Deiss, L., Margenot, A. J., Culman, S. W., & Demyan, M. S. (2020). Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma, 365, 114227. https://doi.org/10.1016/j.geoderma.2020.114227
Chicago Style (17th ed.) CitationDeiss, Leonardo, Andrew J. Margenot, Steve W. Culman, and M. Scott Demyan. "Tuning Support Vector Machines Regression Models Improves Prediction Accuracy of Soil Properties in MIR Spectroscopy." Geoderma 365 (2020): 114227. https://doi.org/10.1016/j.geoderma.2020.114227.
MLA (9th ed.) CitationDeiss, Leonardo, et al. "Tuning Support Vector Machines Regression Models Improves Prediction Accuracy of Soil Properties in MIR Spectroscopy." Geoderma, vol. 365, 2020, p. 114227, https://doi.org/10.1016/j.geoderma.2020.114227.