Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy

•Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In general, the best predictions were achieved using pXRF data.•RF algorithm outperformed other algorithms for soil texture prediction.•The best p...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 376; p. 114553
Main Authors Benedet, Lucas, Faria, Wilson Missina, Silva, Sérgio Henrique Godinho, Mancini, Marcelo, Demattê, José Alexandre Melo, Guilherme, Luiz Roberto Guimarães, Curi, Nilton
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In general, the best predictions were achieved using pXRF data.•RF algorithm outperformed other algorithms for soil texture prediction.•The best prediction models were obtained with pXRF + RF using B horizon data. Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have become important techniques for determination and prediction of soil attributes worldwide. However, there is little information available regarding the effectiveness of their combined use in tropical soils. This study aimed to predict soil texture using pXRF and Vis-NIR DRS, evaluating the efficiency of using these proximal sensors separately and in tandem. A total of 315 soil samples were collected from A and B horizons in Brazil. Soil samples were submitted to analyses of texture, pXRF and Vis-NIR DRS. Vis-NIR DRS spectral data pre-processing was evaluated by comparing results delivered by the derivative smoothing methods Savitzky-Golay (WT), Savitzky-Golay with Binning (WB), and data without the pre-processing treatment (WOT). Four algorithms were utilized for predictions: Gaussian Process (Gaussian), Support Vector Machine with linear (SVM-L) and radial (SVM-R) kernels, and Random Forest (RF). In general, models using only pXRF data slightly outperformed models using Vis-NIR DRS (WT, WB, WOT) data alone. Models combining data from both sensors achieved similar results to those obtained by pXRF alone. The best predictions of sand, silt, and clay contents were obtained via pXRF + RF using B horizon data, reaching R2 values of 0.91, 0.81, and 0.83, respectively. Although pXRF alone provided slightly better results, soil texture can be accurately predicted via both pXRF and Vis-NIR DRS data, separately and in tandem. These sensors can contribute to reduce costs and time required for tropical soil texture determination.
AbstractList Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have become important techniques for determination and prediction of soil attributes worldwide. However, there is little information available regarding the effectiveness of their combined use in tropical soils. This study aimed to predict soil texture using pXRF and Vis-NIR DRS, evaluating the efficiency of using these proximal sensors separately and in tandem. A total of 315 soil samples were collected from A and B horizons in Brazil. Soil samples were submitted to analyses of texture, pXRF and Vis-NIR DRS. Vis-NIR DRS spectral data pre-processing was evaluated by comparing results delivered by the derivative smoothing methods Savitzky-Golay (WT), Savitzky-Golay with Binning (WB), and data without the pre-processing treatment (WOT). Four algorithms were utilized for predictions: Gaussian Process (Gaussian), Support Vector Machine with linear (SVM-L) and radial (SVM-R) kernels, and Random Forest (RF). In general, models using only pXRF data slightly outperformed models using Vis-NIR DRS (WT, WB, WOT) data alone. Models combining data from both sensors achieved similar results to those obtained by pXRF alone. The best predictions of sand, silt, and clay contents were obtained via pXRF + RF using B horizon data, reaching R² values of 0.91, 0.81, and 0.83, respectively. Although pXRF alone provided slightly better results, soil texture can be accurately predicted via both pXRF and Vis-NIR DRS data, separately and in tandem. These sensors can contribute to reduce costs and time required for tropical soil texture determination.
•Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In general, the best predictions were achieved using pXRF data.•RF algorithm outperformed other algorithms for soil texture prediction.•The best prediction models were obtained with pXRF + RF using B horizon data. Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have become important techniques for determination and prediction of soil attributes worldwide. However, there is little information available regarding the effectiveness of their combined use in tropical soils. This study aimed to predict soil texture using pXRF and Vis-NIR DRS, evaluating the efficiency of using these proximal sensors separately and in tandem. A total of 315 soil samples were collected from A and B horizons in Brazil. Soil samples were submitted to analyses of texture, pXRF and Vis-NIR DRS. Vis-NIR DRS spectral data pre-processing was evaluated by comparing results delivered by the derivative smoothing methods Savitzky-Golay (WT), Savitzky-Golay with Binning (WB), and data without the pre-processing treatment (WOT). Four algorithms were utilized for predictions: Gaussian Process (Gaussian), Support Vector Machine with linear (SVM-L) and radial (SVM-R) kernels, and Random Forest (RF). In general, models using only pXRF data slightly outperformed models using Vis-NIR DRS (WT, WB, WOT) data alone. Models combining data from both sensors achieved similar results to those obtained by pXRF alone. The best predictions of sand, silt, and clay contents were obtained via pXRF + RF using B horizon data, reaching R2 values of 0.91, 0.81, and 0.83, respectively. Although pXRF alone provided slightly better results, soil texture can be accurately predicted via both pXRF and Vis-NIR DRS data, separately and in tandem. These sensors can contribute to reduce costs and time required for tropical soil texture determination.
ArticleNumber 114553
Author Benedet, Lucas
Faria, Wilson Missina
Curi, Nilton
Silva, Sérgio Henrique Godinho
Guilherme, Luiz Roberto Guimarães
Mancini, Marcelo
Demattê, José Alexandre Melo
Author_xml – sequence: 1
  givenname: Lucas
  surname: Benedet
  fullname: Benedet, Lucas
  organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
– sequence: 2
  givenname: Wilson Missina
  surname: Faria
  fullname: Faria, Wilson Missina
  organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
– sequence: 3
  givenname: Sérgio Henrique Godinho
  surname: Silva
  fullname: Silva, Sérgio Henrique Godinho
  organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
– sequence: 4
  givenname: Marcelo
  surname: Mancini
  fullname: Mancini, Marcelo
  organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
– sequence: 5
  givenname: José Alexandre Melo
  surname: Demattê
  fullname: Demattê, José Alexandre Melo
  organization: Department of Soil Science, University of São Paulo, Piracicaba, São Paulo State, Brazil
– sequence: 6
  givenname: Luiz Roberto Guimarães
  surname: Guilherme
  fullname: Guilherme, Luiz Roberto Guimarães
  organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
– sequence: 7
  givenname: Nilton
  surname: Curi
  fullname: Curi, Nilton
  email: niltcuri@ufla.br
  organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
BookMark eNqFkMFq3DAQhkVJoZu0r1B0zMUbSbZlG3JICE0aCPTQFnoTY2kUtHglR5JD99g3r8w2EHrJadDwfz-j75Sc-OCRkM-cbTnj8mK3fcRgMO5hK5goS960bf2ObHjfiUqKdjghG1aSVcck_0BOU9qVZ1eyG_Lne3ATzfg7LxHpHNE4nV3wdEnOP9I5xAzjhPRXFeFA7bSEiEmj10jTjDrHsMccDxS8oc8uuTXrEWLlvI1Q6qhx1i4JaUQ7FQBeoUmH-fCRvLcwJfz0b56Rn7dfftx8rR6-3d3fXD9UUMs-V0KP0FoEKeTItDRSNCBYzRtWDwP2TW0sH0fDWIOGDRa6mrdjYzo59B2H2tRn5PzYO8fwtGDKau_KT6YJPIYlKdG2RZ_oW1ail8eoLjemcrjSLsOqJUdwk-JMrebVTr2YV6t5dTRfcPkfPke3h3h4G7w6glg8PDuMKmm3ujYuFmHKBPdWxV_236eZ
CitedBy_id crossref_primary_10_1016_j_catena_2021_105868
crossref_primary_10_1016_j_envres_2023_115300
crossref_primary_10_1016_j_jsames_2022_103748
crossref_primary_10_1061_JHTRBP_HZENG_1282
crossref_primary_10_3390_rs14153510
crossref_primary_10_3389_fchem_2023_1214825
crossref_primary_10_1002_saj2_20223
crossref_primary_10_3390_pr10030536
crossref_primary_10_1016_j_compag_2022_107192
crossref_primary_10_3390_land12091812
crossref_primary_10_30910_turkjans_1441357
crossref_primary_10_3390_agronomy14112678
crossref_primary_10_1016_j_geoderma_2021_115604
crossref_primary_10_1016_j_geoderma_2021_115648
crossref_primary_10_1007_s44274_024_00097_3
crossref_primary_10_1016_j_geoderma_2021_115649
crossref_primary_10_3390_s21010148
crossref_primary_10_1016_j_compag_2024_108760
crossref_primary_10_1007_s11368_021_03109_4
crossref_primary_10_1051_e3sconf_202452002021
crossref_primary_10_1016_j_jsames_2022_103873
crossref_primary_10_1016_j_geoderma_2024_116938
crossref_primary_10_1016_j_geodrs_2022_e00573
crossref_primary_10_3390_rs13234752
crossref_primary_10_3389_fenvs_2024_1448601
crossref_primary_10_1016_j_geoderma_2024_117137
crossref_primary_10_1016_j_apgeochem_2024_106066
crossref_primary_10_1016_j_catena_2021_105954
crossref_primary_10_1071_SR20136
crossref_primary_10_54033_cadpedv21n3_182
crossref_primary_10_1016_j_geodrs_2023_e00612
crossref_primary_10_1016_j_jag_2023_103250
crossref_primary_10_1016_j_geodrs_2024_e00813
crossref_primary_10_3390_agronomy14092074
crossref_primary_10_1016_j_geoderma_2022_116268
crossref_primary_10_1016_j_geoderma_2022_116301
crossref_primary_10_1016_j_geoderma_2022_115936
crossref_primary_10_1590_0001_3765202120200646
crossref_primary_10_3390_s24103251
crossref_primary_10_1016_j_catena_2024_108053
crossref_primary_10_1111_ejss_13358
crossref_primary_10_3390_ai3040049
crossref_primary_10_1016_j_envres_2023_115858
crossref_primary_10_1016_j_catena_2022_106514
crossref_primary_10_1016_j_microc_2023_108813
crossref_primary_10_1016_j_geodrs_2021_e00461
crossref_primary_10_1016_j_scitotenv_2023_168381
crossref_primary_10_3390_agronomy12112699
Cites_doi 10.1127/0941-2948/2006/0130
10.1029/JB095iB08p12653
10.1016/j.geoderma.2018.11.043
10.1016/j.geoderma.2014.09.011
10.1016/j.geoderma.2020.114212
10.1016/j.psep.2019.09.025
10.1016/j.geoderma.2014.05.005
10.1590/1413-70542018425017518
10.1016/j.geoderma.2019.113885
10.1016/j.geoderma.2014.01.019
10.1016/j.still.2014.11.002
10.1016/j.geoderma.2014.10.001
10.1016/j.scitotenv.2015.01.087
10.1111/ejss.12320
10.1371/journal.pone.0172438
10.1016/j.clay.2018.05.028
10.1016/j.proenv.2013.06.056
10.1016/j.geoderma.2019.05.043
10.1016/j.catena.2019.05.001
10.2136/sssaj2013.05.0170
10.1016/j.geoderma.2016.05.005
10.1016/j.still.2015.07.021
10.1016/j.geoderma.2011.08.010
10.1127/0941-2948/2013/0507
10.1097/SS.0000000000000026
10.1016/j.eja.2015.12.001
10.1016/j.geoderma.2019.114136
10.1590/1413-7054201943018219
10.2136/sssaj2015.10.0361
10.1016/j.jenvman.2017.03.014
10.1016/j.catena.2016.04.019
10.1590/1413-7054202044002420
10.1190/1.1440721
10.1016/j.geoderma.2017.10.053
10.1016/j.geoderma.2013.11.012
10.1016/j.biosystemseng.2018.06.008
10.1016/j.geoderma.2014.12.011
10.1016/j.geoderma.2017.03.017
10.1016/j.geoderma.2013.09.016
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114553
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114553
S0016706119330447
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-2cba5fea626b0c6d624a203140399e843df1bbd004ed09fa7315b4d769871a3d3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 18:24:11 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Tue Jul 01 04:04:53 EDT 2025
Fri Feb 23 02:47:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tropical soils
Random forest
Pedometrics
Proximal sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-2cba5fea626b0c6d624a203140399e843df1bbd004ed09fa7315b4d769871a3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2552022850
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552022850
crossref_citationtrail_10_1016_j_geoderma_2020_114553
crossref_primary_10_1016_j_geoderma_2020_114553
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114553
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lopes, Guilherme (b0125) 2016; 137
Dhawale, Adamchuk, Prasher, Rossel, Ismail, Whalen, Louargant (b0070) 2014
Duda, Weindorf, Chakraborty, Li, Man, Paulette, Deb (b0075) 2017; 298
O'Rourke, Stockmann, Holden, Mcbratney, Minasny (b0150) 2016; 279
Chakraborty, Weindorf, Li, Aldabaa, Ghosh, Paul, Ali (b0030) 2015; 514
Zhang, Hartemink (b0260) 2019; 180
Stevens, A., Ramirez-Lopez, L., 2014. An introduction to the prospectr package. Available at
Demattê, Horák-Terra, Beirigo, Terra, Marques, Fongaro, Silva, Vidal-Torrado (b0065) 2017; 197
Saikia (b0170) 2014; 2
Heung, Bulmer, Schmidt (b0095) 2014; 214
Weindorf, Herrero, Castañeda, Bakr, Swanhart (b0245) 2013; 77
Chakraborty, Li, Weindorf, Deb, Acree, De, Panda (b0035) 2019; 338
Kottek, Grieser, Beck, Rudolf, Rubel (b9005) 2006; 15
Santos, H.G.dos, Jacomine, P.K.T., Anjos, L.H.C.dos, Oliveira, V.A.de, Lumbreras. J.F., Coelho, M.R., Almeida, J.A.de, Araujo Filho, J.C.de, Oliveira, J.B.de, Cunha, T.J.F., 2018. Sistema Brasileiro de Classificação de Solos, fifth ed. Embrapa, Brasília.
Wang, Chakraborty, Weindorf, Li, Sharma, Paul, Ali (b0235) 2015; 243
Mancini, Weindorf, Silva, Chakraborty, Teixeira, Guilherme, Curi (b0130) 2019; 354
Hanson, B.A., 2019. An Introduction to ChemoSpec.
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2019. Classification and regression training. Available online at
Mutanga, Skidmore (b0135) 2003
Gee, Bauder (b0080) 1986
Hunt, G.R., 1977. Spectral signatures of particulate minerals, in the visible and near-infrared. Geophysics 42, 501–513. DOI:10.1190/1.1440721.
Nawar, Buddenbaum, Hill, Kozak, Mouazen (b0140) 2016; 155
Demattê, Terra (b0060) 2014; 217
Resende, Curi, Resende, Corrêia, Ker (b0165) 2014
Clark, King, Klejwa, Swayze, Vergo (b0040) 1990; 95
Soil Survey Staff, 2014. Keys to Soil Taxonomy, twelfth ed. USDA – Natural Resources Conservation Service, Washington.
(accessed 2 August 2019).
Alvares, Stape, Sentelhas, de Moraes, Leonardo, Sparovek (b0010) 2013; 22
Wang, Li, Li, Liu (b0240) 2013; 178
Dijair, Silva, Teixeira, Silva, Guilherme, Curi (bib268) 2020; 44
R Core Team. R, 2015. A Language and Environment for Statistical Computing.
Kuang, Tekin, Mouazen (b0115) 2015; 146
acessed 15 November 2019.
Terra, Demattê, Viscarra Rossel (b0215) 2018; 318
Curcio, Ciraolo, D’Asaro, Minacapilli (b0050) 2013; 19
Tümsavaş, Tekin, Ulusoy, Mouazen (b0220) 2019; 177
Weindorf, Chakraborty, Herrero, Li, Castañeda, Choudhury (b0255) 2016; 67
Wan, Qu, Hu, Li, Zhang, Cheng, Huang (b0230) 2019; 132
Gonçalves, Ker, Oliveira, Ramos, Pacheco, Curi (b0085) 2019; 43
Sharma, Weindorf, Man, Aldabaa, Chakraborty (b0180) 2014; 232–234
Silva, Weindorf, Pinto, Faria, Acerbi Junior, Gomide, de Mello, de Pádua Junior, de Souza, Teixeira, Guilherme, Curi (b0195) 2020; 362
Costa, Crusciol (b0045) 2016; 74
Palleiro, Patinha, Rodríguez-Blanco, Taboada-Castro, Taboada-Castro (b0155) 2016; 144
Demattê, Carnieletto, Paiva, Sato, Dalmolin, Araújo, Elisângela, Nanni, Noronha, Lacerda, Coelho, Filho, Rizzo, Bellinaso, Francelino, Schaefer, Vicente, Uemeson, Sá, Sampaio, Menezes, João, Souza, Abrahão, Coelho, Grego, Lani, Fernandes, Gonçalves, Silva, Menezes, Curi, Couto, Lúcia, Ceddia, Pinheiro, Grunwald, Vasques, Marques, Airon, Vasconcelos, Nóbrega, Marcelo, Souza, Valladares, Herbert, Viana, Terra, Horák-terra, Fiorio, Rafael, Frade, Lima, Filippini, SouzaV.S.deLourdesM.deSantos, Lourdes, Ruivo, Ferreira, Brait, Caetano, Bringhenti, SousaW.deSafanelli, Guimarães, Poppiel, Barros, Quesada, Zarate (b0055) 2019; 354
Zhu, Weindorf, Zhang (b0265) 2011; 167
Hu, Chen, Hu, Xia, Xu, Li, Shi (b0100) 2017; 12
Weindorf, Bakr, Zhu (b0250) 2014; 128
Sharma, Weindorf, Wang, Chakraborty (b0185) 2015; 239
Vasques, Demattê, Rossel, Ramírez-López, Terra (b0225) 2014; 223–225
Silva, Hartemink, dos Santos Teixeira, Inda, Guilherme, Curi (b0190) 2018; 162
Budak, Gunal (b0025) 2016; 10
Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343.
Teixeira, Weindorf, Silva, Guilherme, Curi (b0210) 2018; 42
Aldabaa, Weindorf, Chakraborty, Sharma, Li (b0005) 2015; 239
(accessed 19 July 2019).
Benedet, Faria, Silva, Mancini, Guilherme, Demattê, Curi (b0015) 2020; 365
(acessed 27 July 2019).
O’Rourke, Minasny, Holden, McBratney (b0145) 2016; 80
10.1016/j.geoderma.2020.114553_b0110
Nawar (10.1016/j.geoderma.2020.114553_b0140) 2016; 155
O’Rourke (10.1016/j.geoderma.2020.114553_b0145) 2016; 80
Saikia (10.1016/j.geoderma.2020.114553_b0170) 2014; 2
Resende (10.1016/j.geoderma.2020.114553_b0165) 2014
Demattê (10.1016/j.geoderma.2020.114553_b0065) 2017; 197
Zhang (10.1016/j.geoderma.2020.114553_b0260) 2019; 180
Tümsavaş (10.1016/j.geoderma.2020.114553_b0220) 2019; 177
Costa (10.1016/j.geoderma.2020.114553_b0045) 2016; 74
10.1016/j.geoderma.2020.114553_b0105
Silva (10.1016/j.geoderma.2020.114553_b0190) 2018; 162
Dhawale (10.1016/j.geoderma.2020.114553_b0070) 2014
Budak (10.1016/j.geoderma.2020.114553_b0025) 2016; 10
Hu (10.1016/j.geoderma.2020.114553_b0100) 2017; 12
10.1016/j.geoderma.2020.114553_b0120
10.1016/j.geoderma.2020.114553_b0200
Weindorf (10.1016/j.geoderma.2020.114553_b0250) 2014; 128
Wan (10.1016/j.geoderma.2020.114553_b0230) 2019; 132
Lopes (10.1016/j.geoderma.2020.114553_b0125) 2016; 137
Palleiro (10.1016/j.geoderma.2020.114553_b0155) 2016; 144
10.1016/j.geoderma.2020.114553_b0160
Sharma (10.1016/j.geoderma.2020.114553_b0180) 2014; 232–234
Silva (10.1016/j.geoderma.2020.114553_b0195) 2020; 362
Alvares (10.1016/j.geoderma.2020.114553_b0010) 2013; 22
Teixeira (10.1016/j.geoderma.2020.114553_b0210) 2018; 42
Kuang (10.1016/j.geoderma.2020.114553_b0115) 2015; 146
Dijair (10.1016/j.geoderma.2020.114553_bib268) 2020; 44
10.1016/j.geoderma.2020.114553_b0175
Mutanga (10.1016/j.geoderma.2020.114553_b0135) 2003
10.1016/j.geoderma.2020.114553_b0090
Gonçalves (10.1016/j.geoderma.2020.114553_b0085) 2019; 43
Clark (10.1016/j.geoderma.2020.114553_b0040) 1990; 95
Gee (10.1016/j.geoderma.2020.114553_b0080) 1986
Heung (10.1016/j.geoderma.2020.114553_b0095) 2014; 214
Wang (10.1016/j.geoderma.2020.114553_b0235) 2015; 243
Sharma (10.1016/j.geoderma.2020.114553_b0185) 2015; 239
Weindorf (10.1016/j.geoderma.2020.114553_b0255) 2016; 67
Kottek (10.1016/j.geoderma.2020.114553_b9005) 2006; 15
Chakraborty (10.1016/j.geoderma.2020.114553_b0030) 2015; 514
10.1016/j.geoderma.2020.114553_b0205
Curcio (10.1016/j.geoderma.2020.114553_b0050) 2013; 19
Benedet (10.1016/j.geoderma.2020.114553_b0015) 2020; 365
Demattê (10.1016/j.geoderma.2020.114553_b0060) 2014; 217
Terra (10.1016/j.geoderma.2020.114553_b0215) 2018; 318
Vasques (10.1016/j.geoderma.2020.114553_b0225) 2014; 223–225
Demattê (10.1016/j.geoderma.2020.114553_b0055) 2019; 354
Wang (10.1016/j.geoderma.2020.114553_b0240) 2013; 178
Aldabaa (10.1016/j.geoderma.2020.114553_b0005) 2015; 239
Weindorf (10.1016/j.geoderma.2020.114553_b0245) 2013; 77
Chakraborty (10.1016/j.geoderma.2020.114553_b0035) 2019; 338
O'Rourke (10.1016/j.geoderma.2020.114553_b0150) 2016; 279
Zhu (10.1016/j.geoderma.2020.114553_b0265) 2011; 167
Mancini (10.1016/j.geoderma.2020.114553_b0130) 2019; 354
Duda (10.1016/j.geoderma.2020.114553_b0075) 2017; 298
References_xml – volume: 15
  start-page: 259
  year: 2006
  end-page: 263
  ident: b9005
  article-title: World Map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
– volume: 362
  year: 2020
  ident: b0195
  article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
– reference: Hanson, B.A., 2019. An Introduction to ChemoSpec.
– reference: R Core Team. R, 2015. A Language and Environment for Statistical Computing.
– reference: Hunt, G.R., 1977. Spectral signatures of particulate minerals, in the visible and near-infrared. Geophysics 42, 501–513. DOI:10.1190/1.1440721.
– volume: 155
  start-page: 510
  year: 2016
  end-page: 522
  ident: b0140
  article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy
  publication-title: Soil Till. Res.
– volume: 44
  start-page: e002420
  year: 2020
  ident: bib268
  article-title: Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
  publication-title: Ciência e Agrotecnologia
– reference: (accessed 19 July 2019).
– volume: 232–234
  start-page: 141
  year: 2014
  end-page: 147
  ident: b0180
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)
  publication-title: Geoderma
– volume: 197
  start-page: 50
  year: 2017
  end-page: 62
  ident: b0065
  article-title: Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring
  publication-title: J. Environ. Manage.
– volume: 318
  start-page: 123
  year: 2018
  end-page: 136
  ident: b0215
  article-title: Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis
  publication-title: Geoderma
– reference: Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2019. Classification and regression training. Available online at
– volume: 217
  start-page: 190
  year: 2014
  end-page: 200
  ident: b0060
  article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations
  publication-title: Geoderma
– start-page: 542
  year: 2003
  end-page: 558
  ident: b0135
  article-title: Continuum-removed absorption features estimate tropical savanna grass quality in situ
  publication-title: Proc. 3rd EARSEL Workshop on Imaging Spectroscopy
– volume: 279
  start-page: 31
  year: 2016
  end-page: 44
  ident: b0150
  article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
– volume: 80
  start-page: 888
  year: 2016
  end-page: 899
  ident: b0145
  article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 146
  start-page: 243
  year: 2015
  end-page: 252
  ident: b0115
  article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content
  publication-title: Soil Till. Res.
– year: 2014
  ident: b0165
  article-title: Pedologia: Base para a Distinção de Ambientes
– volume: 19
  start-page: 494
  year: 2013
  end-page: 503
  ident: b0050
  article-title: Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy
  publication-title: Procedia Environ. Sci.
– volume: 132
  start-page: 73
  year: 2019
  end-page: 81
  ident: b0230
  article-title: Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals
  publication-title: Process Saf. Environ.
– volume: 239
  start-page: 130
  year: 2015
  end-page: 134
  ident: b0185
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC)
  publication-title: Geoderma
– reference: Soil Survey Staff, 2014. Keys to Soil Taxonomy, twelfth ed. USDA – Natural Resources Conservation Service, Washington.
– volume: 167
  start-page: 167
  year: 2011
  end-page: 177
  ident: b0265
  article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture
  publication-title: Geoderma
– volume: 338
  start-page: 5
  year: 2019
  end-page: 13
  ident: b0035
  article-title: Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India
  publication-title: Geoderma
– volume: 12
  year: 2017
  ident: b0100
  article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution
  publication-title: PLoS One
– volume: 514
  start-page: 399
  year: 2015
  end-page: 408
  ident: b0030
  article-title: Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils
  publication-title: Sci. Total Environ.
– volume: 95
  start-page: 12653
  year: 1990
  end-page: 12680
  ident: b0040
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res.
– reference: Stevens, A., Ramirez-Lopez, L., 2014. An introduction to the prospectr package. Available at:
– volume: 74
  start-page: 119
  year: 2016
  end-page: 132
  ident: b0045
  article-title: Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties
  publication-title: Eur. J. Agron.
– volume: 162
  start-page: 27
  year: 2018
  end-page: 37
  ident: b0190
  article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado
  publication-title: Appl. Clay Sci.
– volume: 354
  start-page: 113793
  year: 2019
  ident: b0055
  article-title: The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges
  publication-title: Geoderma
– volume: 128
  start-page: 1
  year: 2014
  end-page: 45
  ident: b0250
  article-title: Advances in Portable X-ray Fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Advances in Agronomy
– volume: 223–225
  start-page: 73
  year: 2014
  end-page: 78
  ident: b0225
  article-title: Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths
  publication-title: Geoderma
– reference: Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343.
– reference: (acessed 15 November 2019.
– volume: 43
  year: 2019
  ident: b0085
  article-title: Lateral loss of clay in the genesis of Luvisols in the Semi-Arid Depression of the Jequitinhonha Valley, Minas Gerais – Brazil
  publication-title: Ciênc. Agrotec.
– volume: 144
  start-page: 34
  year: 2016
  end-page: 44
  ident: b0155
  article-title: Metal fractionation in topsoils and bed sediments in the Mero River rural basin: bioavailability and relationship with soil and sediment properties
  publication-title: Catena
– volume: 180
  start-page: 298
  year: 2019
  end-page: 308
  ident: b0260
  article-title: Soil horizon delineation using vis-NIR and pXRF data
  publication-title: Catena
– volume: 10
  start-page: 61
  year: 2016
  end-page: 73
  ident: b0025
  article-title: Visible and near infrared spectroscopy techniques for determination of some physical and chemical properties in Kazova watershed
  publication-title: Adv. Environ. Biol.
– reference: (accessed 2 August 2019).
– volume: 42
  start-page: 501
  year: 2018
  end-page: 512
  ident: b0210
  article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses
  publication-title: Ciênc Agrotec.
– volume: 178
  start-page: 626
  year: 2013
  end-page: 638
  ident: b0240
  article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion
  publication-title: Soil Sci.
– volume: 77
  start-page: 2071
  year: 2013
  end-page: 2077
  ident: b0245
  article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 354
  year: 2019
  ident: b0130
  article-title: Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil
  publication-title: Geoderma
– volume: 239
  start-page: 34
  year: 2015
  end-page: 46
  ident: b0005
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
– volume: 214
  start-page: 141
  year: 2014
  end-page: 154
  ident: b0095
  article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach
  publication-title: Geoderma
– volume: 177
  start-page: 90
  year: 2019
  end-page: 100
  ident: b0220
  article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy
  publication-title: Biosyst. Eng.
– volume: 243
  start-page: 157
  year: 2015
  end-page: 167
  ident: b0235
  article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen
  publication-title: Geoderma
– volume: 2
  start-page: 28
  year: 2014
  end-page: 33
  ident: b0170
  article-title: Spectroscopic estimation of geometrical structure elucidation in natural SiO
  publication-title: Mater. Chem. Phys.
– start-page: 383
  year: 1986
  end-page: 412
  ident: b0080
  article-title: Particle-size analysis
  publication-title: Methods of Soil Analysis
– year: 2014
  ident: b0070
  article-title: Comparing visible, NIR and MIR hyperspectrometry for measuring soil physical properties
  publication-title: Biol Eng Trans
– volume: 298
  start-page: 78
  year: 2017
  end-page: 91
  ident: b0075
  article-title: Soil characterization across catenas via advanced proximal sensors
  publication-title: Geoderma
– reference: (acessed 27 July 2019).
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: b0010
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
– volume: 365
  year: 2020
  ident: b0015
  article-title: Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy
  publication-title: Geoderma
– reference: Santos, H.G.dos, Jacomine, P.K.T., Anjos, L.H.C.dos, Oliveira, V.A.de, Lumbreras. J.F., Coelho, M.R., Almeida, J.A.de, Araujo Filho, J.C.de, Oliveira, J.B.de, Cunha, T.J.F., 2018. Sistema Brasileiro de Classificação de Solos, fifth ed. Embrapa, Brasília.
– volume: 67
  start-page: 173
  year: 2016
  end-page: 183
  ident: b0255
  article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data
  publication-title: Eur. J. Soil Sci.
– volume: 137
  start-page: 1
  year: 2016
  end-page: 72
  ident: b0125
  article-title: A career perspective on soil management in the Cerrado region of Brazil
  publication-title: Advances in Agronomy
– volume: 15
  start-page: 259
  year: 2006
  ident: 10.1016/j.geoderma.2020.114553_b9005
  article-title: World Map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2006/0130
– volume: 95
  start-page: 12653
  issue: B8
  year: 1990
  ident: 10.1016/j.geoderma.2020.114553_b0040
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB08p12653
– volume: 2
  start-page: 28
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0170
  article-title: Spectroscopic estimation of geometrical structure elucidation in natural SiO2 crystal
  publication-title: Mater. Chem. Phys.
– ident: 10.1016/j.geoderma.2020.114553_b0175
– ident: 10.1016/j.geoderma.2020.114553_b0110
– volume: 338
  start-page: 5
  year: 2019
  ident: 10.1016/j.geoderma.2020.114553_b0035
  article-title: Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.043
– volume: 239
  start-page: 34
  year: 2015
  ident: 10.1016/j.geoderma.2020.114553_b0005
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.011
– volume: 365
  year: 2020
  ident: 10.1016/j.geoderma.2020.114553_b0015
  article-title: Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114212
– volume: 132
  start-page: 73
  year: 2019
  ident: 10.1016/j.geoderma.2020.114553_b0230
  article-title: Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2019.09.025
– volume: 232–234
  start-page: 141
  year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0180
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.005
– volume: 42
  start-page: 501
  issue: 5
  year: 2018
  ident: 10.1016/j.geoderma.2020.114553_b0210
  article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses
  publication-title: Ciênc Agrotec.
  doi: 10.1590/1413-70542018425017518
– volume: 354
  year: 2019
  ident: 10.1016/j.geoderma.2020.114553_b0130
  article-title: Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113885
– volume: 223–225
  start-page: 73
  year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0225
  article-title: Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.019
– volume: 146
  start-page: 243
  year: 2015
  ident: 10.1016/j.geoderma.2020.114553_b0115
  article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2014.11.002
– volume: 239
  start-page: 130
  year: 2015
  ident: 10.1016/j.geoderma.2020.114553_b0185
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.10.001
– volume: 514
  start-page: 399
  year: 2015
  ident: 10.1016/j.geoderma.2020.114553_b0030
  article-title: Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.01.087
– volume: 67
  start-page: 173
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0255
  article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12320
– start-page: 383
  year: 1986
  ident: 10.1016/j.geoderma.2020.114553_b0080
  article-title: Particle-size analysis
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2020.114553_b0100
  article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0172438
– volume: 162
  start-page: 27
  year: 2018
  ident: 10.1016/j.geoderma.2020.114553_b0190
  article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2018.05.028
– volume: 19
  start-page: 494
  year: 2013
  ident: 10.1016/j.geoderma.2020.114553_b0050
  article-title: Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2013.06.056
– volume: 137
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0125
  article-title: A career perspective on soil management in the Cerrado region of Brazil
– ident: 10.1016/j.geoderma.2020.114553_b0090
– volume: 354
  start-page: 113793
  year: 2019
  ident: 10.1016/j.geoderma.2020.114553_b0055
  article-title: The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.043
– volume: 180
  start-page: 298
  year: 2019
  ident: 10.1016/j.geoderma.2020.114553_b0260
  article-title: Soil horizon delineation using vis-NIR and pXRF data
  publication-title: Catena
  doi: 10.1016/j.catena.2019.05.001
– volume: 77
  start-page: 2071
  issue: 6
  year: 2013
  ident: 10.1016/j.geoderma.2020.114553_b0245
  article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.05.0170
– volume: 279
  start-page: 31
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0150
  article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.005
– ident: 10.1016/j.geoderma.2020.114553_b0120
– year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0165
– volume: 155
  start-page: 510
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0140
  article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2015.07.021
– volume: 167
  start-page: 167
  year: 2011
  ident: 10.1016/j.geoderma.2020.114553_b0265
  article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.010
– volume: 22
  start-page: 711
  issue: 6
  year: 2013
  ident: 10.1016/j.geoderma.2020.114553_b0010
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2013/0507
– ident: 10.1016/j.geoderma.2020.114553_b0205
– volume: 178
  start-page: 626
  issue: 11
  year: 2013
  ident: 10.1016/j.geoderma.2020.114553_b0240
  article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000026
– volume: 74
  start-page: 119
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0045
  article-title: Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2015.12.001
– volume: 362
  year: 2020
  ident: 10.1016/j.geoderma.2020.114553_b0195
  article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114136
– volume: 43
  year: 2019
  ident: 10.1016/j.geoderma.2020.114553_b0085
  article-title: Lateral loss of clay in the genesis of Luvisols in the Semi-Arid Depression of the Jequitinhonha Valley, Minas Gerais – Brazil
  publication-title: Ciênc. Agrotec.
  doi: 10.1590/1413-7054201943018219
– volume: 80
  start-page: 888
  issue: 4
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0145
  article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.10.0361
– volume: 197
  start-page: 50
  year: 2017
  ident: 10.1016/j.geoderma.2020.114553_b0065
  article-title: Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.03.014
– volume: 144
  start-page: 34
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0155
  article-title: Metal fractionation in topsoils and bed sediments in the Mero River rural basin: bioavailability and relationship with soil and sediment properties
  publication-title: Catena
  doi: 10.1016/j.catena.2016.04.019
– volume: 44
  start-page: e002420
  year: 2020
  ident: 10.1016/j.geoderma.2020.114553_bib268
  article-title: Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/1413-7054202044002420
– start-page: 542
  year: 2003
  ident: 10.1016/j.geoderma.2020.114553_b0135
  article-title: Continuum-removed absorption features estimate tropical savanna grass quality in situ
– ident: 10.1016/j.geoderma.2020.114553_b0105
  doi: 10.1190/1.1440721
– ident: 10.1016/j.geoderma.2020.114553_b0200
– volume: 318
  start-page: 123
  year: 2018
  ident: 10.1016/j.geoderma.2020.114553_b0215
  article-title: Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.053
– volume: 128
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0250
  article-title: Advances in Portable X-ray Fluorescence (PXRF) for environmental, pedological, and agronomic applications
– volume: 217
  start-page: 190
  year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0060
  article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.11.012
– ident: 10.1016/j.geoderma.2020.114553_b0160
– volume: 177
  start-page: 90
  year: 2019
  ident: 10.1016/j.geoderma.2020.114553_b0220
  article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.06.008
– year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0070
  article-title: Comparing visible, NIR and MIR hyperspectrometry for measuring soil physical properties
– volume: 243
  start-page: 157
  year: 2015
  ident: 10.1016/j.geoderma.2020.114553_b0235
  article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.011
– volume: 10
  start-page: 61
  issue: 5
  year: 2016
  ident: 10.1016/j.geoderma.2020.114553_b0025
  article-title: Visible and near infrared spectroscopy techniques for determination of some physical and chemical properties in Kazova watershed
  publication-title: Adv. Environ. Biol.
– volume: 298
  start-page: 78
  year: 2017
  ident: 10.1016/j.geoderma.2020.114553_b0075
  article-title: Soil characterization across catenas via advanced proximal sensors
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.03.017
– volume: 214
  start-page: 141
  year: 2014
  ident: 10.1016/j.geoderma.2020.114553_b0095
  article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.016
SSID ssj0017020
Score 2.518713
Snippet •Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In...
Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114553
SubjectTerms B horizons
Brazil
clay
fluorescence
normal distribution
Pedometrics
prediction
Proximal sensors
Random forest
reflectance spectroscopy
sand
silt
soil texture
spectral analysis
support vector machines
texture
Tropical soils
X-radiation
X-ray fluorescence spectroscopy
Title Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy
URI https://dx.doi.org/10.1016/j.geoderma.2020.114553
https://www.proquest.com/docview/2552022850
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iFz2IT6yPEsFr7D6SfRyLWKqiFxV6C8kmWyrLblnbQy-C_9yZdLeoID14WciSWZbMZB7JzDeEXIHVizRPDUtymzKuk4wp8ItZDu6yiU1qYovnHY9P0fCV34_EaIPctLUwmFbZ6P6lTnfaunnTa1azN51MsMbXj2IwR76LyTlWlMMTpfz6Y5Xm4cdeA83oRwxnf6sSfgMeYcMxhz8UONhcIcK_DNQvVe3sz2CP7DaOI-0v_22fbNjygOz0x3UDnmEPyedzNSkopnLAkE5rvIPBdaeY3D6mztPWhaUjVqsFzYt5VTswp8xSV3CJyAWzekFVaSjWnOPcEnYCAymsMVGdYjuV-bul8Nd43K--kWJ5y-KIvA5uX26GrGmxwFQYJTMWZFqJ3CoIa7SXRSYKuAoQ0d4Dx8UmPDS5r7WBnWSNl-YqDn2huYmjFAItFZrwmGyWVWlPCAVHMdCJVaD8E54bkfLUci5Cgxf4WicdItp1lVmDP45tMArZJpq9yZYfEvkhl_zokN6KbrpE4FhLkbZskz9kSYKZWEt72fJZwkbD2xNV2mr-LiH2ChAsSHin__j-GdnGEVo_X5yTzVk9txfg1sx018ltl2z17x6GT1_Dk_sV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB7S9NDmUPokSdNUgfaoeh_SPg45hDxwnpcm4JsqrbTBwazN2qb4Uuhv6h_MjKwNaSHkUHLcx4hlZqRvtJr5BuALol5mRGl5UbuSC1NUXGNczGsMl21uS5s7-t9xfpH1r8TJQA5W4E9XC0NplWHtX67pfrUOd3pBm73JcEg1vnGWIxzFfk8u8pBZeeoWP3HfNt09PkAjf02So8PL_T4PrQW4TrNixpPKaFk7jeG8iarMZonQCTG5RwjYrhCprWNjLHqQs1FZ6zyNpRE2z3CLHuvUpjjuM3gucLmgtgnfft3llcR5FLgg44zT590rS75Bp6AOZ57wKPE8vVKmDyHiP9jgAe_oNbwKkSrbWyrjDay45i2s7V23ga3DvYPf38fDEaPcEbxkk5YOfcjQjLLpr5kP7c3IsQFv9YLVo_m49exRlWO-wpOoEmbtgunGMipyp3cbVC9Ht28pM55R_5b51DH8ajpf0PdEqZ5m8R6unkTxH2C1GTduHRhGpokpnEa0KURtZSlKJ9AiljIGjCk2QHZ6VVUgPKe-GyPVZbbdqM4eiuyhlvbYgN6d3GRJ-fGoRNmZTf3lvApx6VHZnc7OCmc2Hdfoxo3nU4WbvYTYiWS0-R_jf4YX_cvzM3V2fHH6EV7SE4LeWG7B6qydu08YU83MtvdhBj-eetLcAsWFNmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+texture+prediction+using+portable+X-ray+fluorescence+spectrometry+and+visible+near-infrared+diffuse+reflectance+spectroscopy&rft.jtitle=Geoderma&rft.au=Benedet%2C+Lucas&rft.au=Faria%2C+Wilson+Missina&rft.au=Silva%2C+S%C3%A9rgio+Henrique+Godinho&rft.au=Mancini%2C+Marcelo&rft.date=2020-10-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=376&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114553&rft.externalDocID=S0016706119330447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon