Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach
•Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF algorithms.•Predictions were accurate independently of soil class, parent material, and horizon.•Fe and Al positively correlated to clay content due to...
Saved in:
Published in | Geoderma Vol. 362; p. 114136 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF algorithms.•Predictions were accurate independently of soil class, parent material, and horizon.•Fe and Al positively correlated to clay content due to Fe- and Al-oxides in soils.•Si positively correlated to sand, due to dominance of quartz in this fraction.
Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this study aimed at predicting soil texture from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian soils. 1565 soil samples (503 from superficial and 1062 from subsuperficial horizons) were analyzed in the laboratory for soil texture and scanned with the pXRF. Elemental contents determined by pXRF were correlated with soil texture and used to calibrate regression models through the generalized linear model (GLM), support vector machine (SVM), and random forest (RF) algorithm. Models were created with 70% of the data using three datasets: i) only superficial horizon data; ii) only subsuperficial horizon data; and iii) data from both horizons. Validation was performed with 30% of the data. Clay content was positively correlated with Fe (0.79) and Al2O3 (0.41) reflecting the great residual concentration of Fe- and Al-oxides in this fraction. This same fraction correlated negatively with SiO2 (-0.75), while the sand fraction correlated positively with SiO2 corresponding to quartz dominance in the sand fraction of Brazilian soils. For the separated superficial and subsuperficial horizon datasets, SVM promoted the best predictions of clay (R2 0.83; RMSE = 7.04%) and sand contents (R2 0.87; RMSE = 9.11%), while RF provided the best results for silt (R2 0.60; RMSE = 6.33%). When combining both datasets, RF was better for sand prediction (R2 0.73; RMSE = 5.79%), while SVM promoted better predictions for silt (R2 0.72; RMSE = 5.77%) and clay (R2 0.84; RMSE = 7.08%). Elemental contents obtained by pXRF are capable of accurately predicting soil texture for a great variety of Brazilian soils. |
---|---|
AbstractList | •Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF algorithms.•Predictions were accurate independently of soil class, parent material, and horizon.•Fe and Al positively correlated to clay content due to Fe- and Al-oxides in soils.•Si positively correlated to sand, due to dominance of quartz in this fraction.
Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this study aimed at predicting soil texture from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian soils. 1565 soil samples (503 from superficial and 1062 from subsuperficial horizons) were analyzed in the laboratory for soil texture and scanned with the pXRF. Elemental contents determined by pXRF were correlated with soil texture and used to calibrate regression models through the generalized linear model (GLM), support vector machine (SVM), and random forest (RF) algorithm. Models were created with 70% of the data using three datasets: i) only superficial horizon data; ii) only subsuperficial horizon data; and iii) data from both horizons. Validation was performed with 30% of the data. Clay content was positively correlated with Fe (0.79) and Al2O3 (0.41) reflecting the great residual concentration of Fe- and Al-oxides in this fraction. This same fraction correlated negatively with SiO2 (-0.75), while the sand fraction correlated positively with SiO2 corresponding to quartz dominance in the sand fraction of Brazilian soils. For the separated superficial and subsuperficial horizon datasets, SVM promoted the best predictions of clay (R2 0.83; RMSE = 7.04%) and sand contents (R2 0.87; RMSE = 9.11%), while RF provided the best results for silt (R2 0.60; RMSE = 6.33%). When combining both datasets, RF was better for sand prediction (R2 0.73; RMSE = 5.79%), while SVM promoted better predictions for silt (R2 0.72; RMSE = 5.77%) and clay (R2 0.84; RMSE = 7.08%). Elemental contents obtained by pXRF are capable of accurately predicting soil texture for a great variety of Brazilian soils. Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this study aimed at predicting soil texture from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian soils. 1565 soil samples (503 from superficial and 1062 from subsuperficial horizons) were analyzed in the laboratory for soil texture and scanned with the pXRF. Elemental contents determined by pXRF were correlated with soil texture and used to calibrate regression models through the generalized linear model (GLM), support vector machine (SVM), and random forest (RF) algorithm. Models were created with 70% of the data using three datasets: i) only superficial horizon data; ii) only subsuperficial horizon data; and iii) data from both horizons. Validation was performed with 30% of the data. Clay content was positively correlated with Fe (0.79) and Al₂O₃ (0.41) reflecting the great residual concentration of Fe- and Al-oxides in this fraction. This same fraction correlated negatively with SiO₂ (-0.75), while the sand fraction correlated positively with SiO₂ corresponding to quartz dominance in the sand fraction of Brazilian soils. For the separated superficial and subsuperficial horizon datasets, SVM promoted the best predictions of clay (R² 0.83; RMSE = 7.04%) and sand contents (R² 0.87; RMSE = 9.11%), while RF provided the best results for silt (R² 0.60; RMSE = 6.33%). When combining both datasets, RF was better for sand prediction (R² 0.73; RMSE = 5.79%), while SVM promoted better predictions for silt (R² 0.72; RMSE = 5.77%) and clay (R² 0.84; RMSE = 7.08%). Elemental contents obtained by pXRF are capable of accurately predicting soil texture for a great variety of Brazilian soils. |
ArticleNumber | 114136 |
Author | Weindorf, David C. de Souza, Igor Alexandre Teixeira, Anita Fernanda dos Santos Faria, Wilson Missina de Mello, José Márcio Curi, Nilton de Pádua Junior, Alceu Linares Silva, Sérgio Henrique Godinho Guilherme, Luiz Roberto Guimarães Acerbi Junior, Fausto Weimar Gomide, Lucas Rezende Pinto, Leandro Campos |
Author_xml | – sequence: 1 givenname: Sérgio Henrique Godinho surname: Silva fullname: Silva, Sérgio Henrique Godinho organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil – sequence: 2 givenname: David C. surname: Weindorf fullname: Weindorf, David C. email: david.weindorf@ttu.edu organization: Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA – sequence: 3 givenname: Leandro Campos surname: Pinto fullname: Pinto, Leandro Campos organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil – sequence: 4 givenname: Wilson Missina surname: Faria fullname: Faria, Wilson Missina organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil – sequence: 5 givenname: Fausto Weimar surname: Acerbi Junior fullname: Acerbi Junior, Fausto Weimar organization: Department of Forest Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil – sequence: 6 givenname: Lucas Rezende surname: Gomide fullname: Gomide, Lucas Rezende organization: Department of Forest Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil – sequence: 7 givenname: José Márcio surname: de Mello fullname: de Mello, José Márcio organization: Department of Forest Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil – sequence: 8 givenname: Alceu Linares surname: de Pádua Junior fullname: de Pádua Junior, Alceu Linares organization: Instituto de Ciências Agrárias, Federal University of Jequitinhonha and Mucuri Valleys, Unaí, Minas Gerais, Brazil – sequence: 9 givenname: Igor Alexandre surname: de Souza fullname: de Souza, Igor Alexandre organization: Instituto de Ciências Agrárias, Federal University of Jequitinhonha and Mucuri Valleys, Unaí, Minas Gerais, Brazil – sequence: 10 givenname: Anita Fernanda dos Santos surname: Teixeira fullname: Teixeira, Anita Fernanda dos Santos organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil – sequence: 11 givenname: Luiz Roberto Guimarães surname: Guilherme fullname: Guilherme, Luiz Roberto Guimarães organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil – sequence: 12 givenname: Nilton surname: Curi fullname: Curi, Nilton organization: Department of Soil Science, Federal University of Lavras, Lavras, MG, Brazil |
BookMark | eNqFkD1PwzAQhi1UJMrHX0AeWVLsOHEcxEBV8SVVYgAkJqyrcwFXaRxsF9F_j6vCwsJkne99zr7nkIx61yMhp5xNOOPyfDl5Q9egX8EkZ7yecF5wIffImKsqz2Re1iMyZimZVUzyA3IYwjKVFcvZmLw-OtvRiF9x7ZEOHhtronU9tT2N3g3WQEdDyoQLOqWD8xEWHdKXzMOGtt3aeQwGe4M0DGgSscLoNxSGwTsw78dkv4Uu4MnPeUSeb66fZnfZ_OH2fjadZyCkihlXpkQlBbQGZCGKSqq8RpBCQFkv8oaJsoRygWmvRWVMYSqhUjvdSdbWqhVH5Gw3Nz37scYQ9cqmf3Ud9OjWQedCqUqIOi9S9HIXNd6F4LHVxkbY7hw92E5zprda9VL_atVbrXqnNeHyDz54uwK_-R-82oGYPHxa9DoYuzXXWJ_M6cbZ_0Z8AyX7mYM |
CitedBy_id | crossref_primary_10_1016_j_sab_2021_106303 crossref_primary_10_1061_JHTRBP_HZENG_1282 crossref_primary_10_1016_j_geodrs_2025_e00922 crossref_primary_10_3390_land12091812 crossref_primary_10_1016_j_catena_2023_107572 crossref_primary_10_1016_j_geoderma_2020_114212 crossref_primary_10_1016_j_geodrs_2022_e00573 crossref_primary_10_1016_j_sab_2023_106835 crossref_primary_10_1002_saj2_20598 crossref_primary_10_36783_18069657rbcs20220028 crossref_primary_10_1016_j_sab_2020_106016 crossref_primary_10_1016_S1002_0160_21_60092_9 crossref_primary_10_1071_SR20136 crossref_primary_10_33409_tbbbd_1110496 crossref_primary_10_1016_j_geoderma_2021_115091 crossref_primary_10_1016_j_agee_2023_108799 crossref_primary_10_1002_saj2_20639 crossref_primary_10_1016_j_geodrs_2024_e00813 crossref_primary_10_1007_s11442_023_2142_6 crossref_primary_10_1590_0001_3765202120200646 crossref_primary_10_1134_S1064229322030061 crossref_primary_10_1016_j_cscee_2024_101079 crossref_primary_10_1007_s10661_021_08982_7 crossref_primary_10_1016_j_ejsobi_2021_103315 crossref_primary_10_1016_j_envres_2023_115858 crossref_primary_10_1016_j_geodrs_2023_e00720 crossref_primary_10_1016_j_catena_2022_106514 crossref_primary_10_1016_j_catena_2021_105766 crossref_primary_10_3390_agronomy12112699 crossref_primary_10_1007_s10661_023_11681_0 crossref_primary_10_1016_j_geodrs_2022_e00507 crossref_primary_10_1021_acs_est_0c04130 crossref_primary_10_1002_saj2_70028 crossref_primary_10_1007_s10661_021_09163_2 crossref_primary_10_1016_j_geoderma_2020_114553 crossref_primary_10_1007_s11368_021_03109_4 crossref_primary_10_1016_j_geodrs_2021_e00431 crossref_primary_10_1016_j_jsames_2022_103873 crossref_primary_10_1016_j_geodrs_2020_e00310 crossref_primary_10_1007_s11629_022_7749_z crossref_primary_10_1016_j_compag_2022_107459 crossref_primary_10_1016_j_geodrs_2022_e00557 crossref_primary_10_3390_agronomy14092074 crossref_primary_10_1016_j_geoderma_2022_116301 crossref_primary_10_19159_tutad_823890 crossref_primary_10_1016_j_geoderma_2022_115936 crossref_primary_10_1039_D0JA90074E crossref_primary_10_1016_j_geoderma_2021_115116 crossref_primary_10_1016_j_soilad_2024_100031 crossref_primary_10_1016_j_catena_2020_105083 crossref_primary_10_1016_j_compag_2021_106539 crossref_primary_10_1016_j_geodrs_2021_e00465 crossref_primary_10_1016_j_jsames_2023_104510 crossref_primary_10_1016_j_geodrs_2022_e00484 crossref_primary_10_1016_j_geodrs_2020_e00321 crossref_primary_10_1016_j_geodrs_2021_e00461 |
Cites_doi | 10.3390/min7110214 10.1097/SS.0000000000000026 10.1590/S0100-204X2003000100018 10.1016/j.geoderma.2015.11.014 10.1590/S0100-06832005000100009 10.1016/S1074-9098(00)00080-0 10.5433/1679-0375.2014v35n2p207 10.1016/j.geoderma.2017.03.017 10.1016/j.geoderma.2015.04.008 10.1016/j.geoderma.2012.06.034 10.1016/j.geoderma.2018.10.026 10.1016/B978-0-12-802139-2.00001-9 10.1016/j.geoderma.2014.09.006 10.1590/1413-70542017413000117 10.1016/j.catena.2016.05.020 10.1590/1413-70542017416010317 10.1127/0941-2948/2013/0507 10.1590/S0100-06832005000600004 10.1590/S1413-70542012000500003 10.1590/S0100-06832004000400010 10.3390/rs8080614 10.1590/S0103-90162010000400013 10.1016/j.geoderma.2011.08.010 10.1016/j.geoderma.2014.10.001 10.1016/bs.agron.2015.12.004 10.1590/1413-70542018425017518 10.1016/j.catena.2016.01.007 10.1016/j.geoderma.2014.05.005 10.1590/1413-70542018421009117 10.2136/sssaj2017.11.0380 10.1180/claymin.2008.043.1.11 10.2113/gscanmin.41.1.139 10.1016/j.geoderma.2003.10.003 10.1016/j.clay.2018.05.028 10.1016/j.compag.2017.11.037 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.114136 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2019_114136 S0016706119301612 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a368t-18c5e863afca643476829ea633a59b2d0355a5be136b7cc4c738ea65a560f98f3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 05:45:42 EDT 2025 Tue Jul 01 04:04:51 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MAE R2 CV RF Prediction models Soil particle size pXRF GLM RMSE SVM Proximal sensors Brazilian soils |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-18c5e863afca643476829ea633a59b2d0355a5be136b7cc4c738ea65a560f98f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388733924 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388733924 crossref_citationtrail_10_1016_j_geoderma_2019_114136 crossref_primary_10_1016_j_geoderma_2019_114136 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_114136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2018. Package ‘ caret .’ https://cran.r-project.org/web/packages/caret/caret.pdf. Accessed 30 Jul 2018. Resende, Curi, Rezende, Corrêa, Ker (b0145) 2014 Melo, Castilhos, Pinto (b0125) 2009 Duda, Weindorf, Chakraborty, Li, Man, Paulette, Deb (b0035) 2017; 298 Anjos, Jacomine, Santos, Oliveira, Oliveira (b0010) 2012 Schwertmann, Taylor (b0165) 1989 Teixeira, Weindorf, Silva, Guilherme, Curi (b0220) 2018; 42 Terra, Sanches, Bueno, Melquiades (b0225) 2014; 35 Sharma, Weindorf, Man, Aldabaa, Chakraborty (b0170) 2014; 232–234 Silva, Silva, Poggere, Guilherme, Curi (b0195) 2018; 42 Weindorf, Chakraborty (b0255) 2016 Gomes, Curi, Schulze, Marques, Ker, Motta (b0045) 2004; 28 Kämpf, Curi (b0080) 2000 Silva, Teixeira, Menezes, Guilherme, Moreira, Curi (b0200) 2017; 41 dos Santos Weber, Chitolina, de Camargo, Alleoni (b0240) 2005; 29 Cunha, Marques, Curi, Pereira, Lepsch (b0030) 2005; 29 Stockmann, Cattle, Minasny, McBratney (b0210) 2016; 139 Weindorf, Zhu, McDaniel, Valerio, Lynn, Michaelson, Clark, Ping (b0260) 2012; 189–190 Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., Zemla, J., 2017. Package “corrplot”. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf. Accessed on 10 Jun 2018. Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071’. https://cran.r-project.org/web/packages/e1071/. Accessed 30 Jul 2018. Blume, Brümmer, Fleige, Horn, Kandeler, Kögel-Knabner, Kretzschmar, Stahr, Wilke (b0020) 2016 Heung, Ho, Zhang, Knudby, Bulmer, Schmidt (b0055) 2016; 265 Marques, Schulze, Curi, Mertzman (b0120) 2004; 121 Brinatti, Mascarenhas, Pereira, Partiti, Macedo (b0025) 2010; 67 Soil Survey Staff (b0205) 2014 Gee, Bauder (b0040) 1986 Vitorino, Ferreira, Curi, de Lima, Silva, Motta (b0230) 2003; 38 Silva, Hartemink, dos Santos Teixeira, Inda, Guilherme, Curi (b0185) 2018; 162 IBGE, EMBRAPA, 2001. Mapa de Solos do Brasil - Escala 1:5.000.000. Melo, Costa, Barros, Fontes, Novais (b0130) 1995; 19 Groat, Mulja, Mauthner, Ercit, Raudsepp, Gault, Rollo (b0050) 2003; 41 Ribeiro, Silva, Silva, Guilherme (b0150) 2017; 41 Zhu, Weindorf, Zhang (b0280) 2011; 167–168 Pelegrino, Weindorf, Silva, de Menezes, Poggere, Guilherme, Curi (b0135) 2018 White (b0265) 2013 Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (b0005) 2013; 22 Silva, Gomes, Filho, Vidal-Torrado, Cooper, Curi (b0180) 2012; 36 Mancini, Weindorf, Chakraborty, Silva, dos Santos Teixeira, Guilherme, Curi (b0115) 2019; 337 Schaefer, Fabris, Ker (b0160) 2008; 43 Hillel (b0060) 1980 R Core Team, 2018. R: a language and environment for statistical R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (verified 15 Jan. 2019). Liaw, A., Wiener, M., 2015. Package “randomForest”. R Dev. Core Team. https://cran.r-project.org/web/packages/randomForest/randomForest.pdf. Accessed 6 Aug 2018. Sharma, Weindorf, Wang, Chakraborty (b0175) 2015; 239 Silva, Poggere, Menezes, Carvalho, Guilherme, Curi (b0190) 2016; 8 Taghizadeh-mehrjardi, Nabiollahi, Minasny, Triantafilis (b0215) 2015; 253–254 Wang, Li, Li, Liu (b0235) 2013; 178 Weindorf, Bakr, Zhu (b0250) 2014; 128 Lorenzetti, Barbetti, Fantappiè, L’Abate, Costantini (b0110) 2015; 237–238 Arfè, Mondillo, Balassone, Boni, Cappelletti, Di Palma (b0015) 2017; 7 Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343. Wu, Lin, Su, Zhou, Zhou (b0275) 2016; 145 Izzo (b0075) 2000; 7 Liaw, Wiener (b0100) 2002; 2 Lopes, Guilherme (b0105) 2016; 137 Ribeiro, Weindorf, Silva, Tassinari, Amarante, Curi, Guimarães Guilherme (b0155) 2018; 82 Wu, Li, He, Ma, Liu, Lv (b0270) 2018; 144 Silva (10.1016/j.geoderma.2019.114136_b0185) 2018; 162 White (10.1016/j.geoderma.2019.114136_b0265) 2013 10.1016/j.geoderma.2019.114136_b0070 dos Santos Weber (10.1016/j.geoderma.2019.114136_b0240) 2005; 29 Silva (10.1016/j.geoderma.2019.114136_b0190) 2016; 8 Ribeiro (10.1016/j.geoderma.2019.114136_b0150) 2017; 41 Blume (10.1016/j.geoderma.2019.114136_b0020) 2016 Pelegrino (10.1016/j.geoderma.2019.114136_b0135) 2018 Resende (10.1016/j.geoderma.2019.114136_b0145) 2014 Wang (10.1016/j.geoderma.2019.114136_b0235) 2013; 178 Alvares (10.1016/j.geoderma.2019.114136_b0005) 2013; 22 Gomes (10.1016/j.geoderma.2019.114136_b0045) 2004; 28 Wu (10.1016/j.geoderma.2019.114136_b0270) 2018; 144 Hillel (10.1016/j.geoderma.2019.114136_b0060) 1980 Terra (10.1016/j.geoderma.2019.114136_b0225) 2014; 35 Zhu (10.1016/j.geoderma.2019.114136_b0280) 2011; 167–168 Melo (10.1016/j.geoderma.2019.114136_b0130) 1995; 19 10.1016/j.geoderma.2019.114136_b0140 Wu (10.1016/j.geoderma.2019.114136_b0275) 2016; 145 Weindorf (10.1016/j.geoderma.2019.114136_b0250) 2014; 128 Sharma (10.1016/j.geoderma.2019.114136_b0170) 2014; 232–234 Arfè (10.1016/j.geoderma.2019.114136_b0015) 2017; 7 10.1016/j.geoderma.2019.114136_b0065 Lopes (10.1016/j.geoderma.2019.114136_b0105) 2016; 137 Groat (10.1016/j.geoderma.2019.114136_b0050) 2003; 41 Ribeiro (10.1016/j.geoderma.2019.114136_b0155) 2018; 82 Marques (10.1016/j.geoderma.2019.114136_b0120) 2004; 121 Silva (10.1016/j.geoderma.2019.114136_b0180) 2012; 36 Heung (10.1016/j.geoderma.2019.114136_b0055) 2016; 265 10.1016/j.geoderma.2019.114136_b0090 Cunha (10.1016/j.geoderma.2019.114136_b0030) 2005; 29 Kämpf (10.1016/j.geoderma.2019.114136_b0080) 2000 10.1016/j.geoderma.2019.114136_b0095 Liaw (10.1016/j.geoderma.2019.114136_b0100) 2002; 2 Anjos (10.1016/j.geoderma.2019.114136_b0010) 2012 Izzo (10.1016/j.geoderma.2019.114136_b0075) 2000; 7 Weindorf (10.1016/j.geoderma.2019.114136_b0255) 2016 Lorenzetti (10.1016/j.geoderma.2019.114136_b0110) 2015; 237–238 Sharma (10.1016/j.geoderma.2019.114136_b0175) 2015; 239 Schaefer (10.1016/j.geoderma.2019.114136_b0160) 2008; 43 Silva (10.1016/j.geoderma.2019.114136_b0200) 2017; 41 Weindorf (10.1016/j.geoderma.2019.114136_b0260) 2012; 189–190 Soil Survey Staff (10.1016/j.geoderma.2019.114136_b0205) 2014 Brinatti (10.1016/j.geoderma.2019.114136_b0025) 2010; 67 Melo (10.1016/j.geoderma.2019.114136_b0125) 2009 Teixeira (10.1016/j.geoderma.2019.114136_b0220) 2018; 42 10.1016/j.geoderma.2019.114136_b0085 Duda (10.1016/j.geoderma.2019.114136_b0035) 2017; 298 Mancini (10.1016/j.geoderma.2019.114136_b0115) 2019; 337 Schwertmann (10.1016/j.geoderma.2019.114136_b0165) 1989 Taghizadeh-mehrjardi (10.1016/j.geoderma.2019.114136_b0215) 2015; 253–254 Gee (10.1016/j.geoderma.2019.114136_b0040) 1986 Stockmann (10.1016/j.geoderma.2019.114136_b0210) 2016; 139 Silva (10.1016/j.geoderma.2019.114136_b0195) 2018; 42 10.1016/j.geoderma.2019.114136_b0245 Vitorino (10.1016/j.geoderma.2019.114136_b0230) 2003; 38 |
References_xml | – volume: 8 start-page: 614 year: 2016 end-page: 635 ident: b0190 article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols) publication-title: Remote Sens. – volume: 41 start-page: 648 year: 2017 end-page: 664 ident: b0200 article-title: Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF) publication-title: Ciência e Agrotecnologia – volume: 28 start-page: 679 year: 2004 end-page: 694 ident: b0045 article-title: Mineralogia, morfologia e análise microscópica de solos do bioma cerrado publication-title: Rev. Bras. Ciência do Solo – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0100 article-title: Classification and regression by randomForest publication-title: R News – start-page: 251 year: 2009 end-page: 332 ident: b0125 article-title: Reserva Mineral do Solo publication-title: Química e Mineralogia Do Solo: Parte I - Conceitos Básicos – volume: 232–234 start-page: 141 year: 2014 end-page: 147 ident: b0170 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH) publication-title: Geoderma – volume: 19 start-page: 159 year: 1995 end-page: 164 ident: b0130 article-title: Reserva mineral e caracterização mineralógica de alguns solos do Rio Grande do Sul publication-title: Rev. Bras. Cienc. do Solo – volume: 298 start-page: 78 year: 2017 end-page: 91 ident: b0035 article-title: Soil characterization across catenas via advanced proximal sensors publication-title: Geoderma – year: 2013 ident: b0265 article-title: Principles and Practice of Soil Science: The Soil as a Natural Resource – volume: 128 start-page: 1 year: 2014 end-page: 45 ident: b0250 article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Adv. Agron. – reference: R Core Team, 2018. R: a language and environment for statistical R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (verified 15 Jan. 2019). – reference: Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., Zemla, J., 2017. Package “corrplot”. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf. Accessed on 10 Jun 2018. – start-page: 379 year: 1989 end-page: 438 ident: b0165 article-title: Iron oxides publication-title: Minerals in Soil Environments – year: 1980 ident: b0060 article-title: Fundamentals of Soil Physics – volume: 253–254 start-page: 67 year: 2015 end-page: 77 ident: b0215 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region publication-title: Iran. Geoderma – volume: 121 start-page: 31 year: 2004 end-page: 43 ident: b0120 article-title: Trace element geochemistry in Brazilian Cerrado soils publication-title: Geoderma – volume: 43 start-page: 137 year: 2008 end-page: 154 ident: b0160 article-title: Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review publication-title: Clay Miner. – volume: 41 start-page: 245 year: 2017 end-page: 254 ident: b0150 article-title: Portable X-ray fluorescence (pXRF) applications in tropical Soil Science publication-title: Ciência e Agrotecnologia – volume: 144 start-page: 86 year: 2018 end-page: 93 ident: b0270 article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China publication-title: Comput. Electron. Agric. – volume: 162 start-page: 27 year: 2018 end-page: 37 ident: b0185 article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado publication-title: Appl. Clay Sci. – volume: 38 start-page: 133 year: 2003 end-page: 141 ident: b0230 article-title: Mineralogia, química e estabilidade de agregados do tamanho de silte de solos da Região Sudeste do Brasil publication-title: Pesquisa Agropecuária Brasileira – start-page: 107 year: 2000 end-page: 138 ident: b0080 article-title: Óxidos de ferro: Indicadores de ambientes pedogênicos e geoquímicos publication-title: Tópicos Em Ciência Do Solo. Sociedade Brasileira de Ciência do Solo – reference: Hornik, K., Weingessel, A., Leisch, F., Davidmeyerr-Projectorg, M.D.M., 2015. Package ‘e1071’. https://cran.r-project.org/web/packages/e1071/. Accessed 30 Jul 2018. – volume: 35 start-page: 207 year: 2014 end-page: 214 ident: b0225 article-title: Análise Multielementar de solos: uma proposta envolvendo equipamento portátil de fluorescência de raios X publication-title: Semin. Ciências Exatas e Tecnológicas – volume: 82 start-page: 632 year: 2018 end-page: 644 ident: b0155 article-title: The influence of soil moisture on oxide determination in tropical soils via portable X-ray fluorescence publication-title: Soil Sci. Soc. Am. J. – volume: 265 start-page: 62 year: 2016 end-page: 77 ident: b0055 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma – volume: 42 start-page: 80 year: 2018 end-page: 92 ident: b0195 article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods publication-title: Ciência e Agrotecnologia – reference: Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 2018. Package ‘ caret .’ https://cran.r-project.org/web/packages/caret/caret.pdf. Accessed 30 Jul 2018. – volume: 29 start-page: 81 year: 2005 end-page: 90 ident: b0030 article-title: Superfícies geomórficas e atributos de latossolos em uma seqüência arenítico-Basáltica da região de Jaboticabal (SP) publication-title: Rev. Bras. Cienc. do Solo – volume: 36 start-page: 507 year: 2012 end-page: 517 ident: b0180 article-title: Morfologia, mineralogia e micromorfologia de solos de depressões de topo de Tabuleiros Costeiros do Nordeste Brasileiro publication-title: Ciência e Agrotecnologia – start-page: 303 year: 2012 end-page: 343 ident: b0010 article-title: Sistema brasileiro de classificação de solos publication-title: Pedologia - Fundamentos – reference: Liaw, A., Wiener, M., 2015. Package “randomForest”. R Dev. Core Team. https://cran.r-project.org/web/packages/randomForest/randomForest.pdf. Accessed 6 Aug 2018. – volume: 7 start-page: 29 year: 2000 end-page: 33 ident: b0075 article-title: Waste minimization and pollution prevention in university laboratories publication-title: Chem. Heal. Saf. – reference: Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros. In: Pedologia Fundamentos. SBCS, Viçosa, MG, p. 343. – start-page: 1 year: 2018 end-page: 21 ident: b0135 article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils publication-title: Precis. Agric. – year: 2014 ident: b0145 article-title: Pedologia: Base para distinção de ambientes – volume: 137 start-page: 1 year: 2016 end-page: 72 ident: b0105 article-title: A career perspective on soil management in the Cerrado Region of Brazil publication-title: Adv. Agron. – volume: 41 start-page: 139 year: 2003 end-page: 160 ident: b0050 article-title: Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, northwest territories publication-title: Can. Mineral. – volume: 7 start-page: 214 year: 2017 end-page: 230 ident: b0015 article-title: Identification of Zn-bearing micas and clays from the cristal and mina grande zinc deposits (Bongará Province, Amazonas Region, Northern Peru) publication-title: Minerals – reference: IBGE, EMBRAPA, 2001. Mapa de Solos do Brasil - Escala 1:5.000.000. – volume: 139 start-page: 220 year: 2016 end-page: 231 ident: b0210 article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis publication-title: Catena – volume: 145 start-page: 15 year: 2016 end-page: 29 ident: b0275 article-title: Multiple landscape “source–sink” structures for the monitoring and management of non-point source organic carbon loss in a peri-urban watershed publication-title: Catena – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: b0005 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift – year: 2016 ident: b0020 article-title: Scheffer/Schachtschabel Soil Science – volume: 337 start-page: 718 year: 2019 end-page: 728 ident: b0115 article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado publication-title: Geoderma – volume: 178 start-page: 626 year: 2013 end-page: 638 ident: b0235 article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion publication-title: Soil Sci. – start-page: 383 year: 1986 end-page: 411 ident: b0040 article-title: Particle-size analysis publication-title: Methods of Soil Analysis. Part 1—Physical and Mineralogical Methods – volume: 42 start-page: 501 year: 2018 end-page: 512 ident: b0220 article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses publication-title: Ciência e Agrotecnologia – volume: 239 start-page: 130 year: 2015 end-page: 134 ident: b0175 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) publication-title: Geoderma – volume: 29 start-page: 867 year: 2005 end-page: 873 ident: b0240 article-title: Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados publication-title: Rev. Bras. Ciência do Solo – year: 2014 ident: b0205 article-title: Keys to Soil Taxonomy – volume: 237–238 start-page: 237 year: 2015 end-page: 245 ident: b0110 article-title: Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps publication-title: Geoderma – start-page: 1 year: 2016 end-page: 8 ident: b0255 article-title: Portable X-ray fluorescence spectrometry analysis of soils publication-title: Methods of Soil Analysis – volume: 67 start-page: 454 year: 2010 end-page: 464 ident: b0025 article-title: Mineralogical characterization of a highly-weathered soil by the Rietveld Method publication-title: Sci. Agric. – volume: 189–190 start-page: 268 year: 2012 end-page: 277 ident: b0260 article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2 Spodic and Albic horizons publication-title: Geoderma – volume: 167–168 start-page: 167 year: 2011 end-page: 177 ident: b0280 article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1 Soil texture publication-title: Geoderma – year: 2014 ident: 10.1016/j.geoderma.2019.114136_b0205 – volume: 7 start-page: 214 year: 2017 ident: 10.1016/j.geoderma.2019.114136_b0015 article-title: Identification of Zn-bearing micas and clays from the cristal and mina grande zinc deposits (Bongará Province, Amazonas Region, Northern Peru) publication-title: Minerals doi: 10.3390/min7110214 – volume: 178 start-page: 626 year: 2013 ident: 10.1016/j.geoderma.2019.114136_b0235 article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion publication-title: Soil Sci. doi: 10.1097/SS.0000000000000026 – volume: 38 start-page: 133 year: 2003 ident: 10.1016/j.geoderma.2019.114136_b0230 article-title: Mineralogia, química e estabilidade de agregados do tamanho de silte de solos da Região Sudeste do Brasil publication-title: Pesquisa Agropecuária Brasileira doi: 10.1590/S0100-204X2003000100018 – volume: 265 start-page: 62 year: 2016 ident: 10.1016/j.geoderma.2019.114136_b0055 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – start-page: 107 year: 2000 ident: 10.1016/j.geoderma.2019.114136_b0080 article-title: Óxidos de ferro: Indicadores de ambientes pedogênicos e geoquímicos – volume: 29 start-page: 81 year: 2005 ident: 10.1016/j.geoderma.2019.114136_b0030 article-title: Superfícies geomórficas e atributos de latossolos em uma seqüência arenítico-Basáltica da região de Jaboticabal (SP) publication-title: Rev. Bras. Cienc. do Solo doi: 10.1590/S0100-06832005000100009 – volume: 7 start-page: 29 year: 2000 ident: 10.1016/j.geoderma.2019.114136_b0075 article-title: Waste minimization and pollution prevention in university laboratories publication-title: Chem. Heal. Saf. doi: 10.1016/S1074-9098(00)00080-0 – start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2019.114136_b0135 article-title: Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils publication-title: Precis. Agric. – volume: 35 start-page: 207 year: 2014 ident: 10.1016/j.geoderma.2019.114136_b0225 article-title: Análise Multielementar de solos: uma proposta envolvendo equipamento portátil de fluorescência de raios X publication-title: Semin. Ciências Exatas e Tecnológicas doi: 10.5433/1679-0375.2014v35n2p207 – volume: 298 start-page: 78 year: 2017 ident: 10.1016/j.geoderma.2019.114136_b0035 article-title: Soil characterization across catenas via advanced proximal sensors publication-title: Geoderma doi: 10.1016/j.geoderma.2017.03.017 – volume: 253–254 start-page: 67 year: 2015 ident: 10.1016/j.geoderma.2019.114136_b0215 article-title: Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region publication-title: Iran. Geoderma doi: 10.1016/j.geoderma.2015.04.008 – volume: 189–190 start-page: 268 year: 2012 ident: 10.1016/j.geoderma.2019.114136_b0260 article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2 Spodic and Albic horizons publication-title: Geoderma doi: 10.1016/j.geoderma.2012.06.034 – volume: 337 start-page: 718 year: 2019 ident: 10.1016/j.geoderma.2019.114136_b0115 article-title: Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.026 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.geoderma.2019.114136_b0100 article-title: Classification and regression by randomForest publication-title: R News – volume: 128 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2019.114136_b0250 article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Adv. Agron. doi: 10.1016/B978-0-12-802139-2.00001-9 – volume: 237–238 start-page: 237 year: 2015 ident: 10.1016/j.geoderma.2019.114136_b0110 article-title: Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.006 – year: 2016 ident: 10.1016/j.geoderma.2019.114136_b0020 – volume: 41 start-page: 245 year: 2017 ident: 10.1016/j.geoderma.2019.114136_b0150 article-title: Portable X-ray fluorescence (pXRF) applications in tropical Soil Science publication-title: Ciência e Agrotecnologia doi: 10.1590/1413-70542017413000117 – ident: 10.1016/j.geoderma.2019.114136_b0140 – ident: 10.1016/j.geoderma.2019.114136_b0095 – ident: 10.1016/j.geoderma.2019.114136_b0070 – year: 2013 ident: 10.1016/j.geoderma.2019.114136_b0265 – volume: 145 start-page: 15 year: 2016 ident: 10.1016/j.geoderma.2019.114136_b0275 article-title: Multiple landscape “source–sink” structures for the monitoring and management of non-point source organic carbon loss in a peri-urban watershed publication-title: Catena doi: 10.1016/j.catena.2016.05.020 – volume: 41 start-page: 648 year: 2017 ident: 10.1016/j.geoderma.2019.114136_b0200 article-title: Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF) publication-title: Ciência e Agrotecnologia doi: 10.1590/1413-70542017416010317 – volume: 22 start-page: 711 year: 2013 ident: 10.1016/j.geoderma.2019.114136_b0005 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift doi: 10.1127/0941-2948/2013/0507 – volume: 29 start-page: 867 year: 2005 ident: 10.1016/j.geoderma.2019.114136_b0240 article-title: Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados publication-title: Rev. Bras. Ciência do Solo doi: 10.1590/S0100-06832005000600004 – volume: 36 start-page: 507 year: 2012 ident: 10.1016/j.geoderma.2019.114136_b0180 article-title: Morfologia, mineralogia e micromorfologia de solos de depressões de topo de Tabuleiros Costeiros do Nordeste Brasileiro publication-title: Ciência e Agrotecnologia doi: 10.1590/S1413-70542012000500003 – volume: 28 start-page: 679 year: 2004 ident: 10.1016/j.geoderma.2019.114136_b0045 article-title: Mineralogia, morfologia e análise microscópica de solos do bioma cerrado publication-title: Rev. Bras. Ciência do Solo doi: 10.1590/S0100-06832004000400010 – start-page: 251 year: 2009 ident: 10.1016/j.geoderma.2019.114136_b0125 article-title: Reserva Mineral do Solo – volume: 8 start-page: 614 year: 2016 ident: 10.1016/j.geoderma.2019.114136_b0190 article-title: Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols) publication-title: Remote Sens. doi: 10.3390/rs8080614 – start-page: 303 year: 2012 ident: 10.1016/j.geoderma.2019.114136_b0010 article-title: Sistema brasileiro de classificação de solos – volume: 67 start-page: 454 year: 2010 ident: 10.1016/j.geoderma.2019.114136_b0025 article-title: Mineralogical characterization of a highly-weathered soil by the Rietveld Method publication-title: Sci. Agric. doi: 10.1590/S0103-90162010000400013 – volume: 167–168 start-page: 167 year: 2011 ident: 10.1016/j.geoderma.2019.114136_b0280 article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1 Soil texture publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.010 – start-page: 379 year: 1989 ident: 10.1016/j.geoderma.2019.114136_b0165 article-title: Iron oxides – volume: 239 start-page: 130 year: 2015 ident: 10.1016/j.geoderma.2019.114136_b0175 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) publication-title: Geoderma doi: 10.1016/j.geoderma.2014.10.001 – volume: 137 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2019.114136_b0105 article-title: A career perspective on soil management in the Cerrado Region of Brazil publication-title: Adv. Agron. doi: 10.1016/bs.agron.2015.12.004 – ident: 10.1016/j.geoderma.2019.114136_b0090 – start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2019.114136_b0255 article-title: Portable X-ray fluorescence spectrometry analysis of soils – volume: 42 start-page: 501 year: 2018 ident: 10.1016/j.geoderma.2019.114136_b0220 article-title: Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses publication-title: Ciência e Agrotecnologia doi: 10.1590/1413-70542018425017518 – volume: 139 start-page: 220 year: 2016 ident: 10.1016/j.geoderma.2019.114136_b0210 article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis publication-title: Catena doi: 10.1016/j.catena.2016.01.007 – volume: 232–234 start-page: 141 year: 2014 ident: 10.1016/j.geoderma.2019.114136_b0170 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH) publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.005 – volume: 19 start-page: 159 year: 1995 ident: 10.1016/j.geoderma.2019.114136_b0130 article-title: Reserva mineral e caracterização mineralógica de alguns solos do Rio Grande do Sul publication-title: Rev. Bras. Cienc. do Solo – start-page: 383 year: 1986 ident: 10.1016/j.geoderma.2019.114136_b0040 article-title: Particle-size analysis – volume: 42 start-page: 80 year: 2018 ident: 10.1016/j.geoderma.2019.114136_b0195 article-title: Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): effects of different sample preparation methods publication-title: Ciência e Agrotecnologia doi: 10.1590/1413-70542018421009117 – ident: 10.1016/j.geoderma.2019.114136_b0085 – year: 2014 ident: 10.1016/j.geoderma.2019.114136_b0145 – volume: 82 start-page: 632 year: 2018 ident: 10.1016/j.geoderma.2019.114136_b0155 article-title: The influence of soil moisture on oxide determination in tropical soils via portable X-ray fluorescence publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.11.0380 – volume: 43 start-page: 137 year: 2008 ident: 10.1016/j.geoderma.2019.114136_b0160 article-title: Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review publication-title: Clay Miner. doi: 10.1180/claymin.2008.043.1.11 – volume: 41 start-page: 139 year: 2003 ident: 10.1016/j.geoderma.2019.114136_b0050 article-title: Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, northwest territories publication-title: Can. Mineral. doi: 10.2113/gscanmin.41.1.139 – ident: 10.1016/j.geoderma.2019.114136_b0245 – year: 1980 ident: 10.1016/j.geoderma.2019.114136_b0060 – volume: 121 start-page: 31 year: 2004 ident: 10.1016/j.geoderma.2019.114136_b0120 article-title: Trace element geochemistry in Brazilian Cerrado soils publication-title: Geoderma doi: 10.1016/j.geoderma.2003.10.003 – ident: 10.1016/j.geoderma.2019.114136_b0065 – volume: 162 start-page: 27 year: 2018 ident: 10.1016/j.geoderma.2019.114136_b0185 article-title: Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.05.028 – volume: 144 start-page: 86 year: 2018 ident: 10.1016/j.geoderma.2019.114136_b0270 article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.11.037 |
SSID | ssj0017020 |
Score | 2.5084596 |
Snippet | •Soil texture of 1565 samples was determined and analyzed with pXRF in Brazil.•pXRF data was successfully predicted soil texture through SVM and RF... Soil texture is an important feature in soil characterization, although its laboratory determination is costly and time-consuming. As an alternative, this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114136 |
SubjectTerms | Brazilian soils prediction Prediction models Proximal sensors Soil particle size soil texture tropical soils X-ray fluorescence spectroscopy |
Title | Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.114136 https://www.proquest.com/docview/2388733924 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQXOihglJUoCBX4upuEn-mtxUCbVuVCyDtCcv2OtWiVbLKZg9c-ts7400QrZA4cExiR8kbZ-ZFnnlDyHmmQsWjkUxnZcZEkIJ54TgDLi601iaqpN3561pN7sSPqZxukYuhFgbTKnvfv_HpyVv3Z0Y9mqPlfI41vrnSEI6AgiBvQT8shMZV_vXPU5pHrrNemjFXDEc_qxJ-ABthw7GkP5SXKJubJ6nmFwPUf646xZ-rPfK-J450vHm2fbIV6w_k3fh324tnxANyf9PMFxRTOeCQLlvcg0Hc6bymXdss0R50BWNW3-iYJuLtF5FOWeseabVYN23SdgqRpvpLFDLo2kc6yI5_JHdXl7cXE9b3T2COK9Ox3AQZjeKuCg6IB2BjijI6xbmTpS9mGXANJ32El_Y6BBE0N3AZzqmsKk3FD8l23dTxE6HRzIwUXsZylgsZuXE-cB-wvWaliyI_InIAzYZeXBx7XCzskEX2YAewLYJtN2AfkdHTvOVGXuPVGeVgE_vPQrEQA16d-2UwooWvCLdGXB2b9coCcTGaA1cUx2-4_wnZLfB3HNP95Gey3bXreAqcpfNnaVGekZ3x95-T67_UXuwd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq7aFwQLSAaAvFSFytTeLP9LaqqLa03QuttCcs2-ugrVbJKps99N8zk3UqQEg9cIyTieIZZ-ZZnnlDyJdMhYpHI5nOyoyJIAXzwnEGWFxorU1UPXfn7UxN78W3uZzvkYuhFgbTKpPv3_n03lunkXHS5ni9XGKNb640hCOAIIhbwA_vIzuVHJH9ydX1dPZ0mKCzxM6YK4YCvxUKP4CZsOdYT0GUl8icm_dszf-MUX956z4EXb4mrxJ2pJPd5x2SvVgfkZeTn23iz4hvyI_vzXJFMZsDLum6xWMYVD1d1rRrmzWahG7gmc05ndAee_tVpHPWukdarbZN29M7hUj7EkzkMujaRzowj78l95df7y6mLLVQYI4r07HcBBmN4q4KDrCHgM1FUUanOHey9MUiA7jhpI8waa9DEEFzA7dhTGVVaSr-jozqpo7vCY1mYaTwMpaLXMjIjfOB-4AdNitdFPkxkYPSbEj84tjmYmWHRLIHOyjborLtTtnHZPwkt94xbDwrUQ42sX-sFQth4FnZz4MRLfxIeDri6thsNxawi9Ec4KI4-Y_3fyIH07vbG3tzNbs-JS8K3J1j9p_8QEZdu40fAcJ0_iwt0V_rhe7O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+texture+prediction+in+tropical+soils%3A+A+portable+X-ray+fluorescence+spectrometry+approach&rft.jtitle=Geoderma&rft.au=Silva%2C+S%C3%A9rgio+Henrique+Godinho&rft.au=Weindorf%2C+David+C.&rft.au=Pinto%2C+Leandro+Campos&rft.au=Faria%2C+Wilson+Missina&rft.date=2020-03-15&rft.issn=0016-7061&rft.volume=362&rft.spage=114136&rft_id=info:doi/10.1016%2Fj.geoderma.2019.114136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2019_114136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |