Stresses and Drag in Turbulent Bed Load From Refractive Index‐Matched Experiments
We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and...
Saved in:
Published in | Geophysical research letters Vol. 45; no. 14; pp. 7000 - 7009 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments.
Plain Language Summary
Turbulent bed load is responsible for the transport of coarse sediment by rivers and waves. Because grains are typically opaque and highly concentrated near the bed, one cannot look inside, and intrusive probes would otherwise disturb the local flow. In this work we acquire measurements inside turbulent bed load layers by making the medium transparent, using refractive index‐matched solid and liquid materials. We then scan a laser sheet across a 3‐D volume to capture liquid and granular motions and acquire measurements of key properties including solid and liquid velocities, granular concentration, and statistics of the velocity fluctuations. We deduce the principal contributions to the momentum balance of each phase and test relations describing stresses and drag forces. The measurements support the applicability of continuum two‐phase models to turbulent bed load transport. Such models provide key tools for the study of bed load but could not previously be tested in such detail.
Key Points
Granular and liquid motions in turbulent bed load are acquired from laser scans
We deduce the principal contributions to the momentum balance of each phase
The data allow testing of constitutive relations for stresses and drag |
---|---|
AbstractList | We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments.
Plain Language Summary
Turbulent bed load is responsible for the transport of coarse sediment by rivers and waves. Because grains are typically opaque and highly concentrated near the bed, one cannot look inside, and intrusive probes would otherwise disturb the local flow. In this work we acquire measurements inside turbulent bed load layers by making the medium transparent, using refractive index‐matched solid and liquid materials. We then scan a laser sheet across a 3‐D volume to capture liquid and granular motions and acquire measurements of key properties including solid and liquid velocities, granular concentration, and statistics of the velocity fluctuations. We deduce the principal contributions to the momentum balance of each phase and test relations describing stresses and drag forces. The measurements support the applicability of continuum two‐phase models to turbulent bed load transport. Such models provide key tools for the study of bed load but could not previously be tested in such detail.
Key Points
Granular and liquid motions in turbulent bed load are acquired from laser scans
We deduce the principal contributions to the momentum balance of each phase
The data allow testing of constitutive relations for stresses and drag Abstract We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments. Plain Language Summary Turbulent bed load is responsible for the transport of coarse sediment by rivers and waves. Because grains are typically opaque and highly concentrated near the bed, one cannot look inside, and intrusive probes would otherwise disturb the local flow. In this work we acquire measurements inside turbulent bed load layers by making the medium transparent, using refractive index‐matched solid and liquid materials. We then scan a laser sheet across a 3‐D volume to capture liquid and granular motions and acquire measurements of key properties including solid and liquid velocities, granular concentration, and statistics of the velocity fluctuations. We deduce the principal contributions to the momentum balance of each phase and test relations describing stresses and drag forces. The measurements support the applicability of continuum two‐phase models to turbulent bed load transport. Such models provide key tools for the study of bed load but could not previously be tested in such detail. Key Points Granular and liquid motions in turbulent bed load are acquired from laser scans We deduce the principal contributions to the momentum balance of each phase The data allow testing of constitutive relations for stresses and drag We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments. |
Author | Ni, Wei‐Jay Capart, Hervé |
Author_xml | – sequence: 1 givenname: Wei‐Jay surname: Ni fullname: Ni, Wei‐Jay organization: National Taiwan University – sequence: 2 givenname: Hervé orcidid: 0000-0001-7066-3641 surname: Capart fullname: Capart, Hervé email: hcapart@yahoo.com organization: National Taiwan University |
BookMark | eNp90D1OwzAUAGALFYm2sHEAS6wEnu04jkcobakUhNSWOXJsB1K1SbETaDeOwBk5CUZlYGJ6b_je7wD16qa2CJ0TuCJA5TUFkk4zEIILcoT6RMZxlAKIHuoDyJBTkZyggfcrAGDASB8tFq2z3luPVW3wnVPPuKrxsnNFt7Z1i2-twVmjDJ64ZoPntnRKt9WbxbPa2N3Xx-eDavVLQOPd1rpqE2r8KTou1drbs984RE-T8XJ0H2WP09noJosUS0QaybjQnDOpypQpBjItJHANmpcFK0pODAjFqUqMFlTZgmlh4qQ0BQGutEklG6KLQ9-ta14769t81XSuDiNzCpKyOCUxDeryoLRrvHe2zLdhT-X2OYH8523537cFTg_8vVrb_b82n84zLsIp7BuJ13BZ |
CitedBy_id | crossref_primary_10_1007_s10409_023_23233_x crossref_primary_10_1103_PhysRevFluids_4_024303 crossref_primary_10_1017_jfm_2022_310 crossref_primary_10_1029_2020GL089114 crossref_primary_10_1017_jfm_2023_335 crossref_primary_10_1007_s00348_023_03691_y crossref_primary_10_1063_5_0177630 crossref_primary_10_1017_jfm_2023_494 |
Cites_doi | 10.1029/2011GL049408 10.1017/S0022112097007647 10.1017/S0022112098001840 10.1029/2012JC008306 10.1017/jfm.2015.23 10.1029/90WR02770 10.1007/s00348-008-0480-x 10.1016/j.flowmeasinst.2016.06.023 10.1016/0301-9322(94)90011-6 10.1063/1.3674173 10.1021/i160024a007 10.1007/s00348-010-0996-8 10.1103/PhysRevE.59.5895 10.1017/S002211200600334X 10.1016/j.advwatres.2017.11.016 10.1061/(ASCE)0733-9429(1996)122:10(549) 10.1017/jfm.2013.546 10.1146/annurev.fl.15.010183.001401 10.1103/PhysRevE.51.3170 10.1002/esp.3517 10.1098/rsta.1956.0020 10.1007/s00348-015-2034-3 10.1103/PhysRevFluids.2.024304 10.1016/j.ijmultiphaseflow.2016.09.006 10.1098/rspa.2003.1273 10.1017/jfm.2016.520 10.1126/science.1178516 10.1016/S0301-9322(99)00094-4 10.1017/S0022112005004283 10.1016/0378-4371(85)90168-2 10.1017/jfm.2017.920 10.1017/S0022112007008774 10.1061/(ASCE)WW.1943-5460.0000209 10.1038/ncomms7527 10.1016/0009-2509(64)85067-3 10.1103/PhysRevLett.115.194501 10.1017/S0022112089001540 |
ContentType | Journal Article |
Copyright | 2018. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2018GL077571 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics Statistics |
EISSN | 1944-8007 |
EndPage | 7009 |
ExternalDocumentID | 10_1029_2018GL077571 GRL57678 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology – fundername: program for research excellence of National Taiwan University |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION PYCSY 7TG 7TN 8FD ALXUD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a3678-94bc5539af83a3098b905c0c5fb3bf51d07a52a6dc72aeb3c7d46fdb105acd893 |
ISSN | 0094-8276 |
IngestDate | Fri Nov 08 07:38:30 EST 2024 Thu Sep 12 17:39:43 EDT 2024 Sat Aug 24 00:59:54 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3678-94bc5539af83a3098b905c0c5fb3bf51d07a52a6dc72aeb3c7d46fdb105acd893 |
ORCID | 0000-0001-7066-3641 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2018GL077571 |
PQID | 2092348142 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2092348142 crossref_primary_10_1029_2018GL077571 wiley_primary_10_1029_2018GL077571_GRL57678 |
PublicationCentury | 2000 |
PublicationDate | 28 July 2018 |
PublicationDateYYYYMMDD | 2018-07-28 |
PublicationDate_xml | – month: 07 year: 2018 text: 28 July 2018 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2012; 83 2015; 56 1995; 51 2015; 6 2017; 2 2000; 26 2005; 532 2017; 88 2004; 460 1997; 353 2016; 804 2016; 51 1996; 122 1985; 129 2015; 767 2003 2011; 38 1983; 15 1998; 370 1994; 20 1967; 6 2018; 111 1991; 27 2015; 27 2013; 736 2015; 115 2000 1964; 19 1989; 203 1999; 59 2013; 118 2007; 571 2011; 50 2018; 839 2008; 45 1956; 249 2014; 140 2014; 39 2008; 595 2009; 325 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Maurin R. (e_1_2_8_31_1) 2015; 27 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Dijksman J. A. (e_1_2_8_14_1) 2017; 88 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Jackson R. (e_1_2_8_27_1) 2000 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 839 start-page: 198 year: 2018 end-page: 238 article-title: Two‐level, two‐phase model for intense, turbulent sediment transport publication-title: Journal of Fluid Mechanics – volume: 45 start-page: 309 year: 2008 end-page: 321 article-title: Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres publication-title: Experiments in Fluids – volume: 532 start-page: 269 year: 2005 end-page: 319 article-title: Rheological stratification in experimental free‐surface flows of granular‐liquid mixtures publication-title: Journal of Fluid Mechanics – volume: 2 start-page: 024304 year: 2017 article-title: Depth resolved granular transport driven by shearing fluid flow publication-title: Physical Review Fluids – volume: 15 start-page: 261 year: 1983 end-page: 291 article-title: Mathematical modeling of two‐phase flow publication-title: Annual Review of Fluid Mechanics – volume: 27 start-page: 825 year: 1991 end-page: 838 article-title: Velocity distribution and bed roughness in high‐gradient streams publication-title: Water Resources Research – volume: 19 start-page: 897 year: 1964 end-page: 917 article-title: On the dispersed two‐phase flow in the laminar flow regime publication-title: Chemical Engineering Science – volume: 122 start-page: 549 year: 1996 end-page: 558 article-title: Velocity and concentration profiles in sheet flow layer of movable bed publication-title: Journal of Hydraulic Engineering – volume: 88 start-page: 116 year: 2017 end-page: 132 article-title: Effects of wall roughness on drag and lift forces of a particle at finite Reynolds number publication-title: International Journal of Multiphase Flow – year: 2003 – volume: 595 start-page: 83 year: 2008 end-page: 114 article-title: Entrainment and motion of coarse particles in a shallow water stream down a steep slope publication-title: Journal of Fluid Mechanics – volume: 115 start-page: 194501 year: 2015 article-title: Turbulence locality and granular like fluid shear viscosity in collisional suspensions publication-title: Physical Review Letters – year: 2000 – volume: 571 start-page: 235 year: 2007 end-page: 263 article-title: Direct simulations of a rough‐wall channel flow publication-title: Journal of Fluid Mechanics – volume: 460 start-page: 2223 year: 2004 end-page: 2250 article-title: On two‐phase sediment transport: Sheet flow of massive particles publication-title: Proceedings of the Royal Society of London A – volume: 38 year: 2011 article-title: Transport layer structure in intense bed‐load publication-title: Geophysical Research Letters – volume: 767 start-page: 1 year: 2015 end-page: 30 article-title: Investigation of sheet‐flow processes based on novel acoustic high‐resolution velocity and concentration measurements publication-title: Journal of Fluid Mechanics – volume: 6 start-page: 527 year: 1967 end-page: 539 article-title: Fluid mechanical description of fluidized beds. Equations of motion publication-title: Industrial Engineering Chemistry Fundamentals – volume: 83 start-page: 011301 year: 2012 article-title: Refractive index matched scanning of dense granular materials publication-title: Review of Scientific Instruments – volume: 51 start-page: 3170 year: 1995 end-page: 3182 article-title: Nearest‐neighbor statistics for packings of hard spheres and disks publication-title: Physical Review E – volume: 50 start-page: 1183 year: 2011 end-page: 1206 article-title: Refractive‐index and density matching in concentrated particle suspensions: A review publication-title: Experiments in Fluids – volume: 736 start-page: 594 year: 2013 end-page: 615 article-title: Investigation of the mobile granular layer in bedload transport by laminar shearing flows publication-title: Journal of Fluid Mechanics – volume: 370 start-page: 29 year: 1998 end-page: 52 article-title: Collisional sheet‐flow of sediment driven by a turbulent fluid publication-title: Journal of Fluid Mechanics – volume: 129 start-page: 233 year: 1985 end-page: 261 article-title: Virtual mass in two‐phase bubbly flow publication-title: Physica A – volume: 39 start-page: 646 year: 2014 end-page: 655 article-title: Particle velocity and concentration profiles in bedload experiments on a steep slope publication-title: Earth Surface Processes and Landforms – volume: 51 start-page: 68 year: 2016 end-page: 78 article-title: On local velocity measurement in gravity‐driven flows with intense bedload of coarse lightweight particles publication-title: Flow Measurement and Instrumentation – volume: 27 issue: 113302 year: 2015 article-title: A minimal coupled fluid‐discrete element model for bedload transport publication-title: Physics of Fluids – volume: 804 start-page: 490 year: 2016 end-page: 512 article-title: Dense granular flow rheology in turbulent bedload transport publication-title: Journal of Fluid Mechanics – volume: 20 start-page: 153 year: 1994 end-page: 159 article-title: The voidage function for fluid‐particle interaction systems publication-title: International Journal of Multiphase Flow – volume: 111 start-page: 205 year: 2018 end-page: 223 article-title: An Eulerian two‐phase model for steady sheet flow using large‐eddy simulation methodology publication-title: Advances in Water Resources – volume: 249 start-page: 235 year: 1956 end-page: 297 article-title: The flow of cohesionless grains in fluids publication-title: Philosophical Transactions of the Royal Society A – volume: 88 issue: 051807 year: 2017 article-title: Refractive index matched scanning and detection of soft particles publication-title: Review of Scientific Instruments – volume: 325 start-page: 1509 year: 2009 end-page: 1510 article-title: How river beds move publication-title: Science – volume: 59 start-page: 5895 year: 1999 end-page: 5911 article-title: Dense fluid transport for inelastic hard spheres publication-title: Physical Review E – volume: 56 start-page: 163 year: 2015 article-title: Cross‐sectional imaging of refractive‐index‐matched liquid‐granular flows publication-title: Experiments in Fluids – volume: 118 start-page: 619 year: 2013 end-page: 634 article-title: A two‐phase model for sheet flow regime based on dense granular flow rheology publication-title: Journal of Geophysical Research: Oceans – volume: 203 start-page: 449 year: 1989 end-page: 473 article-title: The stress tensor for simple shear flows of a granular material publication-title: Journal of Fluid Mechanics – volume: 353 start-page: 261 year: 1997 end-page: 283 article-title: Collisional particle pressure measurements in solid‐liquid flows publication-title: Journal of Fluid Mechanics – volume: 26 start-page: 1401 year: 2000 end-page: 1418 article-title: Laser Doppler anemometry measurements in an index of refraction matched column in the presence of dispersed beads: Part I publication-title: International Journal of Multiphase Flow – volume: 6 start-page: 6527 year: 2015 article-title: Onset of sediment transport is a continuous transition driven by fluid shear and granular creep publication-title: Nature Communications – volume: 140 start-page: 29 year: 2014 end-page: 42 article-title: Comprehensive field study of swash‐zone processes. II: Sheet flow sediment concentrations during quasi‐steady backwash publication-title: Journal of Waterway Port Coastal and Ocean Engineering – ident: e_1_2_8_11_1 doi: 10.1029/2011GL049408 – ident: e_1_2_8_37_1 – ident: e_1_2_8_41_1 doi: 10.1017/S0022112097007647 – ident: e_1_2_8_28_1 doi: 10.1017/S0022112098001840 – ident: e_1_2_8_34_1 doi: 10.1029/2012JC008306 – ident: e_1_2_8_35_1 doi: 10.1017/jfm.2015.23 – ident: e_1_2_8_39_1 doi: 10.1029/90WR02770 – ident: e_1_2_8_25_1 doi: 10.1007/s00348-008-0480-x – ident: e_1_2_8_8_1 doi: 10.1016/j.flowmeasinst.2016.06.023 – ident: e_1_2_8_13_1 doi: 10.1016/0301-9322(94)90011-6 – ident: e_1_2_8_15_1 doi: 10.1063/1.3674173 – ident: e_1_2_8_4_1 doi: 10.1021/i160024a007 – ident: e_1_2_8_40_1 doi: 10.1007/s00348-010-0996-8 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevE.59.5895 – ident: e_1_2_8_26_1 doi: 10.1017/S002211200600334X – ident: e_1_2_8_12_1 doi: 10.1016/j.advwatres.2017.11.016 – ident: e_1_2_8_36_1 doi: 10.1061/(ASCE)0733-9429(1996)122:10(549) – ident: e_1_2_8_6_1 doi: 10.1017/jfm.2013.546 – ident: e_1_2_8_16_1 doi: 10.1146/annurev.fl.15.010183.001401 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevE.51.3170 – ident: e_1_2_8_17_1 doi: 10.1002/esp.3517 – volume: 27 issue: 113302 year: 2015 ident: e_1_2_8_31_1 article-title: A minimal coupled fluid‐discrete element model for bedload transport publication-title: Physics of Fluids contributor: fullname: Maurin R. – ident: e_1_2_8_7_1 doi: 10.1098/rsta.1956.0020 – volume-title: The dynamics of fluidized particles year: 2000 ident: e_1_2_8_27_1 contributor: fullname: Jackson R. – ident: e_1_2_8_33_1 doi: 10.1007/s00348-015-2034-3 – ident: e_1_2_8_2_1 doi: 10.1103/PhysRevFluids.2.024304 – ident: e_1_2_8_30_1 doi: 10.1016/j.ijmultiphaseflow.2016.09.006 – ident: e_1_2_8_24_1 doi: 10.1098/rspa.2003.1273 – ident: e_1_2_8_32_1 doi: 10.1017/jfm.2016.520 – ident: e_1_2_8_18_1 doi: 10.1126/science.1178516 – ident: e_1_2_8_22_1 doi: 10.1016/S0301-9322(99)00094-4 – ident: e_1_2_8_5_1 doi: 10.1017/S0022112005004283 – ident: e_1_2_8_20_1 doi: 10.1016/0378-4371(85)90168-2 – ident: e_1_2_8_21_1 doi: 10.1017/jfm.2017.920 – ident: e_1_2_8_3_1 doi: 10.1017/S0022112007008774 – ident: e_1_2_8_29_1 doi: 10.1061/(ASCE)WW.1943-5460.0000209 – volume: 88 issue: 051807 year: 2017 ident: e_1_2_8_14_1 article-title: Refractive index matched scanning and detection of soft particles publication-title: Review of Scientific Instruments contributor: fullname: Dijksman J. A. – ident: e_1_2_8_23_1 doi: 10.1038/ncomms7527 – ident: e_1_2_8_42_1 doi: 10.1016/0009-2509(64)85067-3 – ident: e_1_2_8_9_1 doi: 10.1103/PhysRevLett.115.194501 – ident: e_1_2_8_10_1 doi: 10.1017/S0022112089001540 |
SSID | ssj0003031 |
Score | 2.3623672 |
Snippet | We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access... Abstract We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 7000 |
SubjectTerms | Bed load Channel flow Computational fluid dynamics Constitutive relationships Drag Dynamics Experiments Fluid flow Fluidization Fluidized beds Fluvial sediments Forces (mechanics) Imaging techniques Kinetic theory Lasers Load matching Local flow Momentum Momentum balance Open channel flow Profiles Refractive index refractive index matching Refractivity Reynolds stress Rivers Sediment load Sediment transport Statistical methods Statistics Transport Turbulence Velocity Vertical profiles |
Title | Stresses and Drag in Turbulent Bed Load From Refractive Index‐Matched Experiments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL077571 https://www.proquest.com/docview/2092348142 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagFRIXxFMECvIBTtGCd23v2sdSIFGV9kATqLisvH6ISjSp2hQBJ34Cv5Ffwvixj0pVRbmsHMuykpkvM994Z8YIvQBS4UxubeackhljlGQip00GwVbOjBaahBYbe_vldMF2D_lh_0Y3VJesm1f656V1Jf-jVZgDvfoq2WtottsUJmAM-oUnaBie_6Tjg1DoYWOb5benKlSnzM9BUN6XjN8AmZytlAF2ujoGQbpQEfXNZ0sa-71Lc9hTXnMmdT0-bps7tZR1YlcnrTJTa6Av46-hCqjj4_shJ-CTPeo23e2Tc3bAH8fCoCkYpvhmfnjYkAt_ilmIoQGVLBNFlbpXR5spGcyReHlta1Rjj8gWPGxgIitCyMDdwkd5qSknhe-E6r_EZOb79MWbWi52zO7W8atWBm89-TCD0KoSN9FmATYJjOHm9sfF50XntsGXx-sV0y9MVRKw_evh1hf5Sx-UDEObwE3md9GdFFTg7YiQe-iGXd5Htybh0uYfMAppvvrsATpoEYMBMdgjBh8tcYcYDIjBHjHYIwb3iMEBMX9-_U5YwQOsPESL9-_mO9MsXauRKQoCyCRrNOdUKieookSKRhKuieauoY3juSGV4oUqja4KZRuqK8NKZxpg4kob4LeP0MZytbSPEQZ6akp_wlBwzVhlVamV4RJG1NnSiRF62QqrPondU-qQ9VDIeijUEdpqJVmn_9cZLIDgg4HJKEZoHKR75R51q-En11r9FN3ugb6FNtan5_YZ8Mx18zwh5C9rOHMb |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQKwQL4ikKBTzAhCLSxE6csUBfkHboA1UskeMHYiBFfSCx8RP4jfwSzm5ayoLE5uHs4ey7-872fYfQOYAKLStKOVrzyCHEdx1W8VMHkq0KkYIJ11JstDtBc0DuhnSY9zk1tTBzfojlhZuxDOuvjYGbC-mcbcCQZELoYo3YULiZGvIiNU96BVSsPgweB0tnDB563jQvIg7zwiD_-w4rXK3O_x2VfqDmKmC1Eae-jbZyqIir873dQWsq20XrDduK9x1G9vOmmOyhXs8WfKgJ5pnEt2P-hJ8z3J-BwkxMwddK4njEJa6PRy-4q7StjHpTuGWoEr8-Ptvc7J3EtSXd_2QfDeq1_k3TyZslONyHgONEJBWU-hHXzOe-G7E0cqlwBdWpn2pakW7IqccDKUKPQwYtQkkCLVPAV1xIQC0HqJCNMnWIMIAOGZi80aOCkFDxQHBJIxj5WgWaldDFQlnJ65wTI7Fv2V6UrCq1hMoLTSa5ZUxAACAlgYPgldCl1e6faySNbgwpUciO_iV9hjaa_XacxK3O_THaNDLmQtZjZVSYjmfqBJDEND3NT8s3AFS_Rg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQFYgLYhWFAj7ACUWkiZ04x0JXaCvUBVVcIscL4kBadUHixifwjXwJYzct5YLEzYeJD-NZ3kw8zwhdAKjQsqiUozWPHEJ812FFP3Gg2CoSKZhwLcVGqx3U--RuQAdZw83Mwsz5IZYNN-MZNl4bBx9JnZENGI5MyFys1jQMbmaEPAdAwwMLz5Ue-0_9ZSyGAD1_My8iDvPCILv6Djtcr37_Oyn9IM1VvGoTTnUHbWdIEZfmR7uL1lS6hzZq9iXed1jZu5tiso-6XTvvoSaYpxKXx_wZv6S4NwN9mZSCb5TEzSGXuDoevuKO0nYw6k3hhmFK_Pr4bHFzdBJXlmz_kwPUr1Z6t3UneyvB4T7kGyciiaDUj7hmPvfdiCWRS4UrqE78RNOidENOPR5IEXocCmgRShJomQC84kICaDlE6-kwVUcIA-aQgSkbPSoICRUPBJc0gpWvVaBZHl0ulBWP5pQYsf2V7UXxqlLzqLDQZJw5xgQEAFESsAMvj66sdv_cI651mlARhez4X9LnaPOhXI2bjfb9CdoyIqYd67ECWp-OZ-oUcMQ0OcuM5RsBMr5v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stresses+and+Drag+in+Turbulent+Bed+Load+From+Refractive+Index%E2%80%90Matched+Experiments&rft.jtitle=Geophysical+research+letters&rft.au=Ni%2C+Wei%E2%80%90Jay&rft.au=Capart%2C+Herv%C3%A9&rft.date=2018-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=45&rft.issue=14&rft.spage=7000&rft.epage=7009&rft_id=info:doi/10.1029%2F2018GL077571&rft.externalDBID=10.1029%252F2018GL077571&rft.externalDocID=GRL57678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |