Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach

•Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF algorithms.•Predictions were accurate independently of soil class, parent material, and horizon.•Fe and Al positively correlated to clay content due to...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 362; p. 114136
Main Authors Silva, Sérgio Henrique Godinho, Weindorf, David C., Pinto, Leandro Campos, Faria, Wilson Missina, Acerbi Junior, Fausto Weimar, Gomide, Lucas Rezende, de Mello, José Márcio, de Pádua Junior, Alceu Linares, de Souza, Igor Alexandre, Teixeira, Anita Fernanda dos Santos, Guilherme, Luiz Roberto Guimarães, Curi, Nilton
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF algorithms.•Predictions were accurate independently of soil class, parent material, and horizon.•Fe and Al positively correlated to clay content due to Fe- and Al-oxides in soils.•Si positively correlated to sand, due to dominance of quartz in this fraction. Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this study aimed at predicting soil texture from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian soils. 1565 soil samples (503 from superficial and 1062 from subsuperficial horizons) were analyzed in the laboratory for soil texture and scanned with the pXRF. Elemental contents determined by pXRF were correlated with soil texture and used to calibrate regression models through the generalized linear model (GLM), support vector machine (SVM), and random forest (RF) algorithm. Models were created with 70% of the data using three datasets: i) only superficial horizon data; ii) only subsuperficial horizon data; and iii) data from both horizons. Validation was performed with 30% of the data. Clay content was positively correlated with Fe (0.79) and Al2O3 (0.41) reflecting the great residual concentration of Fe- and Al-oxides in this fraction. This same fraction correlated negatively with SiO2 (-0.75), while the sand fraction correlated positively with SiO2 corresponding to quartz dominance in the sand fraction of Brazilian soils. For the separated superficial and subsuperficial horizon datasets, SVM promoted the best predictions of clay (R2 0.83; RMSE = 7.04%) and sand contents (R2 0.87; RMSE = 9.11%), while RF provided the best results for silt (R2 0.60; RMSE = 6.33%). When combining both datasets, RF was better for sand prediction (R2 0.73; RMSE = 5.79%), while SVM promoted better predictions for silt (R2 0.72; RMSE = 5.77%) and clay (R2 0.84; RMSE = 7.08%). Elemental contents obtained by pXRF are capable of accurately predicting soil texture for a great variety of Brazilian soils.
AbstractList •Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF algorithms.•Predictions were accurate independently of soil class, parent material, and horizon.•Fe and Al positively correlated to clay content due to Fe- and Al-oxides in soils.•Si positively correlated to sand, due to dominance of quartz in this fraction. Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this study aimed at predicting soil texture from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian soils. 1565 soil samples (503 from superficial and 1062 from subsuperficial horizons) were analyzed in the laboratory for soil texture and scanned with the pXRF. Elemental contents determined by pXRF were correlated with soil texture and used to calibrate regression models through the generalized linear model (GLM), support vector machine (SVM), and random forest (RF) algorithm. Models were created with 70% of the data using three datasets: i) only superficial horizon data; ii) only subsuperficial horizon data; and iii) data from both horizons. Validation was performed with 30% of the data. Clay content was positively correlated with Fe (0.79) and Al2O3 (0.41) reflecting the great residual concentration of Fe- and Al-oxides in this fraction. This same fraction correlated negatively with SiO2 (-0.75), while the sand fraction correlated positively with SiO2 corresponding to quartz dominance in the sand fraction of Brazilian soils. For the separated superficial and subsuperficial horizon datasets, SVM promoted the best predictions of clay (R2 0.83; RMSE = 7.04%) and sand contents (R2 0.87; RMSE = 9.11%), while RF provided the best results for silt (R2 0.60; RMSE = 6.33%). When combining both datasets, RF was better for sand prediction (R2 0.73; RMSE = 5.79%), while SVM promoted better predictions for silt (R2 0.72; RMSE = 5.77%) and clay (R2 0.84; RMSE = 7.08%). Elemental contents obtained by pXRF are capable of accurately predicting soil texture for a great variety of Brazilian soils.
Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this study aimed at predicting soil texture from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian soils. 1565 soil samples (503 from superficial and 1062 from subsuperficial horizons) were analyzed in the laboratory for soil texture and scanned with the pXRF. Elemental contents determined by pXRF were correlated with soil texture and used to calibrate regression models through the generalized linear model (GLM), support vector machine (SVM), and random forest (RF) algorithm. Models were created with 70% of the data using three datasets: i) only superficial horizon data; ii) only subsuperficial horizon data; and iii) data from both horizons. Validation was performed with 30% of the data. Clay content was positively correlated with Fe (0.79) and Al₂O₃ (0.41) reflecting the great residual concentration of Fe- and Al-oxides in this fraction. This same fraction correlated negatively with SiO₂ (-0.75), while the sand fraction correlated positively with SiO₂ corresponding to quartz dominance in the sand fraction of Brazilian soils. For the separated superficial and subsuperficial horizon datasets, SVM promoted the best predictions of clay (R² 0.83; RMSE = 7.04%) and sand contents (R² 0.87; RMSE = 9.11%), while RF provided the best results for silt (R² 0.60; RMSE = 6.33%). When combining both datasets, RF was better for sand prediction (R² 0.73; RMSE = 5.79%), while SVM promoted better predictions for silt (R² 0.72; RMSE = 5.77%) and clay (R² 0.84; RMSE = 7.08%). Elemental contents obtained by pXRF are capable of accurately predicting soil texture for a great variety of Brazilian soils.
ArticleNumber 114136
Author Weindorf, David C.
de Souza, Igor Alexandre
Teixeira, Anita Fernanda dos Santos
Faria, Wilson Missina
de Mello, José Márcio
Curi, Nilton
de Pádua Junior, Alceu Linares
Silva, Sérgio Henrique Godinho
Guilherme, Luiz Roberto Guimarães
Acerbi Junior, Fausto Weimar
Gomide, Lucas Rezende
Pinto, Leandro Campos
Author_xml – sequence: 1
  givenname: Sérgio Henrique Godinho
  surname: Silva
  fullname: Silva, Sérgio Henrique Godinho
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil
– sequence: 2
  givenname: David C.
  surname: Weindorf
  fullname: Weindorf, David C.
  email: david.weindorf@ttu.edu
  organization: Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
– sequence: 3
  givenname: Leandro Campos
  surname: Pinto
  fullname: Pinto, Leandro Campos
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil
– sequence: 4
  givenname: Wilson Missina
  surname: Faria
  fullname: Faria, Wilson Missina
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil
– sequence: 5
  givenname: Fausto Weimar
  surname: Acerbi Junior
  fullname: Acerbi Junior, Fausto Weimar
  organization: Department of Forest Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil
– sequence: 6
  givenname: Lucas Rezende
  surname: Gomide
  fullname: Gomide, Lucas Rezende
  organization: Department of Forest Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil
– sequence: 7
  givenname: José Márcio
  surname: de Mello
  fullname: de Mello, José Márcio
  organization: Department of Forest Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil
– sequence: 8
  givenname: Alceu Linares
  surname: de Pádua Junior
  fullname: de Pádua Junior, Alceu Linares
  organization: Instituto de Ciências Agrárias, Federal University of Jequitinhonha and Mucuri Valleys, Unaí, Minas Gerais, Brazil
– sequence: 9
  givenname: Igor Alexandre
  surname: de Souza
  fullname: de Souza, Igor Alexandre
  organization: Instituto de Ciências Agrárias, Federal University of Jequitinhonha and Mucuri Valleys, Unaí, Minas Gerais, Brazil
– sequence: 10
  givenname: Anita Fernanda dos Santos
  surname: Teixeira
  fullname: Teixeira, Anita Fernanda dos Santos
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil
– sequence: 11
  givenname: Luiz Roberto Guimarães
  surname: Guilherme
  fullname: Guilherme, Luiz Roberto Guimarães
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil
– sequence: 12
  givenname: Nilton
  surname: Curi
  fullname: Curi, Nilton
  organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil
BookMark eNqFkD1PwzAQhi1UJMrHX0AeWVLsOHEcxEBV8SVVYgAkJqyrcwFXaRxsF9F_j6vCwsJkne99zr7nkIx61yMhp5xNOOPyfDl5Q9egX8EkZ7yecF5wIffImKsqz2Re1iMyZimZVUzyA3IYwjKVFcvZmLw-OtvRiF9x7ZEOHhtronU9tT2N3g3WQEdDyoQLOqWD8xEWHdKXzMOGtt3aeQwGe4M0DGgSscLoNxSGwTsw78dkv4Uu4MnPeUSeb66fZnfZ_OH2fjadZyCkihlXpkQlBbQGZCGKSqq8RpBCQFkv8oaJsoRygWmvRWVMYSqhUjvdSdbWqhVH5Gw3Nz37scYQ9cqmf3Ud9OjWQedCqUqIOi9S9HIXNd6F4LHVxkbY7hw92E5zprda9VL_atVbrXqnNeHyDz54uwK_-R-82oGYPHxa9DoYuzXXWJ_M6cbZ_0Z8AyX7mYM
CitedBy_id crossref_primary_10_1016_j_sab_2021_106303
crossref_primary_10_1061_JHTRBP_HZENG_1282
crossref_primary_10_1016_j_geodrs_2025_e00922
crossref_primary_10_3390_land12091812
crossref_primary_10_1016_j_catena_2023_107572
crossref_primary_10_1016_j_geoderma_2020_114212
crossref_primary_10_1016_j_geodrs_2022_e00573
crossref_primary_10_1016_j_sab_2023_106835
crossref_primary_10_1002_saj2_20598
crossref_primary_10_36783_18069657rbcs20220028
crossref_primary_10_1016_j_sab_2020_106016
crossref_primary_10_1016_S1002_0160_21_60092_9
crossref_primary_10_1071_SR20136
crossref_primary_10_33409_tbbbd_1110496
crossref_primary_10_1016_j_geoderma_2021_115091
crossref_primary_10_1016_j_agee_2023_108799
crossref_primary_10_1002_saj2_20639
crossref_primary_10_1016_j_geodrs_2024_e00813
crossref_primary_10_1007_s11442_023_2142_6
crossref_primary_10_1590_0001_3765202120200646
crossref_primary_10_1134_S1064229322030061
crossref_primary_10_1016_j_cscee_2024_101079
crossref_primary_10_1007_s10661_021_08982_7
crossref_primary_10_1016_j_ejsobi_2021_103315
crossref_primary_10_1016_j_envres_2023_115858
crossref_primary_10_1016_j_geodrs_2023_e00720
crossref_primary_10_1016_j_catena_2022_106514
crossref_primary_10_1016_j_catena_2021_105766
crossref_primary_10_3390_agronomy12112699
crossref_primary_10_1007_s10661_023_11681_0
crossref_primary_10_1016_j_geodrs_2022_e00507
crossref_primary_10_1021_acs_est_0c04130
crossref_primary_10_1002_saj2_70028
crossref_primary_10_1007_s10661_021_09163_2
crossref_primary_10_1016_j_geoderma_2020_114553
crossref_primary_10_1007_s11368_021_03109_4
crossref_primary_10_1016_j_geodrs_2021_e00431
crossref_primary_10_1016_j_jsames_2022_103873
crossref_primary_10_1016_j_geodrs_2020_e00310
crossref_primary_10_1007_s11629_022_7749_z
crossref_primary_10_1016_j_compag_2022_107459
crossref_primary_10_1016_j_geodrs_2022_e00557
crossref_primary_10_3390_agronomy14092074
crossref_primary_10_1016_j_geoderma_2022_116301
crossref_primary_10_19159_tutad_823890
crossref_primary_10_1016_j_geoderma_2022_115936
crossref_primary_10_1039_D0JA90074E
crossref_primary_10_1016_j_geoderma_2021_115116
crossref_primary_10_1016_j_soilad_2024_100031
crossref_primary_10_1016_j_catena_2020_105083
crossref_primary_10_1016_j_compag_2021_106539
crossref_primary_10_1016_j_geodrs_2021_e00465
crossref_primary_10_1016_j_jsames_2023_104510
crossref_primary_10_1016_j_geodrs_2022_e00484
crossref_primary_10_1016_j_geodrs_2020_e00321
crossref_primary_10_1016_j_geodrs_2021_e00461
Cites_doi 10.3390/min7110214
10.1097/SS.0000000000000026
10.1590/S0100-204X2003000100018
10.1016/j.geoderma.2015.11.014
10.1590/S0100-06832005000100009
10.1016/S1074-9098(00)00080-0
10.5433/1679-0375.2014v35n2p207
10.1016/j.geoderma.2017.03.017
10.1016/j.geoderma.2015.04.008
10.1016/j.geoderma.2012.06.034
10.1016/j.geoderma.2018.10.026
10.1016/B978-0-12-802139-2.00001-9
10.1016/j.geoderma.2014.09.006
10.1590/1413-70542017413000117
10.1016/j.catena.2016.05.020
10.1590/1413-70542017416010317
10.1127/0941-2948/2013/0507
10.1590/S0100-06832005000600004
10.1590/S1413-70542012000500003
10.1590/S0100-06832004000400010
10.3390/rs8080614
10.1590/S0103-90162010000400013
10.1016/j.geoderma.2011.08.010
10.1016/j.geoderma.2014.10.001
10.1016/bs.agron.2015.12.004
10.1590/1413-70542018425017518
10.1016/j.catena.2016.01.007
10.1016/j.geoderma.2014.05.005
10.1590/1413-70542018421009117
10.2136/sssaj2017.11.0380
10.1180/claymin.2008.043.1.11
10.2113/gscanmin.41.1.139
10.1016/j.geoderma.2003.10.003
10.1016/j.clay.2018.05.028
10.1016/j.compag.2017.11.037
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.114136
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2019_114136
S0016706119301612
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a368t-18c5e863afca643476829ea633a59b2d0355a5be136b7cc4c738ea65a560f98f3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 05:45:42 EDT 2025
Tue Jul 01 04:04:51 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MAE
R2
CV
RF
Prediction models
Soil particle size
pXRF
GLM
RMSE
SVM
Proximal sensors
Brazilian soils
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-18c5e863afca643476829ea633a59b2d0355a5be136b7cc4c738ea65a560f98f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388733924
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388733924
crossref_citationtrail_10_1016_j_geoderma_2019_114136
crossref_primary_10_1016_j_geoderma_2019_114136
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_114136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2018. Package ‘ caret .’ https://cran.r-project.org/web/packages/caret/caret.pdf. Accessed 30 Jul 2018.
Resende, Curi, Rezende, Corrêa, Ker (b0145) 2014
Melo, Castilhos, Pinto (b0125) 2009
Duda, Weindorf, Chakraborty, Li, Man, Paulette, Deb (b0035) 2017; 298
Anjos, Jacomine, Santos, Oliveira, Oliveira (b0010) 2012
Schwertmann, Taylor (b0165) 1989
Teixeira, Weindorf, Silva, Guilherme, Curi (b0220) 2018; 42
Terra, Sanches, Bueno, Melquiades (b0225) 2014; 35
Sharma, Weindorf, Man, Aldabaa, Chakraborty (b0170) 2014; 232–234
Silva, Silva, Poggere, Guilherme, Curi (b0195) 2018; 42
Weindorf, Chakraborty (b0255) 2016
Gomes, Curi, Schulze, Marques, Ker, Motta (b0045) 2004; 28
Kämpf, Curi (b0080) 2000
Silva, Teixeira, Menezes, Guilherme, Moreira, Curi (b0200) 2017; 41
dos Santos Weber, Chitolina, de Camargo, Alleoni (b0240) 2005; 29
Cunha, Marques, Curi, Pereira, Lepsch (b0030) 2005; 29
Stockmann, Cattle, Minasny, McBratney (b0210) 2016; 139
Weindorf, Zhu, McDaniel, Valerio, Lynn, Michaelson, Clark, Ping (b0260) 2012; 189–190
Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., Zemla, J., 2017. Package “corrplot”. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf. Accessed on 10 Jun 2018.
Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071’. https://cran.r-project.org/web/packages/e1071/. Accessed 30 Jul 2018.
Blume, Brümmer, Fleige, Horn, Kandeler, Kögel-Knabner, Kretzschmar, Stahr, Wilke (b0020) 2016
Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0055) 2016; 265
Marques, Schulze, Curi, Mertzman (b0120) 2004; 121
Brinatti, Mascarenhas, Pereira, Partiti, Macedo (b0025) 2010; 67
Soil Survey Staff (b0205) 2014
Gee, Bauder (b0040) 1986
Vitorino, Ferreira, Curi, de Lima, Silva, Motta (b0230) 2003; 38
Silva, Hartemink, dos Santos Teixeira, Inda, Guilherme, Curi (b0185) 2018; 162
IBGE, EMBRAPA, 2001. Mapa de Solos do Brasil - Escala 1:5.000.000.
Melo, Costa, Barros, Fontes, Novais (b0130) 1995; 19
Groat, Mulja, Mauthner, Ercit, Raudsepp, Gault, Rollo (b0050) 2003; 41
Ribeiro, Silva, Silva, Guilherme (b0150) 2017; 41
Zhu, Weindorf, Zhang (b0280) 2011; 167–168
Pelegrino, Weindorf, Silva, de Menezes, Poggere, Guilherme, Curi (b0135) 2018
White (b0265) 2013
Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (b0005) 2013; 22
Silva, Gomes, Filho, Vidal-Torrado, Cooper, Curi (b0180) 2012; 36
Mancini, Weindorf, Chakraborty, Silva, dos Santos Teixeira, Guilherme, Curi (b0115) 2019; 337
Schaefer, Fabris, Ker (b0160) 2008; 43
Hillel (b0060) 1980
R Core Team, 2018. R: a language and environment for statistical R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (verified 15 Jan. 2019).
Liaw, A., Wiener, M., 2015. Package “randomForest”. R Dev. Core Team. https://cran.r-project.org/web/packages/randomForest/randomForest.pdf. Accessed 6 Aug 2018.
Sharma, Weindorf, Wang, Chakraborty (b0175) 2015; 239
Silva, Poggere, Menezes, Carvalho, Guilherme, Curi (b0190) 2016; 8
Taghizadeh-mehrjardi, Nabiollahi, Minasny, Triantafilis (b0215) 2015; 253–254
Wang, Li, Li, Liu (b0235) 2013; 178
Weindorf, Bakr, Zhu (b0250) 2014; 128
Lorenzetti, Barbetti, Fantappiè, L’Abate, Costantini (b0110) 2015; 237–238
Arfè, Mondillo, Balassone, Boni, Cappelletti, Di Palma (b0015) 2017; 7
Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343.
Wu, Lin, Su, Zhou, Zhou (b0275) 2016; 145
Izzo (b0075) 2000; 7
Liaw, Wiener (b0100) 2002; 2
Lopes, Guilherme (b0105) 2016; 137
Ribeiro, Weindorf, Silva, Tassinari, Amarante, Curi, Guimarães Guilherme (b0155) 2018; 82
Wu, Li, He, Ma, Liu, Lv (b0270) 2018; 144
Silva (10.1016/j.geoderma.2019.114136_b0185) 2018; 162
White (10.1016/j.geoderma.2019.114136_b0265) 2013
10.1016/j.geoderma.2019.114136_b0070
dos Santos Weber (10.1016/j.geoderma.2019.114136_b0240) 2005; 29
Silva (10.1016/j.geoderma.2019.114136_b0190) 2016; 8
Ribeiro (10.1016/j.geoderma.2019.114136_b0150) 2017; 41
Blume (10.1016/j.geoderma.2019.114136_b0020) 2016
Pelegrino (10.1016/j.geoderma.2019.114136_b0135) 2018
Resende (10.1016/j.geoderma.2019.114136_b0145) 2014
Wang (10.1016/j.geoderma.2019.114136_b0235) 2013; 178
Alvares (10.1016/j.geoderma.2019.114136_b0005) 2013; 22
Gomes (10.1016/j.geoderma.2019.114136_b0045) 2004; 28
Wu (10.1016/j.geoderma.2019.114136_b0270) 2018; 144
Hillel (10.1016/j.geoderma.2019.114136_b0060) 1980
Terra (10.1016/j.geoderma.2019.114136_b0225) 2014; 35
Zhu (10.1016/j.geoderma.2019.114136_b0280) 2011; 167–168
Melo (10.1016/j.geoderma.2019.114136_b0130) 1995; 19
10.1016/j.geoderma.2019.114136_b0140
Wu (10.1016/j.geoderma.2019.114136_b0275) 2016; 145
Weindorf (10.1016/j.geoderma.2019.114136_b0250) 2014; 128
Sharma (10.1016/j.geoderma.2019.114136_b0170) 2014; 232–234
Arfè (10.1016/j.geoderma.2019.114136_b0015) 2017; 7
10.1016/j.geoderma.2019.114136_b0065
Lopes (10.1016/j.geoderma.2019.114136_b0105) 2016; 137
Groat (10.1016/j.geoderma.2019.114136_b0050) 2003; 41
Ribeiro (10.1016/j.geoderma.2019.114136_b0155) 2018; 82
Marques (10.1016/j.geoderma.2019.114136_b0120) 2004; 121
Silva (10.1016/j.geoderma.2019.114136_b0180) 2012; 36
Heung (10.1016/j.geoderma.2019.114136_b0055) 2016; 265
10.1016/j.geoderma.2019.114136_b0090
Cunha (10.1016/j.geoderma.2019.114136_b0030) 2005; 29
Kämpf (10.1016/j.geoderma.2019.114136_b0080) 2000
10.1016/j.geoderma.2019.114136_b0095
Liaw (10.1016/j.geoderma.2019.114136_b0100) 2002; 2
Anjos (10.1016/j.geoderma.2019.114136_b0010) 2012
Izzo (10.1016/j.geoderma.2019.114136_b0075) 2000; 7
Weindorf (10.1016/j.geoderma.2019.114136_b0255) 2016
Lorenzetti (10.1016/j.geoderma.2019.114136_b0110) 2015; 237–238
Sharma (10.1016/j.geoderma.2019.114136_b0175) 2015; 239
Schaefer (10.1016/j.geoderma.2019.114136_b0160) 2008; 43
Silva (10.1016/j.geoderma.2019.114136_b0200) 2017; 41
Weindorf (10.1016/j.geoderma.2019.114136_b0260) 2012; 189–190
Soil Survey Staff (10.1016/j.geoderma.2019.114136_b0205) 2014
Brinatti (10.1016/j.geoderma.2019.114136_b0025) 2010; 67
Melo (10.1016/j.geoderma.2019.114136_b0125) 2009
Teixeira (10.1016/j.geoderma.2019.114136_b0220) 2018; 42
10.1016/j.geoderma.2019.114136_b0085
Duda (10.1016/j.geoderma.2019.114136_b0035) 2017; 298
Mancini (10.1016/j.geoderma.2019.114136_b0115) 2019; 337
Schwertmann (10.1016/j.geoderma.2019.114136_b0165) 1989
Taghizadeh-mehrjardi (10.1016/j.geoderma.2019.114136_b0215) 2015; 253–254
Gee (10.1016/j.geoderma.2019.114136_b0040) 1986
Stockmann (10.1016/j.geoderma.2019.114136_b0210) 2016; 139
Silva (10.1016/j.geoderma.2019.114136_b0195) 2018; 42
10.1016/j.geoderma.2019.114136_b0245
Vitorino (10.1016/j.geoderma.2019.114136_b0230) 2003; 38
References_xml – volume: 8
  start-page: 614
  year: 2016
  end-page: 635
  ident: b0190
  article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols)
  publication-title: Remote Sens.
– volume: 41
  start-page: 648
  year: 2017
  end-page: 664
  ident: b0200
  article-title: Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF)
  publication-title: Ciência e Agrotecnologia
– volume: 28
  start-page: 679
  year: 2004
  end-page: 694
  ident: b0045
  article-title: Mineralogia, morfologia e análise microscópica de solos do bioma cerrado
  publication-title: Rev. Bras. Ciência do Solo
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b0100
  article-title: Classification and regression by randomForest
  publication-title: R News
– start-page: 251
  year: 2009
  end-page: 332
  ident: b0125
  article-title: Reserva Mineral do Solo
  publication-title: Química e Mineralogia Do Solo: Parte I - Conceitos Básicos
– volume: 232–234
  start-page: 141
  year: 2014
  end-page: 147
  ident: b0170
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)
  publication-title: Geoderma
– volume: 19
  start-page: 159
  year: 1995
  end-page: 164
  ident: b0130
  article-title: Reserva mineral e caracterização mineralógica de alguns solos do Rio Grande do Sul
  publication-title: Rev. Bras. Cienc. do Solo
– volume: 298
  start-page: 78
  year: 2017
  end-page: 91
  ident: b0035
  article-title: Soil characterization across catenas via advanced proximal sensors
  publication-title: Geoderma
– year: 2013
  ident: b0265
  article-title: Principles and Practice of Soil Science: The Soil as a Natural Resource
– volume: 128
  start-page: 1
  year: 2014
  end-page: 45
  ident: b0250
  article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Adv. Agron.
– reference: R Core Team, 2018. R: a language and environment for statistical R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (verified 15 Jan. 2019).
– reference: Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., Zemla, J., 2017. Package “corrplot”. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf. Accessed on 10 Jun 2018.
– start-page: 379
  year: 1989
  end-page: 438
  ident: b0165
  article-title: Iron oxides
  publication-title: Minerals in Soil Environments
– year: 1980
  ident: b0060
  article-title: Fundamentals of Soil Physics
– volume: 253–254
  start-page: 67
  year: 2015
  end-page: 77
  ident: b0215
  article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region
  publication-title: Iran. Geoderma
– volume: 121
  start-page: 31
  year: 2004
  end-page: 43
  ident: b0120
  article-title: Trace element geochemistry in Brazilian Cerrado soils
  publication-title: Geoderma
– volume: 43
  start-page: 137
  year: 2008
  end-page: 154
  ident: b0160
  article-title: Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review
  publication-title: Clay Miner.
– volume: 41
  start-page: 245
  year: 2017
  end-page: 254
  ident: b0150
  article-title: Portable X-ray fluorescence (pXRF) applications in tropical Soil Science
  publication-title: Ciência e Agrotecnologia
– volume: 144
  start-page: 86
  year: 2018
  end-page: 93
  ident: b0270
  article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China
  publication-title: Comput. Electron. Agric.
– volume: 162
  start-page: 27
  year: 2018
  end-page: 37
  ident: b0185
  article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado
  publication-title: Appl. Clay Sci.
– volume: 38
  start-page: 133
  year: 2003
  end-page: 141
  ident: b0230
  article-title: Mineralogia, química e estabilidade de agregados do tamanho de silte de solos da Região Sudeste do Brasil
  publication-title: Pesquisa Agropecuária Brasileira
– start-page: 107
  year: 2000
  end-page: 138
  ident: b0080
  article-title: Óxidos de ferro: Indicadores de ambientes pedogênicos e geoquímicos
  publication-title: Tópicos Em Ciência Do Solo. Sociedade Brasileira de Ciência do Solo
– reference: Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071’. https://cran.r-project.org/web/packages/e1071/. Accessed 30 Jul 2018.
– volume: 35
  start-page: 207
  year: 2014
  end-page: 214
  ident: b0225
  article-title: Análise Multielementar de solos: uma proposta envolvendo equipamento portátil de fluorescência de raios X
  publication-title: Semin. Ciências Exatas e Tecnológicas
– volume: 82
  start-page: 632
  year: 2018
  end-page: 644
  ident: b0155
  article-title: The influence of soil moisture on oxide determination in tropical soils via portable X-ray fluorescence
  publication-title: Soil Sci. Soc. Am. J.
– volume: 265
  start-page: 62
  year: 2016
  end-page: 77
  ident: b0055
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
– volume: 42
  start-page: 80
  year: 2018
  end-page: 92
  ident: b0195
  article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods
  publication-title: Ciência e Agrotecnologia
– reference: Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2018. Package ‘ caret .’ https://cran.r-project.org/web/packages/caret/caret.pdf. Accessed 30 Jul 2018.
– volume: 29
  start-page: 81
  year: 2005
  end-page: 90
  ident: b0030
  article-title: Superfícies geomórficas e atributos de latossolos em uma seqüência arenítico-Basáltica da região de Jaboticabal (SP)
  publication-title: Rev. Bras. Cienc. do Solo
– volume: 36
  start-page: 507
  year: 2012
  end-page: 517
  ident: b0180
  article-title: Morfologia, mineralogia e micromorfologia de solos de depressões de topo de Tabuleiros Costeiros do Nordeste Brasileiro
  publication-title: Ciência e Agrotecnologia
– start-page: 303
  year: 2012
  end-page: 343
  ident: b0010
  article-title: Sistema brasileiro de classificação de solos
  publication-title: Pedologia - Fundamentos
– reference: Liaw, A., Wiener, M., 2015. Package “randomForest”. R Dev. Core Team. https://cran.r-project.org/web/packages/randomForest/randomForest.pdf. Accessed 6 Aug 2018.
– volume: 7
  start-page: 29
  year: 2000
  end-page: 33
  ident: b0075
  article-title: Waste minimization and pollution prevention in university laboratories
  publication-title: Chem. Heal. Saf.
– reference: Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343.
– start-page: 1
  year: 2018
  end-page: 21
  ident: b0135
  article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils
  publication-title: Precis. Agric.
– year: 2014
  ident: b0145
  article-title: Pedologia: Base para distinção de ambientes
– volume: 137
  start-page: 1
  year: 2016
  end-page: 72
  ident: b0105
  article-title: A career perspective on soil management in the Cerrado Region of Brazil
  publication-title: Adv. Agron.
– volume: 41
  start-page: 139
  year: 2003
  end-page: 160
  ident: b0050
  article-title: Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, northwest territories
  publication-title: Can. Mineral.
– volume: 7
  start-page: 214
  year: 2017
  end-page: 230
  ident: b0015
  article-title: Identification of Zn-bearing micas and clays from the cristal and mina grande zinc deposits (Bongará Province, Amazonas Region, Northern Peru)
  publication-title: Minerals
– reference: IBGE, EMBRAPA, 2001. Mapa de Solos do Brasil - Escala 1:5.000.000.
– volume: 139
  start-page: 220
  year: 2016
  end-page: 231
  ident: b0210
  article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis
  publication-title: Catena
– volume: 145
  start-page: 15
  year: 2016
  end-page: 29
  ident: b0275
  article-title: Multiple landscape “source–sink” structures for the monitoring and management of non-point source organic carbon loss in a peri-urban watershed
  publication-title: Catena
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: b0005
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
– year: 2016
  ident: b0020
  article-title: Scheffer/Schachtschabel Soil Science
– volume: 337
  start-page: 718
  year: 2019
  end-page: 728
  ident: b0115
  article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado
  publication-title: Geoderma
– volume: 178
  start-page: 626
  year: 2013
  end-page: 638
  ident: b0235
  article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion
  publication-title: Soil Sci.
– start-page: 383
  year: 1986
  end-page: 411
  ident: b0040
  article-title: Particle-size analysis
  publication-title: Methods of Soil Analysis. Part 1—Physical and Mineralogical Methods
– volume: 42
  start-page: 501
  year: 2018
  end-page: 512
  ident: b0220
  article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses
  publication-title: Ciência e Agrotecnologia
– volume: 239
  start-page: 130
  year: 2015
  end-page: 134
  ident: b0175
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC)
  publication-title: Geoderma
– volume: 29
  start-page: 867
  year: 2005
  end-page: 873
  ident: b0240
  article-title: Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados
  publication-title: Rev. Bras. Ciência do Solo
– year: 2014
  ident: b0205
  article-title: Keys to Soil Taxonomy
– volume: 237–238
  start-page: 237
  year: 2015
  end-page: 245
  ident: b0110
  article-title: Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps
  publication-title: Geoderma
– start-page: 1
  year: 2016
  end-page: 8
  ident: b0255
  article-title: Portable X-ray fluorescence spectrometry analysis of soils
  publication-title: Methods of Soil Analysis
– volume: 67
  start-page: 454
  year: 2010
  end-page: 464
  ident: b0025
  article-title: Mineralogical characterization of a highly-weathered soil by the Rietveld Method
  publication-title: Sci. Agric.
– volume: 189–190
  start-page: 268
  year: 2012
  end-page: 277
  ident: b0260
  article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2 Spodic and Albic horizons
  publication-title: Geoderma
– volume: 167–168
  start-page: 167
  year: 2011
  end-page: 177
  ident: b0280
  article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1 Soil texture
  publication-title: Geoderma
– year: 2014
  ident: 10.1016/j.geoderma.2019.114136_b0205
– volume: 7
  start-page: 214
  year: 2017
  ident: 10.1016/j.geoderma.2019.114136_b0015
  article-title: Identification of Zn-bearing micas and clays from the cristal and mina grande zinc deposits (Bongará Province, Amazonas Region, Northern Peru)
  publication-title: Minerals
  doi: 10.3390/min7110214
– volume: 178
  start-page: 626
  year: 2013
  ident: 10.1016/j.geoderma.2019.114136_b0235
  article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000026
– volume: 38
  start-page: 133
  year: 2003
  ident: 10.1016/j.geoderma.2019.114136_b0230
  article-title: Mineralogia, química e estabilidade de agregados do tamanho de silte de solos da Região Sudeste do Brasil
  publication-title: Pesquisa Agropecuária Brasileira
  doi: 10.1590/S0100-204X2003000100018
– volume: 265
  start-page: 62
  year: 2016
  ident: 10.1016/j.geoderma.2019.114136_b0055
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– start-page: 107
  year: 2000
  ident: 10.1016/j.geoderma.2019.114136_b0080
  article-title: Óxidos de ferro: Indicadores de ambientes pedogênicos e geoquímicos
– volume: 29
  start-page: 81
  year: 2005
  ident: 10.1016/j.geoderma.2019.114136_b0030
  article-title: Superfícies geomórficas e atributos de latossolos em uma seqüência arenítico-Basáltica da região de Jaboticabal (SP)
  publication-title: Rev. Bras. Cienc. do Solo
  doi: 10.1590/S0100-06832005000100009
– volume: 7
  start-page: 29
  year: 2000
  ident: 10.1016/j.geoderma.2019.114136_b0075
  article-title: Waste minimization and pollution prevention in university laboratories
  publication-title: Chem. Heal. Saf.
  doi: 10.1016/S1074-9098(00)00080-0
– start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.114136_b0135
  article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils
  publication-title: Precis. Agric.
– volume: 35
  start-page: 207
  year: 2014
  ident: 10.1016/j.geoderma.2019.114136_b0225
  article-title: Análise Multielementar de solos: uma proposta envolvendo equipamento portátil de fluorescência de raios X
  publication-title: Semin. Ciências Exatas e Tecnológicas
  doi: 10.5433/1679-0375.2014v35n2p207
– volume: 298
  start-page: 78
  year: 2017
  ident: 10.1016/j.geoderma.2019.114136_b0035
  article-title: Soil characterization across catenas via advanced proximal sensors
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.03.017
– volume: 253–254
  start-page: 67
  year: 2015
  ident: 10.1016/j.geoderma.2019.114136_b0215
  article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region
  publication-title: Iran. Geoderma
  doi: 10.1016/j.geoderma.2015.04.008
– volume: 189–190
  start-page: 268
  year: 2012
  ident: 10.1016/j.geoderma.2019.114136_b0260
  article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2 Spodic and Albic horizons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.06.034
– volume: 337
  start-page: 718
  year: 2019
  ident: 10.1016/j.geoderma.2019.114136_b0115
  article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.026
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.geoderma.2019.114136_b0100
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 128
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.114136_b0250
  article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-802139-2.00001-9
– volume: 237–238
  start-page: 237
  year: 2015
  ident: 10.1016/j.geoderma.2019.114136_b0110
  article-title: Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.006
– year: 2016
  ident: 10.1016/j.geoderma.2019.114136_b0020
– volume: 41
  start-page: 245
  year: 2017
  ident: 10.1016/j.geoderma.2019.114136_b0150
  article-title: Portable X-ray fluorescence (pXRF) applications in tropical Soil Science
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/1413-70542017413000117
– ident: 10.1016/j.geoderma.2019.114136_b0140
– ident: 10.1016/j.geoderma.2019.114136_b0095
– ident: 10.1016/j.geoderma.2019.114136_b0070
– year: 2013
  ident: 10.1016/j.geoderma.2019.114136_b0265
– volume: 145
  start-page: 15
  year: 2016
  ident: 10.1016/j.geoderma.2019.114136_b0275
  article-title: Multiple landscape “source–sink” structures for the monitoring and management of non-point source organic carbon loss in a peri-urban watershed
  publication-title: Catena
  doi: 10.1016/j.catena.2016.05.020
– volume: 41
  start-page: 648
  year: 2017
  ident: 10.1016/j.geoderma.2019.114136_b0200
  article-title: Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF)
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/1413-70542017416010317
– volume: 22
  start-page: 711
  year: 2013
  ident: 10.1016/j.geoderma.2019.114136_b0005
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
  doi: 10.1127/0941-2948/2013/0507
– volume: 29
  start-page: 867
  year: 2005
  ident: 10.1016/j.geoderma.2019.114136_b0240
  article-title: Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados
  publication-title: Rev. Bras. Ciência do Solo
  doi: 10.1590/S0100-06832005000600004
– volume: 36
  start-page: 507
  year: 2012
  ident: 10.1016/j.geoderma.2019.114136_b0180
  article-title: Morfologia, mineralogia e micromorfologia de solos de depressões de topo de Tabuleiros Costeiros do Nordeste Brasileiro
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/S1413-70542012000500003
– volume: 28
  start-page: 679
  year: 2004
  ident: 10.1016/j.geoderma.2019.114136_b0045
  article-title: Mineralogia, morfologia e análise microscópica de solos do bioma cerrado
  publication-title: Rev. Bras. Ciência do Solo
  doi: 10.1590/S0100-06832004000400010
– start-page: 251
  year: 2009
  ident: 10.1016/j.geoderma.2019.114136_b0125
  article-title: Reserva Mineral do Solo
– volume: 8
  start-page: 614
  year: 2016
  ident: 10.1016/j.geoderma.2019.114136_b0190
  article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols)
  publication-title: Remote Sens.
  doi: 10.3390/rs8080614
– start-page: 303
  year: 2012
  ident: 10.1016/j.geoderma.2019.114136_b0010
  article-title: Sistema brasileiro de classificação de solos
– volume: 67
  start-page: 454
  year: 2010
  ident: 10.1016/j.geoderma.2019.114136_b0025
  article-title: Mineralogical characterization of a highly-weathered soil by the Rietveld Method
  publication-title: Sci. Agric.
  doi: 10.1590/S0103-90162010000400013
– volume: 167–168
  start-page: 167
  year: 2011
  ident: 10.1016/j.geoderma.2019.114136_b0280
  article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1 Soil texture
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.010
– start-page: 379
  year: 1989
  ident: 10.1016/j.geoderma.2019.114136_b0165
  article-title: Iron oxides
– volume: 239
  start-page: 130
  year: 2015
  ident: 10.1016/j.geoderma.2019.114136_b0175
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.10.001
– volume: 137
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.114136_b0105
  article-title: A career perspective on soil management in the Cerrado Region of Brazil
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2015.12.004
– ident: 10.1016/j.geoderma.2019.114136_b0090
– start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.114136_b0255
  article-title: Portable X-ray fluorescence spectrometry analysis of soils
– volume: 42
  start-page: 501
  year: 2018
  ident: 10.1016/j.geoderma.2019.114136_b0220
  article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/1413-70542018425017518
– volume: 139
  start-page: 220
  year: 2016
  ident: 10.1016/j.geoderma.2019.114136_b0210
  article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis
  publication-title: Catena
  doi: 10.1016/j.catena.2016.01.007
– volume: 232–234
  start-page: 141
  year: 2014
  ident: 10.1016/j.geoderma.2019.114136_b0170
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.005
– volume: 19
  start-page: 159
  year: 1995
  ident: 10.1016/j.geoderma.2019.114136_b0130
  article-title: Reserva mineral e caracterização mineralógica de alguns solos do Rio Grande do Sul
  publication-title: Rev. Bras. Cienc. do Solo
– start-page: 383
  year: 1986
  ident: 10.1016/j.geoderma.2019.114136_b0040
  article-title: Particle-size analysis
– volume: 42
  start-page: 80
  year: 2018
  ident: 10.1016/j.geoderma.2019.114136_b0195
  article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods
  publication-title: Ciência e Agrotecnologia
  doi: 10.1590/1413-70542018421009117
– ident: 10.1016/j.geoderma.2019.114136_b0085
– year: 2014
  ident: 10.1016/j.geoderma.2019.114136_b0145
– volume: 82
  start-page: 632
  year: 2018
  ident: 10.1016/j.geoderma.2019.114136_b0155
  article-title: The influence of soil moisture on oxide determination in tropical soils via portable X-ray fluorescence
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.11.0380
– volume: 43
  start-page: 137
  year: 2008
  ident: 10.1016/j.geoderma.2019.114136_b0160
  article-title: Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review
  publication-title: Clay Miner.
  doi: 10.1180/claymin.2008.043.1.11
– volume: 41
  start-page: 139
  year: 2003
  ident: 10.1016/j.geoderma.2019.114136_b0050
  article-title: Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, northwest territories
  publication-title: Can. Mineral.
  doi: 10.2113/gscanmin.41.1.139
– ident: 10.1016/j.geoderma.2019.114136_b0245
– year: 1980
  ident: 10.1016/j.geoderma.2019.114136_b0060
– volume: 121
  start-page: 31
  year: 2004
  ident: 10.1016/j.geoderma.2019.114136_b0120
  article-title: Trace element geochemistry in Brazilian Cerrado soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.10.003
– ident: 10.1016/j.geoderma.2019.114136_b0065
– volume: 162
  start-page: 27
  year: 2018
  ident: 10.1016/j.geoderma.2019.114136_b0185
  article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2018.05.028
– volume: 144
  start-page: 86
  year: 2018
  ident: 10.1016/j.geoderma.2019.114136_b0270
  article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.11.037
SSID ssj0017020
Score 2.5084596
Snippet •Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF...
Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114136
SubjectTerms Brazilian soils
prediction
Prediction models
Proximal sensors
Soil particle size
soil texture
tropical soils
X-ray fluorescence spectroscopy
Title Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach
URI https://dx.doi.org/10.1016/j.geoderma.2019.114136
https://www.proquest.com/docview/2388733924
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQXOihglJUoCBX4upuEn-mtxUCbVuVCyDtCcv2OtWiVbLKZg9c-ts7400QrZA4cExiR8kbZ-ZFnnlDyHmmQsWjkUxnZcZEkIJ54TgDLi601iaqpN3561pN7sSPqZxukYuhFgbTKnvfv_HpyVv3Z0Y9mqPlfI41vrnSEI6AgiBvQT8shMZV_vXPU5pHrrNemjFXDEc_qxJ-ABthw7GkP5SXKJubJ6nmFwPUf646xZ-rPfK-J450vHm2fbIV6w_k3fh324tnxANyf9PMFxRTOeCQLlvcg0Hc6bymXdss0R50BWNW3-iYJuLtF5FOWeseabVYN23SdgqRpvpLFDLo2kc6yI5_JHdXl7cXE9b3T2COK9Ox3AQZjeKuCg6IB2BjijI6xbmTpS9mGXANJ32El_Y6BBE0N3AZzqmsKk3FD8l23dTxE6HRzIwUXsZylgsZuXE-cB-wvWaliyI_InIAzYZeXBx7XCzskEX2YAewLYJtN2AfkdHTvOVGXuPVGeVgE_vPQrEQA16d-2UwooWvCLdGXB2b9coCcTGaA1cUx2-4_wnZLfB3HNP95Gey3bXreAqcpfNnaVGekZ3x95-T67_UXuwd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq7aFwQLSAaAvFSFytTeLP9LaqqLa03QuttCcs2-ugrVbJKps99N8zk3UqQEg9cIyTieIZZ-ZZnnlDyJdMhYpHI5nOyoyJIAXzwnEGWFxorU1UPXfn7UxN78W3uZzvkYuhFgbTKpPv3_n03lunkXHS5ni9XGKNb640hCOAIIhbwA_vIzuVHJH9ydX1dPZ0mKCzxM6YK4YCvxUKP4CZsOdYT0GUl8icm_dszf-MUX956z4EXb4mrxJ2pJPd5x2SvVgfkZeTn23iz4hvyI_vzXJFMZsDLum6xWMYVD1d1rRrmzWahG7gmc05ndAee_tVpHPWukdarbZN29M7hUj7EkzkMujaRzowj78l95df7y6mLLVQYI4r07HcBBmN4q4KDrCHgM1FUUanOHey9MUiA7jhpI8waa9DEEFzA7dhTGVVaSr-jozqpo7vCY1mYaTwMpaLXMjIjfOB-4AdNitdFPkxkYPSbEj84tjmYmWHRLIHOyjborLtTtnHZPwkt94xbDwrUQ42sX-sFQth4FnZz4MRLfxIeDri6thsNxawi9Ec4KI4-Y_3fyIH07vbG3tzNbs-JS8K3J1j9p_8QEZdu40fAcJ0_iwt0V_rhe7O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+texture+prediction+in+tropical+soils%3A+A+portable+X-ray+fluorescence+spectrometry+approach&rft.jtitle=Geoderma&rft.au=Silva%2C+S%C3%A9rgio+Henrique+Godinho&rft.au=Weindorf%2C+David+C.&rft.au=Pinto%2C+Leandro+Campos&rft.au=Faria%2C+Wilson+Missina&rft.date=2020-03-15&rft.issn=0016-7061&rft.volume=362&rft.spage=114136&rft_id=info:doi/10.1016%2Fj.geoderma.2019.114136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2019_114136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon