Effect of pulse release date and soil characteristics on solute transport in a combined vadose zone-groundwater flow system: Insights from numerical simulations
The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse applicatio...
Saved in:
Published in | Water resources research Vol. 47; no. 5 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.05.2011
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time‐dependent, external forcing conditions, F(t) (characterized by a time period, ), imposed on a flat soil surface. Of particular interest were the suitability of the time‐invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an “effective” velocity, is soil‐ and calendar date‐dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first‐ and peak‐arrival times) are soil‐ and pulse release date‐dependent. The soil‐dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine‐textured (clay) soil associated with mean travel time, that substantially exceeds . Furthermore, for , the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions.
Key Points
Travel Time PDF is essentially time‐invariance |
---|---|
AbstractList | The transport of a conservative tracer (bromide) in a three-dimensional, heterogeneous combined vadose zone-groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time-dependent, external forcing conditions, F(t) (characterized by a time period, $\tau _{p}$), imposed on a flat soil surface. Of particular interest were the suitability of the time-invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an effective velocity, is soil- and calendar date-dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first- and peak-arrival times) are soil- and pulse release date-dependent. The soil-dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine-textured (clay) soil associated with mean travel time, $\tau _0$ that substantially exceeds $\tau _{p}$. Furthermore, for $\tau _{0} > \tau _{p}$, the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions. The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time‐dependent, external forcing conditions, F ( t ) (characterized by a time period, ), imposed on a flat soil surface. Of particular interest were the suitability of the time‐invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an “effective” velocity, is soil‐ and calendar date‐dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first‐ and peak‐arrival times) are soil‐ and pulse release date‐dependent. The soil‐dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine‐textured (clay) soil associated with mean travel time, that substantially exceeds . Furthermore, for , the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions. Travel Time PDF is essentially time‐invariance The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a series of detailed numerical simulations. The scope of the present study was to analyze the effect of both the soil type and the pulse application date on solute movement and spreading in the combined flow system subject to time‐dependent, external forcing conditions, F(t) (characterized by a time period, ), imposed on a flat soil surface. Of particular interest were the suitability of the time‐invariance assumption of the solute travel time distribution and the related issue of the capability of an equivalent, steady state vadose zone flow model to describe solute transport in a realistic flow system. Considering flow systems in which the water table is located at sufficiently large distance from the flat soil surface, the main results of this study suggest that the velocity associated with the wetting front position, which may be considered as an “effective” velocity, is soil‐ and calendar date‐dependent. Consequently, characteristics of the transport (i.e., solute displacement and spreading, first‐ and peak‐arrival times) are soil‐ and pulse release date‐dependent. The soil‐dependent solute travel time PDF at a CP located in the vicinity of the water table, however, may be considered as essentially independent of the pulse release date, particularly in the fine‐textured (clay) soil associated with mean travel time, that substantially exceeds . Furthermore, for , the equivalent steady state definition of the flow problem may be quite effective in describing the solute travel time PDF of the actual transport process occurring under nonmonotonous, transient flow conditions. Key Points Travel Time PDF is essentially time‐invariance |
Author | Russo, David |
Author_xml | – sequence: 1 givenname: David surname: Russo fullname: Russo, David email: vwrosd@agri.gov.il organization: Department of Environmental Physics and Irrigation, Institute of Soils, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel |
BookMark | eNp9kV1rFDEUhoO04Lb1zh8Q8Nap-ZrJxjtZ27VQWliVBW9CmjlpU2eSNcm4rr_Gn9roFhFBb3IgPO_7no8jdBBiAISeU3JKCVOvGKFkvaoPUeIJmlElRCOV5AdoRojgDeVKPkVHOd8TQkXbyRn6ceYc2IKjw5tpyIATDGBq7U0BbEKPc_QDtncmGVsg-Vy8zTiG-j9MFSnJhLyJqWAfsME2jjc-QI-_mj5Wm--1w-Y2xSn02-qYsBviFuddLjC-xhch-9u7krFLccRhGmuANQPOfpwGU3wM-QQdOlMbe_ZYj9HH87MPi3fN5fXyYvHmsjG8m9OGGaOI63ugRHIFtlc33AlDQbrW9sK6OXEtNUx10M7nvCLMio472XIAwh0_Ri_2vpsUv0yQi76PUwo1UlPGJWVCKF6pl3vKpphzAqc3yY8m7TQl-ucN9J83qDj7C7e-_Jqrrs0P_xLxvWjrB9j9N0CvV4sVrUPRqmr2qnoh-PZbZdJn3UkuW72-WmrGP719T5bnes0fAMarrXA |
CitedBy_id | crossref_primary_10_1002_2014WR015514 crossref_primary_10_1002_2017WR021067 crossref_primary_10_1029_2019WR026405 crossref_primary_10_1002_wrcr_20085 crossref_primary_10_1029_2011WR010478 crossref_primary_10_3390_w12030917 |
Cites_doi | 10.1029/97WR03619 10.1007/978-3-642-75015-1 10.1029/91WR00762 10.1029/WR022i002p00248 10.1029/95WR03530 10.1029/2007WR006170 10.2136/sssaj1985.03615995004900060002x 10.1029/98WR00003 10.1029/1999WR900103 10.1029/94WR00948 10.1029/95WR01806 10.1029/98WR00435 10.1111/j.1745‐6584.1995.tb00324.x 10.2136/sssaj1980.03615995004400050002x 10.1029/WR010i006p01199 10.1029/2007WR006599 10.2136/sssaj1973.03615995003700040018x 10.1029/2008WR007135 10.2136/sssaj1987.03615995005100030039x 10.1029/94WR00752 10.2118/480-PA 10.1016/0009-2509(78)85196-3 10.1029/96WR03947 10.1021/es049568o 10.1029/93WR02883 10.1016/S0309-1708(00)00026-9 10.1029/2006WR005365 10.1029/2000WR900389 10.1029/2008WR007157 10.1029/WR025i007p01575 10.1016/0022-1694(89)90275-8 10.2136/sssaj1975.03615995003900020007x 10.1029/92WR00914 10.1016/j.jhydrol.2006.04.020 10.1029/2003WR002179 10.1029/95WR01330 10.2136/sssaj1974.03615995003800060014x 10.1029/92WR00669 10.1029/2006WR004923 10.1029/WR025i010p02227 10.1029/90WR02105 |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. Copyright 2011 by the American Geophysical Union |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: Copyright 2011 by the American Geophysical Union |
DBID | BSCLL AAYXX CITATION 3V. 7QH 7QL 7T7 7TG 7U9 7UA 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ GUQSH H94 H96 HCIFZ K60 K6~ KL. KR7 L.- L.G L6V M0C M2O M7N M7S MBDVC P64 PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1029/2010WR010094 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ABI/INFORM Global Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database Virology and AIDS Abstracts ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Business Collection Aqualine Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1944-7973 |
EndPage | n/a |
ExternalDocumentID | 2839019251 10_1029_2010WR010094 WRCR12961 ark_67375_WNG_23ZDS0GF_W |
Genre | article |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANLZ AASGY AAXRX AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AEUYN AFWVQ AAYXX ADXHL AETEA AGQPQ CITATION GROUPED_DOAJ PHGZM PHGZT 7QH 7QL 7T7 7TG 7U9 7UA 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H94 H96 KL. KR7 L.- L.G M7N MBDVC P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U WIN |
ID | FETCH-LOGICAL-a3681-2aa90fdde10739ecd9b3f4a1e7f5cd4cf80f51a296e588339e2c463f753ee03f3 |
IEDL.DBID | BENPR |
ISSN | 0043-1397 |
IngestDate | Wed Aug 13 09:16:44 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Tue Jul 01 01:34:07 EDT 2025 Wed Jan 22 16:41:13 EST 2025 Wed Oct 30 09:51:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3681-2aa90fdde10739ecd9b3f4a1e7f5cd4cf80f51a296e588339e2c463f753ee03f3 |
Notes | istex:3E86B1A34BF17033F6F16A02198363D966750CF7 ark:/67375/WNG-23ZDS0GF-W Tab-delimited Table 1.Tab-delimited Table 2. ArticleID:2010WR010094 SourceType-Scholarly Journals-1 content type line 14 |
PQID | 1237124493 |
PQPubID | 105507 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1237124493 crossref_primary_10_1029_2010WR010094 crossref_citationtrail_10_1029_2010WR010094 wiley_primary_10_1029_2010WR010094_WRCR12961 istex_primary_ark_67375_WNG_23ZDS0GF_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2011 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: May 2011 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Water resources research |
PublicationTitleAlternate | Water Resour. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Nimah, M. N., and R. J. Hanks (1973), Model for estimating soil water, plant and atmospheric relationships, 1, Description and sensitivity, Soil Sci. Soc. Am. Proc., 37, 522-527. Maxwell, R., W. E. Kastenberg, and Y. Rubin (1999), A methodology to integrate site characterization information into groundwater-driven health risk assessment, Water Resour. Res., 35(9), 2841-2855, doi:10.1029/1999WR900103. Russo, D. (1998), Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation, Water Resour. Res., 34(4), 569-581, doi:10.1029/97WR03619. Zaidel, J., and D. Russo (1992), Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils, Water Resour. Res., 28(9), 2285-2295, doi:10.1029/92WR00914. Perkins, T. K., and O. C. Johnston (1963), A review of diffusion and dispersion in porous media, Soc. Petrol. Eng. J., 3, 70-84. Mishra, S., J. C. Parker, and N. Singhal (1989), Estimation of soil hydraulic properties and their uncertainties from particle size distribution data, J. Hydrol., 108, 1-18. Kreft, A., and A. Zuber (1978), On the physical meaning if the dispersion equation and its solutions for different initial and boundary conditions, Chem. Eng. Sci., 33, 1471-1480. Zimmerman, D. A., et al. (1998), A comparison of seven geostatistically based inverse approaches to estimate transmisivities for modeling advective transport by groundwater flow, Water Resour. Res., 34, 1373-1414, doi:10.1029/98WR00003. Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York. Foussereau, X., W. D. Graham, G. A. Akpoji, G. Destouni, and P. S. C. Rao (2001), Solute transport through a heterogeneous coupled vadose-saturated zone system with temporally random rainfall, Water Resour. Res., 37(6), 1577-1588, doi:10.1029/2000WR900389. Polmann, D. J., D. Mclaughlin, S. Luis, L. W. Gelhar, and R. Ababou (1991), Stochastic modeling of large-scale flow in heterogeneous unsaturated soils, Water Resour. Res., 27(7), 1447-1458, doi:10.1029/91WR00762. Berglund, S., and V. Cvetkovic (1995), Pump and treat remediation of heterogeneous aquifers: Effects of rate-limited mass transfer, Ground Water, 33, 675-685, doi:10.1111/j.1745-6584.1995.tb00324.x. Fiori, A., and D. Russo (2008), Travel time distribution in a hillslope: Insight from numerical simulations, Water Resour. Res., 44, W12426, doi:10.1029/2008WR007135. Russo, D., J. Zaidel, and A. Laufer (2001), Numerical analysis of flow and transport in a combined heterogeneous vadose zone-groundwater system, Adv. Water Resour., 24, 49-62. Andričević, R., and V. Cvetković (1996), Evaluation of risk from contaminants migrating by groundwater, Water Resour. Res., 32(3), 611-621, doi:10.1029/95WR03530. Neuman, S. P., R. A. Feddes, and E. Bresler (1975), Finite element analysis of two-dimensional flow in soils considering water uptake by roots, 1, Theory, Soil Sci. Soc. Am. Proc., 39, 224-230. Russo, D., and A. Fiori (2008), Equivalent vadose zone steady-state flow, an assessment of its capability to predict transport in a realistic combined vadose zone-groundwater flow system, Water Resour. Res., 44, W09436, doi:10.1029/2007WR006170. Tompson, A. F. B., R. Ababou, and L. W. Gelhar (1989), Implementation of the three-dimensional turning bands random field generator, Water Resour. Res., 25(10), 2227-2243, doi:10.1029/WR025i010p02227. Salvucci, G. D., and D. Entekhabi (1994), Equivalent steady soil moisture profile and the time compression approximation in water balance modeling, Water Resour. Res., 30(10), 2737-2749, doi:10.1029/94WR00948. Winter, C. L., and D. M. Tartakovsky (2008), A reduced complexity model for probabilistic risk assessment of groundwater contamination, Water Resour. Res., 44, W06501, doi:10.1029/2007WR006599. Russo, D., J. Zaidel, and A. Laufer (1994), Stochastic analysis of solute transport in partially saturated heterogeneous soil: 1. Numerical experiments, Water Resour. Res., 30(3), 769-779, doi:10.1029/93WR02883. Jury, W. A., and G. Sposito (1985), Field calibration and validation of solute transport models for the unsaturated zone, Soil Sci. Soc. Am. J., 49, 1331-1441. Mood, A. M., and F. A. Graybill (1963), Introduction to the Theory of Statistics, McGraw-Hill, New York. Destouni, G., and W. Graham (1995), Solute transport through an integrated heterogeneous soil-groundwater system, Water Resour. Res., 31(8), 1935-1944, doi:10.1029/95WR01330. McGuire, K. J., and J. J. McDonnell (2006), A review and evaluation of catchment transit time modelling, J. Hydrol., 330, 543-563. Russo, D., I. Russo, and A. Laufer (1997), On the spatial variability of parameters of the unsaturated hydraulic conductivity, Water Resour. Res., 33(5), 947-956, doi:10.1029/96WR03947. Russo, D., J. Zaidel, A. Fiori, and A. Laufer (2006), Numerical analysis of flow and transport from a multiple-source system in a partially saturated heterogeneous soil, Water Resour. Res., 42, W06415, doi:10.1029/2006WR004923. van Genuchten, M. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898. Bellin, A., and Y. Rubin (2004), On the use of peak concentration arrival times for the inference of hydrogeological parameters, Water Resour. Res., 40, W07401, doi:10.1029/2003WR002179. Russo, D., J. Zaidel, and A. Laufer (1998), Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil, Water Resour. Res., 34(6), 1451-1468, doi:10.1029/98WR00435. Bresler, E. (1987), Application of conceptual model to irrigation requirements and salt tolerance of crops, Soil Sci. Soc. Am. J., 51, 788-793. Dagan, G. (1989), Flow and Transport in Porous Formations, Springer-Verlag, Berlin. Mein, R. G., and D. A. Farrell (1974), Determination of wetting front suction in the Green-Ampt equation, Soil Sci. Soc. Am. Proc., 38, 872-776. Feddes, R. E., E. Bresler, and S. P. Neuman (1974), Field test of a modified numerical model for water uptake by root systems, Water Resour. Res., 10(6), 1199-1206, doi:10.1029/WR010i006p01199. Tseng, P.-H., and W. A. Jury (1994), Comparison of transfer function and deterministic modeling of area-averaged solute transport in heterogeneous field, Water Resour. Res., 30(7), 2051-2063, doi:10.1029/94WR00752. Butters, G. L., W. A. Jury, and F. F. Ernst (1989), Field scale transport of bromide in an unsaturated soil: 1. Experimental methodology and results, Water Resour. Res., 25, 1575-1581, doi:10.1029/WR025i007p01575. Russo, D., and A. Fiori (2009), Stochastic analysis of transport in a combined heterogeneous vadose zone-groundwater flow system, Water Resour. Res., 45, W03426, doi:10.1029/2008WR007157. Russo, D. (1991), Stochastic analysis of vadose-zone solute transport in a vertical cross section of heterogeneous soil during nonsteady water flow, Water Resour. Res., 27(3), 267-283, doi:10.1029/90WR02105. Russo, D., and M. Bouton (1992), Statistical analysis of spatial variability in unsaturated flow parameters, Water Resour. Res., 28(7), 1911-1925, doi:10.1029/92WR00669. White, R. E., J. S. Dyson, R. A. Haigh, W. A. Jury, and G. Sposito (1986), A transfer function model of solute transport through soil: 2. Illustrative applications, Water Resour. Res., 22(2), 248-254, doi:10.1029/WR022i002p00248. Rodhe, A., L. Nyberg, and K. Bishop (1996), Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input, Water Resour. Res., 32(12), 3497-3511, doi:10.1029/95WR01806. Fiori, A., and D. Russo (2007), Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties, Water Resour. Res., 43, W07445, doi:10.1029/2006WR005365. 1995; 31 1974; 38 2009; 45 2004; 40 1987; 51 1974; 10 1978; 33 1975; 39 1973; 37 1995; 33 1980; 44 2006; 330 1972 2001; 24 1989; 25 1996; 32 1985; 49 1991; 27 2006; 42 1989; 108 1997; 33 2004; 38 1986; 22 1972; 709 1963; 3 1999; 35 1992; 28 1963 2001; 37 2008; 44 2007; 43 1998; 34 1994; 30 1989 1988 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 Mood A. M. (e_1_2_8_22_1) 1963 e_1_2_8_27_1 Mantell A. (e_1_2_8_17_1) 1972 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Bear J. (e_1_2_8_4_1) 1972 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – reference: Russo, D., J. Zaidel, and A. Laufer (1998), Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil, Water Resour. Res., 34(6), 1451-1468, doi:10.1029/98WR00435. – reference: Russo, D., J. Zaidel, A. Fiori, and A. Laufer (2006), Numerical analysis of flow and transport from a multiple-source system in a partially saturated heterogeneous soil, Water Resour. Res., 42, W06415, doi:10.1029/2006WR004923. – reference: Mishra, S., J. C. Parker, and N. Singhal (1989), Estimation of soil hydraulic properties and their uncertainties from particle size distribution data, J. Hydrol., 108, 1-18. – reference: Russo, D. (1991), Stochastic analysis of vadose-zone solute transport in a vertical cross section of heterogeneous soil during nonsteady water flow, Water Resour. Res., 27(3), 267-283, doi:10.1029/90WR02105. – reference: Perkins, T. K., and O. C. Johnston (1963), A review of diffusion and dispersion in porous media, Soc. Petrol. Eng. J., 3, 70-84. – reference: Dagan, G. (1989), Flow and Transport in Porous Formations, Springer-Verlag, Berlin. – reference: Mein, R. G., and D. A. Farrell (1974), Determination of wetting front suction in the Green-Ampt equation, Soil Sci. Soc. Am. Proc., 38, 872-776. – reference: Bellin, A., and Y. Rubin (2004), On the use of peak concentration arrival times for the inference of hydrogeological parameters, Water Resour. Res., 40, W07401, doi:10.1029/2003WR002179. – reference: Fiori, A., and D. Russo (2007), Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties, Water Resour. Res., 43, W07445, doi:10.1029/2006WR005365. – reference: van Genuchten, M. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898. – reference: Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York. – reference: Fiori, A., and D. Russo (2008), Travel time distribution in a hillslope: Insight from numerical simulations, Water Resour. Res., 44, W12426, doi:10.1029/2008WR007135. – reference: McGuire, K. J., and J. J. McDonnell (2006), A review and evaluation of catchment transit time modelling, J. Hydrol., 330, 543-563. – reference: Zaidel, J., and D. Russo (1992), Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils, Water Resour. Res., 28(9), 2285-2295, doi:10.1029/92WR00914. – reference: Mood, A. M., and F. A. Graybill (1963), Introduction to the Theory of Statistics, McGraw-Hill, New York. – reference: Tompson, A. F. B., R. Ababou, and L. W. Gelhar (1989), Implementation of the three-dimensional turning bands random field generator, Water Resour. Res., 25(10), 2227-2243, doi:10.1029/WR025i010p02227. – reference: Rodhe, A., L. Nyberg, and K. Bishop (1996), Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input, Water Resour. Res., 32(12), 3497-3511, doi:10.1029/95WR01806. – reference: Russo, D., I. Russo, and A. Laufer (1997), On the spatial variability of parameters of the unsaturated hydraulic conductivity, Water Resour. Res., 33(5), 947-956, doi:10.1029/96WR03947. – reference: Kreft, A., and A. Zuber (1978), On the physical meaning if the dispersion equation and its solutions for different initial and boundary conditions, Chem. Eng. Sci., 33, 1471-1480. – reference: Zimmerman, D. A., et al. (1998), A comparison of seven geostatistically based inverse approaches to estimate transmisivities for modeling advective transport by groundwater flow, Water Resour. Res., 34, 1373-1414, doi:10.1029/98WR00003. – reference: Butters, G. L., W. A. Jury, and F. F. Ernst (1989), Field scale transport of bromide in an unsaturated soil: 1. Experimental methodology and results, Water Resour. Res., 25, 1575-1581, doi:10.1029/WR025i007p01575. – reference: Andričević, R., and V. Cvetković (1996), Evaluation of risk from contaminants migrating by groundwater, Water Resour. Res., 32(3), 611-621, doi:10.1029/95WR03530. – reference: Berglund, S., and V. Cvetkovic (1995), Pump and treat remediation of heterogeneous aquifers: Effects of rate-limited mass transfer, Ground Water, 33, 675-685, doi:10.1111/j.1745-6584.1995.tb00324.x. – reference: Feddes, R. E., E. Bresler, and S. P. Neuman (1974), Field test of a modified numerical model for water uptake by root systems, Water Resour. Res., 10(6), 1199-1206, doi:10.1029/WR010i006p01199. – reference: Winter, C. L., and D. M. Tartakovsky (2008), A reduced complexity model for probabilistic risk assessment of groundwater contamination, Water Resour. Res., 44, W06501, doi:10.1029/2007WR006599. – reference: Tseng, P.-H., and W. A. Jury (1994), Comparison of transfer function and deterministic modeling of area-averaged solute transport in heterogeneous field, Water Resour. Res., 30(7), 2051-2063, doi:10.1029/94WR00752. – reference: Jury, W. A., and G. Sposito (1985), Field calibration and validation of solute transport models for the unsaturated zone, Soil Sci. Soc. Am. J., 49, 1331-1441. – reference: Russo, D., J. Zaidel, and A. Laufer (2001), Numerical analysis of flow and transport in a combined heterogeneous vadose zone-groundwater system, Adv. Water Resour., 24, 49-62. – reference: Russo, D., and A. Fiori (2008), Equivalent vadose zone steady-state flow, an assessment of its capability to predict transport in a realistic combined vadose zone-groundwater flow system, Water Resour. Res., 44, W09436, doi:10.1029/2007WR006170. – reference: Destouni, G., and W. Graham (1995), Solute transport through an integrated heterogeneous soil-groundwater system, Water Resour. Res., 31(8), 1935-1944, doi:10.1029/95WR01330. – reference: White, R. E., J. S. Dyson, R. A. Haigh, W. A. Jury, and G. Sposito (1986), A transfer function model of solute transport through soil: 2. Illustrative applications, Water Resour. Res., 22(2), 248-254, doi:10.1029/WR022i002p00248. – reference: Bresler, E. (1987), Application of conceptual model to irrigation requirements and salt tolerance of crops, Soil Sci. Soc. Am. J., 51, 788-793. – reference: Russo, D., and M. Bouton (1992), Statistical analysis of spatial variability in unsaturated flow parameters, Water Resour. Res., 28(7), 1911-1925, doi:10.1029/92WR00669. – reference: Russo, D., and A. Fiori (2009), Stochastic analysis of transport in a combined heterogeneous vadose zone-groundwater flow system, Water Resour. Res., 45, W03426, doi:10.1029/2008WR007157. – reference: Salvucci, G. D., and D. Entekhabi (1994), Equivalent steady soil moisture profile and the time compression approximation in water balance modeling, Water Resour. Res., 30(10), 2737-2749, doi:10.1029/94WR00948. – reference: Russo, D., J. Zaidel, and A. Laufer (1994), Stochastic analysis of solute transport in partially saturated heterogeneous soil: 1. Numerical experiments, Water Resour. Res., 30(3), 769-779, doi:10.1029/93WR02883. – reference: Neuman, S. P., R. A. Feddes, and E. Bresler (1975), Finite element analysis of two-dimensional flow in soils considering water uptake by roots, 1, Theory, Soil Sci. Soc. Am. Proc., 39, 224-230. – reference: Nimah, M. N., and R. J. Hanks (1973), Model for estimating soil water, plant and atmospheric relationships, 1, Description and sensitivity, Soil Sci. Soc. Am. Proc., 37, 522-527. – reference: Polmann, D. J., D. Mclaughlin, S. Luis, L. W. Gelhar, and R. Ababou (1991), Stochastic modeling of large-scale flow in heterogeneous unsaturated soils, Water Resour. Res., 27(7), 1447-1458, doi:10.1029/91WR00762. – reference: Russo, D. (1998), Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation, Water Resour. Res., 34(4), 569-581, doi:10.1029/97WR03619. – reference: Foussereau, X., W. D. Graham, G. A. Akpoji, G. Destouni, and P. S. C. Rao (2001), Solute transport through a heterogeneous coupled vadose-saturated zone system with temporally random rainfall, Water Resour. Res., 37(6), 1577-1588, doi:10.1029/2000WR900389. – reference: Maxwell, R., W. E. Kastenberg, and Y. Rubin (1999), A methodology to integrate site characterization information into groundwater-driven health risk assessment, Water Resour. Res., 35(9), 2841-2855, doi:10.1029/1999WR900103. – volume: 30 start-page: 2051 issue: 7 year: 1994 end-page: 2063 article-title: Comparison of transfer function and deterministic modeling of area‐averaged solute transport in heterogeneous field publication-title: Water Resour. Res. – volume: 32 start-page: 611 issue: 3 year: 1996 end-page: 621 article-title: Evaluation of risk from contaminants migrating by groundwater publication-title: Water Resour. Res. – volume: 35 start-page: 2841 issue: 9 year: 1999 end-page: 2855 article-title: A methodology to integrate site characterization information into groundwater‐driven health risk assessment publication-title: Water Resour. Res. – volume: 33 start-page: 947 issue: 5 year: 1997 end-page: 956 article-title: On the spatial variability of parameters of the unsaturated hydraulic conductivity publication-title: Water Resour. Res. – volume: 44 start-page: 892 year: 1980 end-page: 898 article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – volume: 25 start-page: 2227 issue: 10 year: 1989 end-page: 2243 article-title: Implementation of the three‐dimensional turning bands random field generator publication-title: Water Resour. Res. – year: 1989 – volume: 43 year: 2007 article-title: Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties publication-title: Water Resour. Res. – volume: 3 start-page: 70 year: 1963 end-page: 84 article-title: A review of diffusion and dispersion in porous media publication-title: Soc. Petrol. Eng. J. – volume: 28 start-page: 2285 issue: 9 year: 1992 end-page: 2295 article-title: Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils publication-title: Water Resour. Res. – volume: 44 year: 2008 article-title: Equivalent vadose zone steady‐state flow, an assessment of its capability to predict transport in a realistic combined vadose zone‐groundwater flow system publication-title: Water Resour. Res. – volume: 39 start-page: 224 year: 1975 end-page: 230 article-title: Finite element analysis of two‐dimensional flow in soils considering water uptake by roots, 1, Theory publication-title: Soil Sci. Soc. Am. Proc. – volume: 34 start-page: 569 issue: 4 year: 1998 end-page: 581 article-title: Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation: Effects of variability in water saturation publication-title: Water Resour. Res. – volume: 33 start-page: 1471 year: 1978 end-page: 1480 article-title: On the physical meaning if the dispersion equation and its solutions for different initial and boundary conditions publication-title: Chem. Eng. Sci. – volume: 28 start-page: 1911 issue: 7 year: 1992 end-page: 1925 article-title: Statistical analysis of spatial variability in unsaturated flow parameters publication-title: Water Resour. Res. – volume: 30 start-page: 2737 issue: 10 year: 1994 end-page: 2749 article-title: Equivalent steady soil moisture profile and the time compression approximation in water balance modeling publication-title: Water Resour. Res. – volume: 330 start-page: 543 year: 2006 end-page: 563 article-title: A review and evaluation of catchment transit time modelling publication-title: J. Hydrol. – volume: 38 start-page: 872 year: 1974 end-page: 776 article-title: Determination of wetting front suction in the Green‐Ampt equation publication-title: Soil Sci. Soc. Am. Proc. – volume: 37 start-page: 522 year: 1973 end-page: 527 article-title: Model for estimating soil water, plant and atmospheric relationships, 1, Description and sensitivity publication-title: Soil Sci. Soc. Am. Proc. – volume: 51 start-page: 788 year: 1987 end-page: 793 article-title: Application of conceptual model to irrigation requirements and salt tolerance of crops publication-title: Soil Sci. Soc. Am. J. – volume: 40 year: 2004 article-title: On the use of peak concentration arrival times for the inference of hydrogeological parameters publication-title: Water Resour. Res. – volume: 42 year: 2006 article-title: Numerical analysis of flow and transport from a multiple‐source system in a partially saturated heterogeneous soil publication-title: Water Resour. Res. – volume: 45 year: 2009 article-title: Stochastic analysis of transport in a combined heterogeneous vadose zone‐groundwater flow system publication-title: Water Resour. Res. – volume: 33 start-page: 675 year: 1995 end-page: 685 article-title: Pump and treat remediation of heterogeneous aquifers: Effects of rate‐limited mass transfer publication-title: Ground Water – volume: 31 start-page: 1935 issue: 8 year: 1995 end-page: 1944 article-title: Solute transport through an integrated heterogeneous soil‐groundwater system publication-title: Water Resour. Res. – volume: 32 start-page: 3497 issue: 12 year: 1996 end-page: 3511 article-title: Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input publication-title: Water Resour. Res. – volume: 34 start-page: 1451 issue: 6 year: 1998 end-page: 1468 article-title: Numerical analysis of flow and transport in a three‐dimensional partially saturated heterogeneous soil publication-title: Water Resour. Res. – volume: 24 start-page: 49 year: 2001 end-page: 62 article-title: Numerical analysis of flow and transport in a combined heterogeneous vadose zone‐groundwater system publication-title: Adv. Water Resour. – volume: 25 start-page: 1575 year: 1989 end-page: 1581 article-title: Field scale transport of bromide in an unsaturated soil: 1. Experimental methodology and results publication-title: Water Resour. Res. – year: 1963 – volume: 30 start-page: 769 issue: 3 year: 1994 end-page: 779 article-title: Stochastic analysis of solute transport in partially saturated heterogeneous soil: 1. Numerical experiments publication-title: Water Resour. Res. – volume: 709 year: 1972 – volume: 38 start-page: 5642 year: 2004 end-page: 5648 – volume: 37 start-page: 1577 issue: 6 year: 2001 end-page: 1588 article-title: Solute transport through a heterogeneous coupled vadose‐saturated zone system with temporally random rainfall publication-title: Water Resour. Res. – volume: 44 year: 2008 article-title: A reduced complexity model for probabilistic risk assessment of groundwater contamination publication-title: Water Resour. Res. – year: 1988 – volume: 108 start-page: 1 year: 1989 end-page: 18 article-title: Estimation of soil hydraulic properties and their uncertainties from particle size distribution data publication-title: J. Hydrol. – volume: 44 year: 2008 article-title: Travel time distribution in a hillslope: Insight from numerical simulations publication-title: Water Resour. Res. – year: 1972 – volume: 49 start-page: 1331 year: 1985 end-page: 1441 article-title: Field calibration and validation of solute transport models for the unsaturated zone publication-title: Soil Sci. Soc. Am. J. – volume: 34 start-page: 1373 year: 1998 end-page: 1414 article-title: A comparison of seven geostatistically based inverse approaches to estimate transmisivities for modeling advective transport by groundwater flow publication-title: Water Resour. Res. – volume: 10 start-page: 1199 issue: 6 year: 1974 end-page: 1206 article-title: Field test of a modified numerical model for water uptake by root systems publication-title: Water Resour. Res. – volume: 27 start-page: 267 issue: 3 year: 1991 end-page: 283 article-title: Stochastic analysis of vadose‐zone solute transport in a vertical cross section of heterogeneous soil during nonsteady water flow publication-title: Water Resour. Res. – volume: 22 start-page: 248 issue: 2 year: 1986 end-page: 254 article-title: A transfer function model of solute transport through soil: 2. Illustrative applications publication-title: Water Resour. Res. – volume: 27 start-page: 1447 issue: 7 year: 1991 end-page: 1458 article-title: Stochastic modeling of large‐scale flow in heterogeneous unsaturated soils publication-title: Water Resour. Res. – ident: e_1_2_8_29_1 doi: 10.1029/97WR03619 – ident: e_1_2_8_9_1 doi: 10.1007/978-3-642-75015-1 – ident: e_1_2_8_26_1 doi: 10.1029/91WR00762 – ident: e_1_2_8_42_1 doi: 10.1029/WR022i002p00248 – ident: e_1_2_8_3_1 doi: 10.1029/95WR03530 – ident: e_1_2_8_31_1 doi: 10.1029/2007WR006170 – ident: e_1_2_8_15_1 doi: 10.2136/sssaj1985.03615995004900060002x – ident: e_1_2_8_46_1 doi: 10.1029/98WR00003 – ident: e_1_2_8_18_1 doi: 10.1029/1999WR900103 – ident: e_1_2_8_38_1 doi: 10.1029/94WR00948 – ident: e_1_2_8_27_1 doi: 10.1029/95WR01806 – ident: e_1_2_8_35_1 doi: 10.1029/98WR00435 – ident: e_1_2_8_6_1 doi: 10.1111/j.1745‐6584.1995.tb00324.x – ident: e_1_2_8_41_1 doi: 10.2136/sssaj1980.03615995004400050002x – ident: e_1_2_8_11_1 doi: 10.1029/WR010i006p01199 – ident: e_1_2_8_43_1 doi: 10.1029/2007WR006599 – ident: e_1_2_8_24_1 doi: 10.2136/sssaj1973.03615995003700040018x – ident: e_1_2_8_13_1 doi: 10.1029/2008WR007135 – ident: e_1_2_8_7_1 doi: 10.2136/sssaj1987.03615995005100030039x – ident: e_1_2_8_40_1 doi: 10.1029/94WR00752 – ident: e_1_2_8_25_1 doi: 10.2118/480-PA – ident: e_1_2_8_16_1 doi: 10.1016/0009-2509(78)85196-3 – ident: e_1_2_8_34_1 doi: 10.1029/96WR03947 – ident: e_1_2_8_44_1 doi: 10.1021/es049568o – ident: e_1_2_8_33_1 doi: 10.1029/93WR02883 – ident: e_1_2_8_2_1 – ident: e_1_2_8_36_1 doi: 10.1016/S0309-1708(00)00026-9 – ident: e_1_2_8_12_1 doi: 10.1029/2006WR005365 – ident: e_1_2_8_14_1 doi: 10.1029/2000WR900389 – ident: e_1_2_8_32_1 doi: 10.1029/2008WR007157 – volume-title: Introduction to the Theory of Statistics year: 1963 ident: e_1_2_8_22_1 – ident: e_1_2_8_8_1 doi: 10.1029/WR025i007p01575 – ident: e_1_2_8_21_1 doi: 10.1016/0022-1694(89)90275-8 – ident: e_1_2_8_23_1 doi: 10.2136/sssaj1975.03615995003900020007x – ident: e_1_2_8_45_1 doi: 10.1029/92WR00914 – ident: e_1_2_8_19_1 doi: 10.1016/j.jhydrol.2006.04.020 – volume-title: Dynamics of Fluids in Porous Media year: 1972 ident: e_1_2_8_4_1 – ident: e_1_2_8_5_1 doi: 10.1029/2003WR002179 – ident: e_1_2_8_10_1 doi: 10.1029/95WR01330 – ident: e_1_2_8_20_1 doi: 10.2136/sssaj1974.03615995003800060014x – ident: e_1_2_8_30_1 doi: 10.1029/92WR00669 – ident: e_1_2_8_37_1 doi: 10.1029/2006WR004923 – ident: e_1_2_8_39_1 doi: 10.1029/WR025i010p02227 – volume-title: Prelim. Rep. year: 1972 ident: e_1_2_8_17_1 – ident: e_1_2_8_28_1 doi: 10.1029/90WR02105 |
SSID | ssj0014567 |
Score | 2.0284274 |
Snippet | The transport of a conservative tracer (bromide) in a three‐dimensional, heterogeneous combined vadose zone‐groundwater flow system was analyzed through a... The transport of a conservative tracer (bromide) in a three-dimensional, heterogeneous combined vadose zone-groundwater flow system was analyzed through a... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Approximation Contamination Effective velocity Flow system Groundwater Groundwater flow Groundwater pollution Hydraulics Integrated approach Numerical analysis Partial differential equations Release dates Risk assessment Simulation Soil surfaces Soil types Solute movement Solute transport Transport processes Travel time Vadose water water flow Water table |
Title | Effect of pulse release date and soil characteristics on solute transport in a combined vadose zone-groundwater flow system: Insights from numerical simulations |
URI | https://api.istex.fr/ark:/67375/WNG-23ZDS0GF-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010WR010094 https://www.proquest.com/docview/1237124493 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZYe4ALGr9EYUzvAFzAmhMnTrwLGmPtQKJChakTF8uOba2iJKVpGeOv4U_FTpyyHtglysFyIr_n977n9_w-hJ5LGWWUKYlZbBhOpCU4tyrFljOtbGFp2nTg-zhmp2fJh_P0PBy41aGssrOJjaHWVeHPyA-chc28L-L0zeIH9qxRPrsaKDR2UN-Z4Dzvof7bk_GnySaP4OBB1uWYPdYJpe8k5gc-DTyduAfhyZZT6vv1_bWFOK_j1sbxDHfR3YAY4agV8T10y5T30e3uQnHt3gOR-cXVA_Sn7UYMlYXF2nk98JwozlGBD-xBlhrqajaHYrtNM1QlNDpoYNU1O4dZCRLc2rjQ2Wj4KXXlpvldlQb7myClvnQzLsHOq0to20Efwvuy9rF-Df7SCpTrNhs0h3r2PbCE1Q_R2fDky_EpDiQMWFKWRziWkhPrjGDkc3qm0FxRm8jIZDYtdFLYnNg0kjFnJvXExdzERcKodWGQMYRa-gj1SvdvjxFkRaK4ZhnRiiZac66M4ZoqEhubcaMH6FUnBVGEDuWeKGMumkx5zMV1mQ3Qi83oRduZ4z_jXjYC3QySy2--mi1LxXQ8EjH9-u4zGQ3FdID2OomLsJFr8U_tBuh1owU3fkxMJ8cTB6FY9OTm2Z6iO-3ptC-d3EO91XJtnjl4s1L7aCcfjvaDJv8FkFj62Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAuiKcILTAHygWs2rv2OouEEGrJg7Y5hFapuCxr766IGuwQJ4Tya_gF_EZ2_QjNgd56sSx5Nbb0jWdmdx4fwAspg5iyRHqMaOaF0vhe2ySRZzhTiUkNjcoJfCcD1jsLP55H5xvwp-mFcWWVjU0sDbXKU3dGvm8tbOx8Eafvpt89xxrlsqsNhUalFkf6cmm3bMXb_qHFd4-QzofTg55Xswp4krJ24BEpuW_sXx24JJVOFU-oCWWgYxOlKkxN2zdRIAlnOnJMvFyTNGTU2Lhea58aauXegq3QPnGbvXanu8pa2GAkbjLaLrKqC-19wvdd0nk0tBefh2sucMuh-XMtvr0aJZdurnMX7tTxKb6vFOoebOjsPmw37cuFva9p079ePoDf1exjzA1OF9bHomNgsW4R3TECykxhkY8nmK4PhcY8w1LjNc6b0eo4zlCiRcJu1LXCH1LlVsyvPNOe6zvJ1NJKnKGZ5Eushk-_wX5WuJOFAl2LDGaLKvc0wWL8reYkKx7C2Y2A8wg2M_ttjwHjNEy4YrGvEhoqxXmiNVc08Yk2MdeqBa8aFERaz0N3tBwTUeblCRdXMWvB3mr1tJoD8p91L0tAV4vk7MLVzsWRGA26gtDPh5_8bkeMWrDbIC5qs1GIf0regtelFlz7MjEaHgxtwMaCJ9dLew7bvdOTY3HcHxztwO3qXNwVbe7C5ny20E9tYDVPnpXajPDlpn-fv8C4NgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAIuiKcILTAHygWs2Lv2OlupQtA0bShEVaBK1YtZe3dFRGqHOCGUX8Pv4Nex60doDvTWi-XDamzpm535ducF8EIIL6QsFg4jijm-0K7T0XHgaM5krBNNg6ID38cBOzzx358Gpxvwp66FsWmVtU0sDLXMEntH3jYWNrS-iNO2rtIijru9N9Pvjp0gZSOt9TiNUkWO1MXSHN_y3X7XYL1NSG__896hU00YcARlHc8hQnBXmx3u2YCVSiSPqfaFp0IdJNJPdMfVgScIZyqwU3m5IonPqDYcXymXamrk3oBmaE9FDWi-2x8cD1cxDENNwjq-bXlWlXbvEt62IejR0Dxc7q85xKbF9uca273MmQun17sLdyq2im9L9boHGyq9D7fqYubcvFdD1L9ePIDfZSdkzDROF8bjop3HYpwk2ksFFKnEPBtPMFlvEY1ZioX-K5zXjdZxnKJAg4s5tiuJP4TMjJhfWaocW4WSyqWROEM9yZZYtqLewX6a23uGHG3BDKaLMhI1wXx8Xk0oyx_CybXA8wgaqfm3x4Bh4sdcstCVMfWl5DxWiksau0TpkCvZglc1ClFSdUe3QzomURGlJzy6jFkLtlerp2VXkP-se1kAulokZt9sJl0YRKPBQUToWfeTe9CLRi3YqhGPKiOSR_9UvgWvCy248mPRaLg3NPSNeU-ulvYcbpqtE33oD4424XZ5SW4zOLegMZ8t1FPDsubxs0qdEb5c9w76C0wMO5Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+pulse+release+date+and+soil+characteristics+on+solute+transport+in+a+combined+vadose+zone-groundwater+flow+system%3A+Insights+from+numerical+simulations&rft.jtitle=Water+resources+research&rft.au=Russo%2C+David&rft.date=2011-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=47&rft.issue=5&rft_id=info:doi/10.1029%2F2010WR010094&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2839019251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |