Stresses and Drag in Turbulent Bed Load From Refractive Index‐Matched Experiments

We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 45; no. 14; pp. 7000 - 7009
Main Authors Ni, Wei‐Jay, Capart, Hervé
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments. Plain Language Summary Turbulent bed load is responsible for the transport of coarse sediment by rivers and waves. Because grains are typically opaque and highly concentrated near the bed, one cannot look inside, and intrusive probes would otherwise disturb the local flow. In this work we acquire measurements inside turbulent bed load layers by making the medium transparent, using refractive index‐matched solid and liquid materials. We then scan a laser sheet across a 3‐D volume to capture liquid and granular motions and acquire measurements of key properties including solid and liquid velocities, granular concentration, and statistics of the velocity fluctuations. We deduce the principal contributions to the momentum balance of each phase and test relations describing stresses and drag forces. The measurements support the applicability of continuum two‐phase models to turbulent bed load transport. Such models provide key tools for the study of bed load but could not previously be tested in such detail. Key Points Granular and liquid motions in turbulent bed load are acquired from laser scans We deduce the principal contributions to the momentum balance of each phase The data allow testing of constitutive relations for stresses and drag
AbstractList We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments. Plain Language Summary Turbulent bed load is responsible for the transport of coarse sediment by rivers and waves. Because grains are typically opaque and highly concentrated near the bed, one cannot look inside, and intrusive probes would otherwise disturb the local flow. In this work we acquire measurements inside turbulent bed load layers by making the medium transparent, using refractive index‐matched solid and liquid materials. We then scan a laser sheet across a 3‐D volume to capture liquid and granular motions and acquire measurements of key properties including solid and liquid velocities, granular concentration, and statistics of the velocity fluctuations. We deduce the principal contributions to the momentum balance of each phase and test relations describing stresses and drag forces. The measurements support the applicability of continuum two‐phase models to turbulent bed load transport. Such models provide key tools for the study of bed load but could not previously be tested in such detail. Key Points Granular and liquid motions in turbulent bed load are acquired from laser scans We deduce the principal contributions to the momentum balance of each phase The data allow testing of constitutive relations for stresses and drag
Abstract We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments. Plain Language Summary Turbulent bed load is responsible for the transport of coarse sediment by rivers and waves. Because grains are typically opaque and highly concentrated near the bed, one cannot look inside, and intrusive probes would otherwise disturb the local flow. In this work we acquire measurements inside turbulent bed load layers by making the medium transparent, using refractive index‐matched solid and liquid materials. We then scan a laser sheet across a 3‐D volume to capture liquid and granular motions and acquire measurements of key properties including solid and liquid velocities, granular concentration, and statistics of the velocity fluctuations. We deduce the principal contributions to the momentum balance of each phase and test relations describing stresses and drag forces. The measurements support the applicability of continuum two‐phase models to turbulent bed load transport. Such models provide key tools for the study of bed load but could not previously be tested in such detail. Key Points Granular and liquid motions in turbulent bed load are acquired from laser scans We deduce the principal contributions to the momentum balance of each phase The data allow testing of constitutive relations for stresses and drag
We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access is gained by using materials of matched refractive index, and a laser light sheet is scanned across the medium to capture both the solid and liquid motions over a 3‐D volume. The imaging measurements yield vertical profiles of granular concentration, solid and liquid mean velocity, and velocity fluctuation statistics including the granular temperature and the Reynolds stress. This makes it possible to determine all principal contributions to the momentum balance of each phase. In particular, experimental profiles are obtained for the stresses and interphase drag force. They are used to test constitutive relationships derived from kinetic theory, turbulence theory, and fluidization cell experiments.
Author Ni, Wei‐Jay
Capart, Hervé
Author_xml – sequence: 1
  givenname: Wei‐Jay
  surname: Ni
  fullname: Ni, Wei‐Jay
  organization: National Taiwan University
– sequence: 2
  givenname: Hervé
  orcidid: 0000-0001-7066-3641
  surname: Capart
  fullname: Capart, Hervé
  email: hcapart@yahoo.com
  organization: National Taiwan University
BookMark eNp90D1OwzAUAGALFYm2sHEAS6wEnu04jkcobakUhNSWOXJsB1K1SbETaDeOwBk5CUZlYGJ6b_je7wD16qa2CJ0TuCJA5TUFkk4zEIILcoT6RMZxlAKIHuoDyJBTkZyggfcrAGDASB8tFq2z3luPVW3wnVPPuKrxsnNFt7Z1i2-twVmjDJ64ZoPntnRKt9WbxbPa2N3Xx-eDavVLQOPd1rpqE2r8KTou1drbs984RE-T8XJ0H2WP09noJosUS0QaybjQnDOpypQpBjItJHANmpcFK0pODAjFqUqMFlTZgmlh4qQ0BQGutEklG6KLQ9-ta14769t81XSuDiNzCpKyOCUxDeryoLRrvHe2zLdhT-X2OYH8523537cFTg_8vVrb_b82n84zLsIp7BuJ13BZ
CitedBy_id crossref_primary_10_1007_s10409_023_23233_x
crossref_primary_10_1103_PhysRevFluids_4_024303
crossref_primary_10_1017_jfm_2022_310
crossref_primary_10_1029_2020GL089114
crossref_primary_10_1017_jfm_2023_335
crossref_primary_10_1007_s00348_023_03691_y
crossref_primary_10_1063_5_0177630
crossref_primary_10_1017_jfm_2023_494
Cites_doi 10.1029/2011GL049408
10.1017/S0022112097007647
10.1017/S0022112098001840
10.1029/2012JC008306
10.1017/jfm.2015.23
10.1029/90WR02770
10.1007/s00348-008-0480-x
10.1016/j.flowmeasinst.2016.06.023
10.1016/0301-9322(94)90011-6
10.1063/1.3674173
10.1021/i160024a007
10.1007/s00348-010-0996-8
10.1103/PhysRevE.59.5895
10.1017/S002211200600334X
10.1016/j.advwatres.2017.11.016
10.1061/(ASCE)0733-9429(1996)122:10(549)
10.1017/jfm.2013.546
10.1146/annurev.fl.15.010183.001401
10.1103/PhysRevE.51.3170
10.1002/esp.3517
10.1098/rsta.1956.0020
10.1007/s00348-015-2034-3
10.1103/PhysRevFluids.2.024304
10.1016/j.ijmultiphaseflow.2016.09.006
10.1098/rspa.2003.1273
10.1017/jfm.2016.520
10.1126/science.1178516
10.1016/S0301-9322(99)00094-4
10.1017/S0022112005004283
10.1016/0378-4371(85)90168-2
10.1017/jfm.2017.920
10.1017/S0022112007008774
10.1061/(ASCE)WW.1943-5460.0000209
10.1038/ncomms7527
10.1016/0009-2509(64)85067-3
10.1103/PhysRevLett.115.194501
10.1017/S0022112089001540
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2018GL077571
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Statistics
EISSN 1944-8007
EndPage 7009
ExternalDocumentID 10_1029_2018GL077571
GRL57678
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology
– fundername: program for research excellence of National Taiwan University
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a3678-94bc5539af83a3098b905c0c5fb3bf51d07a52a6dc72aeb3c7d46fdb105acd893
ISSN 0094-8276
IngestDate Fri Nov 08 07:38:30 EST 2024
Thu Sep 12 17:39:43 EDT 2024
Sat Aug 24 00:59:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3678-94bc5539af83a3098b905c0c5fb3bf51d07a52a6dc72aeb3c7d46fdb105acd893
ORCID 0000-0001-7066-3641
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2018GL077571
PQID 2092348142
PQPubID 54723
PageCount 10
ParticipantIDs proquest_journals_2092348142
crossref_primary_10_1029_2018GL077571
wiley_primary_10_1029_2018GL077571_GRL57678
PublicationCentury 2000
PublicationDate 28 July 2018
PublicationDateYYYYMMDD 2018-07-28
PublicationDate_xml – month: 07
  year: 2018
  text: 28 July 2018
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 83
2015; 56
1995; 51
2015; 6
2017; 2
2000; 26
2005; 532
2017; 88
2004; 460
1997; 353
2016; 804
2016; 51
1996; 122
1985; 129
2015; 767
2003
2011; 38
1983; 15
1998; 370
1994; 20
1967; 6
2018; 111
1991; 27
2015; 27
2013; 736
2015; 115
2000
1964; 19
1989; 203
1999; 59
2013; 118
2007; 571
2011; 50
2018; 839
2008; 45
1956; 249
2014; 140
2014; 39
2008; 595
2009; 325
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Maurin R. (e_1_2_8_31_1) 2015; 27
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Dijksman J. A. (e_1_2_8_14_1) 2017; 88
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Jackson R. (e_1_2_8_27_1) 2000
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 839
  start-page: 198
  year: 2018
  end-page: 238
  article-title: Two‐level, two‐phase model for intense, turbulent sediment transport
  publication-title: Journal of Fluid Mechanics
– volume: 45
  start-page: 309
  year: 2008
  end-page: 321
  article-title: Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres
  publication-title: Experiments in Fluids
– volume: 532
  start-page: 269
  year: 2005
  end-page: 319
  article-title: Rheological stratification in experimental free‐surface flows of granular‐liquid mixtures
  publication-title: Journal of Fluid Mechanics
– volume: 2
  start-page: 024304
  year: 2017
  article-title: Depth resolved granular transport driven by shearing fluid flow
  publication-title: Physical Review Fluids
– volume: 15
  start-page: 261
  year: 1983
  end-page: 291
  article-title: Mathematical modeling of two‐phase flow
  publication-title: Annual Review of Fluid Mechanics
– volume: 27
  start-page: 825
  year: 1991
  end-page: 838
  article-title: Velocity distribution and bed roughness in high‐gradient streams
  publication-title: Water Resources Research
– volume: 19
  start-page: 897
  year: 1964
  end-page: 917
  article-title: On the dispersed two‐phase flow in the laminar flow regime
  publication-title: Chemical Engineering Science
– volume: 122
  start-page: 549
  year: 1996
  end-page: 558
  article-title: Velocity and concentration profiles in sheet flow layer of movable bed
  publication-title: Journal of Hydraulic Engineering
– volume: 88
  start-page: 116
  year: 2017
  end-page: 132
  article-title: Effects of wall roughness on drag and lift forces of a particle at finite Reynolds number
  publication-title: International Journal of Multiphase Flow
– year: 2003
– volume: 595
  start-page: 83
  year: 2008
  end-page: 114
  article-title: Entrainment and motion of coarse particles in a shallow water stream down a steep slope
  publication-title: Journal of Fluid Mechanics
– volume: 115
  start-page: 194501
  year: 2015
  article-title: Turbulence locality and granular like fluid shear viscosity in collisional suspensions
  publication-title: Physical Review Letters
– year: 2000
– volume: 571
  start-page: 235
  year: 2007
  end-page: 263
  article-title: Direct simulations of a rough‐wall channel flow
  publication-title: Journal of Fluid Mechanics
– volume: 460
  start-page: 2223
  year: 2004
  end-page: 2250
  article-title: On two‐phase sediment transport: Sheet flow of massive particles
  publication-title: Proceedings of the Royal Society of London A
– volume: 38
  year: 2011
  article-title: Transport layer structure in intense bed‐load
  publication-title: Geophysical Research Letters
– volume: 767
  start-page: 1
  year: 2015
  end-page: 30
  article-title: Investigation of sheet‐flow processes based on novel acoustic high‐resolution velocity and concentration measurements
  publication-title: Journal of Fluid Mechanics
– volume: 6
  start-page: 527
  year: 1967
  end-page: 539
  article-title: Fluid mechanical description of fluidized beds. Equations of motion
  publication-title: Industrial Engineering Chemistry Fundamentals
– volume: 83
  start-page: 011301
  year: 2012
  article-title: Refractive index matched scanning of dense granular materials
  publication-title: Review of Scientific Instruments
– volume: 51
  start-page: 3170
  year: 1995
  end-page: 3182
  article-title: Nearest‐neighbor statistics for packings of hard spheres and disks
  publication-title: Physical Review E
– volume: 50
  start-page: 1183
  year: 2011
  end-page: 1206
  article-title: Refractive‐index and density matching in concentrated particle suspensions: A review
  publication-title: Experiments in Fluids
– volume: 736
  start-page: 594
  year: 2013
  end-page: 615
  article-title: Investigation of the mobile granular layer in bedload transport by laminar shearing flows
  publication-title: Journal of Fluid Mechanics
– volume: 370
  start-page: 29
  year: 1998
  end-page: 52
  article-title: Collisional sheet‐flow of sediment driven by a turbulent fluid
  publication-title: Journal of Fluid Mechanics
– volume: 129
  start-page: 233
  year: 1985
  end-page: 261
  article-title: Virtual mass in two‐phase bubbly flow
  publication-title: Physica A
– volume: 39
  start-page: 646
  year: 2014
  end-page: 655
  article-title: Particle velocity and concentration profiles in bedload experiments on a steep slope
  publication-title: Earth Surface Processes and Landforms
– volume: 51
  start-page: 68
  year: 2016
  end-page: 78
  article-title: On local velocity measurement in gravity‐driven flows with intense bedload of coarse lightweight particles
  publication-title: Flow Measurement and Instrumentation
– volume: 27
  issue: 113302
  year: 2015
  article-title: A minimal coupled fluid‐discrete element model for bedload transport
  publication-title: Physics of Fluids
– volume: 804
  start-page: 490
  year: 2016
  end-page: 512
  article-title: Dense granular flow rheology in turbulent bedload transport
  publication-title: Journal of Fluid Mechanics
– volume: 20
  start-page: 153
  year: 1994
  end-page: 159
  article-title: The voidage function for fluid‐particle interaction systems
  publication-title: International Journal of Multiphase Flow
– volume: 111
  start-page: 205
  year: 2018
  end-page: 223
  article-title: An Eulerian two‐phase model for steady sheet flow using large‐eddy simulation methodology
  publication-title: Advances in Water Resources
– volume: 249
  start-page: 235
  year: 1956
  end-page: 297
  article-title: The flow of cohesionless grains in fluids
  publication-title: Philosophical Transactions of the Royal Society A
– volume: 88
  issue: 051807
  year: 2017
  article-title: Refractive index matched scanning and detection of soft particles
  publication-title: Review of Scientific Instruments
– volume: 325
  start-page: 1509
  year: 2009
  end-page: 1510
  article-title: How river beds move
  publication-title: Science
– volume: 59
  start-page: 5895
  year: 1999
  end-page: 5911
  article-title: Dense fluid transport for inelastic hard spheres
  publication-title: Physical Review E
– volume: 56
  start-page: 163
  year: 2015
  article-title: Cross‐sectional imaging of refractive‐index‐matched liquid‐granular flows
  publication-title: Experiments in Fluids
– volume: 118
  start-page: 619
  year: 2013
  end-page: 634
  article-title: A two‐phase model for sheet flow regime based on dense granular flow rheology
  publication-title: Journal of Geophysical Research: Oceans
– volume: 203
  start-page: 449
  year: 1989
  end-page: 473
  article-title: The stress tensor for simple shear flows of a granular material
  publication-title: Journal of Fluid Mechanics
– volume: 353
  start-page: 261
  year: 1997
  end-page: 283
  article-title: Collisional particle pressure measurements in solid‐liquid flows
  publication-title: Journal of Fluid Mechanics
– volume: 26
  start-page: 1401
  year: 2000
  end-page: 1418
  article-title: Laser Doppler anemometry measurements in an index of refraction matched column in the presence of dispersed beads: Part I
  publication-title: International Journal of Multiphase Flow
– volume: 6
  start-page: 6527
  year: 2015
  article-title: Onset of sediment transport is a continuous transition driven by fluid shear and granular creep
  publication-title: Nature Communications
– volume: 140
  start-page: 29
  year: 2014
  end-page: 42
  article-title: Comprehensive field study of swash‐zone processes. II: Sheet flow sediment concentrations during quasi‐steady backwash
  publication-title: Journal of Waterway Port Coastal and Ocean Engineering
– ident: e_1_2_8_11_1
  doi: 10.1029/2011GL049408
– ident: e_1_2_8_37_1
– ident: e_1_2_8_41_1
  doi: 10.1017/S0022112097007647
– ident: e_1_2_8_28_1
  doi: 10.1017/S0022112098001840
– ident: e_1_2_8_34_1
  doi: 10.1029/2012JC008306
– ident: e_1_2_8_35_1
  doi: 10.1017/jfm.2015.23
– ident: e_1_2_8_39_1
  doi: 10.1029/90WR02770
– ident: e_1_2_8_25_1
  doi: 10.1007/s00348-008-0480-x
– ident: e_1_2_8_8_1
  doi: 10.1016/j.flowmeasinst.2016.06.023
– ident: e_1_2_8_13_1
  doi: 10.1016/0301-9322(94)90011-6
– ident: e_1_2_8_15_1
  doi: 10.1063/1.3674173
– ident: e_1_2_8_4_1
  doi: 10.1021/i160024a007
– ident: e_1_2_8_40_1
  doi: 10.1007/s00348-010-0996-8
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRevE.59.5895
– ident: e_1_2_8_26_1
  doi: 10.1017/S002211200600334X
– ident: e_1_2_8_12_1
  doi: 10.1016/j.advwatres.2017.11.016
– ident: e_1_2_8_36_1
  doi: 10.1061/(ASCE)0733-9429(1996)122:10(549)
– ident: e_1_2_8_6_1
  doi: 10.1017/jfm.2013.546
– ident: e_1_2_8_16_1
  doi: 10.1146/annurev.fl.15.010183.001401
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevE.51.3170
– ident: e_1_2_8_17_1
  doi: 10.1002/esp.3517
– volume: 27
  issue: 113302
  year: 2015
  ident: e_1_2_8_31_1
  article-title: A minimal coupled fluid‐discrete element model for bedload transport
  publication-title: Physics of Fluids
  contributor:
    fullname: Maurin R.
– ident: e_1_2_8_7_1
  doi: 10.1098/rsta.1956.0020
– volume-title: The dynamics of fluidized particles
  year: 2000
  ident: e_1_2_8_27_1
  contributor:
    fullname: Jackson R.
– ident: e_1_2_8_33_1
  doi: 10.1007/s00348-015-2034-3
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRevFluids.2.024304
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ijmultiphaseflow.2016.09.006
– ident: e_1_2_8_24_1
  doi: 10.1098/rspa.2003.1273
– ident: e_1_2_8_32_1
  doi: 10.1017/jfm.2016.520
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1178516
– ident: e_1_2_8_22_1
  doi: 10.1016/S0301-9322(99)00094-4
– ident: e_1_2_8_5_1
  doi: 10.1017/S0022112005004283
– ident: e_1_2_8_20_1
  doi: 10.1016/0378-4371(85)90168-2
– ident: e_1_2_8_21_1
  doi: 10.1017/jfm.2017.920
– ident: e_1_2_8_3_1
  doi: 10.1017/S0022112007008774
– ident: e_1_2_8_29_1
  doi: 10.1061/(ASCE)WW.1943-5460.0000209
– volume: 88
  issue: 051807
  year: 2017
  ident: e_1_2_8_14_1
  article-title: Refractive index matched scanning and detection of soft particles
  publication-title: Review of Scientific Instruments
  contributor:
    fullname: Dijksman J. A.
– ident: e_1_2_8_23_1
  doi: 10.1038/ncomms7527
– ident: e_1_2_8_42_1
  doi: 10.1016/0009-2509(64)85067-3
– ident: e_1_2_8_9_1
  doi: 10.1103/PhysRevLett.115.194501
– ident: e_1_2_8_10_1
  doi: 10.1017/S0022112089001540
SSID ssj0003031
Score 2.3623672
Snippet We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution. Optical access...
Abstract We report steady open‐channel flow experiments that resolve the internal dynamics of turbulent bed load layers at subgrain diameter resolution....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 7000
SubjectTerms Bed load
Channel flow
Computational fluid dynamics
Constitutive relationships
Drag
Dynamics
Experiments
Fluid flow
Fluidization
Fluidized beds
Fluvial sediments
Forces (mechanics)
Imaging techniques
Kinetic theory
Lasers
Load matching
Local flow
Momentum
Momentum balance
Open channel flow
Profiles
Refractive index
refractive index matching
Refractivity
Reynolds stress
Rivers
Sediment load
Sediment transport
Statistical methods
Statistics
Transport
Turbulence
Velocity
Vertical profiles
Title Stresses and Drag in Turbulent Bed Load From Refractive Index‐Matched Experiments
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL077571
https://www.proquest.com/docview/2092348142
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagFRIXxFMECvIBTtGCd23v2sdSIFGV9kATqLisvH6ISjSp2hQBJ34Cv5Ffwvixj0pVRbmsHMuykpkvM994Z8YIvQBS4UxubeackhljlGQip00GwVbOjBaahBYbe_vldMF2D_lh_0Y3VJesm1f656V1Jf-jVZgDvfoq2WtottsUJmAM-oUnaBie_6Tjg1DoYWOb5benKlSnzM9BUN6XjN8AmZytlAF2ujoGQbpQEfXNZ0sa-71Lc9hTXnMmdT0-bps7tZR1YlcnrTJTa6Av46-hCqjj4_shJ-CTPeo23e2Tc3bAH8fCoCkYpvhmfnjYkAt_ilmIoQGVLBNFlbpXR5spGcyReHlta1Rjj8gWPGxgIitCyMDdwkd5qSknhe-E6r_EZOb79MWbWi52zO7W8atWBm89-TCD0KoSN9FmATYJjOHm9sfF50XntsGXx-sV0y9MVRKw_evh1hf5Sx-UDEObwE3md9GdFFTg7YiQe-iGXd5Htybh0uYfMAppvvrsATpoEYMBMdgjBh8tcYcYDIjBHjHYIwb3iMEBMX9-_U5YwQOsPESL9-_mO9MsXauRKQoCyCRrNOdUKieookSKRhKuieauoY3juSGV4oUqja4KZRuqK8NKZxpg4kob4LeP0MZytbSPEQZ6akp_wlBwzVhlVamV4RJG1NnSiRF62QqrPondU-qQ9VDIeijUEdpqJVmn_9cZLIDgg4HJKEZoHKR75R51q-En11r9FN3ugb6FNtan5_YZ8Mx18zwh5C9rOHMb
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQKwQL4ikKBTzAhCLSxE6csUBfkHboA1UskeMHYiBFfSCx8RP4jfwSzm5ayoLE5uHs4ey7-872fYfQOYAKLStKOVrzyCHEdx1W8VMHkq0KkYIJ11JstDtBc0DuhnSY9zk1tTBzfojlhZuxDOuvjYGbC-mcbcCQZELoYo3YULiZGvIiNU96BVSsPgweB0tnDB563jQvIg7zwiD_-w4rXK3O_x2VfqDmKmC1Eae-jbZyqIir873dQWsq20XrDduK9x1G9vOmmOyhXs8WfKgJ5pnEt2P-hJ8z3J-BwkxMwddK4njEJa6PRy-4q7StjHpTuGWoEr8-Ptvc7J3EtSXd_2QfDeq1_k3TyZslONyHgONEJBWU-hHXzOe-G7E0cqlwBdWpn2pakW7IqccDKUKPQwYtQkkCLVPAV1xIQC0HqJCNMnWIMIAOGZi80aOCkFDxQHBJIxj5WgWaldDFQlnJ65wTI7Fv2V6UrCq1hMoLTSa5ZUxAACAlgYPgldCl1e6faySNbgwpUciO_iV9hjaa_XacxK3O_THaNDLmQtZjZVSYjmfqBJDEND3NT8s3AFS_Rg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQFYgLYhWFAj7ACUWkiZ04x0JXaCvUBVVcIscL4kBadUHixifwjXwJYzct5YLEzYeJD-NZ3kw8zwhdAKjQsqiUozWPHEJ812FFP3Gg2CoSKZhwLcVGqx3U--RuQAdZw83Mwsz5IZYNN-MZNl4bBx9JnZENGI5MyFys1jQMbmaEPAdAwwMLz5Ue-0_9ZSyGAD1_My8iDvPCILv6Djtcr37_Oyn9IM1VvGoTTnUHbWdIEZfmR7uL1lS6hzZq9iXed1jZu5tiso-6XTvvoSaYpxKXx_wZv6S4NwN9mZSCb5TEzSGXuDoevuKO0nYw6k3hhmFK_Pr4bHFzdBJXlmz_kwPUr1Z6t3UneyvB4T7kGyciiaDUj7hmPvfdiCWRS4UrqE78RNOidENOPR5IEXocCmgRShJomQC84kICaDlE6-kwVUcIA-aQgSkbPSoICRUPBJc0gpWvVaBZHl0ulBWP5pQYsf2V7UXxqlLzqLDQZJw5xgQEAFESsAMvj66sdv_cI651mlARhez4X9LnaPOhXI2bjfb9CdoyIqYd67ECWp-OZ-oUcMQ0OcuM5RsBMr5v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stresses+and+Drag+in+Turbulent+Bed+Load+From+Refractive+Index%E2%80%90Matched+Experiments&rft.jtitle=Geophysical+research+letters&rft.au=Ni%2C+Wei%E2%80%90Jay&rft.au=Capart%2C+Herv%C3%A9&rft.date=2018-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=45&rft.issue=14&rft.spage=7000&rft.epage=7009&rft_id=info:doi/10.1029%2F2018GL077571&rft.externalDBID=10.1029%252F2018GL077571&rft.externalDocID=GRL57678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon