Single Atomic Vacancy Catalysis

Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surp...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 9; pp. 9958 - 9964
Main Authors Yang, Jieun, Wang, Yan, Lagos, Maureen J, Manichev, Viacheslav, Fullon, Raymond, Song, Xiuju, Voiry, Damien, Chakraborty, Sudip, Zhang, Wenjing, Batson, Philip E, Feldman, Leonard, Gustafsson, Torgny, Chhowalla, Manish
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 1014 cm–2 where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s–1 and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity.
AbstractList Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 1014 cm–2 where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s–1 and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity.
Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS . Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 10 cm where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS . Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity.
Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 x 10(14) cm(-2) where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be similar to 5 s(-1) and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of similar to 3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity.
Author Yang, Jieun
Manichev, Viacheslav
Zhang, Wenjing
Wang, Yan
Chhowalla, Manish
Chakraborty, Sudip
Batson, Philip E
Lagos, Maureen J
Song, Xiuju
Gustafsson, Torgny
Fullon, Raymond
Feldman, Leonard
Voiry, Damien
AuthorAffiliation Institute of Advanced Materials, Devices, and Nanotechnology
McMaster University
Materials Science and Engineering
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology
Institut Europeen des Membranes
Materials Science and Metallurgy
Department of Physics and Astronomy
Rutgers University
Indian Institute of Technology (IIT) Indore
Department of Materials Science and Engineering
Department of Chemistry and Chemical Biology
Discipline of Physics
AuthorAffiliation_xml – name: McMaster University
– name: Discipline of Physics
– name: Department of Chemistry and Chemical Biology
– name: Indian Institute of Technology (IIT) Indore
– name: Department of Physics and Astronomy
– name: Institut Europeen des Membranes
– name: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology
– name: Materials Science and Metallurgy
– name: Rutgers University
– name: Materials Science and Engineering
– name: Institute of Advanced Materials, Devices, and Nanotechnology
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Jieun
  orcidid: 0000-0001-7053-388X
  surname: Yang
  fullname: Yang, Jieun
  organization: Materials Science and Metallurgy
– sequence: 2
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Materials Science and Metallurgy
– sequence: 3
  givenname: Maureen J
  surname: Lagos
  fullname: Lagos, Maureen J
  organization: McMaster University
– sequence: 4
  givenname: Viacheslav
  surname: Manichev
  fullname: Manichev, Viacheslav
  organization: Department of Physics and Astronomy
– sequence: 5
  givenname: Raymond
  surname: Fullon
  fullname: Fullon, Raymond
  organization: Rutgers University
– sequence: 6
  givenname: Xiuju
  orcidid: 0000-0001-9777-7016
  surname: Song
  fullname: Song, Xiuju
  organization: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology
– sequence: 7
  givenname: Damien
  orcidid: 0000-0002-1664-2839
  surname: Voiry
  fullname: Voiry, Damien
  organization: Institut Europeen des Membranes
– sequence: 8
  givenname: Sudip
  orcidid: 0000-0002-6765-2084
  surname: Chakraborty
  fullname: Chakraborty, Sudip
  organization: Indian Institute of Technology (IIT) Indore
– sequence: 9
  givenname: Wenjing
  surname: Zhang
  fullname: Zhang, Wenjing
  organization: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology
– sequence: 10
  givenname: Philip E
  surname: Batson
  fullname: Batson, Philip E
  organization: Rutgers University
– sequence: 11
  givenname: Leonard
  surname: Feldman
  fullname: Feldman, Leonard
  organization: Rutgers University
– sequence: 12
  givenname: Torgny
  surname: Gustafsson
  fullname: Gustafsson, Torgny
  organization: Rutgers University
– sequence: 13
  givenname: Manish
  surname: Chhowalla
  fullname: Chhowalla, Manish
  email: mc209@cam.ac.uk
  organization: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31398001$$D View this record in MEDLINE/PubMed
https://hal.umontpellier.fr/hal-02321715$$DView record in HAL
BookMark eNp1kM9LwzAUgINM3A89e9MdFen2krRJcxxDnTDw4A-8hTRNtaNLZtMK--_NaN3NUx7hex-Pb4wG1lmD0CWGGQaC50p7q6ybiQwSQtgJGmFBWQQp-xgc5wQP0dj7DUDCU87O0JBiKlIAPELXL6X9rMx00bhtqafvSiur99OlalS196U_R6eFqry56N8Jenu4f12uovXz49NysY4UZbyJcgoxpiYuKFEUC6FzpQTHCadpuMHEhsYsKTKdQUZzFuexiDEHrYGYFHIOdIJuO--XquSuLreq3kunSrlarOXhDwglOBh_cGBvOnZXu-_W-EZuS69NVSlrXOslIRynCaWCBXTeobp23temOLoxyENB2ReUfcGwcdXL22xr8iP_lywAdx0QNuXGtbUNXf7V_QK5N3pU
CitedBy_id crossref_primary_10_1039_D2TA06105H
crossref_primary_10_1039_D3TA03788F
crossref_primary_10_1021_acs_inorgchem_2c02247
crossref_primary_10_1002_cphc_202200013
crossref_primary_10_1021_acs_jpcc_2c03609
crossref_primary_10_1039_D3TA04947G
crossref_primary_10_1002_advs_202200700
crossref_primary_10_1002_aelm_202001219
crossref_primary_10_1016_j_pnsc_2023_12_010
crossref_primary_10_1039_D2EE02151J
crossref_primary_10_1002_smm2_1234
crossref_primary_10_1021_acsnano_9b07763
crossref_primary_10_1016_j_mtener_2022_100976
crossref_primary_10_1016_j_cej_2020_127028
crossref_primary_10_1002_smtd_202400158
crossref_primary_10_1016_j_ijhydene_2022_11_273
crossref_primary_10_1021_acs_chemrev_3c00711
crossref_primary_10_1021_acsenergylett_2c02599
crossref_primary_10_1016_j_mattod_2020_02_021
crossref_primary_10_1016_j_cej_2023_141858
crossref_primary_10_1039_C9NR09326E
crossref_primary_10_1016_j_checat_2024_100951
crossref_primary_10_1039_D3MH00462G
crossref_primary_10_1002_adma_202206576
crossref_primary_10_1038_s41467_022_29929_7
crossref_primary_10_1038_s44160_024_00501_z
crossref_primary_10_1088_1402_4896_ad5233
crossref_primary_10_1039_D2TA04006A
crossref_primary_10_1021_acs_jpclett_9b02437
crossref_primary_10_1021_acsami_4c03546
crossref_primary_10_1021_acs_chemrev_1c00505
crossref_primary_10_1002_aenm_202101181
crossref_primary_10_1002_apxr_202200060
crossref_primary_10_1021_jacs_9b12113
crossref_primary_10_1016_j_apsusc_2022_155839
crossref_primary_10_1007_s12274_022_4297_3
crossref_primary_10_1038_s41467_024_44840_z
crossref_primary_10_1016_j_elecom_2023_107563
crossref_primary_10_3390_ijms232415608
crossref_primary_10_1088_2516_1083_ac9eff
crossref_primary_10_1088_1361_6528_abd49f
crossref_primary_10_1002_cssc_202200191
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1039_D2QM01166B
crossref_primary_10_1039_D3NA00363A
crossref_primary_10_1016_j_ijhydene_2023_06_107
crossref_primary_10_1021_acsomega_2c06524
crossref_primary_10_1016_j_jelechem_2022_116270
crossref_primary_10_1002_cey2_263
crossref_primary_10_1021_acs_jpclett_0c00710
crossref_primary_10_1557_s43578_022_00601_6
crossref_primary_10_1002_smtd_202201529
crossref_primary_10_1021_acscatal_9b04217
crossref_primary_10_1021_acs_jpclett_2c02796
crossref_primary_10_1039_D3EE04457B
crossref_primary_10_1016_j_jhazmat_2022_128215
crossref_primary_10_1002_adma_202304808
crossref_primary_10_1039_C9CS00601J
crossref_primary_10_1039_D0TA05326K
crossref_primary_10_1021_acsnano_0c06783
crossref_primary_10_1016_j_apsusc_2024_160060
crossref_primary_10_1039_D2TA02458F
crossref_primary_10_1002_smll_202003357
crossref_primary_10_1016_j_surfin_2021_101305
crossref_primary_10_1021_acsnano_3c02344
crossref_primary_10_1039_D1CP02764F
crossref_primary_10_1039_D2NR01259F
crossref_primary_10_1021_acs_jpcc_3c05761
crossref_primary_10_1021_acsnano_3c02103
crossref_primary_10_1016_j_mtnano_2024_100467
crossref_primary_10_1002_adfm_202206163
crossref_primary_10_1039_D2SC01398C
crossref_primary_10_1002_smll_202300807
crossref_primary_10_1016_j_ccr_2022_214765
crossref_primary_10_20517_cs_2023_34
crossref_primary_10_1088_2053_1583_ac09c5
crossref_primary_10_1038_s41596_023_00866_z
crossref_primary_10_1016_j_susc_2021_121809
crossref_primary_10_3389_fceng_2021_703812
crossref_primary_10_1021_acssuschemeng_1c02160
crossref_primary_10_1039_D1SE00988E
crossref_primary_10_1002_adma_202008376
crossref_primary_10_1002_smll_202306631
crossref_primary_10_1021_acsanm_1c04151
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1016_j_xcrp_2020_100190
crossref_primary_10_1360_TB_2023_0609
crossref_primary_10_1002_advs_202003709
crossref_primary_10_1073_pnas_1917237117
crossref_primary_10_1021_jacs_1c12705
crossref_primary_10_1088_1361_648X_abbdb9
crossref_primary_10_1021_acs_chemmater_3c01260
crossref_primary_10_1007_s12274_021_3545_2
crossref_primary_10_1016_j_cclet_2022_05_003
crossref_primary_10_1016_j_jechem_2020_04_063
crossref_primary_10_1016_j_isci_2021_103456
crossref_primary_10_1039_D3TA04225A
crossref_primary_10_1016_j_coelec_2022_101025
crossref_primary_10_1016_j_mattod_2020_07_002
crossref_primary_10_1038_s41467_023_42645_0
crossref_primary_10_1039_D3CC02843G
crossref_primary_10_1039_D1TA07396F
crossref_primary_10_1016_j_cej_2020_127013
crossref_primary_10_1039_D2CP05927D
crossref_primary_10_1021_acscatal_2c03719
crossref_primary_10_1021_acsnano_1c01879
crossref_primary_10_1073_pnas_2311180121
crossref_primary_10_1021_acs_nanolett_0c04978
crossref_primary_10_1021_acsaem_4c00189
crossref_primary_10_1360_nso_20230009
crossref_primary_10_1016_j_apcatb_2021_120989
crossref_primary_10_1002_celc_202100790
crossref_primary_10_1021_acsaenm_2c00087
crossref_primary_10_1016_j_trechm_2022_02_006
crossref_primary_10_3389_fnano_2023_1291338
Cites_doi 10.1038/s41570-017-0105
10.1021/nn5073495
10.1038/nchem.1853
10.1038/ncomms5470
10.1038/s41570-018-0010-1
10.1126/sciadv.1500462
10.1038/nmat4660
10.1038/nchem.1095
10.1021/acs.chemmater.6b01395
10.1021/acscatal.8b00883
10.1002/adfm.201702829
10.1038/nmat3700
10.1016/j.susc.2015.01.019
10.1126/science.aaf8800
10.1038/ncomms13638
10.1021/nl403661s
10.1021/acsnano.6b04904
10.1103/PhysRevLett.84.951
10.1021/acs.nanolett.7b04526
10.1021/jacs.6b05940
10.1038/nmat4465
10.1021/cs500923c
10.1021/acs.nanolett.5b04331
10.1038/ncomms15113
10.1021/jp506964m
10.1126/science.1141483
10.1021/ja3089923
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7X8
1XC
DOI 10.1021/acsnano.9b05226
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 9964
ExternalDocumentID oai_HAL_hal_02321715v1
10_1021_acsnano_9b05226
31398001
c568053692
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
1XC
ID FETCH-LOGICAL-a367t-d30413e4f32a3199cdaa9715738936e4e3465fbcb0b3d64d494170cc02e80d703
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Tue Oct 15 15:27:23 EDT 2024
Fri Aug 16 01:12:04 EDT 2024
Fri Dec 06 05:59:38 EST 2024
Sat Sep 28 08:30:22 EDT 2024
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords molybdenum disulfide
single vacancy
scanning transmission electron microscope
hydrogen evolution reaction
helium ion microscope
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a367t-d30413e4f32a3199cdaa9715738936e4e3465fbcb0b3d64d494170cc02e80d703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1664-2839
0000-0001-9777-7016
0000-0001-7053-388X
0000-0002-6765-2084
0000-0002-5099-7350
PMID 31398001
PQID 2271853396
PQPubID 23479
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_02321715v1
proquest_miscellaneous_2271853396
crossref_primary_10_1021_acsnano_9b05226
pubmed_primary_31398001
acs_journals_10_1021_acsnano_9b05226
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-09-24
PublicationDateYYYYMMDD 2019-09-24
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1038/s41570-017-0105
– ident: ref21/cit21
  doi: 10.1021/nn5073495
– ident: ref25/cit25
  doi: 10.1038/nchem.1853
– ident: ref9/cit9
  doi: 10.1038/ncomms5470
– ident: ref2/cit2
  doi: 10.1038/s41570-018-0010-1
– ident: ref6/cit6
  doi: 10.1126/sciadv.1500462
– ident: ref15/cit15
  doi: 10.1038/nmat4660
– ident: ref3/cit3
  doi: 10.1038/nchem.1095
– ident: ref20/cit20
  doi: 10.1021/acs.chemmater.6b01395
– ident: ref19/cit19
  doi: 10.1021/acscatal.8b00883
– ident: ref23/cit23
  doi: 10.1002/adfm.201702829
– ident: ref8/cit8
  doi: 10.1038/nmat3700
– ident: ref18/cit18
  doi: 10.1016/j.susc.2015.01.019
– ident: ref1/cit1
  doi: 10.1126/science.aaf8800
– ident: ref4/cit4
  doi: 10.1038/ncomms13638
– ident: ref12/cit12
  doi: 10.1021/nl403661s
– ident: ref26/cit26
  doi: 10.1021/acsnano.6b04904
– ident: ref11/cit11
  doi: 10.1103/PhysRevLett.84.951
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.7b04526
– ident: ref27/cit27
  doi: 10.1021/jacs.6b05940
– ident: ref14/cit14
  doi: 10.1038/nmat4465
– ident: ref24/cit24
  doi: 10.1021/cs500923c
– ident: ref13/cit13
  doi: 10.1021/acs.nanolett.5b04331
– ident: ref16/cit16
  doi: 10.1038/ncomms15113
– ident: ref22/cit22
  doi: 10.1021/jp506964m
– ident: ref7/cit7
  doi: 10.1126/science.1141483
– ident: ref5/cit5
  doi: 10.1021/ja3089923
SSID ssj0057876
Score 2.6533878
Snippet Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments...
SourceID hal
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9958
SubjectTerms Chemical Sciences
Title Single Atomic Vacancy Catalysis
URI http://dx.doi.org/10.1021/acsnano.9b05226
https://www.ncbi.nlm.nih.gov/pubmed/31398001
https://search.proquest.com/docview/2271853396
https://hal.umontpellier.fr/hal-02321715
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwfpRnQB1YUhzbsZOxqqgqBCylqFvkxI6QQCkiKQO_nrskLY-qgilS5JxyvrPvs-_8mZCWEhj0LHWtSENXyMC4Qaq4KzTE4jCmJi1Ppd3dy_5Q3Iz80RdZ9O8MPvOudJJnOhu34UPECstkhSlYfCMK6g6mky76nawSyLBABhQxY_GZE4BhKMl_hKHlJyyCXIQwy0jT26hqtPKSoBALTJ7bkyJuJx_z9I1_K7FJ1mu86XQqB9kiSzbbJmvfWAh3yNkAHi_W6RR4Qtl51AnOuE4XN3aQr2SXDHvXD92-W9-b4GouVeEaTiE0QedzpmGEhYnROlSerxCcSCssF9JP4ySmMTdSGBEKT9EkocwG1MAUsEca2TizB8SRQnHuU5FSw_AuuiAwqaQgkeGhWkabpAWqRbXf51GZ0mZeVOsb1fo2yeW0t6PXikVjcdMLsMasFbJf9zu3Eb4DeAELKM9_95rkfGqsCIYD5jh0ZseTPGJMIQLhIQjar6w4k8UB7QI-9g7_99NHZBXQUVlQxsQxaRRvE3sCCKSIT0vf-wSjPtBP
link.rule.ids 230,314,780,784,885,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD78d4FsSBS0eapGl7nCbQgIGEeIhb1DapkEAdoh0Hfj12142XkOBUKUqtuE7iL3X8GeAgkOT0LHOtzCJXqtC4YRYIV8boi6OEmazKSru4VN1beXbv308AG-XC4CAKlFRUQfwPdgHvCNvyOO-38H2CDJMw5VPBSgJDnevR3kvTTw3jyHhORjAxJvP5IYC8UVp88UaTD3QX8jegWTmck3m4Gg-1umfy2BqUSSt9-8bi-B9dFmCuRp9OezhdFmHC5ksw-4mTcBl2r_HxZJ12SfnKzl2c0v7rdOg3D7GXrMDtyfFNp-vWVRTcWKigdI1g6KjQFILHuN6i1MRxFHh-QFBFWWmFVH6WpAlLhFHSyEh6AUtTxm3IDG4Iq9DI-7ldB0fJQAifyYwZTpXpwtBkiqFETim2nDXhAFXT9SoodBXg5p6u9dW1vk04HH10_Tzk1Pi96z4aZdyLuLC77Z6mNgQbeJzy_FevCXsjm2lcHBTxiHPbHxSa84DwiIhQ0NrQmGNZArEvomVv42-D3oXp7s1FT_dOL883YQZxU3XVjMstaJQvA7uN2KRMdqrp-A7Gzti8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QPTB-1jPKj740jVN0rR9XFaX9UTQFd9C26QISlds1wd_vTPd7uKBoE-FEIZMJzPzJXME4DCQ5PQsc63MIleq0LhhFghXxuiLo4SZrKpKu7pW3Z48f_Af6qIwqoXBRRRIqaiC-KTVLyarOwx4xziex3m_iTQINkzCtI-2lhK5Wu3bkf2lLaiGsWQ8KyOgGDf0-UGAPFJafPFIk4-UD_kb2KycTmcBeuPlVrkmT81BmTTT92-dHP_LzyLM1yjUaQ23zRJM2HwZ5j71JlyBvVv8PFunVVLdsnMfp2SHnTZd91AXk1XodU7v2l23fk3BjYUKStcIhg4LRSJ4jHoXpSaOo8DzA4IsykorpPKzJE1YIoySRkbSC1iaMm5DZtAwrMFU3s_tBjhKBkL4TGbMcHqhLgxNphhS5FRqy1kDDpE1XWtDoatAN_d0za-u-W3A0ejH65dhb43fpx6gYMazqCd2t3WpaQxBBx6rPP_Na8D-SG4alYQiH3Fu-4NCcx4QLhERElofCnRMSyAGRtTsbf5t0Xswc3PS0Zdn1xdbMIvwqco443IbpsrXgd1BiFImu9WO_AAVV9s_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atomic+Vacancy+Catalysis&rft.jtitle=ACS+nano&rft.au=Yang%2C+Jieun&rft.au=Wang%2C+Yan&rft.au=Lagos%2C+Maureen+J&rft.au=Manichev%2C+Viacheslav&rft.date=2019-09-24&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=9&rft.spage=9958&rft.epage=9964&rft_id=info:doi/10.1021%2Facsnano.9b05226&rft.externalDocID=c568053692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon