scale digital soil mapping on selected croplands of South-West Germany
  publication-title: Catena
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0185
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 29
  start-page: 49
  year: 1991
  end-page: 67
  ident: b0145
  article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Soil Res.
– volume: 67
  start-page: 276
  year: 2016
  end-page: 284
  ident: b0095
  article-title: Enhanced pedotransfer functions with support vector machines to predict water retention of calcareous soil
  publication-title: Eur. J. Soil Sci.
– reference: Mevik, B.-H., Wehrens, R., 2007. The pls package: principal component and partial least squares regression in R. J. Stat. Softw. 18, 1–23. https://doi.org/10.18637/jss.v018.i02.
– volume: 18
  start-page: 3
  year: 2003
  end-page: 17
  ident: b0235
  article-title: Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use
  publication-title: Am. J. Alternative. Agric.
– volume: 11
  start-page: 141
  year: 2017
  end-page: 154
  ident: b0120
  article-title: Assessing drivers of soil properties and classification in the West Usambara mountains, Tanzania
  publication-title: Geoderma Reg.
– year: 1989
  ident: b0115
  article-title: Multivariate Calibration
– volume: 35
  start-page: 1738
  year: 2012
  end-page: 1745
  ident: b0195
  article-title: Aplicação de técnicas multivariadas e inteligência artificial na análise de espectros de infravermelho para determinação de matéria orgânica em amostras de solos
  publication-title: Quim. Nova
– year: 2009
  ident: b0220
  article-title: Introduction to Multivariate Statistical Analysis in Chemometrics
– volume: 24
  start-page: 1821
  year: 2016
  end-page: 1833
  ident: b0015
  article-title: Prediction of pore-water pressure response to rainfall using support vector regression
  publication-title: Hydrogeol. J.
– year: 2019
  ident: b0055
  article-title: Optimizing acquisition parameters in diffuse reflectance infrared Fourier transform spectroscopy of soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0075
  article-title: Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape
  publication-title: Sci. Rep.
– volume: 74
  start-page: 1792
  year: 2010
  end-page: 1799
  ident: b0210
  article-title: Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library
  publication-title: Soil Sci. Soc. Am. J.
– reference: Burt, R., 2011. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45 (Version 2.0). United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln. 530p.
– volume: 409
  start-page: 5813
  year: 2017
  end-page: 5820
  ident: b0100
  article-title: Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers
  publication-title: Anal. Bioanal. Chem.
– volume: 7
  start-page: 221
  year: 2015
  end-page: 236
  ident: b0005
  article-title: Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data
  publication-title: Remote Sens.
– volume: 16
  start-page: 1787
  year: 2016
  end-page: 1797
  ident: b0245
  article-title: Machine-learning models for on-site estimation of background concentrations of arsenic in soils using soil formation factors
  publication-title: J. Soils Sediment.
– volume: 42
  year: 2018
  ident: b0030
  article-title: Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data
  publication-title: Rev. Bras. Cienc. Solo
– volume: 56
  start-page: 135
  year: 1992
  end-page: 140
  ident: b9000
  article-title: Characterization of humic acid, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
– reference: Karatzoglou, A., Meyer, D., Hornik, K., 2006. Support vector machines in R. J. Stat. Softw. 15, 1–28.
– volume: 60
  start-page: 1193
  year: 1988
  end-page: 1202
  ident: b0070
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chem.
– volume: 126
  start-page: 1
  year: 2014
  end-page: 148
  ident: b0155
  article-title: Soil chemical insights provided through vibrational spectroscopy
  publication-title: Adv. Agron.
– volume: 50
  start-page: 143
  year: 2017
  end-page: 149
  ident: b0080
  article-title: Evaluation of spectral pretreatments, spectral range, and regression methods for quantitative spectroscopic analysis of soil organic carbon composition
  publication-title: Spectrosc. Lett.
– volume: 16
  start-page: 491
  year: 1998
  end-page: 509
  ident: b0010
  article-title: High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T–t evidence against granulite formation by continent collision
  publication-title: J. Metamorph. Geol.
– volume: 105
  start-page: 263
  year: 2016
  end-page: 274
  ident: b0240
  article-title: Landscape-scale variability of soil health indicators: effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania
  publication-title: Nutr. Cycl. Agroecosystems
– volume: 19
  start-page: 16
  year: 2008
  end-page: 17
  ident: b9005
  article-title: The interaction between standard normal variate and derivatives
  publication-title: NIR news
– volume: 158
  start-page: 3
  year: 2010
  end-page: 14
  ident: b0165
  article-title: Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
– reference: Kuhn, M., 2018. The Package ‘caret’: Reference
– year: 1987
  ident: b0170
  article-title: Infrared spectroscopy of inorganic compounds
  publication-title: Laboratory Methods in Infrared Spectroscopy
– year: 2011
  ident: b0230
  article-title: Chemometrics with R: Multivariate Data Analysis in the Natural Sciences and Life Sciences
– volume: 81
  start-page: 277
  year: 2017
  end-page: 288
  ident: b0025
  article-title: Quantification of soil permanganate oxidizable C (POXC) using infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
– reference: Culman, S.W., Freeman, M., Snapp, S.S., 2012. Procedure for the determination of permanganate oxidizable carbon. In: Kellogg Biological Station-Long Term Ecological Research Protocols. Hickory Corners, MI.
– reference: .
– reference: (accessed 21 June 2017).
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  ident: b0090
  article-title: Computer aided design of experiments
  publication-title: Technometrics
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: b0225
  article-title: Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– volume: 67
  start-page: 1349
  year: 2013
  end-page: 1362
  ident: b0065
  article-title: Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues
  publication-title: Appl. Spectrosc.
– volume: 15
  start-page: 1
  year: 2007
  end-page: 19
  ident: b0180
  article-title: Infrared spectroscopy: enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries
  publication-title: J. Near Infrared Spectrosc.
– reference: Stevens, A., Ramirez-Lopez, L., 2015. An introduction to the prospectr package. GitHub.
– year: 1995
  ident: b0215
  article-title: The Nature of Statistical Learning Theory
– volume: 5
  start-page: 80612
  year: 2015
  end-page: 80619
  ident: b0040
  article-title: Investigation of sample partitioning in quantitative near-infrared analysis of soil organic carbon based on parametric LS-SVR modeling
  publication-title: RSC Adv.
– volume: 35
  start-page: 1738
  year: 2012
  ident: 10.1016/j.geoderma.2020.114227_b0195
  article-title: Aplicação de técnicas multivariadas e inteligência artificial na análise de espectros de infravermelho para determinação de matéria orgânica em amostras de solos
  publication-title: Quim. Nova
  doi: 10.1590/S0100-40422012000900007
– volume: 65
  start-page: 480
  year: 2001
  ident: 10.1016/j.geoderma.2020.114227_b0035
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– year: 2011
  ident: 10.1016/j.geoderma.2020.114227_b0230
– year: 2019
  ident: 10.1016/j.geoderma.2020.114227_b0055
  article-title: Optimizing acquisition parameters in diffuse reflectance infrared Fourier transform spectroscopy of soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 126
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2020.114227_b0155
  article-title: Soil chemical insights provided through vibrational spectroscopy
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800132-5.00001-8
– ident: 10.1016/j.geoderma.2020.114227_b0205
– volume: 132
  start-page: 139
  year: 2015
  ident: 10.1016/j.geoderma.2020.114227_b0150
  article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2015.02.002
– year: 2009
  ident: 10.1016/j.geoderma.2020.114227_b0220
– ident: 10.1016/j.geoderma.2020.114227_b0045
– volume: 149
  start-page: 283
  year: 2017
  ident: 10.1016/j.geoderma.2020.114227_b0140
  article-title: Mid-infrared spectroscopy to support regional-scale digital soil mapping on selected croplands of South-West Germany
  publication-title: Catena
  doi: 10.1016/j.catena.2016.10.001
– volume: 50
  start-page: 143
  year: 2017
  ident: 10.1016/j.geoderma.2020.114227_b0080
  article-title: Evaluation of spectral pretreatments, spectral range, and regression methods for quantitative spectroscopic analysis of soil organic carbon composition
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2017.1297956
– volume: 74
  start-page: 1792
  year: 2010
  ident: 10.1016/j.geoderma.2020.114227_b0210
  article-title: Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0218
– year: 1989
  ident: 10.1016/j.geoderma.2020.114227_b0115
– ident: 10.1016/j.geoderma.2020.114227_b0130
– year: 1987
  ident: 10.1016/j.geoderma.2020.114227_b0170
  article-title: Infrared spectroscopy of inorganic compounds
– volume: 7
  start-page: 221
  year: 2015
  ident: 10.1016/j.geoderma.2020.114227_b0005
  article-title: Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data
  publication-title: Remote Sens.
  doi: 10.3390/rs71215841
– volume: 19
  start-page: 16
  year: 2008
  ident: 10.1016/j.geoderma.2020.114227_b9005
  article-title: The interaction between standard normal variate and derivatives
  publication-title: NIR news
– volume: 105
  start-page: 263
  year: 2016
  ident: 10.1016/j.geoderma.2020.114227_b0240
  article-title: Landscape-scale variability of soil health indicators: effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania
  publication-title: Nutr. Cycl. Agroecosystems
  doi: 10.1007/s10705-015-9750-1
– volume: 131
  start-page: 59
  year: 2006
  ident: 10.1016/j.geoderma.2020.114227_b0225
  article-title: Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 56
  start-page: 135
  year: 1992
  ident: 10.1016/j.geoderma.2020.114227_b9000
  article-title: Characterization of humic acid, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600010021x
– volume: 24
  start-page: 1821
  year: 2016
  ident: 10.1016/j.geoderma.2020.114227_b0015
  article-title: Prediction of pore-water pressure response to rainfall using support vector regression
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-016-1429-4
– year: 1995
  ident: 10.1016/j.geoderma.2020.114227_b0215
– ident: 10.1016/j.geoderma.2020.114227_b0020
– volume: 5
  start-page: 80612
  year: 2015
  ident: 10.1016/j.geoderma.2020.114227_b0040
  article-title: Investigation of sample partitioning in quantitative near-infrared analysis of soil organic carbon based on parametric LS-SVR modeling
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12468A
– volume: 15
  start-page: 1
  year: 2007
  ident: 10.1016/j.geoderma.2020.114227_b0180
  article-title: Infrared spectroscopy: enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.716
– ident: 10.1016/j.geoderma.2020.114227_b0085
  doi: 10.18637/jss.v015.i09
– volume: 32
  start-page: 520
  year: 1962
  ident: 10.1016/j.geoderma.2020.114227_b0060
  article-title: Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus
  publication-title: J. Sediment. Res.
– ident: 10.1016/j.geoderma.2020.114227_b0110
– volume: 16
  start-page: 1787
  year: 2016
  ident: 10.1016/j.geoderma.2020.114227_b0245
  article-title: Machine-learning models for on-site estimation of background concentrations of arsenic in soils using soil formation factors
  publication-title: J. Soils Sediment.
  doi: 10.1007/s11368-016-1374-9
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114227_b0075
  article-title: Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape
  publication-title: Sci. Rep.
– volume: 67
  start-page: 1349
  year: 2013
  ident: 10.1016/j.geoderma.2020.114227_b0065
  article-title: Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues
  publication-title: Appl. Spectrosc.
  doi: 10.1366/13-07288
– volume: 158
  start-page: 3
  year: 2010
  ident: 10.1016/j.geoderma.2020.114227_b0165
  article-title: Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.005
– volume: 107
  start-page: 163
  year: 2010
  ident: 10.1016/j.geoderma.2020.114227_b0200
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)07005-7
– ident: 10.1016/j.geoderma.2020.114227_b0125
  doi: 10.18637/jss.v018.i02
– year: 2019
  ident: 10.1016/j.geoderma.2020.114227_b0050
  article-title: Grinding and sample replication do not improve mid-DRIFTS predictions of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 67
  start-page: 276
  year: 2016
  ident: 10.1016/j.geoderma.2020.114227_b0095
  article-title: Enhanced pedotransfer functions with support vector machines to predict water retention of calcareous soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12345
– volume: 42
  year: 2018
  ident: 10.1016/j.geoderma.2020.114227_b0030
  article-title: Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data
  publication-title: Rev. Bras. Cienc. Solo
– volume: 11
  start-page: 137
  year: 1969
  ident: 10.1016/j.geoderma.2020.114227_b0090
  article-title: Computer aided design of experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.geoderma.2020.114227_b0185
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 81
  start-page: 277
  year: 2017
  ident: 10.1016/j.geoderma.2020.114227_b0025
  article-title: Quantification of soil permanganate oxidizable C (POXC) using infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.07.0216
– year: 2002
  ident: 10.1016/j.geoderma.2020.114227_b0175
– volume: 16
  start-page: 491
  year: 1998
  ident: 10.1016/j.geoderma.2020.114227_b0010
  article-title: High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T–t evidence against granulite formation by continent collision
  publication-title: J. Metamorph. Geol.
  doi: 10.1111/j.1525-1314.1998.00150.x
– volume: 11
  start-page: 141
  year: 2017
  ident: 10.1016/j.geoderma.2020.114227_b0120
  article-title: Assessing drivers of soil properties and classification in the West Usambara mountains, Tanzania
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2017.10.002
– ident: 10.1016/j.geoderma.2020.114227_b0160
– volume: 49
  start-page: 139
  year: 2014
  ident: 10.1016/j.geoderma.2020.114227_b0190
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2013.811081
– volume: 29
  start-page: 49
  year: 1991
  ident: 10.1016/j.geoderma.2020.114227_b0145
  article-title: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Soil Res.
  doi: 10.1071/SR9910049
– volume: 18
  start-page: 3
  year: 2003
  ident: 10.1016/j.geoderma.2020.114227_b0235
  article-title: Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use
  publication-title: Am. J. Alternative. Agric.
  doi: 10.1079/AJAA2003003
– volume: 409
  start-page: 5813
  year: 2017
  ident: 10.1016/j.geoderma.2020.114227_b0100
  article-title: Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-017-0574-5
– volume: 63
  start-page: 115
  year: 2017
  ident: 10.1016/j.geoderma.2020.114227_b0135
  article-title: Seismic response of soil-structure interaction using the support vector regression
  publication-title: Struct. Eng. Mech.
– ident: 10.1016/j.geoderma.2020.114227_b0105
– volume: 60
  start-page: 1193
  year: 1988
  ident: 10.1016/j.geoderma.2020.114227_b0070
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chem.
  doi: 10.1021/ac00162a020
SSID ssj0017020
Score 2.5766926
Snippet •Multivariate regression modeling is a prerequisite for mid-DRIFTS predictions.•Linear and non-linear models were compared along with non-linear...
Estimating soil properties in diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (mid-DRIFTS) uses statistical modeling...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114227
SubjectTerms chemometrics
clay
data collection
Error-grid
Fourier transform infrared spectroscopy
FTIR
Kernel
land use
least squares
Machine-learning
Midwestern United States
nonlinear models
prediction
RMSE
sand
soil properties
statistical models
support vector machines
Tanzania
total organic carbon
Title Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy
URI https://dx.doi.org/10.1016/j.geoderma.2020.114227
https://www.proquest.com/docview/2388768130
Volume 365
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-UwEA6iF_ewrLrLqqtE8Fpf0yZpc3yI8lT0IAreQpImUnHb0r4KXvZv30zaiorgwWPzo5R86cxkMvMNQoe5TYlhOYmMdiaiTptIaEujgpoisbxgJIdE4csrvril53fsbgUdT7kwEFY5yv5BpgdpPbbMxtWcNWUJOb6EZ14dgQkCdgtksNMMdvnRv5cwD5LFIzUj4RGMfpUl_OAxgoJjgX8oCbS5CVSX-VhBvRPVQf-c_kDfR8MRz4dv20ArttpE3-b37UieYbfQ8qYHLwfu-gasavwUPPL4b4iXtB1u7f0Q9VrhUACnw2VwKfiupoULGwAJK2P6VplnXDvc1eWj76sbiL72w8oKX55d45CeCTSYdfP8E92entwcL6KxqkKkUp4vI5rEKdXeztCKEE2EjQt_DNaCssRpkTBLKBNMOaZS4ih3Lta-gYsiIYXQmU5_odWqruxvhF0ca8YNJbkqaKJiUfDcZDqnhKT-xG62EZuWUpqRchwqXzzKKbbsQU4QSIBADhBso9nLvGYg3fh0hpiQkm-2j_Sa4dO5BxO00v9bcGGiKlv3nfTmjFcWuVfzO194_y5ahye4giLsD1pdtr3d85bMUu-HrbqP1uZnF4ur_-nK9mc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK_aQsFIcAwbO7Y3OXCoCtUu7faAtlJvxnbsKlVJomRTtBdeqi9Yj5NUgJB6QL3asRXNjGfGnm9mEHqf2oQYnpLIaGci5rSJMm1ZlDOTUytyTlJIFF4ci9kJ-3rKTzfQ1ZgLA7DKQff3Oj1o62FkMlBzUhcF5PgSMfXmCFwQ8FsGZOWhXf_097b20_yzZ_IHSg--LPdn0dBaIFKJSFcRo3HCtDe2WhGiSWbj3N8FdcY4dTqj3BLGM64cVwlxTDgXaz8gspySPNNTnfh976H7zKsLaJvw8dcNroRM46EWJBER_N5vacnnXiigw1koeERDnV4K7Wz-bRH_sg3B4B08QY8HTxXv9cR4ijZs-Qw92jtrhmod9jlaLTt4VsFtV4Mbjy9DCAD_CABN2-LGnvUw2xKHjjstLsIbhp-qG4gQgVRgZUzXKLPGlcNtVVz4uaoGuLf_rCjxYv4Nh3xQqLtZ1esX6OROaP0SbZZVabcQdnGsuTCMpCpnVMVZLlIz1SkjJLGamm3ER1JKM9Q4h1YbF3IEs53LkQUSWCB7Fmyjyc26uq_yceuKbOSU_ENepTdFt659N7JW-sMMERpV2qprpfefvHVKvV-x8x_7v0UPZsvFkTyaHx--Qg9hBuJfhL9Gm6ums7vejVrpN0FsMfp-1-fkGvxKMMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+support+vector+machines+regression+models+improves+prediction+accuracy+of+soil+properties+in+MIR+spectroscopy&rft.jtitle=Geoderma&rft.au=Deiss%2C+Leonardo&rft.au=Margenot%2C+Andrew+J&rft.au=Culman%2C+Steven+W&rft.au=Demyan%2C+M+Scott&rft.date=2020-04-15&rft.issn=0016-7061&rft.volume=365+p.114227-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon