Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy
•Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In general, the best predictions were achieved using pXRF data.•RF algorithm outperformed other algorithms for soil texture prediction.•The best p...
Saved in:
Published in | Geoderma Vol. 376; p. 114553 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In general, the best predictions were achieved using pXRF data.•RF algorithm outperformed other algorithms for soil texture prediction.•The best prediction models were obtained with pXRF + RF using B horizon data.
Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have become important techniques for determination and prediction of soil attributes worldwide. However, there is little information available regarding the effectiveness of their combined use in tropical soils. This study aimed to predict soil texture using pXRF and Vis-NIR DRS, evaluating the efficiency of using these proximal sensors separately and in tandem. A total of 315 soil samples were collected from A and B horizons in Brazil. Soil samples were submitted to analyses of texture, pXRF and Vis-NIR DRS. Vis-NIR DRS spectral data pre-processing was evaluated by comparing results delivered by the derivative smoothing methods Savitzky-Golay (WT), Savitzky-Golay with Binning (WB), and data without the pre-processing treatment (WOT). Four algorithms were utilized for predictions: Gaussian Process (Gaussian), Support Vector Machine with linear (SVM-L) and radial (SVM-R) kernels, and Random Forest (RF). In general, models using only pXRF data slightly outperformed models using Vis-NIR DRS (WT, WB, WOT) data alone. Models combining data from both sensors achieved similar results to those obtained by pXRF alone. The best predictions of sand, silt, and clay contents were obtained via pXRF + RF using B horizon data, reaching R2 values of 0.91, 0.81, and 0.83, respectively. Although pXRF alone provided slightly better results, soil texture can be accurately predicted via both pXRF and Vis-NIR DRS data, separately and in tandem. These sensors can contribute to reduce costs and time required for tropical soil texture determination. |
---|---|
AbstractList | Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have become important techniques for determination and prediction of soil attributes worldwide. However, there is little information available regarding the effectiveness of their combined use in tropical soils. This study aimed to predict soil texture using pXRF and Vis-NIR DRS, evaluating the efficiency of using these proximal sensors separately and in tandem. A total of 315 soil samples were collected from A and B horizons in Brazil. Soil samples were submitted to analyses of texture, pXRF and Vis-NIR DRS. Vis-NIR DRS spectral data pre-processing was evaluated by comparing results delivered by the derivative smoothing methods Savitzky-Golay (WT), Savitzky-Golay with Binning (WB), and data without the pre-processing treatment (WOT). Four algorithms were utilized for predictions: Gaussian Process (Gaussian), Support Vector Machine with linear (SVM-L) and radial (SVM-R) kernels, and Random Forest (RF). In general, models using only pXRF data slightly outperformed models using Vis-NIR DRS (WT, WB, WOT) data alone. Models combining data from both sensors achieved similar results to those obtained by pXRF alone. The best predictions of sand, silt, and clay contents were obtained via pXRF + RF using B horizon data, reaching R² values of 0.91, 0.81, and 0.83, respectively. Although pXRF alone provided slightly better results, soil texture can be accurately predicted via both pXRF and Vis-NIR DRS data, separately and in tandem. These sensors can contribute to reduce costs and time required for tropical soil texture determination. •Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In general, the best predictions were achieved using pXRF data.•RF algorithm outperformed other algorithms for soil texture prediction.•The best prediction models were obtained with pXRF + RF using B horizon data. Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have become important techniques for determination and prediction of soil attributes worldwide. However, there is little information available regarding the effectiveness of their combined use in tropical soils. This study aimed to predict soil texture using pXRF and Vis-NIR DRS, evaluating the efficiency of using these proximal sensors separately and in tandem. A total of 315 soil samples were collected from A and B horizons in Brazil. Soil samples were submitted to analyses of texture, pXRF and Vis-NIR DRS. Vis-NIR DRS spectral data pre-processing was evaluated by comparing results delivered by the derivative smoothing methods Savitzky-Golay (WT), Savitzky-Golay with Binning (WB), and data without the pre-processing treatment (WOT). Four algorithms were utilized for predictions: Gaussian Process (Gaussian), Support Vector Machine with linear (SVM-L) and radial (SVM-R) kernels, and Random Forest (RF). In general, models using only pXRF data slightly outperformed models using Vis-NIR DRS (WT, WB, WOT) data alone. Models combining data from both sensors achieved similar results to those obtained by pXRF alone. The best predictions of sand, silt, and clay contents were obtained via pXRF + RF using B horizon data, reaching R2 values of 0.91, 0.81, and 0.83, respectively. Although pXRF alone provided slightly better results, soil texture can be accurately predicted via both pXRF and Vis-NIR DRS data, separately and in tandem. These sensors can contribute to reduce costs and time required for tropical soil texture determination. |
ArticleNumber | 114553 |
Author | Benedet, Lucas Faria, Wilson Missina Curi, Nilton Silva, Sérgio Henrique Godinho Guilherme, Luiz Roberto Guimarães Mancini, Marcelo Demattê, José Alexandre Melo |
Author_xml | – sequence: 1 givenname: Lucas surname: Benedet fullname: Benedet, Lucas organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil – sequence: 2 givenname: Wilson Missina surname: Faria fullname: Faria, Wilson Missina organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil – sequence: 3 givenname: Sérgio Henrique Godinho surname: Silva fullname: Silva, Sérgio Henrique Godinho organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil – sequence: 4 givenname: Marcelo surname: Mancini fullname: Mancini, Marcelo organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil – sequence: 5 givenname: José Alexandre Melo surname: Demattê fullname: Demattê, José Alexandre Melo organization: Department of Soil Science, University of São Paulo, Piracicaba, São Paulo State, Brazil – sequence: 6 givenname: Luiz Roberto Guimarães surname: Guilherme fullname: Guilherme, Luiz Roberto Guimarães organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil – sequence: 7 givenname: Nilton surname: Curi fullname: Curi, Nilton email: niltcuri@ufla.br organization: Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil |
BookMark | eNqFkMFq3DAQhkVJoZu0r1B0zMUbSbZlG3JICE0aCPTQFnoTY2kUtHglR5JD99g3r8w2EHrJadDwfz-j75Sc-OCRkM-cbTnj8mK3fcRgMO5hK5goS960bf2ObHjfiUqKdjghG1aSVcck_0BOU9qVZ1eyG_Lne3ATzfg7LxHpHNE4nV3wdEnOP9I5xAzjhPRXFeFA7bSEiEmj10jTjDrHsMccDxS8oc8uuTXrEWLlvI1Q6qhx1i4JaUQ7FQBeoUmH-fCRvLcwJfz0b56Rn7dfftx8rR6-3d3fXD9UUMs-V0KP0FoEKeTItDRSNCBYzRtWDwP2TW0sH0fDWIOGDRa6mrdjYzo59B2H2tRn5PzYO8fwtGDKau_KT6YJPIYlKdG2RZ_oW1ail8eoLjemcrjSLsOqJUdwk-JMrebVTr2YV6t5dTRfcPkfPke3h3h4G7w6glg8PDuMKmm3ujYuFmHKBPdWxV_236eZ |
CitedBy_id | crossref_primary_10_1016_j_catena_2021_105868 crossref_primary_10_1016_j_envres_2023_115300 crossref_primary_10_1016_j_jsames_2022_103748 crossref_primary_10_1061_JHTRBP_HZENG_1282 crossref_primary_10_3390_rs14153510 crossref_primary_10_3389_fchem_2023_1214825 crossref_primary_10_1002_saj2_20223 crossref_primary_10_3390_pr10030536 crossref_primary_10_1016_j_compag_2022_107192 crossref_primary_10_3390_land12091812 crossref_primary_10_30910_turkjans_1441357 crossref_primary_10_3390_agronomy14112678 crossref_primary_10_1016_j_geoderma_2021_115604 crossref_primary_10_1016_j_geoderma_2021_115648 crossref_primary_10_1007_s44274_024_00097_3 crossref_primary_10_1016_j_geoderma_2021_115649 crossref_primary_10_3390_s21010148 crossref_primary_10_1016_j_compag_2024_108760 crossref_primary_10_1007_s11368_021_03109_4 crossref_primary_10_1051_e3sconf_202452002021 crossref_primary_10_1016_j_jsames_2022_103873 crossref_primary_10_1016_j_geoderma_2024_116938 crossref_primary_10_1016_j_geodrs_2022_e00573 crossref_primary_10_3390_rs13234752 crossref_primary_10_3389_fenvs_2024_1448601 crossref_primary_10_1016_j_geoderma_2024_117137 crossref_primary_10_1016_j_apgeochem_2024_106066 crossref_primary_10_1016_j_catena_2021_105954 crossref_primary_10_1071_SR20136 crossref_primary_10_54033_cadpedv21n3_182 crossref_primary_10_1016_j_geodrs_2023_e00612 crossref_primary_10_1016_j_jag_2023_103250 crossref_primary_10_1016_j_geodrs_2024_e00813 crossref_primary_10_3390_agronomy14092074 crossref_primary_10_1016_j_geoderma_2022_116268 crossref_primary_10_1016_j_geoderma_2022_116301 crossref_primary_10_1016_j_geoderma_2022_115936 crossref_primary_10_1590_0001_3765202120200646 crossref_primary_10_3390_s24103251 crossref_primary_10_1016_j_catena_2024_108053 crossref_primary_10_1111_ejss_13358 crossref_primary_10_3390_ai3040049 crossref_primary_10_1016_j_envres_2023_115858 crossref_primary_10_1016_j_catena_2022_106514 crossref_primary_10_1016_j_microc_2023_108813 crossref_primary_10_1016_j_geodrs_2021_e00461 crossref_primary_10_1016_j_scitotenv_2023_168381 crossref_primary_10_3390_agronomy12112699 |
Cites_doi | 10.1127/0941-2948/2006/0130 10.1029/JB095iB08p12653 10.1016/j.geoderma.2018.11.043 10.1016/j.geoderma.2014.09.011 10.1016/j.geoderma.2020.114212 10.1016/j.psep.2019.09.025 10.1016/j.geoderma.2014.05.005 10.1590/1413-70542018425017518 10.1016/j.geoderma.2019.113885 10.1016/j.geoderma.2014.01.019 10.1016/j.still.2014.11.002 10.1016/j.geoderma.2014.10.001 10.1016/j.scitotenv.2015.01.087 10.1111/ejss.12320 10.1371/journal.pone.0172438 10.1016/j.clay.2018.05.028 10.1016/j.proenv.2013.06.056 10.1016/j.geoderma.2019.05.043 10.1016/j.catena.2019.05.001 10.2136/sssaj2013.05.0170 10.1016/j.geoderma.2016.05.005 10.1016/j.still.2015.07.021 10.1016/j.geoderma.2011.08.010 10.1127/0941-2948/2013/0507 10.1097/SS.0000000000000026 10.1016/j.eja.2015.12.001 10.1016/j.geoderma.2019.114136 10.1590/1413-7054201943018219 10.2136/sssaj2015.10.0361 10.1016/j.jenvman.2017.03.014 10.1016/j.catena.2016.04.019 10.1590/1413-7054202044002420 10.1190/1.1440721 10.1016/j.geoderma.2017.10.053 10.1016/j.geoderma.2013.11.012 10.1016/j.biosystemseng.2018.06.008 10.1016/j.geoderma.2014.12.011 10.1016/j.geoderma.2017.03.017 10.1016/j.geoderma.2013.09.016 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114553 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114553 S0016706119330447 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-2cba5fea626b0c6d624a203140399e843df1bbd004ed09fa7315b4d769871a3d3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 18:24:11 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 04:04:53 EDT 2025 Fri Feb 23 02:47:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tropical soils Random forest Pedometrics Proximal sensors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-2cba5fea626b0c6d624a203140399e843df1bbd004ed09fa7315b4d769871a3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2552022850 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2552022850 crossref_citationtrail_10_1016_j_geoderma_2020_114553 crossref_primary_10_1016_j_geoderma_2020_114553 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114553 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lopes, Guilherme (b0125) 2016; 137 Dhawale, Adamchuk, Prasher, Rossel, Ismail, Whalen, Louargant (b0070) 2014 Duda, Weindorf, Chakraborty, Li, Man, Paulette, Deb (b0075) 2017; 298 O'Rourke, Stockmann, Holden, Mcbratney, Minasny (b0150) 2016; 279 Chakraborty, Weindorf, Li, Aldabaa, Ghosh, Paul, Ali (b0030) 2015; 514 Zhang, Hartemink (b0260) 2019; 180 Stevens, A., Ramirez-Lopez, L., 2014. An introduction to the prospectr package. Available at Demattê, Horák-Terra, Beirigo, Terra, Marques, Fongaro, Silva, Vidal-Torrado (b0065) 2017; 197 Saikia (b0170) 2014; 2 Heung, Bulmer, Schmidt (b0095) 2014; 214 Weindorf, Herrero, Castañeda, Bakr, Swanhart (b0245) 2013; 77 Chakraborty, Li, Weindorf, Deb, Acree, De, Panda (b0035) 2019; 338 Kottek, Grieser, Beck, Rudolf, Rubel (b9005) 2006; 15 Santos, H.G.dos, Jacomine, P.K.T., Anjos, L.H.C.dos, Oliveira, V.A.de, Lumbreras. J.F., Coelho, M.R., Almeida, J.A.de, Araujo Filho, J.C.de, Oliveira, J.B.de, Cunha, T.J.F., 2018. Sistema Brasileiro de Classificação de Solos, fifth ed. Embrapa, Brasília. Wang, Chakraborty, Weindorf, Li, Sharma, Paul, Ali (b0235) 2015; 243 Mancini, Weindorf, Silva, Chakraborty, Teixeira, Guilherme, Curi (b0130) 2019; 354 Hanson, B.A., 2019. An Introduction to ChemoSpec. Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2019. Classification and regression training. Available online at Mutanga, Skidmore (b0135) 2003 Gee, Bauder (b0080) 1986 Hunt, G.R., 1977. Spectral signatures of particulate minerals, in the visible and near-infrared. Geophysics 42, 501–513. DOI:10.1190/1.1440721. Nawar, Buddenbaum, Hill, Kozak, Mouazen (b0140) 2016; 155 Demattê, Terra (b0060) 2014; 217 Resende, Curi, Resende, Corrêia, Ker (b0165) 2014 Clark, King, Klejwa, Swayze, Vergo (b0040) 1990; 95 Soil Survey Staff, 2014. Keys to Soil Taxonomy, twelfth ed. USDA – Natural Resources Conservation Service, Washington. (accessed 2 August 2019). Alvares, Stape, Sentelhas, de Moraes, Leonardo, Sparovek (b0010) 2013; 22 Wang, Li, Li, Liu (b0240) 2013; 178 Dijair, Silva, Teixeira, Silva, Guilherme, Curi (bib268) 2020; 44 R Core Team. R, 2015. A Language and Environment for Statistical Computing. Kuang, Tekin, Mouazen (b0115) 2015; 146 acessed 15 November 2019. Terra, Demattê, Viscarra Rossel (b0215) 2018; 318 Curcio, Ciraolo, D’Asaro, Minacapilli (b0050) 2013; 19 Tümsavaş, Tekin, Ulusoy, Mouazen (b0220) 2019; 177 Weindorf, Chakraborty, Herrero, Li, Castañeda, Choudhury (b0255) 2016; 67 Wan, Qu, Hu, Li, Zhang, Cheng, Huang (b0230) 2019; 132 Gonçalves, Ker, Oliveira, Ramos, Pacheco, Curi (b0085) 2019; 43 Sharma, Weindorf, Man, Aldabaa, Chakraborty (b0180) 2014; 232–234 Silva, Weindorf, Pinto, Faria, Acerbi Junior, Gomide, de Mello, de Pádua Junior, de Souza, Teixeira, Guilherme, Curi (b0195) 2020; 362 Costa, Crusciol (b0045) 2016; 74 Palleiro, Patinha, Rodríguez-Blanco, Taboada-Castro, Taboada-Castro (b0155) 2016; 144 Demattê, Carnieletto, Paiva, Sato, Dalmolin, Araújo, Elisângela, Nanni, Noronha, Lacerda, Coelho, Filho, Rizzo, Bellinaso, Francelino, Schaefer, Vicente, Uemeson, Sá, Sampaio, Menezes, João, Souza, Abrahão, Coelho, Grego, Lani, Fernandes, Gonçalves, Silva, Menezes, Curi, Couto, Lúcia, Ceddia, Pinheiro, Grunwald, Vasques, Marques, Airon, Vasconcelos, Nóbrega, Marcelo, Souza, Valladares, Herbert, Viana, Terra, Horák-terra, Fiorio, Rafael, Frade, Lima, Filippini, SouzaV.S.deLourdesM.deSantos, Lourdes, Ruivo, Ferreira, Brait, Caetano, Bringhenti, SousaW.deSafanelli, Guimarães, Poppiel, Barros, Quesada, Zarate (b0055) 2019; 354 Zhu, Weindorf, Zhang (b0265) 2011; 167 Hu, Chen, Hu, Xia, Xu, Li, Shi (b0100) 2017; 12 Weindorf, Bakr, Zhu (b0250) 2014; 128 Sharma, Weindorf, Wang, Chakraborty (b0185) 2015; 239 Vasques, Demattê, Rossel, Ramírez-López, Terra (b0225) 2014; 223–225 Silva, Hartemink, dos Santos Teixeira, Inda, Guilherme, Curi (b0190) 2018; 162 Budak, Gunal (b0025) 2016; 10 Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343. Teixeira, Weindorf, Silva, Guilherme, Curi (b0210) 2018; 42 Aldabaa, Weindorf, Chakraborty, Sharma, Li (b0005) 2015; 239 (accessed 19 July 2019). Benedet, Faria, Silva, Mancini, Guilherme, Demattê, Curi (b0015) 2020; 365 (acessed 27 July 2019). O’Rourke, Minasny, Holden, McBratney (b0145) 2016; 80 10.1016/j.geoderma.2020.114553_b0110 Nawar (10.1016/j.geoderma.2020.114553_b0140) 2016; 155 O’Rourke (10.1016/j.geoderma.2020.114553_b0145) 2016; 80 Saikia (10.1016/j.geoderma.2020.114553_b0170) 2014; 2 Resende (10.1016/j.geoderma.2020.114553_b0165) 2014 Demattê (10.1016/j.geoderma.2020.114553_b0065) 2017; 197 Zhang (10.1016/j.geoderma.2020.114553_b0260) 2019; 180 Tümsavaş (10.1016/j.geoderma.2020.114553_b0220) 2019; 177 Costa (10.1016/j.geoderma.2020.114553_b0045) 2016; 74 10.1016/j.geoderma.2020.114553_b0105 Silva (10.1016/j.geoderma.2020.114553_b0190) 2018; 162 Dhawale (10.1016/j.geoderma.2020.114553_b0070) 2014 Budak (10.1016/j.geoderma.2020.114553_b0025) 2016; 10 Hu (10.1016/j.geoderma.2020.114553_b0100) 2017; 12 10.1016/j.geoderma.2020.114553_b0120 10.1016/j.geoderma.2020.114553_b0200 Weindorf (10.1016/j.geoderma.2020.114553_b0250) 2014; 128 Wan (10.1016/j.geoderma.2020.114553_b0230) 2019; 132 Lopes (10.1016/j.geoderma.2020.114553_b0125) 2016; 137 Palleiro (10.1016/j.geoderma.2020.114553_b0155) 2016; 144 10.1016/j.geoderma.2020.114553_b0160 Sharma (10.1016/j.geoderma.2020.114553_b0180) 2014; 232–234 Silva (10.1016/j.geoderma.2020.114553_b0195) 2020; 362 Alvares (10.1016/j.geoderma.2020.114553_b0010) 2013; 22 Teixeira (10.1016/j.geoderma.2020.114553_b0210) 2018; 42 Kuang (10.1016/j.geoderma.2020.114553_b0115) 2015; 146 Dijair (10.1016/j.geoderma.2020.114553_bib268) 2020; 44 10.1016/j.geoderma.2020.114553_b0175 Mutanga (10.1016/j.geoderma.2020.114553_b0135) 2003 10.1016/j.geoderma.2020.114553_b0090 Gonçalves (10.1016/j.geoderma.2020.114553_b0085) 2019; 43 Clark (10.1016/j.geoderma.2020.114553_b0040) 1990; 95 Gee (10.1016/j.geoderma.2020.114553_b0080) 1986 Heung (10.1016/j.geoderma.2020.114553_b0095) 2014; 214 Wang (10.1016/j.geoderma.2020.114553_b0235) 2015; 243 Sharma (10.1016/j.geoderma.2020.114553_b0185) 2015; 239 Weindorf (10.1016/j.geoderma.2020.114553_b0255) 2016; 67 Kottek (10.1016/j.geoderma.2020.114553_b9005) 2006; 15 Chakraborty (10.1016/j.geoderma.2020.114553_b0030) 2015; 514 10.1016/j.geoderma.2020.114553_b0205 Curcio (10.1016/j.geoderma.2020.114553_b0050) 2013; 19 Benedet (10.1016/j.geoderma.2020.114553_b0015) 2020; 365 Demattê (10.1016/j.geoderma.2020.114553_b0060) 2014; 217 Terra (10.1016/j.geoderma.2020.114553_b0215) 2018; 318 Vasques (10.1016/j.geoderma.2020.114553_b0225) 2014; 223–225 Demattê (10.1016/j.geoderma.2020.114553_b0055) 2019; 354 Wang (10.1016/j.geoderma.2020.114553_b0240) 2013; 178 Aldabaa (10.1016/j.geoderma.2020.114553_b0005) 2015; 239 Weindorf (10.1016/j.geoderma.2020.114553_b0245) 2013; 77 Chakraborty (10.1016/j.geoderma.2020.114553_b0035) 2019; 338 O'Rourke (10.1016/j.geoderma.2020.114553_b0150) 2016; 279 Zhu (10.1016/j.geoderma.2020.114553_b0265) 2011; 167 Mancini (10.1016/j.geoderma.2020.114553_b0130) 2019; 354 Duda (10.1016/j.geoderma.2020.114553_b0075) 2017; 298 |
References_xml | – volume: 15 start-page: 259 year: 2006 end-page: 263 ident: b9005 article-title: World Map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. – volume: 362 year: 2020 ident: b0195 article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach publication-title: Geoderma – reference: Hanson, B.A., 2019. An Introduction to ChemoSpec. – reference: R Core Team. R, 2015. A Language and Environment for Statistical Computing. – reference: Hunt, G.R., 1977. Spectral signatures of particulate minerals, in the visible and near-infrared. Geophysics 42, 501–513. DOI:10.1190/1.1440721. – volume: 155 start-page: 510 year: 2016 end-page: 522 ident: b0140 article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy publication-title: Soil Till. Res. – volume: 44 start-page: e002420 year: 2020 ident: bib268 article-title: Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry publication-title: Ciência e Agrotecnologia – reference: (accessed 19 July 2019). – volume: 232–234 start-page: 141 year: 2014 end-page: 147 ident: b0180 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH) publication-title: Geoderma – volume: 197 start-page: 50 year: 2017 end-page: 62 ident: b0065 article-title: Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring publication-title: J. Environ. Manage. – volume: 318 start-page: 123 year: 2018 end-page: 136 ident: b0215 article-title: Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis publication-title: Geoderma – reference: Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2019. Classification and regression training. Available online at – volume: 217 start-page: 190 year: 2014 end-page: 200 ident: b0060 article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations publication-title: Geoderma – start-page: 542 year: 2003 end-page: 558 ident: b0135 article-title: Continuum-removed absorption features estimate tropical savanna grass quality in situ publication-title: Proc. 3rd EARSEL Workshop on Imaging Spectroscopy – volume: 279 start-page: 31 year: 2016 end-page: 44 ident: b0150 article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma – volume: 80 start-page: 888 year: 2016 end-page: 899 ident: b0145 article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry publication-title: Soil Sci. Soc. Am. J. – volume: 146 start-page: 243 year: 2015 end-page: 252 ident: b0115 article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content publication-title: Soil Till. Res. – year: 2014 ident: b0165 article-title: Pedologia: Base para a Distinção de Ambientes – volume: 19 start-page: 494 year: 2013 end-page: 503 ident: b0050 article-title: Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy publication-title: Procedia Environ. Sci. – volume: 132 start-page: 73 year: 2019 end-page: 81 ident: b0230 article-title: Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals publication-title: Process Saf. Environ. – volume: 239 start-page: 130 year: 2015 end-page: 134 ident: b0185 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) publication-title: Geoderma – reference: Soil Survey Staff, 2014. Keys to Soil Taxonomy, twelfth ed. USDA – Natural Resources Conservation Service, Washington. – volume: 167 start-page: 167 year: 2011 end-page: 177 ident: b0265 article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture publication-title: Geoderma – volume: 338 start-page: 5 year: 2019 end-page: 13 ident: b0035 article-title: Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India publication-title: Geoderma – volume: 12 year: 2017 ident: b0100 article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution publication-title: PLoS One – volume: 514 start-page: 399 year: 2015 end-page: 408 ident: b0030 article-title: Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils publication-title: Sci. Total Environ. – volume: 95 start-page: 12653 year: 1990 end-page: 12680 ident: b0040 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. – reference: Stevens, A., Ramirez-Lopez, L., 2014. An introduction to the prospectr package. Available at: – volume: 74 start-page: 119 year: 2016 end-page: 132 ident: b0045 article-title: Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties publication-title: Eur. J. Agron. – volume: 162 start-page: 27 year: 2018 end-page: 37 ident: b0190 article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado publication-title: Appl. Clay Sci. – volume: 354 start-page: 113793 year: 2019 ident: b0055 article-title: The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges publication-title: Geoderma – volume: 128 start-page: 1 year: 2014 end-page: 45 ident: b0250 article-title: Advances in Portable X-ray Fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Advances in Agronomy – volume: 223–225 start-page: 73 year: 2014 end-page: 78 ident: b0225 article-title: Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths publication-title: Geoderma – reference: Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343. – reference: (acessed 15 November 2019. – volume: 43 year: 2019 ident: b0085 article-title: Lateral loss of clay in the genesis of Luvisols in the Semi-Arid Depression of the Jequitinhonha Valley, Minas Gerais – Brazil publication-title: Ciênc. Agrotec. – volume: 144 start-page: 34 year: 2016 end-page: 44 ident: b0155 article-title: Metal fractionation in topsoils and bed sediments in the Mero River rural basin: bioavailability and relationship with soil and sediment properties publication-title: Catena – volume: 180 start-page: 298 year: 2019 end-page: 308 ident: b0260 article-title: Soil horizon delineation using vis-NIR and pXRF data publication-title: Catena – volume: 10 start-page: 61 year: 2016 end-page: 73 ident: b0025 article-title: Visible and near infrared spectroscopy techniques for determination of some physical and chemical properties in Kazova watershed publication-title: Adv. Environ. Biol. – reference: (accessed 2 August 2019). – volume: 42 start-page: 501 year: 2018 end-page: 512 ident: b0210 article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses publication-title: Ciênc Agrotec. – volume: 178 start-page: 626 year: 2013 end-page: 638 ident: b0240 article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion publication-title: Soil Sci. – volume: 77 start-page: 2071 year: 2013 end-page: 2077 ident: b0245 article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry publication-title: Soil Sci. Soc. Am. J. – volume: 354 year: 2019 ident: b0130 article-title: Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil publication-title: Geoderma – volume: 239 start-page: 34 year: 2015 end-page: 46 ident: b0005 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma – volume: 214 start-page: 141 year: 2014 end-page: 154 ident: b0095 article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach publication-title: Geoderma – volume: 177 start-page: 90 year: 2019 end-page: 100 ident: b0220 article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy publication-title: Biosyst. Eng. – volume: 243 start-page: 157 year: 2015 end-page: 167 ident: b0235 article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen publication-title: Geoderma – volume: 2 start-page: 28 year: 2014 end-page: 33 ident: b0170 article-title: Spectroscopic estimation of geometrical structure elucidation in natural SiO publication-title: Mater. Chem. Phys. – start-page: 383 year: 1986 end-page: 412 ident: b0080 article-title: Particle-size analysis publication-title: Methods of Soil Analysis – year: 2014 ident: b0070 article-title: Comparing visible, NIR and MIR hyperspectrometry for measuring soil physical properties publication-title: Biol Eng Trans – volume: 298 start-page: 78 year: 2017 end-page: 91 ident: b0075 article-title: Soil characterization across catenas via advanced proximal sensors publication-title: Geoderma – reference: (acessed 27 July 2019). – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: b0010 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Z. – volume: 365 year: 2020 ident: b0015 article-title: Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy publication-title: Geoderma – reference: Santos, H.G.dos, Jacomine, P.K.T., Anjos, L.H.C.dos, Oliveira, V.A.de, Lumbreras. J.F., Coelho, M.R., Almeida, J.A.de, Araujo Filho, J.C.de, Oliveira, J.B.de, Cunha, T.J.F., 2018. Sistema Brasileiro de Classificação de Solos, fifth ed. Embrapa, Brasília. – volume: 67 start-page: 173 year: 2016 end-page: 183 ident: b0255 article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data publication-title: Eur. J. Soil Sci. – volume: 137 start-page: 1 year: 2016 end-page: 72 ident: b0125 article-title: A career perspective on soil management in the Cerrado region of Brazil publication-title: Advances in Agronomy – volume: 15 start-page: 259 year: 2006 ident: 10.1016/j.geoderma.2020.114553_b9005 article-title: World Map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2006/0130 – volume: 95 start-page: 12653 issue: B8 year: 1990 ident: 10.1016/j.geoderma.2020.114553_b0040 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. doi: 10.1029/JB095iB08p12653 – volume: 2 start-page: 28 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0170 article-title: Spectroscopic estimation of geometrical structure elucidation in natural SiO2 crystal publication-title: Mater. Chem. Phys. – ident: 10.1016/j.geoderma.2020.114553_b0175 – ident: 10.1016/j.geoderma.2020.114553_b0110 – volume: 338 start-page: 5 year: 2019 ident: 10.1016/j.geoderma.2020.114553_b0035 article-title: Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.043 – volume: 239 start-page: 34 year: 2015 ident: 10.1016/j.geoderma.2020.114553_b0005 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.011 – volume: 365 year: 2020 ident: 10.1016/j.geoderma.2020.114553_b0015 article-title: Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114212 – volume: 132 start-page: 73 year: 2019 ident: 10.1016/j.geoderma.2020.114553_b0230 article-title: Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2019.09.025 – volume: 232–234 start-page: 141 year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0180 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH) publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.005 – volume: 42 start-page: 501 issue: 5 year: 2018 ident: 10.1016/j.geoderma.2020.114553_b0210 article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses publication-title: Ciênc Agrotec. doi: 10.1590/1413-70542018425017518 – volume: 354 year: 2019 ident: 10.1016/j.geoderma.2020.114553_b0130 article-title: Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113885 – volume: 223–225 start-page: 73 year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0225 article-title: Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.019 – volume: 146 start-page: 243 year: 2015 ident: 10.1016/j.geoderma.2020.114553_b0115 article-title: Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content publication-title: Soil Till. Res. doi: 10.1016/j.still.2014.11.002 – volume: 239 start-page: 130 year: 2015 ident: 10.1016/j.geoderma.2020.114553_b0185 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) publication-title: Geoderma doi: 10.1016/j.geoderma.2014.10.001 – volume: 514 start-page: 399 year: 2015 ident: 10.1016/j.geoderma.2020.114553_b0030 article-title: Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.01.087 – volume: 67 start-page: 173 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0255 article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12320 – start-page: 383 year: 1986 ident: 10.1016/j.geoderma.2020.114553_b0080 article-title: Particle-size analysis – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2020.114553_b0100 article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution publication-title: PLoS One doi: 10.1371/journal.pone.0172438 – volume: 162 start-page: 27 year: 2018 ident: 10.1016/j.geoderma.2020.114553_b0190 article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.05.028 – volume: 19 start-page: 494 year: 2013 ident: 10.1016/j.geoderma.2020.114553_b0050 article-title: Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2013.06.056 – volume: 137 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0125 article-title: A career perspective on soil management in the Cerrado region of Brazil – ident: 10.1016/j.geoderma.2020.114553_b0090 – volume: 354 start-page: 113793 year: 2019 ident: 10.1016/j.geoderma.2020.114553_b0055 article-title: The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.043 – volume: 180 start-page: 298 year: 2019 ident: 10.1016/j.geoderma.2020.114553_b0260 article-title: Soil horizon delineation using vis-NIR and pXRF data publication-title: Catena doi: 10.1016/j.catena.2019.05.001 – volume: 77 start-page: 2071 issue: 6 year: 2013 ident: 10.1016/j.geoderma.2020.114553_b0245 article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.05.0170 – volume: 279 start-page: 31 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0150 article-title: An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.005 – ident: 10.1016/j.geoderma.2020.114553_b0120 – year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0165 – volume: 155 start-page: 510 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0140 article-title: Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy publication-title: Soil Till. Res. doi: 10.1016/j.still.2015.07.021 – volume: 167 start-page: 167 year: 2011 ident: 10.1016/j.geoderma.2020.114553_b0265 article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.010 – volume: 22 start-page: 711 issue: 6 year: 2013 ident: 10.1016/j.geoderma.2020.114553_b0010 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2013/0507 – ident: 10.1016/j.geoderma.2020.114553_b0205 – volume: 178 start-page: 626 issue: 11 year: 2013 ident: 10.1016/j.geoderma.2020.114553_b0240 article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion publication-title: Soil Sci. doi: 10.1097/SS.0000000000000026 – volume: 74 start-page: 119 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0045 article-title: Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2015.12.001 – volume: 362 year: 2020 ident: 10.1016/j.geoderma.2020.114553_b0195 article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114136 – volume: 43 year: 2019 ident: 10.1016/j.geoderma.2020.114553_b0085 article-title: Lateral loss of clay in the genesis of Luvisols in the Semi-Arid Depression of the Jequitinhonha Valley, Minas Gerais – Brazil publication-title: Ciênc. Agrotec. doi: 10.1590/1413-7054201943018219 – volume: 80 start-page: 888 issue: 4 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0145 article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.10.0361 – volume: 197 start-page: 50 year: 2017 ident: 10.1016/j.geoderma.2020.114553_b0065 article-title: Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.03.014 – volume: 144 start-page: 34 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0155 article-title: Metal fractionation in topsoils and bed sediments in the Mero River rural basin: bioavailability and relationship with soil and sediment properties publication-title: Catena doi: 10.1016/j.catena.2016.04.019 – volume: 44 start-page: e002420 year: 2020 ident: 10.1016/j.geoderma.2020.114553_bib268 article-title: Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry publication-title: Ciência e Agrotecnologia doi: 10.1590/1413-7054202044002420 – start-page: 542 year: 2003 ident: 10.1016/j.geoderma.2020.114553_b0135 article-title: Continuum-removed absorption features estimate tropical savanna grass quality in situ – ident: 10.1016/j.geoderma.2020.114553_b0105 doi: 10.1190/1.1440721 – ident: 10.1016/j.geoderma.2020.114553_b0200 – volume: 318 start-page: 123 year: 2018 ident: 10.1016/j.geoderma.2020.114553_b0215 article-title: Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.053 – volume: 128 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0250 article-title: Advances in Portable X-ray Fluorescence (PXRF) for environmental, pedological, and agronomic applications – volume: 217 start-page: 190 year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0060 article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations publication-title: Geoderma doi: 10.1016/j.geoderma.2013.11.012 – ident: 10.1016/j.geoderma.2020.114553_b0160 – volume: 177 start-page: 90 year: 2019 ident: 10.1016/j.geoderma.2020.114553_b0220 article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.06.008 – year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0070 article-title: Comparing visible, NIR and MIR hyperspectrometry for measuring soil physical properties – volume: 243 start-page: 157 year: 2015 ident: 10.1016/j.geoderma.2020.114553_b0235 article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.011 – volume: 10 start-page: 61 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2020.114553_b0025 article-title: Visible and near infrared spectroscopy techniques for determination of some physical and chemical properties in Kazova watershed publication-title: Adv. Environ. Biol. – volume: 298 start-page: 78 year: 2017 ident: 10.1016/j.geoderma.2020.114553_b0075 article-title: Soil characterization across catenas via advanced proximal sensors publication-title: Geoderma doi: 10.1016/j.geoderma.2017.03.017 – volume: 214 start-page: 141 year: 2014 ident: 10.1016/j.geoderma.2020.114553_b0095 article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.016 |
SSID | ssj0017020 |
Score | 2.518713 |
Snippet | •Prediction of soil texture via pXRF and Vis-NIR DRS data was evaluated.•Combination of A and B horizons data resulted in predictions with R2 above 0.80.•In... Portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared diffuse reflectance spectroscopy (Vis-NIR DRS), used separately or in tandem, have... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114553 |
SubjectTerms | B horizons Brazil clay fluorescence normal distribution Pedometrics prediction Proximal sensors Random forest reflectance spectroscopy sand silt soil texture spectral analysis support vector machines texture Tropical soils X-radiation X-ray fluorescence spectroscopy |
Title | Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114553 https://www.proquest.com/docview/2552022850 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iFz2IT6yPEsFr7D6SfRyLWKqiFxV6C8kmWyrLblnbQy-C_9yZdLeoID14WciSWZbMZB7JzDeEXIHVizRPDUtymzKuk4wp8ItZDu6yiU1qYovnHY9P0fCV34_EaIPctLUwmFbZ6P6lTnfaunnTa1azN51MsMbXj2IwR76LyTlWlMMTpfz6Y5Xm4cdeA83oRwxnf6sSfgMeYcMxhz8UONhcIcK_DNQvVe3sz2CP7DaOI-0v_22fbNjygOz0x3UDnmEPyedzNSkopnLAkE5rvIPBdaeY3D6mztPWhaUjVqsFzYt5VTswp8xSV3CJyAWzekFVaSjWnOPcEnYCAymsMVGdYjuV-bul8Nd43K--kWJ5y-KIvA5uX26GrGmxwFQYJTMWZFqJ3CoIa7SXRSYKuAoQ0d4Dx8UmPDS5r7WBnWSNl-YqDn2huYmjFAItFZrwmGyWVWlPCAVHMdCJVaD8E54bkfLUci5Cgxf4WicdItp1lVmDP45tMArZJpq9yZYfEvkhl_zokN6KbrpE4FhLkbZskz9kSYKZWEt72fJZwkbD2xNV2mr-LiH2ChAsSHin__j-GdnGEVo_X5yTzVk9txfg1sx018ltl2z17x6GT1_Dk_sV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEB7S9NDmUPokSdNUgfaoeh_SPg45hDxwnpcm4JsqrbTBwazN2qb4Uuhv6h_MjKwNaSHkUHLcx4hlZqRvtJr5BuALol5mRGl5UbuSC1NUXGNczGsMl21uS5s7-t9xfpH1r8TJQA5W4E9XC0NplWHtX67pfrUOd3pBm73JcEg1vnGWIxzFfk8u8pBZeeoWP3HfNt09PkAjf02So8PL_T4PrQW4TrNixpPKaFk7jeG8iarMZonQCTG5RwjYrhCprWNjLHqQs1FZ6zyNpRE2z3CLHuvUpjjuM3gucLmgtgnfft3llcR5FLgg44zT590rS75Bp6AOZ57wKPE8vVKmDyHiP9jgAe_oNbwKkSrbWyrjDay45i2s7V23ga3DvYPf38fDEaPcEbxkk5YOfcjQjLLpr5kP7c3IsQFv9YLVo_m49exRlWO-wpOoEmbtgunGMipyp3cbVC9Ht28pM55R_5b51DH8ajpf0PdEqZ5m8R6unkTxH2C1GTduHRhGpokpnEa0KURtZSlKJ9AiljIGjCk2QHZ6VVUgPKe-GyPVZbbdqM4eiuyhlvbYgN6d3GRJ-fGoRNmZTf3lvApx6VHZnc7OCmc2Hdfoxo3nU4WbvYTYiWS0-R_jf4YX_cvzM3V2fHH6EV7SE4LeWG7B6qydu08YU83MtvdhBj-eetLcAsWFNmI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+texture+prediction+using+portable+X-ray+fluorescence+spectrometry+and+visible+near-infrared+diffuse+reflectance+spectroscopy&rft.jtitle=Geoderma&rft.au=Benedet%2C+Lucas&rft.au=Faria%2C+Wilson+Missina&rft.au=Silva%2C+S%C3%A9rgio+Henrique+Godinho&rft.au=Mancini%2C+Marcelo&rft.date=2020-10-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=376&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114553&rft.externalDocID=S0016706119330447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |