Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping

•The super learner is promising approach for Digital Soil Mapping.•Super learner increased accuracy by up to ~46%, compared to base learners.•Permutation feature importance revealed the contribution of each covariate. Digital soil mapping approaches predict soil properties based on the relationships...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 399; p. 115108
Main Authors Taghizadeh-Mehrjardi, Ruhollah, Hamzehpour, Nikou, Hassanzadeh, Maryam, Heung, Brandon, Ghebleh Goydaragh, Maryam, Schmidt, Karsten, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The super learner is promising approach for Digital Soil Mapping.•Super learner increased accuracy by up to ~46%, compared to base learners.•Permutation feature importance revealed the contribution of each covariate. Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using techniques such as machine learning (ML) models. In this research, a wide range of ML models (12 base learners) were tested in predicting and mapping soil properties. Furthermore, a super learner approach was used to improve model accuracy by combining the predictions of the base learners. A major challenge of using super learner and complex models is that the exact contribution of individual covariates in the overall prediction is not always known. To address this issue, permutation feature importance (PFI) analysis was applied as a model-agnostic interpretation tool. The weights assigned to each ML base learner obtained from super learner, and feature importance values obtained from each ML base learner were used to quantify the contribution of individual covariates on the final prediction. The super learner and PFI techniques were tested by predicting a variety of soil physical and chemical properties of the Urmia Lake playa in Iran. As expected, the results indicated that the super learner had substantially higher accuracies for predicting soil properties in comparison to the individual base learners. For instance, the super learner showed an improved performance in comparison to linear regression by decreasing the root mean square error by an average of 46%. The PFI analysis revealed the important contribution of geomorphic and groundwater data in predicting soil properties. Overall, the proposed approach may be used for improving accuracy of ML models in digital soil mapping.
AbstractList Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using techniques such as machine learning (ML) models. In this research, a wide range of ML models (12 base learners) were tested in predicting and mapping soil properties. Furthermore, a super learner approach was used to improve model accuracy by combining the predictions of the base learners. A major challenge of using super learner and complex models is that the exact contribution of individual covariates in the overall prediction is not always known. To address this issue, permutation feature importance (PFI) analysis was applied as a model-agnostic interpretation tool. The weights assigned to each ML base learner obtained from super learner, and feature importance values obtained from each ML base learner were used to quantify the contribution of individual covariates on the final prediction. The super learner and PFI techniques were tested by predicting a variety of soil physical and chemical properties of the Urmia Lake playa in Iran. As expected, the results indicated that the super learner had substantially higher accuracies for predicting soil properties in comparison to the individual base learners. For instance, the super learner showed an improved performance in comparison to linear regression by decreasing the root mean square error by an average of 46%. The PFI analysis revealed the important contribution of geomorphic and groundwater data in predicting soil properties. Overall, the proposed approach may be used for improving accuracy of ML models in digital soil mapping.
•The super learner is promising approach for Digital Soil Mapping.•Super learner increased accuracy by up to ~46%, compared to base learners.•Permutation feature importance revealed the contribution of each covariate. Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using techniques such as machine learning (ML) models. In this research, a wide range of ML models (12 base learners) were tested in predicting and mapping soil properties. Furthermore, a super learner approach was used to improve model accuracy by combining the predictions of the base learners. A major challenge of using super learner and complex models is that the exact contribution of individual covariates in the overall prediction is not always known. To address this issue, permutation feature importance (PFI) analysis was applied as a model-agnostic interpretation tool. The weights assigned to each ML base learner obtained from super learner, and feature importance values obtained from each ML base learner were used to quantify the contribution of individual covariates on the final prediction. The super learner and PFI techniques were tested by predicting a variety of soil physical and chemical properties of the Urmia Lake playa in Iran. As expected, the results indicated that the super learner had substantially higher accuracies for predicting soil properties in comparison to the individual base learners. For instance, the super learner showed an improved performance in comparison to linear regression by decreasing the root mean square error by an average of 46%. The PFI analysis revealed the important contribution of geomorphic and groundwater data in predicting soil properties. Overall, the proposed approach may be used for improving accuracy of ML models in digital soil mapping.
ArticleNumber 115108
Author Scholten, Thomas
Taghizadeh-Mehrjardi, Ruhollah
Hassanzadeh, Maryam
Ghebleh Goydaragh, Maryam
Heung, Brandon
Hamzehpour, Nikou
Schmidt, Karsten
Author_xml – sequence: 1
  givenname: Ruhollah
  orcidid: 0000-0002-4620-6624
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
  email: taghizadeh-mehrjardi@mnf.uni-tuebingen.de
  organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
– sequence: 2
  givenname: Nikou
  surname: Hamzehpour
  fullname: Hamzehpour, Nikou
  email: nhamzehpour@maragheh.ac.ir
  organization: Soil Science Department, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
– sequence: 3
  givenname: Maryam
  surname: Hassanzadeh
  fullname: Hassanzadeh, Maryam
  email: m.hasanzadeh@maragheh.ac.ir
  organization: Soil Science Department, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
– sequence: 4
  givenname: Brandon
  surname: Heung
  fullname: Heung, Brandon
  email: brandon.heung@dal.ca
  organization: Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Canada
– sequence: 5
  givenname: Maryam
  surname: Ghebleh Goydaragh
  fullname: Ghebleh Goydaragh, Maryam
  email: maryam.ghebleh@tabrizu.ac.ir
  organization: Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
– sequence: 6
  givenname: Karsten
  surname: Schmidt
  fullname: Schmidt, Karsten
  email: karsten.schmidt@uni-tuebingen.de
  organization: eScience Center, University of Tübingen, 72070 Tübingen, Germany
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
  email: thomas.scholten@uni-tuebingen.de
  organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
BookMark eNqFkM1O3DAUhS1EJYafV0BedpOpf7A9kbooQtAiIbGBtXVr38x4SOzUTpB4ezwKbLphdWX5O8fX3yk5jikiIZecrTnj-sd-vcXkMQ-wFkzwNeeKs80RWfGNEY0Wqj0mK1bJxjDNT8hpKft6NEywFXm5jTuILsQtnXZIwbk5g3ujqaMDuF2ISHuEHA_AUF_pC53LJ13mEfNyX-eEbhfDvxlpiNSHbZigpyWFvjaNY82ck28d9AUvPuYZeb67fbr50zw8_r6_uX5oQOrN1AiDigmFXjFpPEqQeNVp403nlYTOeNZpzTSAcL6VV95hy__6Dgxy5Vum5Bn5vvSOOdV1ymSHUBz2PURMc7FCKd5KIdtNRfWCupxKydjZMYcB8pvlzB7s2r39tGsPdu1itwZ__hd09b9TSHHKEPqv47-WeBWKrwGzLS5gdOhDRjdZn8JXFe9Cnp6v
CitedBy_id crossref_primary_10_1007_s42729_024_02182_1
crossref_primary_10_1016_j_compag_2022_107512
crossref_primary_10_1016_j_ecolind_2024_112654
crossref_primary_10_1016_j_geoderma_2024_116873
crossref_primary_10_3390_land12020494
crossref_primary_10_1016_j_catena_2023_106915
crossref_primary_10_1071_SR22042
crossref_primary_10_1007_s10661_023_11145_5
crossref_primary_10_2139_ssrn_3980079
crossref_primary_10_3390_land11122279
crossref_primary_10_1016_j_jhazmat_2024_136689
crossref_primary_10_1002_ece3_10090
crossref_primary_10_1111_ejss_13323
crossref_primary_10_1111_ejss_13368
crossref_primary_10_1016_j_compgeo_2022_105014
crossref_primary_10_1093_jrsssc_qlae070
crossref_primary_10_1016_j_pce_2024_103561
crossref_primary_10_34133_remotesensing_0130
crossref_primary_10_1109_JSTARS_2022_3164140
crossref_primary_10_1016_j_geoderma_2023_116383
crossref_primary_10_1016_j_envpol_2022_120931
crossref_primary_10_1139_cjss_2021_0091
crossref_primary_10_3390_agronomy14112707
crossref_primary_10_1007_s44353_024_00012_0
crossref_primary_10_3390_s22166153
crossref_primary_10_1016_j_isprsjprs_2023_04_018
crossref_primary_10_3390_rs14215571
crossref_primary_10_2139_ssrn_4181497
crossref_primary_10_3390_bdcc7020113
crossref_primary_10_1016_j_geodrs_2021_e00440
crossref_primary_10_3390_en14217367
crossref_primary_10_1016_j_jenvman_2024_123339
crossref_primary_10_1016_j_geoderma_2024_116850
crossref_primary_10_1007_s12145_025_01748_6
crossref_primary_10_1016_j_ijsrc_2024_04_003
crossref_primary_10_1016_j_still_2024_106220
crossref_primary_10_1016_j_ecoinf_2022_101933
crossref_primary_10_3390_rs14030472
crossref_primary_10_3390_land13030365
crossref_primary_10_1002_jpln_202200239
crossref_primary_10_1016_j_jag_2022_102969
crossref_primary_10_1097_HEP_0000000000000908
crossref_primary_10_1109_TGRS_2024_3446042
crossref_primary_10_1016_j_scitotenv_2023_167488
crossref_primary_10_1007_s13762_024_06183_6
crossref_primary_10_3390_rs15071751
crossref_primary_10_1016_j_catena_2023_107799
crossref_primary_10_1007_s13369_024_08961_3
crossref_primary_10_1016_j_compag_2022_106965
crossref_primary_10_1007_s40808_024_02127_8
crossref_primary_10_1016_j_geoderma_2025_117257
crossref_primary_10_1002_ird_3037
crossref_primary_10_1007_s12665_024_11834_5
crossref_primary_10_1016_j_cmpb_2023_107737
crossref_primary_10_1016_j_geoderma_2023_116446
crossref_primary_10_1007_s12672_024_01337_x
crossref_primary_10_1016_j_ecolind_2022_108545
crossref_primary_10_1016_j_geoderma_2022_116265
crossref_primary_10_1016_j_still_2023_105684
crossref_primary_10_3390_land12091769
crossref_primary_10_3390_agronomy12030628
crossref_primary_10_1016_j_atmosenv_2022_119274
crossref_primary_10_1016_j_atmosres_2022_106406
crossref_primary_10_3389_feart_2024_1488504
crossref_primary_10_1016_j_geoderma_2024_116824
crossref_primary_10_1016_j_aiia_2024_08_001
crossref_primary_10_1016_j_geoderma_2023_116604
crossref_primary_10_1016_j_geodrs_2022_e00563
crossref_primary_10_1007_s10661_022_10678_5
Cites_doi 10.3390/rs12071095
10.1016/j.earscirev.2011.01.005
10.1016/j.geoderma.2018.12.037
10.2202/1544-6115.1309
10.1016/j.geoderma.2015.11.014
10.2136/sssabookser5.4.c14
10.1371/journal.pone.0125814
10.1007/978-0-387-21606-5_1
10.2136/sssabookser5.4.c12
10.1016/j.geomorph.2017.02.015
10.1016/j.geoderma.2015.12.003
10.1080/17583004.2017.1330593
10.2202/1544-6115.1240
10.1097/EDE.0000000000000762
10.1007/s00254-008-1245-9
10.1007/s10654-018-0390-z
10.1016/j.geoderma.2013.07.020
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.earscirev.2020.103359
10.3390/rs12010085
10.1016/j.scitotenv.2020.137703
10.2136/sssaj1950.036159950014000C0005x
10.1016/j.geoderma.2018.09.006
10.1111/j.1365-2389.2009.01205.x
10.2136/sssabookser5.3.c14
10.1007/s10994-006-6226-1
10.1016/j.geoderma.2019.114145
10.1016/j.cageo.2007.05.001
10.1016/j.apm.2019.12.016
10.1016/j.geoderma.2016.02.026
10.1016/j.geodrs.2020.e00256
10.1016/j.catena.2019.104424
10.1016/j.scitotenv.2016.11.078
10.1016/j.geoderma.2020.114237
10.1109/21.256541
10.5194/soil-4-1-2018
10.1016/j.jpsychires.2017.09.010
10.1016/S0016-7061(03)00223-4
10.1007/BF00117832
10.1002/eap.1557
10.1023/A:1010933404324
10.1007/s10040-018-1830-2
10.1016/j.geoderma.2004.06.007
10.1016/j.catena.2020.104675
10.1080/02664763.2010.505956
10.1515/ijb-2014-0060
10.1016/j.catena.2018.07.019
10.1016/j.ecolind.2018.01.049
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2021.115108
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2021_115108
S0016706121001889
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-27e5025ed5037de3a3e4f67d7fd53af7d0f6606aa2cd934dce91bdfa7e15d9053
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 18:34:04 EDT 2025
Thu Apr 24 22:51:33 EDT 2025
Tue Jul 01 04:04:55 EDT 2025
Fri Feb 23 02:43:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Saline soils
Urmia Playa Lake
Model-agnostic
Digital soil mapping
Iran
Super learner
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-27e5025ed5037de3a3e4f67d7fd53af7d0f6606aa2cd934dce91bdfa7e15d9053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4875-2602
0000-0002-4620-6624
PQID 2551932398
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551932398
crossref_primary_10_1016_j_geoderma_2021_115108
crossref_citationtrail_10_1016_j_geoderma_2021_115108
elsevier_sciencedirect_doi_10_1016_j_geoderma_2021_115108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rudiyanto, Minasny, Setiawan, Arif, Saptomo, Chadirin (b0245) 2016; 272
Breiman (b0015) 2001; 45
McBratney, Mendonça Santos, Minasny (b0155) 2003; 117
Molnar, C., 2018. Interpretable Machine Learning-A Guide for Making Black Box Models Explainable, ebook. Leanpub, np.
Tajik, Ayoubi, Zeraatpisheh (b0290) 2020; 20
Foster, Pulido-Bosch, Vallejos, Molina, Llop, MacDonald (b0055) 2018; 26
Wyss, Schneeweiss, van der Laan, Lendle, Ju, Franklin (b0335) 2018; 29
Koza, Koza (b0135) 1992
Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (b0270) 2014; 213
Polley, E., LeDell, E., Kennedy, C., Lendle, S., van der Laan, M., 2019. Package ‘SuperLearner’. CRAN.
Keskin, Grunwald, Harris (b0125) 2019; 339
Taghizadeh-Mehrjardi, Neupane, Sood, Kumar (b0280) 2017; 8
Shapley (b0250) 1953; 2
RStudio, 2015. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www. rstudio. com 42, 14.
Taghizadeh-Mehrjardi, Nabiollahi, Kerry (b0275) 2016; 266
Krinsley, D.B., 1970. A Geomorphological and Paleoclimatological Study of the Playas of Iran. Part II, GEOLOGICAL SURVEY RESTON VA.
Wadoux, Minasny, McBratney (b0320) 2020; 210
Yegnanarayana (b0340) 2009
Jalali (b0110) 2009; 56
Jang (b0115) 1993; 23
Nimmo, J.R., Perkins, K.S., 2002. 2.6 Aggregate stability and size distribution. Methods of soil analysis: part 4 physical methods 5, 317-328.
Zhou, Xue, Chen, Zhou, Liang, Wang, Shi (b0360) 2020; 12
Davies, Van Der Laan (b0040) 2016; 12
Chen, Mulder, Heuvelink, Poggio, Caubet, Román Dobarco, Walter, Arrouays (b0025) 2020; 366
Kuhn (b0145) 2013
Song, Wu, Ju, Liu, Yang, Li, Zhao, Yang, Zhang (b0265) 2020; 363
Friedman, J., Hastie, T., Tibshirani, R., 2001. The elements of statistical learning, 1. Springer series in statistics New York.
Minasny, Hartemink (b0160) 2011; 106
Vapnik, Golowich, Smola (b0315) 1997
Hengl, Heuvelink, Rossiter (b0095) 2007; 33
Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0100) 2016; 265
Rhoades, J., 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis: Part 3 Chemical Methods 5, 417-435.
Behrens, Schmidt, Zhu, Scholten (b0005) 2010; 61
van Bavel (b0300) 1950; 14
Nelson, Sommers (b0185) 1996; 5
Geurts, Ernst, Wehenkel (b0075) 2006; 63
Page, Miller, Keeney (b0200) 1982
Rosellini, Dussaillant, Zubizarreta, Kessler, Rose (b0235) 2018; 96
Van der Laan, Rose (b0310) 2011
Wang, Waters, Orgill, Cowie, Clark, Li Liu, Simpson, McGowen, Sides (b0325) 2018; 88
Curto, Pinto (b0035) 2011; 38
Hengl, Heuvelink, Kempen, Leenaars, Walsh, Shepherd, Sila, MacMillan, Mendes de Jesus, Tamene, Tondoh (b0090) 2015; 10
R Core Team (b0225) 2015
(b0150) 2013
Quinlan (b0220) 1992
Tibshirani (b0295) 1996; 58
Alizadeh Motaghi, Hamzehpour, Mola Ali Abasiyan, Rahmati (b0170) 2020; 194
Fisher, A., Rudin, C., Dominici, F., 2018. All models are wrong but many are useful: Variable importance for black-box, proprietary, or misspecified prediction models, using model class reliance. arXiv preprint arXiv:1801.01489, 237-246.
Geological Survey of Iran (b0070) 1995
Poggio, Gimona (b0205) 2017; 579
Sinisi, S.E., Polley, E.C., Petersen, M.L., Rhee, S. Y., Van Der Laan, M.J., 2007. Super learning: an application to the prediction of HIV-1 drug resistance. Statistical applications in genetics and molecular biology 6(1).
Naimi, Balzer (b0180) 2018; 33
Gee, G.W., Or, D., 2002. 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods 5, 255-293.
Hamzehpour, Eghbal, Abasiyan, Dill (b0080) 2018; 171
Nussbaum, Spiess, Baltensweiler, Grob, Keller, Greiner, Schaepman, Papritz (b0195) 2018; 4
Iran Ministry of Energy, 2014. The National Water Master Plan Study in the Aras, Sefidrood, between Sefidrood and Haraz, Atrac and Urmia: agricultural water use study in Urmia Lake Basin, Tehran.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., 2015. Xgboost: extreme gradient boosting. R package version 0.4-2, 1-4.
Casalicchio, Molnar, Bischl (b0020) 2018
Khaledian, Miller (b0130) 2020; 81
Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (b0350) 2019; 338
Soil Survey Staff (b0260) 2014
Kemper, Chepil (b0120) 1965; 9
Zeraatpisheh, Jafari, Bagheri Bodaghabadi, Ayoubi, Taghizadeh-Mehrjardi, Toomanian, Kerry, Xu (b0355) 2020; 188
Muhammad, I.U., Muhammad, A., Muhammad, M.I.U., 2020. Package ‘mctest’.
Van der Laan, Polley, Hubbard (b0305) 2007; 6
Breiman, L., 1996. Stacked regressions. Machine learning 24(1), 49-64.
Wilson, Caughlin, Rifai, Boughton, Mack, Flory (b0330) 2017; 27
Fathololoumi, Vaezi, Alavipanah, Ghorbani, Saurette, Biswas (b0045) 2020; 721
Zeraatpisheh, Ayoubi, Jafari, Finke (b0345) 2017; 285
Henderson, Bui, Moran, Simon (b0085) 2005; 124
Taghizadeh-Mehrjardi, Schmidt, Amirian-Chakan, Rentschler, Zeraatpisheh, Sarmadian, Valavi, Davatgar, Behrens, Scholten (b0285) 2020; 12
Quinlan (10.1016/j.geoderma.2021.115108_b0220) 1992
R Core Team (10.1016/j.geoderma.2021.115108_b0225) 2015
Wadoux (10.1016/j.geoderma.2021.115108_b0320) 2020; 210
Khaledian (10.1016/j.geoderma.2021.115108_b0130) 2020; 81
Tibshirani (10.1016/j.geoderma.2021.115108_b0295) 1996; 58
Behrens (10.1016/j.geoderma.2021.115108_b0005) 2010; 61
Davies (10.1016/j.geoderma.2021.115108_b0040) 2016; 12
Breiman (10.1016/j.geoderma.2021.115108_b0015) 2001; 45
Van der Laan (10.1016/j.geoderma.2021.115108_b0310) 2011
Zeraatpisheh (10.1016/j.geoderma.2021.115108_b0355) 2020; 188
Kemper (10.1016/j.geoderma.2021.115108_b0120) 1965; 9
10.1016/j.geoderma.2021.115108_b0240
Zhou (10.1016/j.geoderma.2021.115108_b0360) 2020; 12
Casalicchio (10.1016/j.geoderma.2021.115108_b0020) 2018
10.1016/j.geoderma.2021.115108_b0165
Rudiyanto (10.1016/j.geoderma.2021.115108_b0245) 2016; 272
Poggio (10.1016/j.geoderma.2021.115108_b0205) 2017; 579
Wilson (10.1016/j.geoderma.2021.115108_b0330) 2017; 27
Nussbaum (10.1016/j.geoderma.2021.115108_b0195) 2018; 4
Jalali (10.1016/j.geoderma.2021.115108_b0110) 2009; 56
Alizadeh Motaghi (10.1016/j.geoderma.2021.115108_b0170) 2020; 194
Minasny (10.1016/j.geoderma.2021.115108_b0160) 2011; 106
Yegnanarayana (10.1016/j.geoderma.2021.115108_b0340) 2009
Wyss (10.1016/j.geoderma.2021.115108_b0335) 2018; 29
Koza (10.1016/j.geoderma.2021.115108_b0135) 1992
Page (10.1016/j.geoderma.2021.115108_b0200) 1982
Hengl (10.1016/j.geoderma.2021.115108_b0095) 2007; 33
Vapnik (10.1016/j.geoderma.2021.115108_b0315) 1997
Heung (10.1016/j.geoderma.2021.115108_b0100) 2016; 265
Curto (10.1016/j.geoderma.2021.115108_b0035) 2011; 38
10.1016/j.geoderma.2021.115108_b0050
Geological Survey of Iran (10.1016/j.geoderma.2021.115108_b0070) 1995
Chen (10.1016/j.geoderma.2021.115108_b0025) 2020; 366
Jang (10.1016/j.geoderma.2021.115108_b0115) 1993; 23
(10.1016/j.geoderma.2021.115108_b0150) 2013
10.1016/j.geoderma.2021.115108_b0010
10.1016/j.geoderma.2021.115108_b0175
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2021.115108_b0285) 2020; 12
10.1016/j.geoderma.2021.115108_b0210
Hamzehpour (10.1016/j.geoderma.2021.115108_b0080) 2018; 171
Henderson (10.1016/j.geoderma.2021.115108_b0085) 2005; 124
Kuhn (10.1016/j.geoderma.2021.115108_b0145) 2013
10.1016/j.geoderma.2021.115108_b0255
Song (10.1016/j.geoderma.2021.115108_b0265) 2020; 363
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2021.115108_b0280) 2017; 8
10.1016/j.geoderma.2021.115108_b0060
10.1016/j.geoderma.2021.115108_b0140
Van der Laan (10.1016/j.geoderma.2021.115108_b0305) 2007; 6
10.1016/j.geoderma.2021.115108_b0065
Soil Survey Staff (10.1016/j.geoderma.2021.115108_b0260) 2014
McBratney (10.1016/j.geoderma.2021.115108_b0155) 2003; 117
Fathololoumi (10.1016/j.geoderma.2021.115108_b0045) 2020; 721
Hengl (10.1016/j.geoderma.2021.115108_b0090) 2015; 10
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2021.115108_b0275) 2016; 266
Naimi (10.1016/j.geoderma.2021.115108_b0180) 2018; 33
Shapley (10.1016/j.geoderma.2021.115108_b0250) 1953; 2
Foster (10.1016/j.geoderma.2021.115108_b0055) 2018; 26
Geurts (10.1016/j.geoderma.2021.115108_b0075) 2006; 63
Zeraatpisheh (10.1016/j.geoderma.2021.115108_b0345) 2017; 285
Nelson (10.1016/j.geoderma.2021.115108_b0185) 1996; 5
10.1016/j.geoderma.2021.115108_b0105
van Bavel (10.1016/j.geoderma.2021.115108_b0300) 1950; 14
10.1016/j.geoderma.2021.115108_b0030
10.1016/j.geoderma.2021.115108_b0230
Taghizadeh-Mehrjardi (10.1016/j.geoderma.2021.115108_b0270) 2014; 213
Tajik (10.1016/j.geoderma.2021.115108_b0290) 2020; 20
Zeraatpisheh (10.1016/j.geoderma.2021.115108_b0350) 2019; 338
Keskin (10.1016/j.geoderma.2021.115108_b0125) 2019; 339
Wang (10.1016/j.geoderma.2021.115108_b0325) 2018; 88
Rosellini (10.1016/j.geoderma.2021.115108_b0235) 2018; 96
10.1016/j.geoderma.2021.115108_b0190
References_xml – volume: 27
  start-page: 1646
  year: 2017
  end-page: 1656
  ident: b0330
  article-title: Multi-decadal time series of remotely sensed vegetation improves prediction of soil carbon in a subtropical grassland
  publication-title: Ecol. Appl.
– volume: 33
  start-page: 459
  year: 2018
  end-page: 464
  ident: b0180
  article-title: Stacked generalization: an introduction to super learning
  publication-title: Eur. J. Epidemiol.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: b0155
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0295
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
– volume: 6
  year: 2007
  ident: b0305
  article-title: Super learner
  publication-title: Statistical applications in genetics and molecular biology
– volume: 96
  start-page: 15
  year: 2018
  end-page: 22
  ident: b0235
  article-title: Predicting posttraumatic stress disorder following a natural disaster
  publication-title: J. Psychiatr. Res.
– reference: RStudio, 2015. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www. rstudio. com 42, 14.
– reference: Breiman, L., 1996. Stacked regressions. Machine learning 24(1), 49-64.
– volume: 10
  start-page: e0125814
  year: 2015
  ident: b0090
  article-title: Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions
  publication-title: PLoS ONE
– volume: 8
  start-page: 277
  year: 2017
  end-page: 291
  ident: b0280
  article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA
  publication-title: Carbon Manage.
– volume: 210
  start-page: 103359
  year: 2020
  ident: b0320
  article-title: Machine learning for digital soil mapping: applications, challenges and suggested solutions
  publication-title: Earth Sci. Rev.
– volume: 4
  start-page: 1
  year: 2018
  end-page: 22
  ident: b0195
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: Soil
– volume: 20
  start-page: e00256
  year: 2020
  ident: b0290
  article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran
  publication-title: Geoderma Regional
– volume: 56
  start-page: 1479
  year: 2009
  end-page: 1488
  ident: b0110
  article-title: Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran
  publication-title: Environ. Geol.
– volume: 338
  start-page: 445
  year: 2019
  end-page: 452
  ident: b0350
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
– volume: 26
  start-page: 2781
  year: 2018
  end-page: 2791
  ident: b0055
  article-title: Impact of irrigated agriculture on groundwater-recharge salinity: a major sustainability concern in semi-arid regionsImpact de l’irrigation agricole sur la salinité de la recharge des eaux souterraines: une préoccupation majeure en matière de pérennité dans les régions semi-aridesImpacto de la agricultura de regadio en la salinidad de recarga de agua subterranea: una gran preocupacion para la sostenibilidad en las regiones semiaridas灌溉农业对地下水—补给盐度的影响:半干旱地区一个重要的、受到关注的可持续问题Impacto da agricultura irrigada na salinidade da recarga de águas subterrâneas: uma grande preocupação quanto à sustentabilidade em regiões semiáridas
  publication-title: Hydrogeol. J.
– reference: Gee, G.W., Or, D., 2002. 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods 5, 255-293.
– year: 2014
  ident: b0260
  article-title: Keys to soil taxonomy
– volume: 194
  start-page: 104675
  year: 2020
  ident: b0170
  article-title: The wind erodibility in the newly emerged surfaces of Urmia Playa Lake and adjacent agricultural lands and its determining factors
  publication-title: Catena
– year: 1995
  ident: b0070
  article-title: Geological Quadrangle Map
– reference: Rhoades, J., 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis: Part 3 Chemical Methods 5, 417-435.
– reference: Polley, E., LeDell, E., Kennedy, C., Lendle, S., van der Laan, M., 2019. Package ‘SuperLearner’. CRAN.
– volume: 171
  start-page: 398
  year: 2018
  end-page: 415
  ident: b0080
  article-title: Pedogenic evidence of Urmia Lake's maximum expansion in the late Quaternary
  publication-title: Catena
– volume: 266
  start-page: 98
  year: 2016
  end-page: 110
  ident: b0275
  article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
  publication-title: Geoderma
– year: 2009
  ident: b0340
  article-title: Artificial neural networks
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: b0075
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– reference: Fisher, A., Rudin, C., Dominici, F., 2018. All models are wrong but many are useful: Variable importance for black-box, proprietary, or misspecified prediction models, using model class reliance. arXiv preprint arXiv:1801.01489, 237-246.
– volume: 9
  start-page: 499
  year: 1965
  end-page: 510
  ident: b0120
  article-title: Size distribution of aggregates. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties
  publication-title: Including Statistics of Measurement and Sampling
– volume: 106
  start-page: 52
  year: 2011
  end-page: 62
  ident: b0160
  article-title: Predicting soil properties in the tropics
  publication-title: Earth Sci. Rev.
– year: 2013
  ident: b0150
  publication-title: Applied Predictive Modeling
– reference: Friedman, J., Hastie, T., Tibshirani, R., 2001. The elements of statistical learning, 1. Springer series in statistics New York.
– year: 2015
  ident: b0225
  article-title: R: A language and environment for statistical computing
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b0115
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Systems Man Cybernetics
– volume: 339
  start-page: 40
  year: 2019
  end-page: 58
  ident: b0125
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
– reference: Muhammad, I.U., Muhammad, A., Muhammad, M.I.U., 2020. Package ‘mctest’.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0015
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 12
  start-page: 179
  year: 2016
  end-page: 201
  ident: b0040
  article-title: Optimal spatial prediction using ensemble machine learning
  publication-title: Int. J. Biostatistics
– year: 1982
  ident: b0200
  article-title: Methods of soil analysis
– volume: 12
  start-page: 1095
  year: 2020
  ident: b0285
  article-title: Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space
  publication-title: Remote Sensing
– volume: 285
  start-page: 186
  year: 2017
  end-page: 204
  ident: b0345
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
– year: 2011
  ident: b0310
  article-title: Targeted learning: causal inference for observational and experimental data
– volume: 88
  start-page: 425
  year: 2018
  end-page: 438
  ident: b0325
  article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia
  publication-title: Ecol. Ind.
– reference: Nimmo, J.R., Perkins, K.S., 2002. 2.6 Aggregate stability and size distribution. Methods of soil analysis: part 4 physical methods 5, 317-328.
– reference: Krinsley, D.B., 1970. A Geomorphological and Paleoclimatological Study of the Playas of Iran. Part II, GEOLOGICAL SURVEY RESTON VA.
– volume: 579
  start-page: 1094
  year: 2017
  end-page: 1110
  ident: b0205
  article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 20
  year: 1950
  end-page: 23
  ident: b0300
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation 1
  publication-title: Soil Sci. Soc. Am. J.
– reference: Iran Ministry of Energy, 2014. The National Water Master Plan Study in the Aras, Sefidrood, between Sefidrood and Haraz, Atrac and Urmia: agricultural water use study in Urmia Lake Basin, Tehran.
– volume: 363
  start-page: 114145
  year: 2020
  ident: b0265
  article-title: Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China
  publication-title: Geoderma
– reference: Sinisi, S.E., Polley, E.C., Petersen, M.L., Rhee, S. Y., Van Der Laan, M.J., 2007. Super learning: an application to the prediction of HIV-1 drug resistance. Statistical applications in genetics and molecular biology 6(1).
– volume: 29
  start-page: 96
  year: 2018
  end-page: 106
  ident: b0335
  article-title: Using super learner prediction modeling to improve high-dimensional propensity score estimation
  publication-title: Epidemiology
– start-page: 281
  year: 1997
  end-page: 287
  ident: b0315
  article-title: Support vector method for function approximation, regression estimation and signal processing
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 213
  start-page: 15
  year: 2014
  end-page: 28
  ident: b0270
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
– start-page: 343
  year: 1992
  end-page: 348
  ident: b0220
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Scientific
– volume: 272
  start-page: 20
  year: 2016
  end-page: 31
  ident: b0245
  article-title: Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands
  publication-title: Geoderma
– volume: 124
  start-page: 383
  year: 2005
  end-page: 398
  ident: b0085
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
– volume: 2
  start-page: 307
  year: 1953
  end-page: 317
  ident: b0250
  article-title: A value for n-person games
  publication-title: Contrib. Theory Games
– volume: 12
  start-page: 85
  year: 2020
  ident: b0360
  article-title: Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging
  publication-title: Remote Sensing
– volume: 721
  start-page: 137703
  year: 2020
  ident: b0045
  article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: a case study in Iran
  publication-title: Sci. Total Environ.
– year: 2013
  ident: b0145
  article-title: Predictive Modeling with R and the caret Package
– volume: 38
  start-page: 1499
  year: 2011
  end-page: 1507
  ident: b0035
  article-title: The corrected vif (cvif)
  publication-title: J. Appl. Statistics
– volume: 33
  start-page: 1301
  year: 2007
  end-page: 1315
  ident: b0095
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput. Geosci.
– volume: 265
  start-page: 62
  year: 2016
  end-page: 77
  ident: b0100
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
– volume: 188
  start-page: 104424
  year: 2020
  ident: b0355
  article-title: Conventional and digital soil mapping in Iran: Past, present, and future
  publication-title: Catena
– volume: 5
  start-page: 961
  year: 1996
  end-page: 1010
  ident: b0185
  article-title: Total carbon, organic carbon, and organic matter. Methods of soil analysis
  publication-title: Part 3 Chemical methods
– start-page: 1
  year: 1992
  ident: b0135
  article-title: Genetic programming: on the programming of computers by means of natural selection
– start-page: 655
  year: 2018
  end-page: 670
  ident: b0020
  article-title: Visualizing the feature importance for black box models
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume: 81
  start-page: 401
  year: 2020
  end-page: 418
  ident: b0130
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
– reference: Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., 2015. Xgboost: extreme gradient boosting. R package version 0.4-2, 1-4.
– volume: 61
  start-page: 133
  year: 2010
  end-page: 143
  ident: b0005
  article-title: The ConMap approach for terrain-based digital soil mapping
  publication-title: Eur. J. Soil Sci.
– volume: 366
  start-page: 114237
  year: 2020
  ident: b0025
  article-title: Model averaging for mapping topsoil organic carbon in France
  publication-title: Geoderma
– reference: Molnar, C., 2018. Interpretable Machine Learning-A Guide for Making Black Box Models Explainable, ebook. Leanpub, np.
– ident: 10.1016/j.geoderma.2021.115108_b0175
– volume: 12
  start-page: 1095
  issue: 7
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0285
  article-title: Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space
  publication-title: Remote Sensing
  doi: 10.3390/rs12071095
– volume: 106
  start-page: 52
  issue: 1-2
  year: 2011
  ident: 10.1016/j.geoderma.2021.115108_b0160
  article-title: Predicting soil properties in the tropics
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2011.01.005
– volume: 339
  start-page: 40
  year: 2019
  ident: 10.1016/j.geoderma.2021.115108_b0125
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.037
– volume: 6
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2021.115108_b0305
  article-title: Super learner
  publication-title: Statistical applications in genetics and molecular biology
  doi: 10.2202/1544-6115.1309
– year: 2009
  ident: 10.1016/j.geoderma.2021.115108_b0340
– ident: 10.1016/j.geoderma.2021.115108_b0165
– volume: 265
  start-page: 62
  year: 2016
  ident: 10.1016/j.geoderma.2021.115108_b0100
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– ident: 10.1016/j.geoderma.2021.115108_b0190
  doi: 10.2136/sssabookser5.4.c14
– year: 1995
  ident: 10.1016/j.geoderma.2021.115108_b0070
– volume: 10
  start-page: e0125814
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2021.115108_b0090
  article-title: Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0125814
– volume: 5
  start-page: 961
  year: 1996
  ident: 10.1016/j.geoderma.2021.115108_b0185
  article-title: Total carbon, organic carbon, and organic matter. Methods of soil analysis
  publication-title: Part 3 Chemical methods
– start-page: 655
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0020
  article-title: Visualizing the feature importance for black box models
– ident: 10.1016/j.geoderma.2021.115108_b0060
  doi: 10.1007/978-0-387-21606-5_1
– year: 1982
  ident: 10.1016/j.geoderma.2021.115108_b0200
– ident: 10.1016/j.geoderma.2021.115108_b0065
  doi: 10.2136/sssabookser5.4.c12
– volume: 285
  start-page: 186
  year: 2017
  ident: 10.1016/j.geoderma.2021.115108_b0345
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.02.015
– volume: 266
  start-page: 98
  year: 2016
  ident: 10.1016/j.geoderma.2021.115108_b0275
  article-title: Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.003
– volume: 8
  start-page: 277
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2021.115108_b0280
  article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA
  publication-title: Carbon Manage.
  doi: 10.1080/17583004.2017.1330593
– ident: 10.1016/j.geoderma.2021.115108_b0210
– ident: 10.1016/j.geoderma.2021.115108_b0255
  doi: 10.2202/1544-6115.1240
– ident: 10.1016/j.geoderma.2021.115108_b0105
– volume: 29
  start-page: 96
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0335
  article-title: Using super learner prediction modeling to improve high-dimensional propensity score estimation
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000762
– volume: 56
  start-page: 1479
  issue: 7
  year: 2009
  ident: 10.1016/j.geoderma.2021.115108_b0110
  article-title: Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-008-1245-9
– volume: 33
  start-page: 459
  issue: 5
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0180
  article-title: Stacked generalization: an introduction to super learning
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-018-0390-z
– start-page: 281
  year: 1997
  ident: 10.1016/j.geoderma.2021.115108_b0315
  article-title: Support vector method for function approximation, regression estimation and signal processing
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: 10.1016/j.geoderma.2021.115108_b0050
– volume: 213
  start-page: 15
  year: 2014
  ident: 10.1016/j.geoderma.2021.115108_b0270
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.geoderma.2021.115108_b0295
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 210
  start-page: 103359
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0320
  article-title: Machine learning for digital soil mapping: applications, challenges and suggested solutions
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103359
– volume: 12
  start-page: 85
  issue: 1
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0360
  article-title: Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging
  publication-title: Remote Sensing
  doi: 10.3390/rs12010085
– volume: 721
  start-page: 137703
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0045
  article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: a case study in Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137703
– volume: 14
  start-page: 20
  issue: C
  year: 1950
  ident: 10.1016/j.geoderma.2021.115108_b0300
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation 1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1950.036159950014000C0005x
– ident: 10.1016/j.geoderma.2021.115108_b0030
– year: 2013
  ident: 10.1016/j.geoderma.2021.115108_b0145
– volume: 338
  start-page: 445
  year: 2019
  ident: 10.1016/j.geoderma.2021.115108_b0350
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.006
– volume: 61
  start-page: 133
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2021.115108_b0005
  article-title: The ConMap approach for terrain-based digital soil mapping
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01205.x
– ident: 10.1016/j.geoderma.2021.115108_b0230
  doi: 10.2136/sssabookser5.3.c14
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2021.115108_b0075
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 9
  start-page: 499
  year: 1965
  ident: 10.1016/j.geoderma.2021.115108_b0120
  article-title: Size distribution of aggregates. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties
  publication-title: Including Statistics of Measurement and Sampling
– volume: 363
  start-page: 114145
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0265
  article-title: Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114145
– year: 2015
  ident: 10.1016/j.geoderma.2021.115108_b0225
– volume: 33
  start-page: 1301
  issue: 10
  year: 2007
  ident: 10.1016/j.geoderma.2021.115108_b0095
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.05.001
– volume: 81
  start-page: 401
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0130
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.12.016
– ident: 10.1016/j.geoderma.2021.115108_b0240
– volume: 272
  start-page: 20
  year: 2016
  ident: 10.1016/j.geoderma.2021.115108_b0245
  article-title: Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.026
– volume: 20
  start-page: e00256
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0290
  article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2020.e00256
– volume: 188
  start-page: 104424
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0355
  article-title: Conventional and digital soil mapping in Iran: Past, present, and future
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104424
– ident: 10.1016/j.geoderma.2021.115108_b0140
– volume: 2
  start-page: 307
  issue: 28
  year: 1953
  ident: 10.1016/j.geoderma.2021.115108_b0250
  article-title: A value for n-person games
  publication-title: Contrib. Theory Games
– year: 2013
  ident: 10.1016/j.geoderma.2021.115108_b0150
– year: 2011
  ident: 10.1016/j.geoderma.2021.115108_b0310
– start-page: 343
  year: 1992
  ident: 10.1016/j.geoderma.2021.115108_b0220
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Scientific
– volume: 579
  start-page: 1094
  year: 2017
  ident: 10.1016/j.geoderma.2021.115108_b0205
  article-title: Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.078
– volume: 366
  start-page: 114237
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0025
  article-title: Model averaging for mapping topsoil organic carbon in France
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114237
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.geoderma.2021.115108_b0115
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Systems Man Cybernetics
  doi: 10.1109/21.256541
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0195
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: Soil
  doi: 10.5194/soil-4-1-2018
– volume: 96
  start-page: 15
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0235
  article-title: Predicting posttraumatic stress disorder following a natural disaster
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2017.09.010
– volume: 117
  start-page: 3
  issue: 1-2
  year: 2003
  ident: 10.1016/j.geoderma.2021.115108_b0155
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– ident: 10.1016/j.geoderma.2021.115108_b0010
  doi: 10.1007/BF00117832
– volume: 27
  start-page: 1646
  issue: 5
  year: 2017
  ident: 10.1016/j.geoderma.2021.115108_b0330
  article-title: Multi-decadal time series of remotely sensed vegetation improves prediction of soil carbon in a subtropical grassland
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1557
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2021.115108_b0015
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 1
  year: 1992
  ident: 10.1016/j.geoderma.2021.115108_b0135
– volume: 26
  start-page: 2781
  issue: 8
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0055
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-018-1830-2
– volume: 124
  start-page: 383
  issue: 3-4
  year: 2005
  ident: 10.1016/j.geoderma.2021.115108_b0085
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– volume: 194
  start-page: 104675
  year: 2020
  ident: 10.1016/j.geoderma.2021.115108_b0170
  article-title: The wind erodibility in the newly emerged surfaces of Urmia Playa Lake and adjacent agricultural lands and its determining factors
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104675
– year: 2014
  ident: 10.1016/j.geoderma.2021.115108_b0260
– volume: 38
  start-page: 1499
  issue: 7
  year: 2011
  ident: 10.1016/j.geoderma.2021.115108_b0035
  article-title: The corrected vif (cvif)
  publication-title: J. Appl. Statistics
  doi: 10.1080/02664763.2010.505956
– volume: 12
  start-page: 179
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2021.115108_b0040
  article-title: Optimal spatial prediction using ensemble machine learning
  publication-title: Int. J. Biostatistics
  doi: 10.1515/ijb-2014-0060
– volume: 171
  start-page: 398
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0080
  article-title: Pedogenic evidence of Urmia Lake's maximum expansion in the late Quaternary
  publication-title: Catena
  doi: 10.1016/j.catena.2018.07.019
– volume: 88
  start-page: 425
  year: 2018
  ident: 10.1016/j.geoderma.2021.115108_b0325
  article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2018.01.049
SSID ssj0017020
Score 2.5874457
Snippet •The super learner is promising approach for Digital Soil Mapping.•Super learner increased accuracy by up to ~46%, compared to base learners.•Permutation...
Digital soil mapping approaches predict soil properties based on the relationships between soil observations and related environmental covariates using...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115108
SubjectTerms Digital soil mapping
groundwater
Iran
lakes
Model-agnostic
playas
prediction
regression analysis
Saline soils
Super learner
Urmia Playa Lake
Title Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping
URI https://dx.doi.org/10.1016/j.geoderma.2021.115108
https://www.proquest.com/docview/2551932398
Volume 399
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECYCZ0mGomkS1H0YLJBVsWRSIjUaQQKnRTMlQDaC4kOR60qGH0OX_vbeSZSRBAg8dBIkkQRxPN59BO--I-SCMylk4ZMInIGPuDGw5xxzUVxwI3xmY6vxRvfnXTZ74N8f08cDctXnwmBYZbD9nU1vrXX4Mg7SHC-rCnN8k0zELQNWnEiJSXycC9Tyy7-7MI9ExIGaMckibP0sS3gOa4QFx1r-oUkC1gMUVL7loF6Z6tb_3Lwn7wJwpNNubifkwNUfyPG0XAXyDHdKfl3XT0ifUZcUYB3VxmxX2vyhjae_25hJR0ORiJK2FXDWFMPeu9br7dKtuv_w3FG70qqmtiqxtAhdN9UCRkJGh_KMPNxc31_NolBMIdIsk5toIlwK-MbZNGbCOqaZ4z4TVnibMu2FjX0GhxmtJ8bmjFvj8qSwXguXpDaHrXpOBnVTu4-EMg1GIEemfQn4K3W5tgWPvfe6AHQo7ZCkvQSVCUzjWPBiofqQsrnqJa9Q8qqT_JCMd_2WHdfG3h55v0DqhdYocAh7-37rV1TBlsJ7El27ZrtWcMpCWMty-ek_xv9MjvCtC_z7Qgab1dZ9BQCzKUatho7I4fT2x-zuHymp8kA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB51y4HlgGAXxBsj7TVqUiexc6xQUXn1BBI3y_EjhEda9XHg3zNOnIpFQhw4RYozVjQznvksj78B-BdTznhuowCTgQ1ipXDNGWqCMI8Vs6kOtXQnurfjdHQfXz0kDx04b-_CuLJKH_ubmF5Ha_-m57XZm5alu-MbpSysGbDCiPPsF6w5dqqkC2uDy-vReHWYwELPzhilgRP4cFH4Cc3keo7VFET9CAMI-ij_Kkd9itZ1CrrYgk2PHcmg-b1t6JjqD2wMipnnzzB_4XlYPToGjaogiOyIVGo5k-qNTCx5rcsmDfF9IgpSN8GZE1f53nw9X07NrBnH54rdlZQV0WXhuouQ-aR8wZkcqUOxA_cXw7vzUeD7KQSSpnwR9JlJEOIYnYSUaUMlNbFNmWZWJ1RapkOb4n5Gyr7SGY21MlmUayuZiRKd4WrdhW41qcweECoxDmSObJ8jBEtMJnUeh9ZamSNA5HofklaDQnmycdfz4kW0VWVPotW8cJoXjeb3obeSmzZ0G99KZK2BxH-OIzAnfCt71lpU4KpyRyWyMpPlXOBGyyFbmvGDH8x_Cuuju9sbcXM5vj6E326kqQM8gu5itjTHiGcW-Yn313dzVPTx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+accuracy+of+machine+learning+models+using+the+super+learner+technique+in+digital+soil+mapping&rft.jtitle=Geoderma&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Hamzehpour%2C+Nikou&rft.au=Hassanzadeh%2C+Maryam&rft.au=Heung%2C+Brandon&rft.date=2021-10-01&rft.issn=0016-7061&rft.volume=399+p.115108-&rft_id=info:doi/10.1016%2Fj.geoderma.2021.115108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon