Single Atomic Vacancy Catalysis
Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surp...
Saved in:
Published in | ACS nano Vol. 13; no. 9; pp. 9958 - 9964 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 1014 cm–2 where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s–1 and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity. |
---|---|
AbstractList | Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 1014 cm–2 where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s–1 and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity. Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS . Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 10 cm where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS . Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity. Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 x 10(14) cm(-2) where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be similar to 5 s(-1) and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of similar to 3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity. |
Author | Yang, Jieun Manichev, Viacheslav Zhang, Wenjing Wang, Yan Chhowalla, Manish Chakraborty, Sudip Batson, Philip E Lagos, Maureen J Song, Xiuju Gustafsson, Torgny Fullon, Raymond Feldman, Leonard Voiry, Damien |
AuthorAffiliation | Institute of Advanced Materials, Devices, and Nanotechnology McMaster University Materials Science and Engineering International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology Institut Europeen des Membranes Materials Science and Metallurgy Department of Physics and Astronomy Rutgers University Indian Institute of Technology (IIT) Indore Department of Materials Science and Engineering Department of Chemistry and Chemical Biology Discipline of Physics |
AuthorAffiliation_xml | – name: McMaster University – name: Discipline of Physics – name: Department of Chemistry and Chemical Biology – name: Indian Institute of Technology (IIT) Indore – name: Department of Physics and Astronomy – name: Institut Europeen des Membranes – name: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology – name: Materials Science and Metallurgy – name: Rutgers University – name: Materials Science and Engineering – name: Institute of Advanced Materials, Devices, and Nanotechnology – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Jieun orcidid: 0000-0001-7053-388X surname: Yang fullname: Yang, Jieun organization: Materials Science and Metallurgy – sequence: 2 givenname: Yan surname: Wang fullname: Wang, Yan organization: Materials Science and Metallurgy – sequence: 3 givenname: Maureen J surname: Lagos fullname: Lagos, Maureen J organization: McMaster University – sequence: 4 givenname: Viacheslav surname: Manichev fullname: Manichev, Viacheslav organization: Department of Physics and Astronomy – sequence: 5 givenname: Raymond surname: Fullon fullname: Fullon, Raymond organization: Rutgers University – sequence: 6 givenname: Xiuju orcidid: 0000-0001-9777-7016 surname: Song fullname: Song, Xiuju organization: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology – sequence: 7 givenname: Damien orcidid: 0000-0002-1664-2839 surname: Voiry fullname: Voiry, Damien organization: Institut Europeen des Membranes – sequence: 8 givenname: Sudip orcidid: 0000-0002-6765-2084 surname: Chakraborty fullname: Chakraborty, Sudip organization: Indian Institute of Technology (IIT) Indore – sequence: 9 givenname: Wenjing surname: Zhang fullname: Zhang, Wenjing organization: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology – sequence: 10 givenname: Philip E surname: Batson fullname: Batson, Philip E organization: Rutgers University – sequence: 11 givenname: Leonard surname: Feldman fullname: Feldman, Leonard organization: Rutgers University – sequence: 12 givenname: Torgny surname: Gustafsson fullname: Gustafsson, Torgny organization: Rutgers University – sequence: 13 givenname: Manish surname: Chhowalla fullname: Chhowalla, Manish email: mc209@cam.ac.uk organization: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31398001$$D View this record in MEDLINE/PubMed https://hal.umontpellier.fr/hal-02321715$$DView record in HAL |
BookMark | eNp1kM9LwzAUgINM3A89e9MdFen2krRJcxxDnTDw4A-8hTRNtaNLZtMK--_NaN3NUx7hex-Pb4wG1lmD0CWGGQaC50p7q6ybiQwSQtgJGmFBWQQp-xgc5wQP0dj7DUDCU87O0JBiKlIAPELXL6X9rMx00bhtqafvSiur99OlalS196U_R6eFqry56N8Jenu4f12uovXz49NysY4UZbyJcgoxpiYuKFEUC6FzpQTHCadpuMHEhsYsKTKdQUZzFuexiDEHrYGYFHIOdIJuO--XquSuLreq3kunSrlarOXhDwglOBh_cGBvOnZXu-_W-EZuS69NVSlrXOslIRynCaWCBXTeobp23temOLoxyENB2ReUfcGwcdXL22xr8iP_lywAdx0QNuXGtbUNXf7V_QK5N3pU |
CitedBy_id | crossref_primary_10_1039_D2TA06105H crossref_primary_10_1039_D3TA03788F crossref_primary_10_1021_acs_inorgchem_2c02247 crossref_primary_10_1002_cphc_202200013 crossref_primary_10_1021_acs_jpcc_2c03609 crossref_primary_10_1039_D3TA04947G crossref_primary_10_1002_advs_202200700 crossref_primary_10_1002_aelm_202001219 crossref_primary_10_1016_j_pnsc_2023_12_010 crossref_primary_10_1039_D2EE02151J crossref_primary_10_1002_smm2_1234 crossref_primary_10_1021_acsnano_9b07763 crossref_primary_10_1016_j_mtener_2022_100976 crossref_primary_10_1016_j_cej_2020_127028 crossref_primary_10_1002_smtd_202400158 crossref_primary_10_1016_j_ijhydene_2022_11_273 crossref_primary_10_1021_acs_chemrev_3c00711 crossref_primary_10_1021_acsenergylett_2c02599 crossref_primary_10_1016_j_mattod_2020_02_021 crossref_primary_10_1016_j_cej_2023_141858 crossref_primary_10_1039_C9NR09326E crossref_primary_10_1016_j_checat_2024_100951 crossref_primary_10_1039_D3MH00462G crossref_primary_10_1002_adma_202206576 crossref_primary_10_1038_s41467_022_29929_7 crossref_primary_10_1038_s44160_024_00501_z crossref_primary_10_1088_1402_4896_ad5233 crossref_primary_10_1039_D2TA04006A crossref_primary_10_1021_acs_jpclett_9b02437 crossref_primary_10_1021_acsami_4c03546 crossref_primary_10_1021_acs_chemrev_1c00505 crossref_primary_10_1002_aenm_202101181 crossref_primary_10_1002_apxr_202200060 crossref_primary_10_1021_jacs_9b12113 crossref_primary_10_1016_j_apsusc_2022_155839 crossref_primary_10_1007_s12274_022_4297_3 crossref_primary_10_1038_s41467_024_44840_z crossref_primary_10_1016_j_elecom_2023_107563 crossref_primary_10_3390_ijms232415608 crossref_primary_10_1088_2516_1083_ac9eff crossref_primary_10_1088_1361_6528_abd49f crossref_primary_10_1002_cssc_202200191 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1039_D2QM01166B crossref_primary_10_1039_D3NA00363A crossref_primary_10_1016_j_ijhydene_2023_06_107 crossref_primary_10_1021_acsomega_2c06524 crossref_primary_10_1016_j_jelechem_2022_116270 crossref_primary_10_1002_cey2_263 crossref_primary_10_1021_acs_jpclett_0c00710 crossref_primary_10_1557_s43578_022_00601_6 crossref_primary_10_1002_smtd_202201529 crossref_primary_10_1021_acscatal_9b04217 crossref_primary_10_1021_acs_jpclett_2c02796 crossref_primary_10_1039_D3EE04457B crossref_primary_10_1016_j_jhazmat_2022_128215 crossref_primary_10_1002_adma_202304808 crossref_primary_10_1039_C9CS00601J crossref_primary_10_1039_D0TA05326K crossref_primary_10_1021_acsnano_0c06783 crossref_primary_10_1016_j_apsusc_2024_160060 crossref_primary_10_1039_D2TA02458F crossref_primary_10_1002_smll_202003357 crossref_primary_10_1016_j_surfin_2021_101305 crossref_primary_10_1021_acsnano_3c02344 crossref_primary_10_1039_D1CP02764F crossref_primary_10_1039_D2NR01259F crossref_primary_10_1021_acs_jpcc_3c05761 crossref_primary_10_1021_acsnano_3c02103 crossref_primary_10_1016_j_mtnano_2024_100467 crossref_primary_10_1002_adfm_202206163 crossref_primary_10_1039_D2SC01398C crossref_primary_10_1002_smll_202300807 crossref_primary_10_1016_j_ccr_2022_214765 crossref_primary_10_20517_cs_2023_34 crossref_primary_10_1088_2053_1583_ac09c5 crossref_primary_10_1038_s41596_023_00866_z crossref_primary_10_1016_j_susc_2021_121809 crossref_primary_10_3389_fceng_2021_703812 crossref_primary_10_1021_acssuschemeng_1c02160 crossref_primary_10_1039_D1SE00988E crossref_primary_10_1002_adma_202008376 crossref_primary_10_1002_smll_202306631 crossref_primary_10_1021_acsanm_1c04151 crossref_primary_10_1002_smll_202006473 crossref_primary_10_1016_j_xcrp_2020_100190 crossref_primary_10_1360_TB_2023_0609 crossref_primary_10_1002_advs_202003709 crossref_primary_10_1073_pnas_1917237117 crossref_primary_10_1021_jacs_1c12705 crossref_primary_10_1088_1361_648X_abbdb9 crossref_primary_10_1021_acs_chemmater_3c01260 crossref_primary_10_1007_s12274_021_3545_2 crossref_primary_10_1016_j_cclet_2022_05_003 crossref_primary_10_1016_j_jechem_2020_04_063 crossref_primary_10_1016_j_isci_2021_103456 crossref_primary_10_1039_D3TA04225A crossref_primary_10_1016_j_coelec_2022_101025 crossref_primary_10_1016_j_mattod_2020_07_002 crossref_primary_10_1038_s41467_023_42645_0 crossref_primary_10_1039_D3CC02843G crossref_primary_10_1039_D1TA07396F crossref_primary_10_1016_j_cej_2020_127013 crossref_primary_10_1039_D2CP05927D crossref_primary_10_1021_acscatal_2c03719 crossref_primary_10_1021_acsnano_1c01879 crossref_primary_10_1073_pnas_2311180121 crossref_primary_10_1021_acs_nanolett_0c04978 crossref_primary_10_1021_acsaem_4c00189 crossref_primary_10_1360_nso_20230009 crossref_primary_10_1016_j_apcatb_2021_120989 crossref_primary_10_1002_celc_202100790 crossref_primary_10_1021_acsaenm_2c00087 crossref_primary_10_1016_j_trechm_2022_02_006 crossref_primary_10_3389_fnano_2023_1291338 |
Cites_doi | 10.1038/s41570-017-0105 10.1021/nn5073495 10.1038/nchem.1853 10.1038/ncomms5470 10.1038/s41570-018-0010-1 10.1126/sciadv.1500462 10.1038/nmat4660 10.1038/nchem.1095 10.1021/acs.chemmater.6b01395 10.1021/acscatal.8b00883 10.1002/adfm.201702829 10.1038/nmat3700 10.1016/j.susc.2015.01.019 10.1126/science.aaf8800 10.1038/ncomms13638 10.1021/nl403661s 10.1021/acsnano.6b04904 10.1103/PhysRevLett.84.951 10.1021/acs.nanolett.7b04526 10.1021/jacs.6b05940 10.1038/nmat4465 10.1021/cs500923c 10.1021/acs.nanolett.5b04331 10.1038/ncomms15113 10.1021/jp506964m 10.1126/science.1141483 10.1021/ja3089923 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7X8 1XC |
DOI | 10.1021/acsnano.9b05226 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 9964 |
ExternalDocumentID | oai_HAL_hal_02321715v1 10_1021_acsnano_9b05226 31398001 c568053692 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 1XC |
ID | FETCH-LOGICAL-a367t-d30413e4f32a3199cdaa9715738936e4e3465fbcb0b3d64d494170cc02e80d703 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Tue Oct 15 15:27:23 EDT 2024 Fri Aug 16 01:12:04 EDT 2024 Fri Dec 06 05:59:38 EST 2024 Sat Sep 28 08:30:22 EDT 2024 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | molybdenum disulfide single vacancy scanning transmission electron microscope hydrogen evolution reaction helium ion microscope |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a367t-d30413e4f32a3199cdaa9715738936e4e3465fbcb0b3d64d494170cc02e80d703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1664-2839 0000-0001-9777-7016 0000-0001-7053-388X 0000-0002-6765-2084 0000-0002-5099-7350 |
PMID | 31398001 |
PQID | 2271853396 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | hal_primary_oai_HAL_hal_02321715v1 proquest_miscellaneous_2271853396 crossref_primary_10_1021_acsnano_9b05226 pubmed_primary_31398001 acs_journals_10_1021_acsnano_9b05226 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-09-24 |
PublicationDateYYYYMMDD | 2019-09-24 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1038/s41570-017-0105 – ident: ref21/cit21 doi: 10.1021/nn5073495 – ident: ref25/cit25 doi: 10.1038/nchem.1853 – ident: ref9/cit9 doi: 10.1038/ncomms5470 – ident: ref2/cit2 doi: 10.1038/s41570-018-0010-1 – ident: ref6/cit6 doi: 10.1126/sciadv.1500462 – ident: ref15/cit15 doi: 10.1038/nmat4660 – ident: ref3/cit3 doi: 10.1038/nchem.1095 – ident: ref20/cit20 doi: 10.1021/acs.chemmater.6b01395 – ident: ref19/cit19 doi: 10.1021/acscatal.8b00883 – ident: ref23/cit23 doi: 10.1002/adfm.201702829 – ident: ref8/cit8 doi: 10.1038/nmat3700 – ident: ref18/cit18 doi: 10.1016/j.susc.2015.01.019 – ident: ref1/cit1 doi: 10.1126/science.aaf8800 – ident: ref4/cit4 doi: 10.1038/ncomms13638 – ident: ref12/cit12 doi: 10.1021/nl403661s – ident: ref26/cit26 doi: 10.1021/acsnano.6b04904 – ident: ref11/cit11 doi: 10.1103/PhysRevLett.84.951 – ident: ref17/cit17 doi: 10.1021/acs.nanolett.7b04526 – ident: ref27/cit27 doi: 10.1021/jacs.6b05940 – ident: ref14/cit14 doi: 10.1038/nmat4465 – ident: ref24/cit24 doi: 10.1021/cs500923c – ident: ref13/cit13 doi: 10.1021/acs.nanolett.5b04331 – ident: ref16/cit16 doi: 10.1038/ncomms15113 – ident: ref22/cit22 doi: 10.1021/jp506964m – ident: ref7/cit7 doi: 10.1126/science.1141483 – ident: ref5/cit5 doi: 10.1021/ja3089923 |
SSID | ssj0057876 |
Score | 2.6533878 |
Snippet | Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments... |
SourceID | hal proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9958 |
SubjectTerms | Chemical Sciences |
Title | Single Atomic Vacancy Catalysis |
URI | http://dx.doi.org/10.1021/acsnano.9b05226 https://www.ncbi.nlm.nih.gov/pubmed/31398001 https://search.proquest.com/docview/2271853396 https://hal.umontpellier.fr/hal-02321715 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwfpRnQB1YUhzbsZOxqqgqBCylqFvkxI6QQCkiKQO_nrskLY-qgilS5JxyvrPvs-_8mZCWEhj0LHWtSENXyMC4Qaq4KzTE4jCmJi1Ppd3dy_5Q3Iz80RdZ9O8MPvOudJJnOhu34UPECstkhSlYfCMK6g6mky76nawSyLBABhQxY_GZE4BhKMl_hKHlJyyCXIQwy0jT26hqtPKSoBALTJ7bkyJuJx_z9I1_K7FJ1mu86XQqB9kiSzbbJmvfWAh3yNkAHi_W6RR4Qtl51AnOuE4XN3aQr2SXDHvXD92-W9-b4GouVeEaTiE0QedzpmGEhYnROlSerxCcSCssF9JP4ySmMTdSGBEKT9EkocwG1MAUsEca2TizB8SRQnHuU5FSw_AuuiAwqaQgkeGhWkabpAWqRbXf51GZ0mZeVOsb1fo2yeW0t6PXikVjcdMLsMasFbJf9zu3Eb4DeAELKM9_95rkfGqsCIYD5jh0ZseTPGJMIQLhIQjar6w4k8UB7QI-9g7_99NHZBXQUVlQxsQxaRRvE3sCCKSIT0vf-wSjPtBP |
link.rule.ids | 230,314,780,784,885,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD78d4FsSBS0eapGl7nCbQgIGEeIhb1DapkEAdoh0Hfj12142XkOBUKUqtuE7iL3X8GeAgkOT0LHOtzCJXqtC4YRYIV8boi6OEmazKSru4VN1beXbv308AG-XC4CAKlFRUQfwPdgHvCNvyOO-38H2CDJMw5VPBSgJDnevR3kvTTw3jyHhORjAxJvP5IYC8UVp88UaTD3QX8jegWTmck3m4Gg-1umfy2BqUSSt9-8bi-B9dFmCuRp9OezhdFmHC5ksw-4mTcBl2r_HxZJ12SfnKzl2c0v7rdOg3D7GXrMDtyfFNp-vWVRTcWKigdI1g6KjQFILHuN6i1MRxFHh-QFBFWWmFVH6WpAlLhFHSyEh6AUtTxm3IDG4Iq9DI-7ldB0fJQAifyYwZTpXpwtBkiqFETim2nDXhAFXT9SoodBXg5p6u9dW1vk04HH10_Tzk1Pi96z4aZdyLuLC77Z6mNgQbeJzy_FevCXsjm2lcHBTxiHPbHxSa84DwiIhQ0NrQmGNZArEvomVv42-D3oXp7s1FT_dOL883YQZxU3XVjMstaJQvA7uN2KRMdqrp-A7Gzti8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QPTB-1jPKj740jVN0rR9XFaX9UTQFd9C26QISlds1wd_vTPd7uKBoE-FEIZMJzPzJXME4DCQ5PQsc63MIleq0LhhFghXxuiLo4SZrKpKu7pW3Z48f_Af6qIwqoXBRRRIqaiC-KTVLyarOwx4xziex3m_iTQINkzCtI-2lhK5Wu3bkf2lLaiGsWQ8KyOgGDf0-UGAPFJafPFIk4-UD_kb2KycTmcBeuPlVrkmT81BmTTT92-dHP_LzyLM1yjUaQ23zRJM2HwZ5j71JlyBvVv8PFunVVLdsnMfp2SHnTZd91AXk1XodU7v2l23fk3BjYUKStcIhg4LRSJ4jHoXpSaOo8DzA4IsykorpPKzJE1YIoySRkbSC1iaMm5DZtAwrMFU3s_tBjhKBkL4TGbMcHqhLgxNphhS5FRqy1kDDpE1XWtDoatAN_d0za-u-W3A0ejH65dhb43fpx6gYMazqCd2t3WpaQxBBx6rPP_Na8D-SG4alYQiH3Fu-4NCcx4QLhERElofCnRMSyAGRtTsbf5t0Xswc3PS0Zdn1xdbMIvwqco443IbpsrXgd1BiFImu9WO_AAVV9s_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atomic+Vacancy+Catalysis&rft.jtitle=ACS+nano&rft.au=Yang%2C+Jieun&rft.au=Wang%2C+Yan&rft.au=Lagos%2C+Maureen+J&rft.au=Manichev%2C+Viacheslav&rft.date=2019-09-24&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=9&rft.spage=9958&rft.epage=9964&rft_id=info:doi/10.1021%2Facsnano.9b05226&rft.externalDocID=c568053692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |