Effect of pulse release date and soil characteristics on solute transport in a combined vadose zone-groundwater flow system: Insights from numerical simulations

The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse applicatio...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 47; no. 5
Main Author Russo, David
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.05.2011
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time‐dependent, external forcing conditions, F(t) (characterized by a time period, ), imposed on a flat soil surface. Of particular interest were the suitability of the time‐invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an “effective” velocity, is soil‐ and calendar date‐dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first‐ and peak‐arrival times) are soil‐ and pulse release date‐dependent. The soil‐dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine‐textured (clay) soil associated with mean travel time, that substantially exceeds . Furthermore, for , the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions. Key Points Travel Time PDF is essentially time‐invariance
AbstractList The transport of a conservative tracer (bromide) in a three-dimensional, heterogeneous combined vadose zone-groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time-dependent, external forcing conditions, F(t) (characterized by a time period, $\tau _{p}$), imposed on a flat soil surface. Of particular interest were the suitability of the time-invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an effective velocity, is soil- and calendar date-dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first- and peak-arrival times) are soil- and pulse release date-dependent. The soil-dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine-textured (clay) soil associated with mean travel time, $\tau _0$ that substantially exceeds $\tau _{p}$. Furthermore, for $\tau _{0} > \tau _{p}$, the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions.
The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time‐dependent, external forcing conditions, F ( t ) (characterized by a time period, ), imposed on a flat soil surface. Of particular interest were the suitability of the time‐invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an “effective” velocity, is soil‐ and calendar date‐dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first‐ and peak‐arrival times) are soil‐ and pulse release date‐dependent. The soil‐dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine‐textured (clay) soil associated with mean travel time, that substantially exceeds . Furthermore, for , the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions. Travel Time PDF is essentially time‐invariance
The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time‐dependent, external forcing conditions, F(t) (characterized by a time period, ), imposed on a flat soil surface. Of particular interest were the suitability of the time‐invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an “effective” velocity, is soil‐ and calendar date‐dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first‐ and peak‐arrival times) are soil‐ and pulse release date‐dependent. The soil‐dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine‐textured (clay) soil associated with mean travel time, that substantially exceeds . Furthermore, for , the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions. Key Points Travel Time PDF is essentially time‐invariance
Author Russo, David
Author_xml – sequence: 1
  givenname: David
  surname: Russo
  fullname: Russo, David
  email: vwrosd@agri.gov.il
  organization: Department of Environmental Physics and Irrigation, Institute of Soils, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
BookMark eNp9kV1rFDEUhoO04Lb1zh8Q8Nap-ZrJxjtZ27VQWliVBW9CmjlpU2eSNcm4rr_Gn9roFhFBb3IgPO_7no8jdBBiAISeU3JKCVOvGKFkvaoPUeIJmlElRCOV5AdoRojgDeVKPkVHOd8TQkXbyRn6ceYc2IKjw5tpyIATDGBq7U0BbEKPc_QDtncmGVsg-Vy8zTiG-j9MFSnJhLyJqWAfsME2jjc-QI-_mj5Wm--1w-Y2xSn02-qYsBviFuddLjC-xhch-9u7krFLccRhGmuANQPOfpwGU3wM-QQdOlMbe_ZYj9HH87MPi3fN5fXyYvHmsjG8m9OGGaOI63ugRHIFtlc33AlDQbrW9sK6OXEtNUx10M7nvCLMio472XIAwh0_Ri_2vpsUv0yQi76PUwo1UlPGJWVCKF6pl3vKpphzAqc3yY8m7TQl-ucN9J83qDj7C7e-_Jqrrs0P_xLxvWjrB9j9N0CvV4sVrUPRqmr2qnoh-PZbZdJn3UkuW72-WmrGP719T5bnes0fAMarrXA
CitedBy_id crossref_primary_10_1002_2014WR015514
crossref_primary_10_1002_2017WR021067
crossref_primary_10_1029_2019WR026405
crossref_primary_10_1002_wrcr_20085
crossref_primary_10_1029_2011WR010478
crossref_primary_10_3390_w12030917
Cites_doi 10.1029/97WR03619
10.1007/978-3-642-75015-1
10.1029/91WR00762
10.1029/WR022i002p00248
10.1029/95WR03530
10.1029/2007WR006170
10.2136/sssaj1985.03615995004900060002x
10.1029/98WR00003
10.1029/1999WR900103
10.1029/94WR00948
10.1029/95WR01806
10.1029/98WR00435
10.1111/j.1745‐6584.1995.tb00324.x
10.2136/sssaj1980.03615995004400050002x
10.1029/WR010i006p01199
10.1029/2007WR006599
10.2136/sssaj1973.03615995003700040018x
10.1029/2008WR007135
10.2136/sssaj1987.03615995005100030039x
10.1029/94WR00752
10.2118/480-PA
10.1016/0009-2509(78)85196-3
10.1029/96WR03947
10.1021/es049568o
10.1029/93WR02883
10.1016/S0309-1708(00)00026-9
10.1029/2006WR005365
10.1029/2000WR900389
10.1029/2008WR007157
10.1029/WR025i007p01575
10.1016/0022-1694(89)90275-8
10.2136/sssaj1975.03615995003900020007x
10.1029/92WR00914
10.1016/j.jhydrol.2006.04.020
10.1029/2003WR002179
10.1029/95WR01330
10.2136/sssaj1974.03615995003800060014x
10.1029/92WR00669
10.1029/2006WR004923
10.1029/WR025i010p02227
10.1029/90WR02105
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
Copyright 2011 by the American Geophysical Union
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: Copyright 2011 by the American Geophysical Union
DBID BSCLL
AAYXX
CITATION
3V.
7QH
7QL
7T7
7TG
7U9
7UA
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
GUQSH
H94
H96
HCIFZ
K60
K6~
KL.
KR7
L.-
L.G
L6V
M0C
M2O
M7N
M7S
MBDVC
P64
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1029/2010WR010094
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ABI/INFORM Global
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
Aqualine
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 2839019251
10_1029_2010WR010094
WRCR12961
ark_67375_WNG_23ZDS0GF_W
Genre article
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
AAYXX
ADXHL
AETEA
AGQPQ
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
7QH
7QL
7T7
7TG
7U9
7UA
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H96
KL.
KR7
L.-
L.G
M7N
MBDVC
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
WIN
ID FETCH-LOGICAL-a3681-2aa90fdde10739ecd9b3f4a1e7f5cd4cf80f51a296e588339e2c463f753ee03f3
IEDL.DBID BENPR
ISSN 0043-1397
IngestDate Wed Aug 13 09:16:44 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Tue Jul 01 01:34:07 EDT 2025
Wed Jan 22 16:41:13 EST 2025
Wed Oct 30 09:51:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3681-2aa90fdde10739ecd9b3f4a1e7f5cd4cf80f51a296e588339e2c463f753ee03f3
Notes istex:3E86B1A34BF17033F6F16A02198363D966750CF7
ark:/67375/WNG-23ZDS0GF-W
Tab-delimited Table 1.Tab-delimited Table 2.
ArticleID:2010WR010094
SourceType-Scholarly Journals-1
content type line 14
PQID 1237124493
PQPubID 105507
PageCount 14
ParticipantIDs proquest_journals_1237124493
crossref_primary_10_1029_2010WR010094
crossref_citationtrail_10_1029_2010WR010094
wiley_primary_10_1029_2010WR010094_WRCR12961
istex_primary_ark_67375_WNG_23ZDS0GF_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2011
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: May 2011
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Nimah, M. N., and R. J. Hanks (1973), Model for estimating soil water, plant and atmospheric relationships, 1, Description and sensitivity, Soil Sci. Soc. Am. Proc., 37, 522-527.
Maxwell, R., W. E. Kastenberg, and Y. Rubin (1999), A methodology to integrate site characterization information into groundwater-driven health risk assessment, Water Resour. Res., 35(9), 2841-2855, doi:10.1029/1999WR900103.
Russo, D. (1998), Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation, Water Resour. Res., 34(4), 569-581, doi:10.1029/97WR03619.
Zaidel, J., and D. Russo (1992), Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils, Water Resour. Res., 28(9), 2285-2295, doi:10.1029/92WR00914.
Perkins, T. K., and O. C. Johnston (1963), A review of diffusion and dispersion in porous media, Soc. Petrol. Eng. J., 3, 70-84.
Mishra, S., J. C. Parker, and N. Singhal (1989), Estimation of soil hydraulic properties and their uncertainties from particle size distribution data, J. Hydrol., 108, 1-18.
Kreft, A., and A. Zuber (1978), On the physical meaning if the dispersion equation and its solutions for different initial and boundary conditions, Chem. Eng. Sci., 33, 1471-1480.
Zimmerman, D. A., et al. (1998), A comparison of seven geostatistically based inverse approaches to estimate transmisivities for modeling advective transport by groundwater flow, Water Resour. Res., 34, 1373-1414, doi:10.1029/98WR00003.
Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
Foussereau, X., W. D. Graham, G. A. Akpoji, G. Destouni, and P. S. C. Rao (2001), Solute transport through a heterogeneous coupled vadose-saturated zone system with temporally random rainfall, Water Resour. Res., 37(6), 1577-1588, doi:10.1029/2000WR900389.
Polmann, D. J., D. Mclaughlin, S. Luis, L. W. Gelhar, and R. Ababou (1991), Stochastic modeling of large-scale flow in heterogeneous unsaturated soils, Water Resour. Res., 27(7), 1447-1458, doi:10.1029/91WR00762.
Berglund, S., and V. Cvetkovic (1995), Pump and treat remediation of heterogeneous aquifers: Effects of rate-limited mass transfer, Ground Water, 33, 675-685, doi:10.1111/j.1745-6584.1995.tb00324.x.
Fiori, A., and D. Russo (2008), Travel time distribution in a hillslope: Insight from numerical simulations, Water Resour. Res., 44, W12426, doi:10.1029/2008WR007135.
Russo, D., J. Zaidel, and A. Laufer (2001), Numerical analysis of flow and transport in a combined heterogeneous vadose zone-groundwater system, Adv. Water Resour., 24, 49-62.
Andričević, R., and V. Cvetković (1996), Evaluation of risk from contaminants migrating by groundwater, Water Resour. Res., 32(3), 611-621, doi:10.1029/95WR03530.
Neuman, S. P., R. A. Feddes, and E. Bresler (1975), Finite element analysis of two-dimensional flow in soils considering water uptake by roots, 1, Theory, Soil Sci. Soc. Am. Proc., 39, 224-230.
Russo, D., and A. Fiori (2008), Equivalent vadose zone steady-state flow, an assessment of its capability to predict transport in a realistic combined vadose zone-groundwater flow system, Water Resour. Res., 44, W09436, doi:10.1029/2007WR006170.
Tompson, A. F. B., R. Ababou, and L. W. Gelhar (1989), Implementation of the three-dimensional turning bands random field generator, Water Resour. Res., 25(10), 2227-2243, doi:10.1029/WR025i010p02227.
Salvucci, G. D., and D. Entekhabi (1994), Equivalent steady soil moisture profile and the time compression approximation in water balance modeling, Water Resour. Res., 30(10), 2737-2749, doi:10.1029/94WR00948.
Winter, C. L., and D. M. Tartakovsky (2008), A reduced complexity model for probabilistic risk assessment of groundwater contamination, Water Resour. Res., 44, W06501, doi:10.1029/2007WR006599.
Russo, D., J. Zaidel, and A. Laufer (1994), Stochastic analysis of solute transport in partially saturated heterogeneous soil: 1. Numerical experiments, Water Resour. Res., 30(3), 769-779, doi:10.1029/93WR02883.
Jury, W. A., and G. Sposito (1985), Field calibration and validation of solute transport models for the unsaturated zone, Soil Sci. Soc. Am. J., 49, 1331-1441.
Mood, A. M., and F. A. Graybill (1963), Introduction to the Theory of Statistics, McGraw-Hill, New York.
Destouni, G., and W. Graham (1995), Solute transport through an integrated heterogeneous soil-groundwater system, Water Resour. Res., 31(8), 1935-1944, doi:10.1029/95WR01330.
McGuire, K. J., and J. J. McDonnell (2006), A review and evaluation of catchment transit time modelling, J. Hydrol., 330, 543-563.
Russo, D., I. Russo, and A. Laufer (1997), On the spatial variability of parameters of the unsaturated hydraulic conductivity, Water Resour. Res., 33(5), 947-956, doi:10.1029/96WR03947.
Russo, D., J. Zaidel, A. Fiori, and A. Laufer (2006), Numerical analysis of flow and transport from a multiple-source system in a partially saturated heterogeneous soil, Water Resour. Res., 42, W06415, doi:10.1029/2006WR004923.
van Genuchten, M. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898.
Bellin, A., and Y. Rubin (2004), On the use of peak concentration arrival times for the inference of hydrogeological parameters, Water Resour. Res., 40, W07401, doi:10.1029/2003WR002179.
Russo, D., J. Zaidel, and A. Laufer (1998), Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil, Water Resour. Res., 34(6), 1451-1468, doi:10.1029/98WR00435.
Bresler, E. (1987), Application of conceptual model to irrigation requirements and salt tolerance of crops, Soil Sci. Soc. Am. J., 51, 788-793.
Dagan, G. (1989), Flow and Transport in Porous Formations, Springer-Verlag, Berlin.
Mein, R. G., and D. A. Farrell (1974), Determination of wetting front suction in the Green-Ampt equation, Soil Sci. Soc. Am. Proc., 38, 872-776.
Feddes, R. E., E. Bresler, and S. P. Neuman (1974), Field test of a modified numerical model for water uptake by root systems, Water Resour. Res., 10(6), 1199-1206, doi:10.1029/WR010i006p01199.
Tseng, P.-H., and W. A. Jury (1994), Comparison of transfer function and deterministic modeling of area-averaged solute transport in heterogeneous field, Water Resour. Res., 30(7), 2051-2063, doi:10.1029/94WR00752.
Butters, G. L., W. A. Jury, and F. F. Ernst (1989), Field scale transport of bromide in an unsaturated soil: 1. Experimental methodology and results, Water Resour. Res., 25, 1575-1581, doi:10.1029/WR025i007p01575.
Russo, D., and A. Fiori (2009), Stochastic analysis of transport in a combined heterogeneous vadose zone-groundwater flow system, Water Resour. Res., 45, W03426, doi:10.1029/2008WR007157.
Russo, D. (1991), Stochastic analysis of vadose-zone solute transport in a vertical cross section of heterogeneous soil during nonsteady water flow, Water Resour. Res., 27(3), 267-283, doi:10.1029/90WR02105.
Russo, D., and M. Bouton (1992), Statistical analysis of spatial variability in unsaturated flow parameters, Water Resour. Res., 28(7), 1911-1925, doi:10.1029/92WR00669.
White, R. E., J. S. Dyson, R. A. Haigh, W. A. Jury, and G. Sposito (1986), A transfer function model of solute transport through soil: 2. Illustrative applications, Water Resour. Res., 22(2), 248-254, doi:10.1029/WR022i002p00248.
Rodhe, A., L. Nyberg, and K. Bishop (1996), Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input, Water Resour. Res., 32(12), 3497-3511, doi:10.1029/95WR01806.
Fiori, A., and D. Russo (2007), Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties, Water Resour. Res., 43, W07445, doi:10.1029/2006WR005365.
1995; 31
1974; 38
2009; 45
2004; 40
1987; 51
1974; 10
1978; 33
1975; 39
1973; 37
1995; 33
1980; 44
2006; 330
1972
2001; 24
1989; 25
1996; 32
1985; 49
1991; 27
2006; 42
1989; 108
1997; 33
2004; 38
1986; 22
1972; 709
1963; 3
1999; 35
1992; 28
1963
2001; 37
2008; 44
2007; 43
1998; 34
1994; 30
1989
1988
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
Mood A. M. (e_1_2_8_22_1) 1963
e_1_2_8_27_1
Mantell A. (e_1_2_8_17_1) 1972
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Bear J. (e_1_2_8_4_1) 1972
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Russo, D., J. Zaidel, and A. Laufer (1998), Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil, Water Resour. Res., 34(6), 1451-1468, doi:10.1029/98WR00435.
– reference: Russo, D., J. Zaidel, A. Fiori, and A. Laufer (2006), Numerical analysis of flow and transport from a multiple-source system in a partially saturated heterogeneous soil, Water Resour. Res., 42, W06415, doi:10.1029/2006WR004923.
– reference: Mishra, S., J. C. Parker, and N. Singhal (1989), Estimation of soil hydraulic properties and their uncertainties from particle size distribution data, J. Hydrol., 108, 1-18.
– reference: Russo, D. (1991), Stochastic analysis of vadose-zone solute transport in a vertical cross section of heterogeneous soil during nonsteady water flow, Water Resour. Res., 27(3), 267-283, doi:10.1029/90WR02105.
– reference: Perkins, T. K., and O. C. Johnston (1963), A review of diffusion and dispersion in porous media, Soc. Petrol. Eng. J., 3, 70-84.
– reference: Dagan, G. (1989), Flow and Transport in Porous Formations, Springer-Verlag, Berlin.
– reference: Mein, R. G., and D. A. Farrell (1974), Determination of wetting front suction in the Green-Ampt equation, Soil Sci. Soc. Am. Proc., 38, 872-776.
– reference: Bellin, A., and Y. Rubin (2004), On the use of peak concentration arrival times for the inference of hydrogeological parameters, Water Resour. Res., 40, W07401, doi:10.1029/2003WR002179.
– reference: Fiori, A., and D. Russo (2007), Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties, Water Resour. Res., 43, W07445, doi:10.1029/2006WR005365.
– reference: van Genuchten, M. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898.
– reference: Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
– reference: Fiori, A., and D. Russo (2008), Travel time distribution in a hillslope: Insight from numerical simulations, Water Resour. Res., 44, W12426, doi:10.1029/2008WR007135.
– reference: McGuire, K. J., and J. J. McDonnell (2006), A review and evaluation of catchment transit time modelling, J. Hydrol., 330, 543-563.
– reference: Zaidel, J., and D. Russo (1992), Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils, Water Resour. Res., 28(9), 2285-2295, doi:10.1029/92WR00914.
– reference: Mood, A. M., and F. A. Graybill (1963), Introduction to the Theory of Statistics, McGraw-Hill, New York.
– reference: Tompson, A. F. B., R. Ababou, and L. W. Gelhar (1989), Implementation of the three-dimensional turning bands random field generator, Water Resour. Res., 25(10), 2227-2243, doi:10.1029/WR025i010p02227.
– reference: Rodhe, A., L. Nyberg, and K. Bishop (1996), Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input, Water Resour. Res., 32(12), 3497-3511, doi:10.1029/95WR01806.
– reference: Russo, D., I. Russo, and A. Laufer (1997), On the spatial variability of parameters of the unsaturated hydraulic conductivity, Water Resour. Res., 33(5), 947-956, doi:10.1029/96WR03947.
– reference: Kreft, A., and A. Zuber (1978), On the physical meaning if the dispersion equation and its solutions for different initial and boundary conditions, Chem. Eng. Sci., 33, 1471-1480.
– reference: Zimmerman, D. A., et al. (1998), A comparison of seven geostatistically based inverse approaches to estimate transmisivities for modeling advective transport by groundwater flow, Water Resour. Res., 34, 1373-1414, doi:10.1029/98WR00003.
– reference: Butters, G. L., W. A. Jury, and F. F. Ernst (1989), Field scale transport of bromide in an unsaturated soil: 1. Experimental methodology and results, Water Resour. Res., 25, 1575-1581, doi:10.1029/WR025i007p01575.
– reference: Andričević, R., and V. Cvetković (1996), Evaluation of risk from contaminants migrating by groundwater, Water Resour. Res., 32(3), 611-621, doi:10.1029/95WR03530.
– reference: Berglund, S., and V. Cvetkovic (1995), Pump and treat remediation of heterogeneous aquifers: Effects of rate-limited mass transfer, Ground Water, 33, 675-685, doi:10.1111/j.1745-6584.1995.tb00324.x.
– reference: Feddes, R. E., E. Bresler, and S. P. Neuman (1974), Field test of a modified numerical model for water uptake by root systems, Water Resour. Res., 10(6), 1199-1206, doi:10.1029/WR010i006p01199.
– reference: Winter, C. L., and D. M. Tartakovsky (2008), A reduced complexity model for probabilistic risk assessment of groundwater contamination, Water Resour. Res., 44, W06501, doi:10.1029/2007WR006599.
– reference: Tseng, P.-H., and W. A. Jury (1994), Comparison of transfer function and deterministic modeling of area-averaged solute transport in heterogeneous field, Water Resour. Res., 30(7), 2051-2063, doi:10.1029/94WR00752.
– reference: Jury, W. A., and G. Sposito (1985), Field calibration and validation of solute transport models for the unsaturated zone, Soil Sci. Soc. Am. J., 49, 1331-1441.
– reference: Russo, D., J. Zaidel, and A. Laufer (2001), Numerical analysis of flow and transport in a combined heterogeneous vadose zone-groundwater system, Adv. Water Resour., 24, 49-62.
– reference: Russo, D., and A. Fiori (2008), Equivalent vadose zone steady-state flow, an assessment of its capability to predict transport in a realistic combined vadose zone-groundwater flow system, Water Resour. Res., 44, W09436, doi:10.1029/2007WR006170.
– reference: Destouni, G., and W. Graham (1995), Solute transport through an integrated heterogeneous soil-groundwater system, Water Resour. Res., 31(8), 1935-1944, doi:10.1029/95WR01330.
– reference: White, R. E., J. S. Dyson, R. A. Haigh, W. A. Jury, and G. Sposito (1986), A transfer function model of solute transport through soil: 2. Illustrative applications, Water Resour. Res., 22(2), 248-254, doi:10.1029/WR022i002p00248.
– reference: Bresler, E. (1987), Application of conceptual model to irrigation requirements and salt tolerance of crops, Soil Sci. Soc. Am. J., 51, 788-793.
– reference: Russo, D., and M. Bouton (1992), Statistical analysis of spatial variability in unsaturated flow parameters, Water Resour. Res., 28(7), 1911-1925, doi:10.1029/92WR00669.
– reference: Russo, D., and A. Fiori (2009), Stochastic analysis of transport in a combined heterogeneous vadose zone-groundwater flow system, Water Resour. Res., 45, W03426, doi:10.1029/2008WR007157.
– reference: Salvucci, G. D., and D. Entekhabi (1994), Equivalent steady soil moisture profile and the time compression approximation in water balance modeling, Water Resour. Res., 30(10), 2737-2749, doi:10.1029/94WR00948.
– reference: Russo, D., J. Zaidel, and A. Laufer (1994), Stochastic analysis of solute transport in partially saturated heterogeneous soil: 1. Numerical experiments, Water Resour. Res., 30(3), 769-779, doi:10.1029/93WR02883.
– reference: Neuman, S. P., R. A. Feddes, and E. Bresler (1975), Finite element analysis of two-dimensional flow in soils considering water uptake by roots, 1, Theory, Soil Sci. Soc. Am. Proc., 39, 224-230.
– reference: Nimah, M. N., and R. J. Hanks (1973), Model for estimating soil water, plant and atmospheric relationships, 1, Description and sensitivity, Soil Sci. Soc. Am. Proc., 37, 522-527.
– reference: Polmann, D. J., D. Mclaughlin, S. Luis, L. W. Gelhar, and R. Ababou (1991), Stochastic modeling of large-scale flow in heterogeneous unsaturated soils, Water Resour. Res., 27(7), 1447-1458, doi:10.1029/91WR00762.
– reference: Russo, D. (1998), Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation, Water Resour. Res., 34(4), 569-581, doi:10.1029/97WR03619.
– reference: Foussereau, X., W. D. Graham, G. A. Akpoji, G. Destouni, and P. S. C. Rao (2001), Solute transport through a heterogeneous coupled vadose-saturated zone system with temporally random rainfall, Water Resour. Res., 37(6), 1577-1588, doi:10.1029/2000WR900389.
– reference: Maxwell, R., W. E. Kastenberg, and Y. Rubin (1999), A methodology to integrate site characterization information into groundwater-driven health risk assessment, Water Resour. Res., 35(9), 2841-2855, doi:10.1029/1999WR900103.
– volume: 30
  start-page: 2051
  issue: 7
  year: 1994
  end-page: 2063
  article-title: Comparison of transfer function and deterministic modeling of area‐averaged solute transport in heterogeneous field
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 611
  issue: 3
  year: 1996
  end-page: 621
  article-title: Evaluation of risk from contaminants migrating by groundwater
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 2841
  issue: 9
  year: 1999
  end-page: 2855
  article-title: A methodology to integrate site characterization information into groundwater‐driven health risk assessment
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 947
  issue: 5
  year: 1997
  end-page: 956
  article-title: On the spatial variability of parameters of the unsaturated hydraulic conductivity
  publication-title: Water Resour. Res.
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 25
  start-page: 2227
  issue: 10
  year: 1989
  end-page: 2243
  article-title: Implementation of the three‐dimensional turning bands random field generator
  publication-title: Water Resour. Res.
– year: 1989
– volume: 43
  year: 2007
  article-title: Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties
  publication-title: Water Resour. Res.
– volume: 3
  start-page: 70
  year: 1963
  end-page: 84
  article-title: A review of diffusion and dispersion in porous media
  publication-title: Soc. Petrol. Eng. J.
– volume: 28
  start-page: 2285
  issue: 9
  year: 1992
  end-page: 2295
  article-title: Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils
  publication-title: Water Resour. Res.
– volume: 44
  year: 2008
  article-title: Equivalent vadose zone steady‐state flow, an assessment of its capability to predict transport in a realistic combined vadose zone‐groundwater flow system
  publication-title: Water Resour. Res.
– volume: 39
  start-page: 224
  year: 1975
  end-page: 230
  article-title: Finite element analysis of two‐dimensional flow in soils considering water uptake by roots, 1, Theory
  publication-title: Soil Sci. Soc. Am. Proc.
– volume: 34
  start-page: 569
  issue: 4
  year: 1998
  end-page: 581
  article-title: Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 1471
  year: 1978
  end-page: 1480
  article-title: On the physical meaning if the dispersion equation and its solutions for different initial and boundary conditions
  publication-title: Chem. Eng. Sci.
– volume: 28
  start-page: 1911
  issue: 7
  year: 1992
  end-page: 1925
  article-title: Statistical analysis of spatial variability in unsaturated flow parameters
  publication-title: Water Resour. Res.
– volume: 30
  start-page: 2737
  issue: 10
  year: 1994
  end-page: 2749
  article-title: Equivalent steady soil moisture profile and the time compression approximation in water balance modeling
  publication-title: Water Resour. Res.
– volume: 330
  start-page: 543
  year: 2006
  end-page: 563
  article-title: A review and evaluation of catchment transit time modelling
  publication-title: J. Hydrol.
– volume: 38
  start-page: 872
  year: 1974
  end-page: 776
  article-title: Determination of wetting front suction in the Green‐Ampt equation
  publication-title: Soil Sci. Soc. Am. Proc.
– volume: 37
  start-page: 522
  year: 1973
  end-page: 527
  article-title: Model for estimating soil water, plant and atmospheric relationships, 1, Description and sensitivity
  publication-title: Soil Sci. Soc. Am. Proc.
– volume: 51
  start-page: 788
  year: 1987
  end-page: 793
  article-title: Application of conceptual model to irrigation requirements and salt tolerance of crops
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  year: 2004
  article-title: On the use of peak concentration arrival times for the inference of hydrogeological parameters
  publication-title: Water Resour. Res.
– volume: 42
  year: 2006
  article-title: Numerical analysis of flow and transport from a multiple‐source system in a partially saturated heterogeneous soil
  publication-title: Water Resour. Res.
– volume: 45
  year: 2009
  article-title: Stochastic analysis of transport in a combined heterogeneous vadose zone‐groundwater flow system
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 675
  year: 1995
  end-page: 685
  article-title: Pump and treat remediation of heterogeneous aquifers: Effects of rate‐limited mass transfer
  publication-title: Ground Water
– volume: 31
  start-page: 1935
  issue: 8
  year: 1995
  end-page: 1944
  article-title: Solute transport through an integrated heterogeneous soil‐groundwater system
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 3497
  issue: 12
  year: 1996
  end-page: 3511
  article-title: Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input
  publication-title: Water Resour. Res.
– volume: 34
  start-page: 1451
  issue: 6
  year: 1998
  end-page: 1468
  article-title: Numerical analysis of flow and transport in a three‐dimensional partially saturated heterogeneous soil
  publication-title: Water Resour. Res.
– volume: 24
  start-page: 49
  year: 2001
  end-page: 62
  article-title: Numerical analysis of flow and transport in a combined heterogeneous vadose zone‐groundwater system
  publication-title: Adv. Water Resour.
– volume: 25
  start-page: 1575
  year: 1989
  end-page: 1581
  article-title: Field scale transport of bromide in an unsaturated soil: 1. Experimental methodology and results
  publication-title: Water Resour. Res.
– year: 1963
– volume: 30
  start-page: 769
  issue: 3
  year: 1994
  end-page: 779
  article-title: Stochastic analysis of solute transport in partially saturated heterogeneous soil: 1. Numerical experiments
  publication-title: Water Resour. Res.
– volume: 709
  year: 1972
– volume: 38
  start-page: 5642
  year: 2004
  end-page: 5648
– volume: 37
  start-page: 1577
  issue: 6
  year: 2001
  end-page: 1588
  article-title: Solute transport through a heterogeneous coupled vadose‐saturated zone system with temporally random rainfall
  publication-title: Water Resour. Res.
– volume: 44
  year: 2008
  article-title: A reduced complexity model for probabilistic risk assessment of groundwater contamination
  publication-title: Water Resour. Res.
– year: 1988
– volume: 108
  start-page: 1
  year: 1989
  end-page: 18
  article-title: Estimation of soil hydraulic properties and their uncertainties from particle size distribution data
  publication-title: J. Hydrol.
– volume: 44
  year: 2008
  article-title: Travel time distribution in a hillslope: Insight from numerical simulations
  publication-title: Water Resour. Res.
– year: 1972
– volume: 49
  start-page: 1331
  year: 1985
  end-page: 1441
  article-title: Field calibration and validation of solute transport models for the unsaturated zone
  publication-title: Soil Sci. Soc. Am. J.
– volume: 34
  start-page: 1373
  year: 1998
  end-page: 1414
  article-title: A comparison of seven geostatistically based inverse approaches to estimate transmisivities for modeling advective transport by groundwater flow
  publication-title: Water Resour. Res.
– volume: 10
  start-page: 1199
  issue: 6
  year: 1974
  end-page: 1206
  article-title: Field test of a modified numerical model for water uptake by root systems
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 267
  issue: 3
  year: 1991
  end-page: 283
  article-title: Stochastic analysis of vadose‐zone solute transport in a vertical cross section of heterogeneous soil during nonsteady water flow
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 248
  issue: 2
  year: 1986
  end-page: 254
  article-title: A transfer function model of solute transport through soil: 2. Illustrative applications
  publication-title: Water Resour. Res.
– volume: 27
  start-page: 1447
  issue: 7
  year: 1991
  end-page: 1458
  article-title: Stochastic modeling of large‐scale flow in heterogeneous unsaturated soils
  publication-title: Water Resour. Res.
– ident: e_1_2_8_29_1
  doi: 10.1029/97WR03619
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-642-75015-1
– ident: e_1_2_8_26_1
  doi: 10.1029/91WR00762
– ident: e_1_2_8_42_1
  doi: 10.1029/WR022i002p00248
– ident: e_1_2_8_3_1
  doi: 10.1029/95WR03530
– ident: e_1_2_8_31_1
  doi: 10.1029/2007WR006170
– ident: e_1_2_8_15_1
  doi: 10.2136/sssaj1985.03615995004900060002x
– ident: e_1_2_8_46_1
  doi: 10.1029/98WR00003
– ident: e_1_2_8_18_1
  doi: 10.1029/1999WR900103
– ident: e_1_2_8_38_1
  doi: 10.1029/94WR00948
– ident: e_1_2_8_27_1
  doi: 10.1029/95WR01806
– ident: e_1_2_8_35_1
  doi: 10.1029/98WR00435
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1745‐6584.1995.tb00324.x
– ident: e_1_2_8_41_1
  doi: 10.2136/sssaj1980.03615995004400050002x
– ident: e_1_2_8_11_1
  doi: 10.1029/WR010i006p01199
– ident: e_1_2_8_43_1
  doi: 10.1029/2007WR006599
– ident: e_1_2_8_24_1
  doi: 10.2136/sssaj1973.03615995003700040018x
– ident: e_1_2_8_13_1
  doi: 10.1029/2008WR007135
– ident: e_1_2_8_7_1
  doi: 10.2136/sssaj1987.03615995005100030039x
– ident: e_1_2_8_40_1
  doi: 10.1029/94WR00752
– ident: e_1_2_8_25_1
  doi: 10.2118/480-PA
– ident: e_1_2_8_16_1
  doi: 10.1016/0009-2509(78)85196-3
– ident: e_1_2_8_34_1
  doi: 10.1029/96WR03947
– ident: e_1_2_8_44_1
  doi: 10.1021/es049568o
– ident: e_1_2_8_33_1
  doi: 10.1029/93WR02883
– ident: e_1_2_8_2_1
– ident: e_1_2_8_36_1
  doi: 10.1016/S0309-1708(00)00026-9
– ident: e_1_2_8_12_1
  doi: 10.1029/2006WR005365
– ident: e_1_2_8_14_1
  doi: 10.1029/2000WR900389
– ident: e_1_2_8_32_1
  doi: 10.1029/2008WR007157
– volume-title: Introduction to the Theory of Statistics
  year: 1963
  ident: e_1_2_8_22_1
– ident: e_1_2_8_8_1
  doi: 10.1029/WR025i007p01575
– ident: e_1_2_8_21_1
  doi: 10.1016/0022-1694(89)90275-8
– ident: e_1_2_8_23_1
  doi: 10.2136/sssaj1975.03615995003900020007x
– ident: e_1_2_8_45_1
  doi: 10.1029/92WR00914
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jhydrol.2006.04.020
– volume-title: Dynamics of Fluids in Porous Media
  year: 1972
  ident: e_1_2_8_4_1
– ident: e_1_2_8_5_1
  doi: 10.1029/2003WR002179
– ident: e_1_2_8_10_1
  doi: 10.1029/95WR01330
– ident: e_1_2_8_20_1
  doi: 10.2136/sssaj1974.03615995003800060014x
– ident: e_1_2_8_30_1
  doi: 10.1029/92WR00669
– ident: e_1_2_8_37_1
  doi: 10.1029/2006WR004923
– ident: e_1_2_8_39_1
  doi: 10.1029/WR025i010p02227
– volume-title: Prelim. Rep.
  year: 1972
  ident: e_1_2_8_17_1
– ident: e_1_2_8_28_1
  doi: 10.1029/90WR02105
SSID ssj0014567
Score 2.0284274
Snippet The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a...
The transport of a conservative tracer (bromide) in a three-dimensional, heterogeneous combined vadose zone-groundwater flow system was analyzed through a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Approximation
Contamination
Effective velocity
Flow system
Groundwater
Groundwater flow
Groundwater pollution
Hydraulics
Integrated approach
Numerical analysis
Partial differential equations
Release dates
Risk assessment
Simulation
Soil surfaces
Soil types
Solute movement
Solute transport
Transport processes
Travel time
Vadose water
water flow
Water table
Title Effect of pulse release date and soil characteristics on solute transport in a combined vadose zone-groundwater flow system: Insights from numerical simulations
URI https://api.istex.fr/ark:/67375/WNG-23ZDS0GF-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010WR010094
https://www.proquest.com/docview/1237124493
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZYe4ALGr9EYUzvAFzAmhMnTrwLGmPtQKJChakTF8uOba2iJKVpGeOv4U_FTpyyHtglysFyIr_n977n9_w-hJ5LGWWUKYlZbBhOpCU4tyrFljOtbGFp2nTg-zhmp2fJh_P0PBy41aGssrOJjaHWVeHPyA-chc28L-L0zeIH9qxRPrsaKDR2UN-Z4Dzvof7bk_GnySaP4OBB1uWYPdYJpe8k5gc-DTyduAfhyZZT6vv1_bWFOK_j1sbxDHfR3YAY4agV8T10y5T30e3uQnHt3gOR-cXVA_Sn7UYMlYXF2nk98JwozlGBD-xBlhrqajaHYrtNM1QlNDpoYNU1O4dZCRLc2rjQ2Wj4KXXlpvldlQb7myClvnQzLsHOq0to20Efwvuy9rF-Df7SCpTrNhs0h3r2PbCE1Q_R2fDky_EpDiQMWFKWRziWkhPrjGDkc3qm0FxRm8jIZDYtdFLYnNg0kjFnJvXExdzERcKodWGQMYRa-gj1SvdvjxFkRaK4ZhnRiiZac66M4ZoqEhubcaMH6FUnBVGEDuWeKGMumkx5zMV1mQ3Qi83oRduZ4z_jXjYC3QySy2--mi1LxXQ8EjH9-u4zGQ3FdID2OomLsJFr8U_tBuh1owU3fkxMJ8cTB6FY9OTm2Z6iO-3ptC-d3EO91XJtnjl4s1L7aCcfjvaDJv8FkFj62Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAuiKcILTAHygWs2rv2OouEEGrJg7Y5hFapuCxr766IGuwQJ4Tya_gF_EZ2_QjNgd56sSx5Nbb0jWdmdx4fwAspg5iyRHqMaOaF0vhe2ySRZzhTiUkNjcoJfCcD1jsLP55H5xvwp-mFcWWVjU0sDbXKU3dGvm8tbOx8Eafvpt89xxrlsqsNhUalFkf6cmm3bMXb_qHFd4-QzofTg55Xswp4krJ24BEpuW_sXx24JJVOFU-oCWWgYxOlKkxN2zdRIAlnOnJMvFyTNGTU2Lhea58aauXegq3QPnGbvXanu8pa2GAkbjLaLrKqC-19wvdd0nk0tBefh2sucMuh-XMtvr0aJZdurnMX7tTxKb6vFOoebOjsPmw37cuFva9p079ePoDf1exjzA1OF9bHomNgsW4R3TECykxhkY8nmK4PhcY8w1LjNc6b0eo4zlCiRcJu1LXCH1LlVsyvPNOe6zvJ1NJKnKGZ5Eushk-_wX5WuJOFAl2LDGaLKvc0wWL8reYkKx7C2Y2A8wg2M_ttjwHjNEy4YrGvEhoqxXmiNVc08Yk2MdeqBa8aFERaz0N3tBwTUeblCRdXMWvB3mr1tJoD8p91L0tAV4vk7MLVzsWRGA26gtDPh5_8bkeMWrDbIC5qs1GIf0regtelFlz7MjEaHgxtwMaCJ9dLew7bvdOTY3HcHxztwO3qXNwVbe7C5ny20E9tYDVPnpXajPDlpn-fv8C4NgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAIuiKcILTAHygWs2Lv2OlupQtA0bShEVaBK1YtZe3dFRGqHOCGUX8Pv4Nex60doDvTWi-XDamzpm535ducF8EIIL6QsFg4jijm-0K7T0XHgaM5krBNNg6ID38cBOzzx358Gpxvwp66FsWmVtU0sDLXMEntH3jYWNrS-iNO2rtIijru9N9Pvjp0gZSOt9TiNUkWO1MXSHN_y3X7XYL1NSG__896hU00YcARlHc8hQnBXmx3u2YCVSiSPqfaFp0IdJNJPdMfVgScIZyqwU3m5IonPqDYcXymXamrk3oBmaE9FDWi-2x8cD1cxDENNwjq-bXlWlXbvEt62IejR0Dxc7q85xKbF9uca273MmQun17sLdyq2im9L9boHGyq9D7fqYubcvFdD1L9ePIDfZSdkzDROF8bjop3HYpwk2ksFFKnEPBtPMFlvEY1ZioX-K5zXjdZxnKJAg4s5tiuJP4TMjJhfWaocW4WSyqWROEM9yZZYtqLewX6a23uGHG3BDKaLMhI1wXx8Xk0oyx_CybXA8wgaqfm3x4Bh4sdcstCVMfWl5DxWiksau0TpkCvZglc1ClFSdUe3QzomURGlJzy6jFkLtlerp2VXkP-se1kAulokZt9sJl0YRKPBQUToWfeTe9CLRi3YqhGPKiOSR_9UvgWvCy248mPRaLg3NPSNeU-ulvYcbpqtE33oD4424XZ5SW4zOLegMZ8t1FPDsubxs0qdEb5c9w76C0wMO5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+pulse+release+date+and+soil+characteristics+on+solute+transport+in+a+combined+vadose+zone-groundwater+flow+system%3A+Insights+from+numerical+simulations&rft.jtitle=Water+resources+research&rft.au=Russo%2C+David&rft.date=2011-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=47&rft.issue=5&rft_id=info:doi/10.1029%2F2010WR010094&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2839019251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon