Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy

Soil contamination by heavy metals has become a serious environmental issue worldwide. Rapidly and reliably obtaining heavy metal concentrations in soil is vital for soil monitoring and remediation. Visible and near-infrared reflectance (VNIR) spectroscopy provides a promising method for the estimat...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 336; pp. 59 - 67
Main Authors Cheng, Hang, Shen, Ruili, Chen, Yiyun, Wan, Qijin, Shi, Tiezhu, Wang, Junjie, Wan, Yuan, Hong, Yongsheng, Li, Xiaocui
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil contamination by heavy metals has become a serious environmental issue worldwide. Rapidly and reliably obtaining heavy metal concentrations in soil is vital for soil monitoring and remediation. Visible and near-infrared reflectance (VNIR) spectroscopy provides a promising method for the estimation of heavy metal concentrations over large areas. Ninety-three soil samples were collected from a suburb of Wuhan City, Hubei Province, China, and their reflectance spectra were measured in the laboratory. This study aimed to (i) examine the feasibility of using soil reflectance spectra to estimate the concentrations of Cd, Pb, As, Cr, Cu and Zn in suburban soils; (ii) compare the performances of different spectral pretreatments and (iii) explore the mechanism underlying the estimation of heavy metal concentration from VNIR spectra. In particular, we proposed a strategy for the mechanism investigation that combined PCA biplot analysis, correlation and partial correlation analyses. Partial least-square regression was adopted to calibrate the VNIR model. Results showed that the VNIR model provided acceptable estimation accuracies for Cr, As and Cd concentrations with the ratio of the performance to deviation (RPD) values of 2.70, 1.81 and 1.63, respectively, but unsatisfactory estimation accuracies for Pb, Cu and Zn concentrations with the RPD values of 0.70–1.03. Savitzky–Golay smoothing outperformed other spectral pretreatments. The mechanisms underlying the estimation of the six studied heavy metals varied on a case-to-case basis. Specifically, the spectral estimation of Cd (Group I) concentration was attributed to its close correlations with soil organic matter (SOM). Cr and As (Group II) concentrations could be estimated by the VNIR model on the basis of their close correlations with Fe. Pb, Cu and Zn (Group III) concentrations, however, had weak correlations with neither SOM nor Fe, resulting in poor estimations. The proposed strategy on mechanism investigation for heavy metals could be transferred to other study areas. In summary, VNIR spectroscopy combined with the PLSR model is an alternative method for the rapid monitoring of some heavy metal pollution in suburban soils. [Display omitted] •VNIR spectroscopy can accurately estimate Cr concentrations in suburban soils.•We propose a comprehensive analytical framework to investigate the mechanism.•The framework involved PCA biplot, correlation and partial correlation analysis.•Estimation mechanism of Cd was attributed to its close correlation with SOM.•Estimation mechanism of As and Cr may ascribe to the close correlations with Fe.
AbstractList Soil contamination by heavy metals has become a serious environmental issue worldwide. Rapidly and reliably obtaining heavy metal concentrations in soil is vital for soil monitoring and remediation. Visible and near-infrared reflectance (VNIR) spectroscopy provides a promising method for the estimation of heavy metal concentrations over large areas. Ninety-three soil samples were collected from a suburb of Wuhan City, Hubei Province, China, and their reflectance spectra were measured in the laboratory. This study aimed to (i) examine the feasibility of using soil reflectance spectra to estimate the concentrations of Cd, Pb, As, Cr, Cu and Zn in suburban soils; (ii) compare the performances of different spectral pretreatments and (iii) explore the mechanism underlying the estimation of heavy metal concentration from VNIR spectra. In particular, we proposed a strategy for the mechanism investigation that combined PCA biplot analysis, correlation and partial correlation analyses. Partial least-square regression was adopted to calibrate the VNIR model. Results showed that the VNIR model provided acceptable estimation accuracies for Cr, As and Cd concentrations with the ratio of the performance to deviation (RPD) values of 2.70, 1.81 and 1.63, respectively, but unsatisfactory estimation accuracies for Pb, Cu and Zn concentrations with the RPD values of 0.70–1.03. Savitzky–Golay smoothing outperformed other spectral pretreatments. The mechanisms underlying the estimation of the six studied heavy metals varied on a case-to-case basis. Specifically, the spectral estimation of Cd (Group I) concentration was attributed to its close correlations with soil organic matter (SOM). Cr and As (Group II) concentrations could be estimated by the VNIR model on the basis of their close correlations with Fe. Pb, Cu and Zn (Group III) concentrations, however, had weak correlations with neither SOM nor Fe, resulting in poor estimations. The proposed strategy on mechanism investigation for heavy metals could be transferred to other study areas. In summary, VNIR spectroscopy combined with the PLSR model is an alternative method for the rapid monitoring of some heavy metal pollution in suburban soils. [Display omitted] •VNIR spectroscopy can accurately estimate Cr concentrations in suburban soils.•We propose a comprehensive analytical framework to investigate the mechanism.•The framework involved PCA biplot, correlation and partial correlation analysis.•Estimation mechanism of Cd was attributed to its close correlation with SOM.•Estimation mechanism of As and Cr may ascribe to the close correlations with Fe.
Soil contamination by heavy metals has become a serious environmental issue worldwide. Rapidly and reliably obtaining heavy metal concentrations in soil is vital for soil monitoring and remediation. Visible and near-infrared reflectance (VNIR) spectroscopy provides a promising method for the estimation of heavy metal concentrations over large areas. Ninety-three soil samples were collected from a suburb of Wuhan City, Hubei Province, China, and their reflectance spectra were measured in the laboratory. This study aimed to (i) examine the feasibility of using soil reflectance spectra to estimate the concentrations of Cd, Pb, As, Cr, Cu and Zn in suburban soils; (ii) compare the performances of different spectral pretreatments and (iii) explore the mechanism underlying the estimation of heavy metal concentration from VNIR spectra. In particular, we proposed a strategy for the mechanism investigation that combined PCA biplot analysis, correlation and partial correlation analyses. Partial least-square regression was adopted to calibrate the VNIR model. Results showed that the VNIR model provided acceptable estimation accuracies for Cr, As and Cd concentrations with the ratio of the performance to deviation (RPD) values of 2.70, 1.81 and 1.63, respectively, but unsatisfactory estimation accuracies for Pb, Cu and Zn concentrations with the RPD values of 0.70–1.03. Savitzky–Golay smoothing outperformed other spectral pretreatments. The mechanisms underlying the estimation of the six studied heavy metals varied on a case-to-case basis. Specifically, the spectral estimation of Cd (Group I) concentration was attributed to its close correlations with soil organic matter (SOM). Cr and As (Group II) concentrations could be estimated by the VNIR model on the basis of their close correlations with Fe. Pb, Cu and Zn (Group III) concentrations, however, had weak correlations with neither SOM nor Fe, resulting in poor estimations. The proposed strategy on mechanism investigation for heavy metals could be transferred to other study areas. In summary, VNIR spectroscopy combined with the PLSR model is an alternative method for the rapid monitoring of some heavy metal pollution in suburban soils.
Author Hong, Yongsheng
Cheng, Hang
Wan, Yuan
Shen, Ruili
Chen, Yiyun
Wan, Qijin
Shi, Tiezhu
Wang, Junjie
Li, Xiaocui
Author_xml – sequence: 1
  givenname: Hang
  surname: Cheng
  fullname: Cheng, Hang
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
– sequence: 2
  givenname: Ruili
  surname: Shen
  fullname: Shen, Ruili
  organization: Hubei Academy of Environmental Sciences, Wuhan 430072, China
– sequence: 3
  givenname: Yiyun
  surname: Chen
  fullname: Chen, Yiyun
  email: chenyy@whu.edu.cn
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
– sequence: 4
  givenname: Qijin
  surname: Wan
  fullname: Wan, Qijin
  email: qijinwan@wit.edu.cn
  organization: School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
– sequence: 5
  givenname: Tiezhu
  surname: Shi
  fullname: Shi, Tiezhu
  organization: College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
– sequence: 6
  givenname: Junjie
  surname: Wang
  fullname: Wang, Junjie
  organization: College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
– sequence: 7
  givenname: Yuan
  surname: Wan
  fullname: Wan, Yuan
  organization: College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
– sequence: 8
  givenname: Yongsheng
  surname: Hong
  fullname: Hong, Yongsheng
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
– sequence: 9
  givenname: Xiaocui
  surname: Li
  fullname: Li, Xiaocui
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
BookMark eNqFkE9rAjEQxUOxULX9CmWPvew2k3WzCj20iP0DQi_1HLLZWY2sG5tEi9--Y20vvQgDM2HeG15-A9brXIeM3QLPgIO8X2dLdDX6jc4Eh3HGqYBfsD6MS5FKUUx6rM9JmZZcwhUbhLCmZ8kF77PFLES70dF2y2SFen9INhh1mxjXGeyip43rQmK7JOyqna80Dc62IfmycZV4bFo0UZM2CVuavAvGbQ_X7LLRbcCb3z5ki-fZx_Q1nb-_vE2f5qnO5TimuciLhmshoa6AlxokZcpHRW0EmKbWzQhqIQotSWLKvBJVWWAjAFHWVT5u8iG7O93deve5wxDVxgaDbas7dLugBBS5BJhIQVJ5khrKGCi42nr6uD8o4OrIUa3VH0d15Kg4FXAyPvwzGht_sBAd2563P57sSBz2Fr0KxiIBq60nYKp29tyJb_i0l1k
CitedBy_id crossref_primary_10_3390_rs13193819
crossref_primary_10_1007_s10653_023_01717_2
crossref_primary_10_1016_j_saa_2021_119739
crossref_primary_10_1080_03650340_2020_1802013
crossref_primary_10_1109_ACCESS_2020_3020325
crossref_primary_10_3390_rs16111964
crossref_primary_10_1016_j_envpol_2022_120962
crossref_primary_10_1080_00387010_2019_1696828
crossref_primary_10_3390_ijerph19137755
crossref_primary_10_3390_s22031194
crossref_primary_10_1016_j_eti_2025_104031
crossref_primary_10_1080_01431161_2023_2237664
crossref_primary_10_1007_s42452_021_04183_6
crossref_primary_10_1016_j_jhazmat_2024_136729
crossref_primary_10_1007_s11356_019_06768_6
crossref_primary_10_1134_S1064229322090071
crossref_primary_10_1016_j_ecolind_2021_108384
crossref_primary_10_1016_j_envpol_2019_06_021
crossref_primary_10_1016_j_envpol_2023_122618
crossref_primary_10_3390_land13040517
crossref_primary_10_1016_j_scitotenv_2022_156582
crossref_primary_10_3390_rs16162914
crossref_primary_10_1002_ldr_3721
crossref_primary_10_3390_rs15174349
crossref_primary_10_1016_j_compag_2023_107885
crossref_primary_10_1016_j_envpol_2021_118128
crossref_primary_10_1016_j_scitotenv_2018_09_391
crossref_primary_10_1016_j_saa_2023_122452
crossref_primary_10_1016_j_compag_2020_105630
crossref_primary_10_1016_j_geoderma_2022_116093
crossref_primary_10_3390_molecules28083360
crossref_primary_10_1007_s12583_021_1504_1
crossref_primary_10_1016_j_jag_2024_104079
crossref_primary_10_3390_land13081279
crossref_primary_10_1016_j_saa_2021_119649
crossref_primary_10_1177_0958305X211030114
crossref_primary_10_3390_toxics9120333
crossref_primary_10_1051_e3sconf_20199806002
crossref_primary_10_3390_f12091208
crossref_primary_10_3390_land10050530
crossref_primary_10_3390_rs13142657
crossref_primary_10_1088_1755_1315_644_1_012036
crossref_primary_10_1016_j_psep_2021_10_028
crossref_primary_10_3390_su16104153
crossref_primary_10_1016_j_scitotenv_2024_170225
crossref_primary_10_3390_rs13071277
crossref_primary_10_3390_su16114358
crossref_primary_10_1016_j_saa_2021_120186
crossref_primary_10_1016_j_geoderma_2021_115399
crossref_primary_10_1016_j_gsme_2024_05_001
crossref_primary_10_1038_s41598_021_98143_0
crossref_primary_10_1016_j_earscirev_2024_104814
crossref_primary_10_3390_s24217039
crossref_primary_10_1016_j_geoderma_2020_114568
crossref_primary_10_3390_land11030363
crossref_primary_10_3390_rs16173221
crossref_primary_10_3390_s24051492
crossref_primary_10_1016_j_aca_2020_06_006
crossref_primary_10_1016_j_scitotenv_2022_156129
crossref_primary_10_1051_shsconf_202316601038
crossref_primary_10_1007_s40333_021_0068_3
crossref_primary_10_1016_j_ecolind_2022_109440
crossref_primary_10_1109_TGRS_2022_3190310
crossref_primary_10_7717_peerj_6926
crossref_primary_10_1002_saj2_20223
crossref_primary_10_1016_j_envpol_2023_121180
crossref_primary_10_3390_rs12030469
crossref_primary_10_3390_app10010051
crossref_primary_10_1007_s13762_024_05785_4
crossref_primary_10_3390_rs14061303
crossref_primary_10_1016_j_scitotenv_2020_137212
crossref_primary_10_1007_s11368_022_03263_3
crossref_primary_10_3390_w14182784
crossref_primary_10_1016_j_scitotenv_2022_153766
crossref_primary_10_1016_j_geoderma_2019_07_033
crossref_primary_10_1016_j_saa_2022_121190
crossref_primary_10_3390_land13020154
crossref_primary_10_3390_rs13224615
crossref_primary_10_1080_03067319_2022_2098484
crossref_primary_10_1080_10106049_2022_2076921
crossref_primary_10_1016_j_scitotenv_2022_160511
crossref_primary_10_1038_s41598_021_99106_1
crossref_primary_10_1117_1_JRS_16_024518
crossref_primary_10_3390_land12091789
crossref_primary_10_1016_j_envpol_2020_116041
crossref_primary_10_3390_pr11020416
crossref_primary_10_1016_j_gexplo_2024_107472
crossref_primary_10_1109_ACCESS_2020_2976902
crossref_primary_10_1016_j_jhazmat_2024_136755
crossref_primary_10_1007_s12524_022_01535_6
crossref_primary_10_3390_rs15051433
crossref_primary_10_1016_j_envpol_2022_118981
crossref_primary_10_1016_j_catena_2021_105967
crossref_primary_10_3390_su12041476
crossref_primary_10_3390_s24206610
crossref_primary_10_1016_j_jag_2024_104158
crossref_primary_10_1111_ejss_13192
crossref_primary_10_1016_j_geoderma_2021_115649
crossref_primary_10_2139_ssrn_4116046
crossref_primary_10_1016_j_biosystemseng_2022_04_023
crossref_primary_10_1016_j_jhazmat_2024_135699
crossref_primary_10_1016_j_saa_2024_125516
crossref_primary_10_1016_j_catena_2022_106585
crossref_primary_10_1021_acsomega_2c04261
crossref_primary_10_3390_rs16163071
crossref_primary_10_3390_agronomy14102182
crossref_primary_10_3390_f15030419
crossref_primary_10_1016_j_geoderma_2019_114163
crossref_primary_10_3390_ijerph20042853
crossref_primary_10_1016_j_ecolind_2021_108400
crossref_primary_10_32441_kjps_07_02_p9
crossref_primary_10_1080_10106049_2024_2339289
crossref_primary_10_1109_TGRS_2023_3297126
crossref_primary_10_1016_j_geoderma_2021_115512
crossref_primary_10_1016_j_ecoenv_2020_111211
crossref_primary_10_1016_j_scitotenv_2022_159798
crossref_primary_10_3389_fpls_2021_695102
crossref_primary_10_1016_j_jclepro_2022_132922
crossref_primary_10_3390_su152316310
crossref_primary_10_1007_s12665_021_09900_3
crossref_primary_10_3390_s24175612
Cites_doi 10.1111/j.1541-0420.2005.00366.x
10.1029/1999JD901082
10.1016/j.aca.2007.03.065
10.1186/1471-2105-10-S1-S66
10.1080/00330124.2016.1266947
10.2134/jeq2004.2056
10.1016/j.clay.2011.09.010
10.1080/01431160903229200
10.3390/rs10010028
10.1016/S0003-2670(01)01265-X
10.3390/rs9060632
10.1016/j.physa.2016.11.121
10.1111/j.1475-2743.1990.tb00818.x
10.1002/jpln.200700087
10.1016/j.geoderma.2005.03.007
10.3390/rs6054305
10.1016/j.jhazmat.2013.11.059
10.1016/j.envpol.2015.07.009
10.3390/rs9010029
10.2136/sssaj2006.0285
10.1016/j.geoderma.2008.09.016
10.1016/j.scitotenv.2008.10.061
10.1016/j.catena.2017.11.020
10.1080/15226514.2012.702805
10.1021/es970214p
10.1021/es9005898
10.1016/j.crvi.2009.01.004
10.1016/j.jag.2017.01.013
10.1016/j.geoderma.2018.04.019
10.1016/j.scitotenv.2016.04.163
10.1016/j.geoderma.2013.10.024
10.1016/j.chemolab.2004.12.011
10.1080/14697688.2014.946660
10.3390/s17051036
10.1007/s00704-013-1033-7
10.1016/j.geoderma.2006.07.004
10.1080/01431161.2012.676687
10.1016/S1002-0160(09)60167-3
10.1080/15320383.2012.712069
10.1016/j.apgeochem.2005.01.009
10.1021/ac00162a020
10.17957/IJAB/15.0308
10.1021/es405361n
10.1515/ffp-2016-0026
10.1093/biomet/58.3.453
10.3390/rs10030479
10.1016/S0034-4257(96)00120-4
10.1016/j.rse.2008.03.017
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2018.08.010
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 67
ExternalDocumentID 10_1016_j_geoderma_2018_08_010
S0016706117319651
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-3235f0a261db107a16020345dc21cfdaf41d225a6a26c73b2b75ef21ee6db38f3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 19:15:46 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Tue Jul 01 04:04:47 EDT 2025
Fri Feb 23 02:27:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PCA biplot analysis
Soil heavy metal
Estimation mechanism
VNIR spectroscopy
Partial correlation analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-3235f0a261db107a16020345dc21cfdaf41d225a6a26c73b2b75ef21ee6db38f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2153611962
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2153611962
crossref_primary_10_1016_j_geoderma_2018_08_010
crossref_citationtrail_10_1016_j_geoderma_2018_08_010
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_08_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Viscarra Rossel, Walvoort, Mcbratney, Janik, Skjemstad (bb0230) 2006; 131
Jiao, Xu, Xiao, Liu, Zhang (bb0070) 2017; 69
Viscarra Rossel, Mcglynn, Mcbratney (bb0225) 2006; 137
Liu, Chen (bb0100) 2012; 21
Shi, Guo, Chen, Wang, Shi, Li, Wu (bb0170) 2018
Leenaers, Okx, Burrough (bb0085) 1990; 6
Mishra, Sarkar, Taraphder, Datta, Swain, Saikhom, Panda, Laishram (bb0125) 2017; 7
Wu, Chen, Ji, Gong, Liao, Tian, Ma (bb0250) 2007; 71
Pandit, Filippelli, Li (bb0140) 2010; 31
Siebielec, McCarthy, Stuczynski, Reeves (bb0185) 2004; 33
Liu, Chen (bb0095) 2012; 33
Li, Qiu, Chen, Zhong, Wu (bb0090) 2017; 471
Yang, Mao, Shao, Gao (bb0260) 2009; 332
Gomez, Lagacherie, Coulouma (bb0045) 2008; 148
Sun, Zhang, Zou, Wu (bb0215) 2017; 9
Ukalski, Klisz (bb0220) 2016; 58
Wang, Cui, Gao, Shi, Chen, Gao (bb0240) 2014; 216
Malley, Williams (bb0115) 1997; 31
Pittelkow, Wilson (bb0150) 2005; 61
Choe, van der Meer, van Ruitenbeek, van der Werff, de Smeth, Kim (bb0025) 2008; 112
Liu, Shi, Chen, Wang, Fei, Wu (bb0110) 2017; 9
Hong, Chen, Yu, Liu, Liu, Zhang, Liu, Cheng (bb0055) 2018; 10
Gabriel (bb0040) 1971; 58
Myers, Well (bb0135) 2010
Freudenberg, Wang, Yang, Li (bb0035) 2009; 10
Sun, Zhang, Sun, Sun, Cen (bb0210) 2018; 327
Ben-Dor, Inbar, Chen (bb0010) 1997; 61
Zhou, Miller, Hood (bb0265) 2000; 105
Chen, Chang, Liu, Clevers, Kooistra (bb0020) 2016; 565
Sun, Chen, Gong, Zhao, Zhan, Wang (bb0200) 2014; 118
Wu, Chen, Wu, Tian, Ji, Qin (bb0255) 2005; 20
Shi, Chen, Liu, Wu (bb0165) 2014; 265
Kenett, Huang, Vodenska, Havlin, Stanley (bb0075) 2015; 15
Liu, Jiang, Fei, Wang, Shi, Guo, Li, Chen (bb0105) 2014; 6
Vohland, Bossung, Fründ (bb0235) 2009; 172
Hong, Yu, Chen, Liu, Liu, Liu, Cheng (bb0060) 2017; 10
Moros, de Vallejuelo, Gredilla, de Diego, Madariaga, Garrigues, de la Guardia (bb0130) 2009; 43
Chong, Jun (bb0030) 2005; 78
Chen, Chang, Clevers, Kooistra (bb0015) 2015; 206
Jiang, Liu, Wang, Liu (bb0065) 2018; 162
Meng, Ding, Sun (bb0120) 2014; 23
Rathod, Rossiter, Noomen, van der Meer (bb0155) 2013; 15
Ren, Zhuang, Singh, Pan, Qiu, Shi (bb0160) 2009; 19
State Environmental Protection Agency of China (bb0195) 1995
Haaland, Thomas (bb0050) 1988; 60
Kooistra, Wehrens, Leuven, Buydens (bb0080) 2001; 446
Shi, Liu, Chen, Fei, Wang, Wu (bb0175) 2017; 17
Shi, Liu, Wang, Chen, Fei, Wu (bb0180) 2014; 48
Pasqualoto, Teofilo, Guterres, Pereira, Ferreira (bb0145) 2007; 595
Aslam, Maqbool, Zaman, Shahid, Akhtar, Saeed (bb0005) 2017; 19
Sun, Zhang (bb0205) 2017; 58
Wei, Chen, Wu, Zheng (bb0245) 1991
Zhuang, McBride, Xia, Li, Lia (bb0270) 2009; 407
Song, Li, Yang, Ayoko, Frost, Ji (bb0190) 2012; 64
Sun (10.1016/j.geoderma.2018.08.010_bb0210) 2018; 327
Choe (10.1016/j.geoderma.2018.08.010_bb0025) 2008; 112
Ren (10.1016/j.geoderma.2018.08.010_bb0160) 2009; 19
Moros (10.1016/j.geoderma.2018.08.010_bb0130) 2009; 43
Malley (10.1016/j.geoderma.2018.08.010_bb0115) 1997; 31
Pittelkow (10.1016/j.geoderma.2018.08.010_bb0150) 2005; 61
Li (10.1016/j.geoderma.2018.08.010_bb0090) 2017; 471
Shi (10.1016/j.geoderma.2018.08.010_bb0170) 2018
Vohland (10.1016/j.geoderma.2018.08.010_bb0235) 2009; 172
Kooistra (10.1016/j.geoderma.2018.08.010_bb0080) 2001; 446
Siebielec (10.1016/j.geoderma.2018.08.010_bb0185) 2004; 33
Liu (10.1016/j.geoderma.2018.08.010_bb0105) 2014; 6
Ukalski (10.1016/j.geoderma.2018.08.010_bb0220) 2016; 58
Yang (10.1016/j.geoderma.2018.08.010_bb0260) 2009; 332
Ben-Dor (10.1016/j.geoderma.2018.08.010_bb0010) 1997; 61
Chen (10.1016/j.geoderma.2018.08.010_bb0020) 2016; 565
Sun (10.1016/j.geoderma.2018.08.010_bb0205) 2017; 58
Song (10.1016/j.geoderma.2018.08.010_bb0190) 2012; 64
Chen (10.1016/j.geoderma.2018.08.010_bb0015) 2015; 206
Wu (10.1016/j.geoderma.2018.08.010_bb0255) 2005; 20
Meng (10.1016/j.geoderma.2018.08.010_bb0120) 2014; 23
Kenett (10.1016/j.geoderma.2018.08.010_bb0075) 2015; 15
Shi (10.1016/j.geoderma.2018.08.010_bb0175) 2017; 17
Rathod (10.1016/j.geoderma.2018.08.010_bb0155) 2013; 15
Jiao (10.1016/j.geoderma.2018.08.010_bb0070) 2017; 69
Sun (10.1016/j.geoderma.2018.08.010_bb0215) 2017; 9
Gabriel (10.1016/j.geoderma.2018.08.010_bb0040) 1971; 58
Jiang (10.1016/j.geoderma.2018.08.010_bb0065) 2018; 162
Hong (10.1016/j.geoderma.2018.08.010_bb0055) 2018; 10
Pandit (10.1016/j.geoderma.2018.08.010_bb0140) 2010; 31
Haaland (10.1016/j.geoderma.2018.08.010_bb0050) 1988; 60
Shi (10.1016/j.geoderma.2018.08.010_bb0180) 2014; 48
Zhou (10.1016/j.geoderma.2018.08.010_bb0265) 2000; 105
Liu (10.1016/j.geoderma.2018.08.010_bb0110) 2017; 9
Chong (10.1016/j.geoderma.2018.08.010_bb0030) 2005; 78
Mishra (10.1016/j.geoderma.2018.08.010_bb0125) 2017; 7
Shi (10.1016/j.geoderma.2018.08.010_bb0165) 2014; 265
Sun (10.1016/j.geoderma.2018.08.010_bb0200) 2014; 118
Viscarra Rossel (10.1016/j.geoderma.2018.08.010_bb0225) 2006; 137
Wu (10.1016/j.geoderma.2018.08.010_bb0250) 2007; 71
Liu (10.1016/j.geoderma.2018.08.010_bb0100) 2012; 21
Wei (10.1016/j.geoderma.2018.08.010_bb0245) 1991
Viscarra Rossel (10.1016/j.geoderma.2018.08.010_bb0230) 2006; 131
Freudenberg (10.1016/j.geoderma.2018.08.010_bb0035) 2009; 10
Zhuang (10.1016/j.geoderma.2018.08.010_bb0270) 2009; 407
State Environmental Protection Agency of China (10.1016/j.geoderma.2018.08.010_bb0195) 1995
Gomez (10.1016/j.geoderma.2018.08.010_bb0045) 2008; 148
Wang (10.1016/j.geoderma.2018.08.010_bb0240) 2014; 216
Aslam (10.1016/j.geoderma.2018.08.010_bb0005) 2017; 19
Hong (10.1016/j.geoderma.2018.08.010_bb0060) 2017; 10
Myers (10.1016/j.geoderma.2018.08.010_bb0135) 2010
Liu (10.1016/j.geoderma.2018.08.010_bb0095) 2012; 33
Leenaers (10.1016/j.geoderma.2018.08.010_bb0085) 1990; 6
Pasqualoto (10.1016/j.geoderma.2018.08.010_bb0145) 2007; 595
References_xml – volume: 19
  start-page: 719
  year: 2009
  end-page: 726
  ident: bb0160
  article-title: Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: a case study
  publication-title: Pedosphere
– volume: 137
  start-page: 70
  year: 2006
  end-page: 82
  ident: bb0225
  article-title: Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy
  publication-title: Geoderma
– volume: 23
  start-page: 2351
  year: 2014
  end-page: 2358
  ident: bb0120
  article-title: Assessment of heavy metal pollution in Chinese suburban farmland
  publication-title: Pol. J. Environ. Stud.
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: bb0230
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– volume: 118
  start-page: 81
  year: 2014
  end-page: 92
  ident: bb0200
  article-title: Estimating mean air temperature using MODIS day and night land surface temperatures
  publication-title: Theor. Appl. Climatol.
– year: 2010
  ident: bb0135
  article-title: Research design and statistical analysis
– volume: 216
  start-page: 1
  year: 2014
  end-page: 9
  ident: bb0240
  article-title: Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy
  publication-title: Geoderma
– volume: 9
  year: 2017
  ident: bb0110
  article-title: Improving spectral estimation of soil organic carbon content through semi-supervised regression
  publication-title: Remote Sens.
– volume: 58
  start-page: 126
  year: 2017
  end-page: 133
  ident: bb0205
  article-title: Estimating soil zinc concentrations using reflectance spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 78
  start-page: 103
  year: 2005
  end-page: 112
  ident: bb0030
  article-title: Performance of some variable selection methods when multicollinearity is present
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 10
  year: 2017
  ident: bb0060
  article-title: Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture
  publication-title: Remote Sens.
– volume: 20
  start-page: 1051
  year: 2005
  end-page: 1059
  ident: bb0255
  article-title: Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils
  publication-title: Appl. Geochem.
– volume: 6
  start-page: 4305
  year: 2014
  end-page: 4322
  ident: bb0105
  article-title: Transferability of a visible and near-infrared model for soil organic matter estimation in riparian landscapes
  publication-title: Remote Sens.
– volume: 58
  start-page: 453
  year: 1971
  end-page: 467
  ident: bb0040
  article-title: The biplot graphic display of matrices with application to principal component analysis
  publication-title: Biometrika
– volume: 19
  start-page: 470
  year: 2017
  end-page: 478
  ident: bb0005
  article-title: Full length article comparison of different tolerance indices and PCA biplot analysis for assessment of salinity tolerance in lentil (lens culinaris) genotypes
  publication-title: Int. J. Agric. Biol.
– volume: 206
  start-page: 217
  year: 2015
  end-page: 226
  ident: bb0015
  article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy
  publication-title: Environ. Pollut.
– volume: 17
  year: 2017
  ident: bb0175
  article-title: Spectroscopic diagnosis of arsenic contamination in agricultural soils
  publication-title: Sensors
– volume: 10
  year: 2018
  ident: bb0055
  article-title: Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy
  publication-title: Remote Sens.
– volume: 60
  start-page: 1193
  year: 1988
  end-page: 1202
  ident: bb0050
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chem.
– volume: 43
  start-page: 9314
  year: 2009
  end-page: 9320
  ident: bb0130
  article-title: Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country)
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 60
  year: 2017
  end-page: 78
  ident: bb0125
  article-title: Multivariate statistical data analysis- principal component analysis (PCA)
  publication-title: Int. J. Livest. Res.
– volume: 33
  start-page: 2056
  year: 2004
  end-page: 2069
  ident: bb0185
  article-title: Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content
  publication-title: J. Environ. Qual.
– volume: 172
  start-page: 201
  year: 2009
  end-page: 209
  ident: bb0235
  article-title: A spectroscopic approach to assess trace-heavy metal contents in contaminated floodplain soils via spectrally active soil components
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 565
  start-page: 155
  year: 2016
  end-page: 164
  ident: bb0020
  article-title: Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: a case study in northwest China
  publication-title: Sci. Total Environ.
– volume: 332
  start-page: 558
  year: 2009
  end-page: 566
  ident: bb0260
  article-title: The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China
  publication-title: C. R. Biol.
– volume: 48
  start-page: 6264
  year: 2014
  end-page: 6272
  ident: bb0180
  article-title: Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants
  publication-title: Environ. Sci. Technol.
– volume: 61
  start-page: 630
  year: 2005
  end-page: 632
  ident: bb0150
  article-title: Use of principal component analysis and the GE-biplot for the graphical exploration of gene expression data
  publication-title: Biometrics
– volume: 327
  start-page: 25
  year: 2018
  end-page: 35
  ident: bb0210
  article-title: Predicting nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals
  publication-title: Geoderma
– volume: 446
  start-page: 97
  year: 2001
  end-page: 105
  ident: bb0080
  article-title: Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains
  publication-title: Anal. Chim. Acta
– volume: 595
  start-page: 216
  year: 2007
  end-page: 220
  ident: bb0145
  article-title: A study of physicochemical and biopharmaceutical properties of Amoxicillin tablets using full factorial design and PCA biplot
  publication-title: Anal. Chim. Acta
– volume: 471
  start-page: 106
  year: 2017
  end-page: 113
  ident: bb0090
  article-title: Market impact and structure dynamics of the Chinese stock market based on partial correlation analysis
  publication-title: Physica A
– volume: 6
  start-page: 105
  year: 1990
  end-page: 114
  ident: bb0085
  article-title: Employing elevation data for efficient mapping of soil pollution on floodplains
  publication-title: Soil Use Manag.
– volume: 148
  start-page: 141
  year: 2008
  end-page: 148
  ident: bb0045
  article-title: Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements
  publication-title: Geoderma
– volume: 58
  start-page: 228
  year: 2016
  end-page: 239
  ident: bb0220
  article-title: Application of GGE biplot graphs in multi-environment trials on selection of forest trees
  publication-title: Folia Forestalia Pol.
– volume: 69
  start-page: 553
  year: 2017
  end-page: 566
  ident: bb0070
  article-title: Analyzing the impacts of urban expansion on green fragmentation using constraint gradient analysis
  publication-title: Prof. Geogr.
– volume: 33
  start-page: 5954
  year: 2012
  end-page: 5972
  ident: bb0095
  article-title: Estimation of total iron content in floodplain soils using VNIR spectroscopy – a case study in the Le'an River floodplain, China
  publication-title: Int. J. Remote Sens.
– volume: 31
  start-page: 3461
  year: 1997
  end-page: 3467
  ident: bb0115
  article-title: Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 405
  year: 2013
  end-page: 426
  ident: bb0155
  article-title: Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils
  publication-title: Int. J. Phytorem.
– volume: 71
  start-page: 918
  year: 2007
  end-page: 926
  ident: bb0250
  article-title: A mechanism study of reflectance spectroscopy for investigating heavy metals in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 162
  start-page: 72
  year: 2018
  end-page: 79
  ident: bb0065
  article-title: Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metal contaminants in urban lake sediment
  publication-title: Catena
– volume: 61
  start-page: 1
  year: 1997
  end-page: 15
  ident: bb0010
  article-title: The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process
  publication-title: Remote Sens. Environ.
– start-page: 12
  year: 1991
  end-page: 19
  ident: bb0245
  article-title: Study on the background contents on 61 elements of soils in China
  publication-title: Chin. J. Environ. Sci.
– volume: 105
  start-page: 4491
  year: 2000
  end-page: 4500
  ident: bb0265
  article-title: A partial correlation analysis of the stratospheric ozone response to 27–day solar UV variations with temperature effect removed
  publication-title: J. Geophys. Res.-Atmos.
– volume: 112
  start-page: 3222
  year: 2008
  end-page: 3233
  ident: bb0025
  article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain
  publication-title: Remote Sens. Environ.
– volume: 64
  start-page: 75
  year: 2012
  end-page: 83
  ident: bb0190
  article-title: Diffuse reflectance spectroscopy for monitoring potentially toxic elements in the agricultural soils of Changjiang River Delta, China
  publication-title: Appl. Clay Sci.
– volume: 21
  start-page: 951
  year: 2012
  end-page: 969
  ident: bb0100
  article-title: Feasibility of estimating Cu contamination in floodplain soils using VNIR spectroscopy—a case study in the Le'an River floodplain, China
  publication-title: Soil Sediment Contam.
– volume: 265
  start-page: 166
  year: 2014
  end-page: 176
  ident: bb0165
  article-title: Visible and near-infrared reflectance spectroscopy-an alternative for monitoring soil contamination by heavy metals
  publication-title: J. Hazard. Mater.
– volume: 407
  start-page: 1551
  year: 2009
  end-page: 1561
  ident: bb0270
  article-title: Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China
  publication-title: Sci. Total Environ.
– volume: 31
  start-page: 4111
  year: 2010
  end-page: 4123
  ident: bb0140
  article-title: Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression
  publication-title: Int. J. Remote Sens.
– start-page: 1
  year: 2018
  end-page: 23
  ident: bb0170
  article-title: Proximal and remote sensing techniques for mapping of soil contamination with heavy metals
  publication-title: Appl. Spectrosc. Rev.
– volume: 10
  year: 2009
  ident: bb0035
  article-title: Partial correlation analysis indicates causal relationships between GC-content, exon density and recombination rate in the human genome
  publication-title: BMC Bioinf.
– volume: 15
  start-page: 569
  year: 2015
  end-page: 578
  ident: bb0075
  article-title: Partial correlation analysis: applications for financial markets
  publication-title: Quant. Finan.
– year: 1995
  ident: bb0195
  article-title: Environmental Quality Standard for Soils (GB15618-1995)
– volume: 9
  year: 2017
  ident: bb0215
  article-title: Exploring the potential of spectral classification in estimation of soil contaminant elements
  publication-title: Remote Sens.
– volume: 61
  start-page: 630
  issue: 2
  year: 2005
  ident: 10.1016/j.geoderma.2018.08.010_bb0150
  article-title: Use of principal component analysis and the GE-biplot for the graphical exploration of gene expression data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00366.x
– volume: 105
  start-page: 4491
  issue: D4
  year: 2000
  ident: 10.1016/j.geoderma.2018.08.010_bb0265
  article-title: A partial correlation analysis of the stratospheric ozone response to 27–day solar UV variations with temperature effect removed
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/1999JD901082
– volume: 595
  start-page: 216
  issue: 1–2
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.010_bb0145
  article-title: A study of physicochemical and biopharmaceutical properties of Amoxicillin tablets using full factorial design and PCA biplot
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2007.03.065
– volume: 10
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.010_bb0035
  article-title: Partial correlation analysis indicates causal relationships between GC-content, exon density and recombination rate in the human genome
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-10-S1-S66
– volume: 69
  start-page: 553
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0070
  article-title: Analyzing the impacts of urban expansion on green fragmentation using constraint gradient analysis
  publication-title: Prof. Geogr.
  doi: 10.1080/00330124.2016.1266947
– volume: 33
  start-page: 2056
  issue: 6
  year: 2004
  ident: 10.1016/j.geoderma.2018.08.010_bb0185
  article-title: Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.2056
– volume: 64
  start-page: 75
  year: 2012
  ident: 10.1016/j.geoderma.2018.08.010_bb0190
  article-title: Diffuse reflectance spectroscopy for monitoring potentially toxic elements in the agricultural soils of Changjiang River Delta, China
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.09.010
– volume: 31
  start-page: 4111
  issue: 15
  year: 2010
  ident: 10.1016/j.geoderma.2018.08.010_bb0140
  article-title: Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903229200
– volume: 10
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0060
  article-title: Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture
  publication-title: Remote Sens.
  doi: 10.3390/rs10010028
– volume: 446
  start-page: 97
  issue: 1–2
  year: 2001
  ident: 10.1016/j.geoderma.2018.08.010_bb0080
  article-title: Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)01265-X
– volume: 7
  start-page: 60
  issue: 5
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0125
  article-title: Multivariate statistical data analysis- principal component analysis (PCA)
  publication-title: Int. J. Livest. Res.
– volume: 9
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0215
  article-title: Exploring the potential of spectral classification in estimation of soil contaminant elements
  publication-title: Remote Sens.
  doi: 10.3390/rs9060632
– volume: 471
  start-page: 106
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0090
  article-title: Market impact and structure dynamics of the Chinese stock market based on partial correlation analysis
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.11.121
– volume: 6
  start-page: 105
  issue: 3
  year: 1990
  ident: 10.1016/j.geoderma.2018.08.010_bb0085
  article-title: Employing elevation data for efficient mapping of soil pollution on floodplains
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.1990.tb00818.x
– volume: 172
  start-page: 201
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.010_bb0235
  article-title: A spectroscopic approach to assess trace-heavy metal contents in contaminated floodplain soils via spectrally active soil components
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200700087
– volume: 131
  start-page: 59
  issue: 1–2
  year: 2006
  ident: 10.1016/j.geoderma.2018.08.010_bb0230
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 6
  start-page: 4305
  issue: 5
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.010_bb0105
  article-title: Transferability of a visible and near-infrared model for soil organic matter estimation in riparian landscapes
  publication-title: Remote Sens.
  doi: 10.3390/rs6054305
– volume: 265
  start-page: 166
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.010_bb0165
  article-title: Visible and near-infrared reflectance spectroscopy-an alternative for monitoring soil contamination by heavy metals
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.11.059
– volume: 206
  start-page: 217
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.010_bb0015
  article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.07.009
– volume: 9
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0110
  article-title: Improving spectral estimation of soil organic carbon content through semi-supervised regression
  publication-title: Remote Sens.
  doi: 10.3390/rs9010029
– year: 2010
  ident: 10.1016/j.geoderma.2018.08.010_bb0135
– volume: 71
  start-page: 918
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2018.08.010_bb0250
  article-title: A mechanism study of reflectance spectroscopy for investigating heavy metals in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0285
– volume: 148
  start-page: 141
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2018.08.010_bb0045
  article-title: Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.09.016
– volume: 407
  start-page: 1551
  issue: 5
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.010_bb0270
  article-title: Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.10.061
– volume: 162
  start-page: 72
  year: 2018
  ident: 10.1016/j.geoderma.2018.08.010_bb0065
  article-title: Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metal contaminants in urban lake sediment
  publication-title: Catena
  doi: 10.1016/j.catena.2017.11.020
– volume: 15
  start-page: 405
  issue: 5
  year: 2013
  ident: 10.1016/j.geoderma.2018.08.010_bb0155
  article-title: Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils
  publication-title: Int. J. Phytorem.
  doi: 10.1080/15226514.2012.702805
– volume: 31
  start-page: 3461
  issue: 12
  year: 1997
  ident: 10.1016/j.geoderma.2018.08.010_bb0115
  article-title: Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970214p
– volume: 43
  start-page: 9314
  issue: 24
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.010_bb0130
  article-title: Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9005898
– volume: 332
  start-page: 558
  issue: 6
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.010_bb0260
  article-title: The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2009.01.004
– volume: 58
  start-page: 126
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0205
  article-title: Estimating soil zinc concentrations using reflectance spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2017.01.013
– volume: 327
  start-page: 25
  year: 2018
  ident: 10.1016/j.geoderma.2018.08.010_bb0210
  article-title: Predicting nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.019
– volume: 565
  start-page: 155
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.010_bb0020
  article-title: Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: a case study in northwest China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.04.163
– volume: 216
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.010_bb0240
  article-title: Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.10.024
– volume: 78
  start-page: 103
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2018.08.010_bb0030
  article-title: Performance of some variable selection methods when multicollinearity is present
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.12.011
– volume: 15
  start-page: 569
  issue: 4
  year: 2015
  ident: 10.1016/j.geoderma.2018.08.010_bb0075
  article-title: Partial correlation analysis: applications for financial markets
  publication-title: Quant. Finan.
  doi: 10.1080/14697688.2014.946660
– year: 1995
  ident: 10.1016/j.geoderma.2018.08.010_bb0195
– volume: 17
  issue: 5
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0175
  article-title: Spectroscopic diagnosis of arsenic contamination in agricultural soils
  publication-title: Sensors
  doi: 10.3390/s17051036
– volume: 118
  start-page: 81
  issue: 1–2
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.010_bb0200
  article-title: Estimating mean air temperature using MODIS day and night land surface temperatures
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-013-1033-7
– volume: 137
  start-page: 70
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2018.08.010_bb0225
  article-title: Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.07.004
– volume: 33
  start-page: 5954
  issue: 18
  year: 2012
  ident: 10.1016/j.geoderma.2018.08.010_bb0095
  article-title: Estimation of total iron content in floodplain soils using VNIR spectroscopy – a case study in the Le'an River floodplain, China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.676687
– volume: 19
  start-page: 719
  issue: 6
  year: 2009
  ident: 10.1016/j.geoderma.2018.08.010_bb0160
  article-title: Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: a case study
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(09)60167-3
– start-page: 12
  issue: 4
  year: 1991
  ident: 10.1016/j.geoderma.2018.08.010_bb0245
  article-title: Study on the background contents on 61 elements of soils in China
  publication-title: Chin. J. Environ. Sci.
– volume: 21
  start-page: 951
  issue: 8
  year: 2012
  ident: 10.1016/j.geoderma.2018.08.010_bb0100
  article-title: Feasibility of estimating Cu contamination in floodplain soils using VNIR spectroscopy—a case study in the Le'an River floodplain, China
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320383.2012.712069
– volume: 20
  start-page: 1051
  issue: 6
  year: 2005
  ident: 10.1016/j.geoderma.2018.08.010_bb0255
  article-title: Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2005.01.009
– volume: 60
  start-page: 1193
  issue: 11
  year: 1988
  ident: 10.1016/j.geoderma.2018.08.010_bb0050
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chem.
  doi: 10.1021/ac00162a020
– volume: 19
  start-page: 470
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2018.08.010_bb0005
  article-title: Full length article comparison of different tolerance indices and PCA biplot analysis for assessment of salinity tolerance in lentil (lens culinaris) genotypes
  publication-title: Int. J. Agric. Biol.
  doi: 10.17957/IJAB/15.0308
– volume: 23
  start-page: 2351
  issue: 6
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.010_bb0120
  article-title: Assessment of heavy metal pollution in Chinese suburban farmland
  publication-title: Pol. J. Environ. Stud.
– volume: 48
  start-page: 6264
  issue: 11
  year: 2014
  ident: 10.1016/j.geoderma.2018.08.010_bb0180
  article-title: Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405361n
– volume: 58
  start-page: 228
  issue: 584
  year: 2016
  ident: 10.1016/j.geoderma.2018.08.010_bb0220
  article-title: Application of GGE biplot graphs in multi-environment trials on selection of forest trees
  publication-title: Folia Forestalia Pol.
  doi: 10.1515/ffp-2016-0026
– volume: 58
  start-page: 453
  issue: 3
  year: 1971
  ident: 10.1016/j.geoderma.2018.08.010_bb0040
  article-title: The biplot graphic display of matrices with application to principal component analysis
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.453
– volume: 10
  issue: 3
  year: 2018
  ident: 10.1016/j.geoderma.2018.08.010_bb0055
  article-title: Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy
  publication-title: Remote Sens.
  doi: 10.3390/rs10030479
– volume: 61
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.geoderma.2018.08.010_bb0010
  article-title: The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00120-4
– volume: 112
  start-page: 3222
  issue: 7
  year: 2008
  ident: 10.1016/j.geoderma.2018.08.010_bb0025
  article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.03.017
– start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.geoderma.2018.08.010_bb0170
  article-title: Proximal and remote sensing techniques for mapping of soil contamination with heavy metals
  publication-title: Appl. Spectrosc. Rev.
SSID ssj0017020
Score 2.5802832
Snippet Soil contamination by heavy metals has become a serious environmental issue worldwide. Rapidly and reliably obtaining heavy metal concentrations in soil is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms arsenic
cadmium
China
chromium
copper
Estimation mechanism
heavy metals
iron
lead
monitoring
Partial correlation analysis
PCA biplot analysis
reflectance
reflectance spectroscopy
remediation
soil
Soil heavy metal
soil organic matter
soil pollution
soil sampling
suburban areas
VNIR spectroscopy
zinc
Title Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy
URI https://dx.doi.org/10.1016/j.geoderma.2018.08.010
https://www.proquest.com/docview/2153611962
Volume 336
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FL3oQn_gmgte1zSabbI9FLFWxJwveQpJNSotui20FL_52Z7bZoiJ48La7JEuYTL6ZJDPfEHIpAPNk7kxi24onIrcmAasokuCkTZnJnXR43vHQl72BuHvKnhrkus6FwbDKiP1LTK_QOn5pRmk2p6MR5vgyqcAcMYVqVKVRC6FQy68-VmEeTLUiNSOTCbb-kiU8hjnCgmMV_xDLKypPzKT93UD9gOrK_nS3yVZ0HGlnObYd0vDlLtnsDF8jeYbfI4MbWK_ogZZDChj79k5fPPjW1GFqYhn5cWd0VNLZAmRpDTxMRs8zioexFEaCR_ioBbTKv0Sey8n0fZ8MujeP170klk1IDJf5POEpz0LLwNaosLC5M0zibaPICpcyFwoTBCtgFRsJTZziNrUq8yFl3svC8jzwA7JWTkp_SKjIfe6tzaxgTojgbKpUcFxZF5g1zB6RrJaVdpFTHEtbPOs6eGysaxlrlLHGmpesdUSaq37TJavGnz3a9VTob_qhAfr_7HtRz52GxYM3Iqb0k8VMg7_DQYHaMj3-x_9PyAa8tTGWm2WnZG3-uvBn4KrM7Xmli-dkvXN73-t_ApDb69c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOQAHxFMtzyDBcdjNY5LZA4cKWm3p49SVegtJJqm2KrOrzi5oL_wp_iD2bKYChNQD6m00M4ki27Gd2P4M8FahztNVcIUfGVmoyrsCraIqUtBecFcFHei-4-hYjyfq82l5ugE_-1oYSqvMun-t0zttnd8MMjUH8-mUany5NmiOuCExKnnOrDyIq-94bms_7H9CJr8TYm_35OO4yK0FCid1tSikkGUaOjw-1B4PQI5risipsg6Ch1S7pHiNku40_hKM9MKbMibBY9S1l1WSOO8tuK1QXVDbhPc_rvJKuBlmLEiuC1reb2XJ5ygU1OGsAzziVYcdSqW7_7aIf9mGzuDtPYD72VNlO2tiPISN2DyCeztnlxmtIz6GyS4qCHJ5mzOGSv3bin2N6MyzQLWQTQbkbdm0Ye0SmecdPsymFy2j21-GK6GYAYkd6wo-CVhzNl89gcmNEPMpbDazJm4BU1WsovelVzwolYIXxqQgjQ-Je8f9NpQ9rWzIIObUS-PC9tlq57ansSUaW2qyyYfbMLgaN1_DeFw7YtSzwv4hkBZtzbVj3_S8s7hbKQTjmjhbthYdLIkSO9Li2X_M_xrujE-ODu3h_vHBc7iLX0aUSM7LF7C5uFzGl-gnLfyrTi4ZfLnpjfAL03YnUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+heavy+metal+concentrations+in+suburban+soils+with+reflectance+spectroscopy&rft.jtitle=Geoderma&rft.au=Cheng%2C+Hang&rft.au=Shen%2C+Ruili&rft.au=Chen%2C+Yiyun&rft.au=Wan%2C+Qijin&rft.date=2019-02-15&rft.issn=0016-7061&rft.volume=336+p.59-67&rft.spage=59&rft.epage=67&rft_id=info:doi/10.1016%2Fj.geoderma.2018.08.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon