The Longitudinal Profile of a Prograding River and Its Response to Sea Level Rise
River longitudinal profile, a key morphological characteristic of the river channel, is subject to river mouth progradation. Given the increasing influence of human activities and climate change on this critical downstream control, understanding its effects on the evolution of the longitudinal profi...
Saved in:
Published in | Geophysical research letters Vol. 47; no. 21 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | River longitudinal profile, a key morphological characteristic of the river channel, is subject to river mouth progradation. Given the increasing influence of human activities and climate change on this critical downstream control, understanding its effects on the evolution of the longitudinal profile is imperative. A general theoretical framework is proposed to quantify the relevant effects, which is tested by numerical experiment and compared with field, numerical and laboratory data from the literature. The results suggest the existence of a critical ratio of accommodation space to sediment supply of approximately 0.5, above which the typical concave upward profile tends to form. Further analyses show that sea level rise tends to increase the concavity of the longitudinal profile of a river with a relatively low equilibrium bed slope and progradation rate.
Plain Language Summary
As a key feature of a river, the bed level along the river, i.e., the river longitudinal profile, affects flooding, navigation, etc., and thus greatly influences human societies and natural ecosystems. However, the effects of the seaward progradation of a river mouth on the evolution of the river longitudinal profile are still unclear. Given the increasing influence of human activities and climate change on this critical downstream control, understanding these effects becomes imperative. A new theoretical framework incorporating the effects of river mouth progradation on the evolution of a river longitudinal profile is developed and tested by numerical experiments, field observations, and numerical and laboratory data from the literature. The results show that the seaward progradation of a river mouth could potentially lead to the formation of a concave river longitudinal profile. Specifically, we found that there exists a critical condition in which the sediment supply is insufficient to balance the seaward progradation of the river mouth, causing the typical concave upward longitudinal profile to form. The proposed theoretical framework further suggests that sea level rise tends to increase the concavity of the longitudinal profile for river with a relatively low equilibrium bed slope and progradation rate.
Key Points
A theoretical framework is proposed for predicting the evolution of the longitudinal profile and its concavity of prograding rivers
Numerical results suggest a critical ratio of accommodation space to sediment supply for the formation of a concave profile
Sea level rise tends to increase the concavity of river profiles with a relatively low bed slope and progradation rate |
---|---|
AbstractList | River longitudinal profile, a key morphological characteristic of the river channel, is subject to river mouth progradation. Given the increasing influence of human activities and climate change on this critical downstream control, understanding its effects on the evolution of the longitudinal profile is imperative. A general theoretical framework is proposed to quantify the relevant effects, which is tested by numerical experiment and compared with field, numerical and laboratory data from the literature. The results suggest the existence of a critical ratio of accommodation space to sediment supply of approximately 0.5, above which the typical concave upward profile tends to form. Further analyses show that sea level rise tends to increase the concavity of the longitudinal profile of a river with a relatively low equilibrium bed slope and progradation rate.
Plain Language Summary
As a key feature of a river, the bed level along the river, i.e., the river longitudinal profile, affects flooding, navigation, etc., and thus greatly influences human societies and natural ecosystems. However, the effects of the seaward progradation of a river mouth on the evolution of the river longitudinal profile are still unclear. Given the increasing influence of human activities and climate change on this critical downstream control, understanding these effects becomes imperative. A new theoretical framework incorporating the effects of river mouth progradation on the evolution of a river longitudinal profile is developed and tested by numerical experiments, field observations, and numerical and laboratory data from the literature. The results show that the seaward progradation of a river mouth could potentially lead to the formation of a concave river longitudinal profile. Specifically, we found that there exists a critical condition in which the sediment supply is insufficient to balance the seaward progradation of the river mouth, causing the typical concave upward longitudinal profile to form. The proposed theoretical framework further suggests that sea level rise tends to increase the concavity of the longitudinal profile for river with a relatively low equilibrium bed slope and progradation rate.
Key Points
A theoretical framework is proposed for predicting the evolution of the longitudinal profile and its concavity of prograding rivers
Numerical results suggest a critical ratio of accommodation space to sediment supply for the formation of a concave profile
Sea level rise tends to increase the concavity of river profiles with a relatively low bed slope and progradation rate River longitudinal profile, a key morphological characteristic of the river channel, is subject to river mouth progradation. Given the increasing influence of human activities and climate change on this critical downstream control, understanding its effects on the evolution of the longitudinal profile is imperative. A general theoretical framework is proposed to quantify the relevant effects, which is tested by numerical experiment and compared with field, numerical and laboratory data from the literature. The results suggest the existence of a critical ratio of accommodation space to sediment supply of approximately 0.5, above which the typical concave upward profile tends to form. Further analyses show that sea level rise tends to increase the concavity of the longitudinal profile of a river with a relatively low equilibrium bed slope and progradation rate. As a key feature of a river, the bed level along the river, i.e., the river longitudinal profile, affects flooding, navigation, etc., and thus greatly influences human societies and natural ecosystems. However, the effects of the seaward progradation of a river mouth on the evolution of the river longitudinal profile are still unclear. Given the increasing influence of human activities and climate change on this critical downstream control, understanding these effects becomes imperative. A new theoretical framework incorporating the effects of river mouth progradation on the evolution of a river longitudinal profile is developed and tested by numerical experiments, field observations, and numerical and laboratory data from the literature. The results show that the seaward progradation of a river mouth could potentially lead to the formation of a concave river longitudinal profile. Specifically, we found that there exists a critical condition in which the sediment supply is insufficient to balance the seaward progradation of the river mouth, causing the typical concave upward longitudinal profile to form. The proposed theoretical framework further suggests that sea level rise tends to increase the concavity of the longitudinal profile for river with a relatively low equilibrium bed slope and progradation rate. A theoretical framework is proposed for predicting the evolution of the longitudinal profile and its concavity of prograding rivers Numerical results suggest a critical ratio of accommodation space to sediment supply for the formation of a concave profile Sea level rise tends to increase the concavity of river profiles with a relatively low bed slope and progradation rate River longitudinal profile, a key morphological characteristic of the river channel, is subject to river mouth progradation. Given the increasing influence of human activities and climate change on this critical downstream control, understanding its effects on the evolution of the longitudinal profile is imperative. A general theoretical framework is proposed to quantify the relevant effects, which is tested by numerical experiment and compared with field, numerical and laboratory data from the literature. The results suggest the existence of a critical ratio of accommodation space to sediment supply of approximately 0.5, above which the typical concave upward profile tends to form. Further analyses show that sea level rise tends to increase the concavity of the longitudinal profile of a river with a relatively low equilibrium bed slope and progradation rate. |
Author | Nardin, William Shao, Dongdong Wang, Zheng Bing Miao, Chiyuan Cui, Baoshan Sun, Tao Gao, Weilun Li, Dongxue |
Author_xml | – sequence: 1 givenname: Weilun orcidid: 0000-0002-7492-0729 surname: Gao fullname: Gao, Weilun organization: Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education – sequence: 2 givenname: Dongxue surname: Li fullname: Li, Dongxue organization: Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education – sequence: 3 givenname: Zheng Bing orcidid: 0000-0002-8787-4530 surname: Wang fullname: Wang, Zheng Bing organization: Delft University of Technology – sequence: 4 givenname: William orcidid: 0000-0002-5490-879X surname: Nardin fullname: Nardin, William organization: University of Maryland Center for Environmental Science – sequence: 5 givenname: Dongdong orcidid: 0000-0003-0029-4777 surname: Shao fullname: Shao, Dongdong email: ddshao@bnu.edu.cn organization: Beijing Normal University – sequence: 6 givenname: Tao orcidid: 0000-0001-5277-8699 surname: Sun fullname: Sun, Tao organization: Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education – sequence: 7 givenname: Chiyuan orcidid: 0000-0001-6413-7020 surname: Miao fullname: Miao, Chiyuan organization: Beijing Normal University – sequence: 8 givenname: Baoshan surname: Cui fullname: Cui, Baoshan email: cuibs@bnu.edu.cn organization: Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education |
BookMark | eNqFkEtPAjEQgBuDiYDe_AFNvLo6feyWHg1RJNlERTxvyu4slqxbbBcI_94SPBgPeuo0883rG5Be61ok5JLBDQOubzlwmOSgQaZwQvpMS5mMAFSP9AF0jLnKzsgghBUACBCsT17m70hz1y5tt6lsaxr67F1tG6SupubwWXoTE0s6s1v01LQVnXaBzjCsXRuQdo6-oqE5brGJTMBzclqbJuDF9zskbw_38_Fjkj9NpuO7PDEiUyrJSqgVE2qErJQLNWIpglloFJJVC64lL0XcHzOujFamFjpL00qWDGWqWMpQDMnVse_au88Nhq5YuY2PF4SCywxY1AAiUtdHqvQuBI91sfb2w_h9waA4SCt-Sos4_4WXtjOddW3njW3-KdpFb_s_BxSTWZ4xyZT4An4SfG4 |
CitedBy_id | crossref_primary_10_1029_2023GL103000 crossref_primary_10_3390_w13223198 |
Cites_doi | 10.1029/2004JF000265 10.1126/science.258.5089.1757 10.1038/s41561-018-0262-x 10.1073/pnas.1911225116 10.1038/469038a 10.1061/(ASCE)0733-9429(1986)112:1(43) 10.1111/j.1365-3091.2011.01231.x 10.1016/j.gloplacha.2006.12.001 10.1002/2016GL068898 10.1029/2005GL024758 10.1002/2016GL069824 10.1111/j.1365-2117.1992.tb00145.x 10.1111/bre.12385 10.1029/2018JF004750 10.1029/2017JF004584 10.1016/j.geomorph.2019.02.032 10.1126/sciadv.1603114 10.1016/S0037-0738(99)00107-4 10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2 10.1016/S1001-6279(08)60002-5 10.1029/2020WR027298 10.1046/j.1365-3091.2000.00008.x 10.1002/2013JF002806 10.1002/2017JF004213 10.1002/1096-9837(200007)25:7<765::AID-ESP98>3.0.CO;2-K 10.1016/j.earscirev.2019.04.018 10.1016/j.geomorph.2013.05.021 10.1093/biosci/biv002 10.1016/j.catena.2019.104073 10.1086/648221 10.1073/pnas.1912351117 10.1038/s41598-019-41575-6 10.1029/2005JF000284 10.1002/2014RG000451 10.1002/2015JF003780 10.1029/2011GL050197 10.1029/2017JF004576 10.1306/D42686A8-2B26-11D7-8648000102C1865D 10.5194/esurf-6-989-2018 10.2110/jsr.2016.9 10.1029/2004JF000274 10.1130/G47556.1 10.1061/(ASCE)HY.1943-7900.0000856 10.1016/0025-3227(89)90098-4 10.1029/2019GL082491 10.1029/95WR03819 10.1029/2019JF005220 10.1029/2019GL082483 10.1080/00221686.2009.9522004 10.1029/2004JF000138 |
ContentType | Journal Article |
Copyright | 2020. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2020GL090450 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020GL090450 GRL61417 |
Genre | article |
GrantInformation_xml | – fundername: Interdisciplinary Research Funds of Beijing Normal University – fundername: China Postdoctoral Science Foundation funderid: 2020M680438 – fundername: National Natural Science Foundation of China funderid: U1806217 – fundername: State Administration of Foreign Experts Affairs of China funderid: GDW20161100287; G20190001540 – fundername: Key Project of National Natural Science Foundation of China funderid: 51639001 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a3677-6c0f71378e1c4b7815e0ab9e341db2942c3194e627a97af39655d4c1e457151e3 |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 10:27:09 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Tue Jul 01 01:41:12 EDT 2025 Wed Jan 22 16:31:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3677-6c0f71378e1c4b7815e0ab9e341db2942c3194e627a97af39655d4c1e457151e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7492-0729 0000-0002-8787-4530 0000-0001-6413-7020 0000-0002-5490-879X 0000-0003-0029-4777 0000-0001-5277-8699 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020GL090450 |
PQID | 2460109003 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2460109003 crossref_primary_10_1029_2020GL090450 crossref_citationtrail_10_1029_2020GL090450 wiley_primary_10_1029_2020GL090450_GRL61417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 November 2020 |
PublicationDateYYYYMMDD | 2020-11-16 |
PublicationDate_xml | – month: 11 year: 2020 text: 16 November 2020 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2014; 119 1992a; 4 2014; 215 2009; 47 2019; 9 1989; 88 2017; 3 2000; 47 2005; 110 2000; 25 1986; 112 2015; 53 2019; 12 1997; 67 2019; 124 2000; 130 2016; 121 1950 2012; 39 2020; 56 2003 2011; 58 2020; 32 1959; 1 1948; 59 1996; 32 2007; 57 1979 1993; 101 1992b; 258 2018; 6 2019; 181 2011; 469 2020 2019; 46 2015; 65 2016; 43 2016; 86 2020; 117 2008; 23 2019; 333 2005; 32 2014; 140 1988; 42 2017; 122 2019; 193 1948 1967 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 Coe A. L. (e_1_2_8_17_1) 2003 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 Chow V. T. (e_1_2_8_16_1) 1959 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 Posamentier H. W. (e_1_2_8_44_1) 1988 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 Jansen P. P. (e_1_2_8_26_1) 1979 e_1_2_8_23_1 Brown C. B. (e_1_2_8_11_1) 1950 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 47 start-page: 2 issue: s1 year: 2000 end-page: 48 article-title: Fluvial responses to climate and sea‐level change: A review and look forward publication-title: Sedimentology – volume: 67 start-page: 994 issue: 6 year: 1997 end-page: 1000 article-title: Principles of regression and transgression; the nature of the interplay between accommodation and sediment supply publication-title: Journal of Sedimentary Research – volume: 112 start-page: 43 issue: 1 year: 1986 end-page: 55 article-title: River channel changes: Adjustments of equilibrium publication-title: Journal of Hydraulic Engineering – volume: 117 start-page: 17,584 issue: 30 year: 2020 end-page: 17,590 article-title: Accelerated river avulsion frequency on lowland deltas due to sea‐level rise publication-title: Proceedings of the National Academy of Sciences – volume: 110 year: 2005 article-title: Large‐scale fluvial grade as a nonequilibrium state in linked depositional systems: Theory and experiment publication-title: Journal of Geophysical Research – volume: 181 year: 2019 article-title: Assessing quasi‐equilibrium fining and concavity of present rivers: A modelling approach publication-title: Catena – volume: 57 start-page: 261 issue: 3–4 year: 2007 end-page: 282 article-title: Morphodynamics of deltas under the influence of humans publication-title: Global and Planetary Change – volume: 469 start-page: 38 issue: 7328 year: 2011 end-page: 39 article-title: Simplicity versus complexity publication-title: Nature – volume: 258 start-page: 1757 issue: 5089 year: 1992b end-page: 1760 article-title: Downstream fining by selective deposition in a laboratory flume publication-title: Science – volume: 101 start-page: 279 issue: 2 year: 1993 end-page: 294 article-title: River response to baselevel change: Implications for sequence stratigraphy publication-title: The Journal of Geology – volume: 32 start-page: 1417 issue: 5 year: 1996 end-page: 1428 article-title: Causes of concavity in longitudinal profiles of rivers publication-title: Water Resources Research – volume: 58 start-page: 1716 issue: 7 year: 2011 end-page: 1736 article-title: Large‐scale architecture in non‐marine basins: The response to the interplay between accommodation space and sediment supply publication-title: Sedimentology – year: 1979 – volume: 46 start-page: 5265 year: 2019 end-page: 5273 article-title: Morphodynamics of river deltas in response to different basin water depths: An experimental examination of the grade index model publication-title: Geophysical Research Letters – volume: 117 start-page: 171 issue: 1 year: 2020 end-page: 176 article-title: Universal relation with regime transition for sediment transport in fine‐grained rivers publication-title: Proceedings of the National Academy of Sciences – volume: 110 year: 2005 article-title: Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound‐clinoform development publication-title: Journal of Geophysical Research – volume: 86 start-page: 217 issue: 3 year: 2016 end-page: 235 article-title: Fluvio‐marine sediment partitioning as a function of basin water depth publication-title: Journal of Sedimentary Research – volume: 6 start-page: 989 issue: 4 year: 2018 end-page: 1010 article-title: Morphodynamic model of the lower Yellow River: Flux or entrainment form for sediment mass conservation? publication-title: Earth Surface Dynamics – volume: 110 year: 2005 article-title: A generalized Exner equation for sediment mass balance publication-title: Journal of Geophysical Research – volume: 130 start-page: 1 issue: 1–2 year: 2000 end-page: 10 article-title: The accommodation concept in sequence stratigraphy: Some dimensional problems and possible redefinition publication-title: Sedimentary Geology – volume: 1 year: 1959 – volume: 47 start-page: 329 issue: 3 year: 2009 end-page: 339 article-title: How fast and how far do variable boundary conditions affect river morphodynamics? publication-title: Journal of Hydraulic Research – volume: 124 start-page: 347 year: 2019 end-page: 364 article-title: Progradation rates measured at modern river outlets: A first‐order constraint on the pace of deltaic deposition publication-title: Journal of Geophysical Research: Earth Surface – volume: 333 start-page: 137 issue: 15 year: 2019 end-page: 151 article-title: Backwater controls on the evolution and avulsion of the Qingshuigou channel on the Yellow River Delta publication-title: Geomorphology – volume: 124 start-page: 383 year: 2019 end-page: 399 article-title: Laboratory investigation on effects of flood intermittency on fan delta dynamics publication-title: Journal of Geophysical Research: Earth Surface – volume: 4 start-page: 73 issue: 2 year: 1992a end-page: 90 article-title: The large‐scale dynamics of grain‐size variation in alluvial basins, 1: Theory publication-title: Basin Research – volume: 110 year: 2005 article-title: Climatic influences on profile concavity and river incision publication-title: Journal of Geophysical Research – volume: 53 start-page: 642 year: 2015 end-page: 672 article-title: Dynamics of river mouth deposits publication-title: Reviews of Geophysics – volume: 12 start-page: 7 issue: 1 year: 2019 end-page: 21 article-title: Anthropogenic stresses on the world's big rivers publication-title: Nature Geoscience – start-page: 769 year: 1950 end-page: 857 – volume: 42 start-page: 125 year: 1988 end-page: 154 – volume: 140 issue: 6 year: 2014 article-title: Long‐term effects of water diversions on the longitudinal flow and bed profiles publication-title: Journal of Hydraulic Engineering – volume: 119 start-page: 317 year: 2014 end-page: 332 article-title: On the equilibrium profile of river beds publication-title: Journal of Geophysical Research: Earth Surface – volume: 65 start-page: 358 issue: 4 year: 2015 end-page: 371 article-title: The natural sediment regime in rivers: Broadening the foundation for ecosystem management publication-title: Bioscience – volume: 25 start-page: 765 issue: 7 year: 2000 end-page: 782 article-title: Dynamic characteristics of the Yellow River mouth publication-title: Earth Surface Processes and Landforms – volume: 88 start-page: 201 issue: 3–4 year: 1989 end-page: 219 article-title: Sediment accumulation rates and relative sea‐level rise in lagoons publication-title: Marine Geology – volume: 32 year: 2005 article-title: Relative importance of fluvial input and wave energy in controlling the timescale for distributary‐channel avulsion publication-title: Geophysical Research Letters – volume: 9 start-page: 5176 issue: 1 year: 2019 article-title: Sediment replenishment combined with an artificial flood improves river habitats downstream of a dam publication-title: Scientific Reports – year: 2003 – year: 1948 – volume: 43 start-page: 6285 year: 2016 end-page: 6293 article-title: The graded alluvial river: Profile concavity and downstream fining publication-title: Geophysical Research Letters – volume: 193 start-page: 199 year: 2019 end-page: 219 article-title: Multi‐decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review publication-title: Earth‐Science Reviews – volume: 3 issue: 5 year: 2017 article-title: The exceptional sediment load of fine‐grained dispersal systems: Example of the Yellow River, China publication-title: Science Advances – volume: 23 start-page: 13 issue: 1 year: 2008 end-page: 27 article-title: Impact of water diversion on the morphological development of the lower Yellow River publication-title: International Journal of Sediment Research – volume: 39 year: 2012 article-title: Backwater controls of avulsion location on deltas publication-title: Geophysical Research Letters – volume: 122 start-page: 1924 year: 2017 end-page: 1948 article-title: The equilibrium alluvial river under variable flow and its channel‐forming discharge publication-title: Journal of Geophysical Research: Earth Surface – year: 1967 – volume: 124 start-page: 960 year: 2019 end-page: 973 article-title: Long‐term cumulative effects of intra‐annual variability of unsteady river discharge on the progradation of delta lobes: A modeling perspective publication-title: Journal of Geophysical Research: Earth Surface – volume: 32 start-page: 567 issue: 3 year: 2020 end-page: 584 article-title: Impacts of backwater hydrodynamics on fluvial–deltaic stratigraphy publication-title: Basin Research – volume: 59 start-page: 463 issue: 5 year: 1948 end-page: 512 article-title: Concept of the graded river publication-title: GSA Bulletin – year: 2020 article-title: Morphodynamic equilibrium of lowland river systems during autoretreat publication-title: Geology – volume: 215 start-page: 74 year: 2014 end-page: 82 article-title: Morphodynamic reaction of a schematic river to sediment input changes: Analytical approaches publication-title: Geomorphology – volume: 12 start-page: 2438 year: 2019 end-page: 2462 article-title: Modeling deltaic lobe‐building cycles and channel avulsions for the Yellow River delta, China publication-title: Journal of Geophysical Research: Earth Surface – volume: 46 start-page: 4267 year: 2019 end-page: 4277 article-title: Origin of a preferential avulsion node on lowland river deltas publication-title: Geophysical Research Letters – volume: 121 start-page: 664 year: 2016 end-page: 683 article-title: Alongshore sediment bypassing as a control on river mouth morphodynamics publication-title: Journal of Geophysical Research: Earth Surface – volume: 56 year: 2020 article-title: Wave controls on deltaic shoreline‐channel morphodynamics: Insights from a coupled model publication-title: Water Resources Research – volume: 43 start-page: 6313 year: 2016 end-page: 6323 article-title: On how spatial variations of channel width influence river profile curvature publication-title: Geophysical Research Letters – ident: e_1_2_8_49_1 doi: 10.1029/2004JF000265 – ident: e_1_2_8_42_1 doi: 10.1126/science.258.5089.1757 – ident: e_1_2_8_5_1 doi: 10.1038/s41561-018-0262-x – ident: e_1_2_8_31_1 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1911225116 – volume-title: Open‐channel hydraulics year: 1959 ident: e_1_2_8_16_1 – ident: e_1_2_8_41_1 doi: 10.1038/469038a – start-page: 125 volume-title: Eustatic controls on clastic deposition II—Sequence and systems tract models year: 1988 ident: e_1_2_8_44_1 – ident: e_1_2_8_14_1 doi: 10.1061/(ASCE)0733-9429(1986)112:1(43) – ident: e_1_2_8_25_1 doi: 10.1111/j.1365-3091.2011.01231.x – ident: e_1_2_8_50_1 doi: 10.1016/j.gloplacha.2006.12.001 – ident: e_1_2_8_8_1 doi: 10.1002/2016GL068898 – ident: e_1_2_8_48_1 doi: 10.1029/2005GL024758 – ident: e_1_2_8_22_1 doi: 10.1002/2016GL069824 – ident: e_1_2_8_40_1 doi: 10.1111/j.1365-2117.1992.tb00145.x – ident: e_1_2_8_55_1 doi: 10.1111/bre.12385 – ident: e_1_2_8_2_1 doi: 10.1029/2018JF004750 – ident: e_1_2_8_24_1 doi: 10.1029/2017JF004584 – ident: e_1_2_8_58_1 doi: 10.1016/j.geomorph.2019.02.032 – ident: e_1_2_8_28_1 doi: 10.1126/sciadv.1603114 – ident: e_1_2_8_35_1 doi: 10.1016/S0037-0738(99)00107-4 – ident: e_1_2_8_30_1 doi: 10.1130/0016-7606(1948)59[463:COTGR]2.0.CO;2 – ident: e_1_2_8_52_1 doi: 10.1016/S1001-6279(08)60002-5 – ident: e_1_2_8_23_1 doi: 10.1029/2020WR027298 – start-page: 769 volume-title: Engineering hydraulics year: 1950 ident: e_1_2_8_11_1 – ident: e_1_2_8_9_1 doi: 10.1046/j.1365-3091.2000.00008.x – volume-title: The sedimentary record of sea‐level change year: 2003 ident: e_1_2_8_17_1 – ident: e_1_2_8_10_1 doi: 10.1002/2013JF002806 – ident: e_1_2_8_7_1 doi: 10.1002/2017JF004213 – ident: e_1_2_8_53_1 doi: 10.1002/1096-9837(200007)25:7<765::AID-ESP98>3.0.CO;2-K – ident: e_1_2_8_4_1 doi: 10.1016/j.earscirev.2019.04.018 – ident: e_1_2_8_18_1 doi: 10.1016/j.geomorph.2013.05.021 – ident: e_1_2_8_54_1 doi: 10.1093/biosci/biv002 – ident: e_1_2_8_39_1 doi: 10.1016/j.catena.2019.104073 – ident: e_1_2_8_45_1 doi: 10.1086/648221 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.1912351117 – ident: e_1_2_8_47_1 doi: 10.1038/s41598-019-41575-6 – ident: e_1_2_8_36_1 doi: 10.1029/2005JF000284 – ident: e_1_2_8_20_1 doi: 10.1002/2014RG000451 – ident: e_1_2_8_38_1 doi: 10.1002/2015JF003780 – ident: e_1_2_8_15_1 doi: 10.1029/2011GL050197 – ident: e_1_2_8_32_1 doi: 10.1029/2017JF004576 – ident: e_1_2_8_34_1 doi: 10.1306/D42686A8-2B26-11D7-8648000102C1865D – ident: e_1_2_8_3_1 doi: 10.5194/esurf-6-989-2018 – ident: e_1_2_8_6_1 doi: 10.2110/jsr.2016.9 – ident: e_1_2_8_19_1 – ident: e_1_2_8_43_1 doi: 10.1029/2004JF000274 – ident: e_1_2_8_56_1 doi: 10.1130/G47556.1 – ident: e_1_2_8_27_1 doi: 10.1061/(ASCE)HY.1943-7900.0000856 – ident: e_1_2_8_37_1 doi: 10.1016/0025-3227(89)90098-4 – ident: e_1_2_8_13_1 doi: 10.1029/2019GL082491 – ident: e_1_2_8_46_1 doi: 10.1029/95WR03819 – volume-title: Principles of river engineering: The non‐tidal alluvial river year: 1979 ident: e_1_2_8_26_1 – ident: e_1_2_8_33_1 doi: 10.1029/2019JF005220 – ident: e_1_2_8_51_1 doi: 10.1029/2019GL082483 – ident: e_1_2_8_21_1 doi: 10.1080/00221686.2009.9522004 – ident: e_1_2_8_57_1 doi: 10.1029/2004JF000138 |
SSID | ssj0003031 |
Score | 2.3694053 |
Snippet | River longitudinal profile, a key morphological characteristic of the river channel, is subject to river mouth progradation. Given the increasing influence of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Climate and human activity Climate change Concavity Downstream Downstream effects Ecosystem assessment Evolution Flooding Frameworks Laboratories Navigation Numerical experiments Physical characteristics Progradation River channels River mouth River mouths Rivers Sea level Sea level rise Sediment Slopes |
Title | The Longitudinal Profile of a Prograding River and Its Response to Sea Level Rise |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL090450 https://www.proquest.com/docview/2460109003 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkhcEE9RKMgHOK0Cjh9xfCwIUqEFldKFqpeQOI5aabWp2EQCfj3jRx6FggqXKLLs2PJ8GY_tb2YQesopEaD5AbyCiojzWkclY3VUE1WVWiSpcu5j794n-0v-9lgcz2ZfJqylri2f6x-X-pX8j1ShDORqvWT_QbLDR6EA3kG-8AQJw_PKMl40NuNQV7nsVgc-A7d3ejxw1CvntHJo2Ree-ttaxxDHi3VJMz6aYr6wxCGos7lAC8pMc94LMYQEOp2vnPfPYIdnhTtp_WzOVt3I7fG-6zCub9148xPOpU9ODYznZb9g2mNoi1Gn-8LZz_QgAnadsU8xPSpXxaOUyhDZ2utTxaGM-MS2vcL1ITYDsLx_9G-KnFAbB9V2ky2IAruTjAtWf0n_yzo2sAvdvTpV-bT1NbRNYSMBmnB779PyZDms1rCE-6yKYfDBOQLav5i2v2i2jHuR6Y7GmSRHt9DNsJfAex4Yt9HMrO-g65nL1fwd3hy7V2_uog8AFDwFCg5AwU2NCzwCBTugYAAKBqDgHii4bTAABTugYAuUe2j55vXRq_0o5NKICpZIGSWa1DJmMjWx5qVMY2FIUSoDRkxVUsWpBl3MTUJloWRRM5UIUXEdGy4kGIWG3Udb62ZtHiCsa1MUFZiKrJRcU5MmiqWsSssEugILcwfN-6nKdQg0b_OdrPLLBLODng21z32AlT_U2-1nPQ-_4CanPHHMYsKgUyeJv34jzw4XYI7G8uEVO32EboxI30Vb7dfOPAYjtC2fBBz9BNSOfbE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQKwQL4ikKBTzAhCISx494rBB9QFpBaVHFEjmOw4Ja1MfAv-fspKUMILEl0sWWfL6775zzfQhdUuIz8PyweRlhHqW59tIwzL3cl1mqGY-kuz7W7fH2kN6P2KjkObV3YYr-EKsDN2sZzl9bA7cH0mW3AdskE9J2vxX7EkAJ5OxVC2xgW1cbL8PX4coZg4cuSPMk9SIieFn7DiPcrH__Myp9Q811wOoiTnMX7ZRQETcK3e6hDTPeR5stR8X7CU-ueFPPDtAT6BrHE8s8tMgsyxV-LJi48STHyr68TV2pPO7bKgysxhnuzGe4X9THGjyf4GejcGwLiEBmZg7RsHk3uG17JVWCp0IuhMe1n0O6KSITaJqKKGDGV6k0EKOylEhKNJgaNZwIJYXKQ8kZy6gODGUCYr4Jj1BlPBmbY4R1bpTKAAmEqaCamIhLyGKzKOUwFQCIGrpeLlWiyz7ils7iPXH_s4lM1he2hq5W0h9F_4xf5OrLVU9KK5olhHJXOOqHMKnTxJ9jJK1-DGgjECf_kr5AW-1BN07iTu_hFG1bGXvZMOB1VJlPF-YMUMc8PS931hcf2cje |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQKxAL4ikKBTzAhCISx494rICWQqhKoahiiRzHYUFt1cfAv-fspKUMILEl0sWWfL6775zPdwidU-Iz8PyweRlhHqW59tIwzL3cl1mqGY-kuz722OF3fXo_YIPywM3ehSnqQywP3KxlOH9tDXyc5WWxAVsjE7J2vxX7EjAJpOxVBoHJr6Bq47X_1l_6YnDQRc88Sb2ICF5S32GEq9Xvfwalb6S5ilddwGluo60SKeJGododtGaGu2i95TrxfsKT427q6R56AlXjeGQbD80z2-QKd4tG3HiUY2Vf3ieOKY97loSB1TDD7dkU9wp6rMGzEX42CseWPwQyU7OP-s3bl-s7r-yU4KmQC-Fx7eeQbYrIBJqmIgqY8VUqDYSoLCWSEg2WRg0nQkmh8lByxjKqA0OZgJBvwgNUGY6G5hBhnRulMgACYSqoJibiEpLYLEo5TAX4oYYuF0uV6LKMuO1m8ZG439lEJqsLW0MXS-lxUT7jF7n6YtWT0oimCaHc8Ub9ECZ1mvhzjKTViwFsBOLoX9JnaKN700zidufhGG1aEXvVMOB1VJlN5uYEMMcsPS031hftAcf- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Longitudinal+Profile+of+a+Prograding+River+and+Its+Response+to+Sea+Level+Rise&rft.jtitle=Geophysical+research+letters&rft.au=Gao%2C+Weilun&rft.au=Li%2C+Dongxue&rft.au=Wang%2C+Zheng+Bing&rft.au=Nardin%2C+William&rft.date=2020-11-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=21&rft_id=info:doi/10.1029%2F2020GL090450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2020GL090450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |