Water Concentration in Single‐Crystal (Al,Fe)‐Bearing Bridgmanite Grown From the Hydrous Melt: Implications for Dehydration Melting at the Topmost Lower Mantle

High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using pe...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 46; no. 17-18; pp. 10346 - 10357
Main Authors Fu, Suyu, Yang, Jing, Karato, Shun‐ichiro, Vasiliev, Alexander, Presniakov, Mikhail Yu, Gavrilliuk, Alexander G., Ivanova, Anna G., Hauri, Erik H., Okuchi, Takuo, Purevjav, Narangoo, Lin, Jung‐Fu
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm−1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%. Plain Language Summary Water cycle between surface oceans and Earth's deep interior is a key to understanding the evolution and physical/chemical states of the planet. Early studies show that major transition zone minerals, wadsleyite, and ringwoodite, could accommodate abundant water (1–3 wt%), in the form of lattice‐bonded hydrogen atoms, in their crystal structures. However, water solubility in lower‐mantle bridgmanite, the most abundant mineral in the most volumetric layer of the planet, has remained poorly understood. The scientific challenge here was largely due to difficulties in making large‐sized high‐quality single‐crystals of bridgmanite for reliable characterizations of its water concentration. Here we synthesized single‐crystal bridgmanite of a few hundred micrometers in diameter, which are examined to be inclusion and precipitate free and thus can be used for reliable water concentration measurements using NanoSIMS analyses. Unpolarized and polarized FTIR analyses are used to identify characteristic OH‐stretching bands. Our results show that (Al,Fe)‐bearing bridgmanite could contain as high as 1,020(±70) ppm wt water. This high water concentration in bridgmanite has implications for our understanding of how melting can occur deep in the mantle below the transition zone. Key Points High‐quality, inclusion‐free bridgmanite single crystals (Mg0.88Fe3+0.065Fe2+0.035Al0.14Si0.90O3) were synthesized and characterized The crystals contain ~1,020(±70) ppm wt water using NanoSIMS and show pronounced OH‐stretching bands at ~3230 and ~3460 cm‐1 in FTIR spectra Dehydration melting at the topmost lower mantle can occur when water content exceeds ~0.1 wt% solubility limit
AbstractList High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg 0.88 Fe 3+ 0.065 Fe 2+ 0.035 Al 0.14 Si 0.90 O 3 , of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm −1 . Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%. Water cycle between surface oceans and Earth's deep interior is a key to understanding the evolution and physical/chemical states of the planet. Early studies show that major transition zone minerals, wadsleyite, and ringwoodite, could accommodate abundant water (1–3 wt%), in the form of lattice‐bonded hydrogen atoms, in their crystal structures. However, water solubility in lower‐mantle bridgmanite, the most abundant mineral in the most volumetric layer of the planet, has remained poorly understood. The scientific challenge here was largely due to difficulties in making large‐sized high‐quality single‐crystals of bridgmanite for reliable characterizations of its water concentration. Here we synthesized single‐crystal bridgmanite of a few hundred micrometers in diameter, which are examined to be inclusion and precipitate free and thus can be used for reliable water concentration measurements using NanoSIMS analyses. Unpolarized and polarized FTIR analyses are used to identify characteristic OH‐stretching bands. Our results show that (Al,Fe)‐bearing bridgmanite could contain as high as 1,020(±70) ppm wt water. This high water concentration in bridgmanite has implications for our understanding of how melting can occur deep in the mantle below the transition zone. High‐quality, inclusion‐free bridgmanite single crystals (Mg 0.88 Fe 3+ 0.065 Fe 2+ 0.035 Al 0.14 Si 0.90 O 3 ) were synthesized and characterized The crystals contain ~1,020(±70) ppm wt water using NanoSIMS and show pronounced OH‐stretching bands at ~3230 and ~3460 cm ‐1 in FTIR spectra Dehydration melting at the topmost lower mantle can occur when water content exceeds ~0.1 wt% solubility limit
High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm−1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%. Plain Language Summary Water cycle between surface oceans and Earth's deep interior is a key to understanding the evolution and physical/chemical states of the planet. Early studies show that major transition zone minerals, wadsleyite, and ringwoodite, could accommodate abundant water (1–3 wt%), in the form of lattice‐bonded hydrogen atoms, in their crystal structures. However, water solubility in lower‐mantle bridgmanite, the most abundant mineral in the most volumetric layer of the planet, has remained poorly understood. The scientific challenge here was largely due to difficulties in making large‐sized high‐quality single‐crystals of bridgmanite for reliable characterizations of its water concentration. Here we synthesized single‐crystal bridgmanite of a few hundred micrometers in diameter, which are examined to be inclusion and precipitate free and thus can be used for reliable water concentration measurements using NanoSIMS analyses. Unpolarized and polarized FTIR analyses are used to identify characteristic OH‐stretching bands. Our results show that (Al,Fe)‐bearing bridgmanite could contain as high as 1,020(±70) ppm wt water. This high water concentration in bridgmanite has implications for our understanding of how melting can occur deep in the mantle below the transition zone. Key Points High‐quality, inclusion‐free bridgmanite single crystals (Mg0.88Fe3+0.065Fe2+0.035Al0.14Si0.90O3) were synthesized and characterized The crystals contain ~1,020(±70) ppm wt water using NanoSIMS and show pronounced OH‐stretching bands at ~3230 and ~3460 cm‐1 in FTIR spectra Dehydration melting at the topmost lower mantle can occur when water content exceeds ~0.1 wt% solubility limit
High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm−1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%.
Author Vasiliev, Alexander
Ivanova, Anna G.
Hauri, Erik H.
Okuchi, Takuo
Yang, Jing
Fu, Suyu
Karato, Shun‐ichiro
Purevjav, Narangoo
Presniakov, Mikhail Yu
Lin, Jung‐Fu
Gavrilliuk, Alexander G.
Author_xml – sequence: 1
  givenname: Suyu
  orcidid: 0000-0002-8837-3957
  surname: Fu
  fullname: Fu, Suyu
  organization: The University of Texas at Austin
– sequence: 2
  givenname: Jing
  orcidid: 0000-0001-8572-4048
  surname: Yang
  fullname: Yang, Jing
  organization: Carnegie Institution of Washington
– sequence: 3
  givenname: Shun‐ichiro
  orcidid: 0000-0002-1483-4589
  surname: Karato
  fullname: Karato, Shun‐ichiro
  email: afu@jsg.utexas.edu, shun‐ichiro.karato@yale.edu
  organization: Yale University
– sequence: 4
  givenname: Alexander
  surname: Vasiliev
  fullname: Vasiliev, Alexander
  organization: Russian Academy of Sciences
– sequence: 5
  givenname: Mikhail Yu
  surname: Presniakov
  fullname: Presniakov, Mikhail Yu
  organization: Kurchatov Institute
– sequence: 6
  givenname: Alexander G.
  orcidid: 0000-0003-0604-586X
  surname: Gavrilliuk
  fullname: Gavrilliuk, Alexander G.
  organization: Immanuel Kant Baltic Federal University
– sequence: 7
  givenname: Anna G.
  orcidid: 0000-0003-4497-8863
  surname: Ivanova
  fullname: Ivanova, Anna G.
  organization: Russian Academy of Science
– sequence: 8
  givenname: Erik H.
  orcidid: 0000-0002-7449-4774
  surname: Hauri
  fullname: Hauri, Erik H.
  organization: Carnegie Institution of Washington
– sequence: 9
  givenname: Takuo
  orcidid: 0000-0001-6907-0945
  surname: Okuchi
  fullname: Okuchi, Takuo
  organization: Okayama University
– sequence: 10
  givenname: Narangoo
  orcidid: 0000-0001-7496-2008
  surname: Purevjav
  fullname: Purevjav, Narangoo
  organization: Okayama University
– sequence: 11
  givenname: Jung‐Fu
  orcidid: 0000-0002-0163-5329
  surname: Lin
  fullname: Lin, Jung‐Fu
  email: afu@jsg.utexas.edu
  organization: The University of Texas at Austin
BookMark eNp9kcFuEzEQhi3USqQtNx7AEheQGjpee9drbm0gaaWtkKCI48rdnW1dee3UdhTlxiPwDrwZT4KT9FAhwckj-_v_fzxzRA6cd0jIawbvGRTqrACmFg3UouLwgkyYEmJaA8gDMgFQuS5k9ZIcxfgAABw4m5Bf33XCQGfedehS0Ml4R42jX427s_j7x89Z2MSkLX17bk_n-C7fXKAO-ZVeBNPfjdqZhHQR_NrRefAjTfdILzd98KtIr9GmD_RqXFrT7awjHXygH_E-A_usLbJ102mnvPHL0cdEG7_ObV1rlyyekMNB24ivns5j8m3-6WZ2OW0-L65m581U80rKacF7ppD3vBrUABWABlRKlP2g1VCzW1n0JfSMVwJVXXe3BZSSDxwROatQ1PyYvNn7LoN_XGFM7YNfBZcj24KDrEtRVSJTxZ7qgo8x4NB2Ju3-ksdnbMug3S6jfb6MLDr9S7QMZtRh8y_8KWNtLG7-y7aLL02phJT8DxK2nbI
CitedBy_id crossref_primary_10_1016_j_gca_2025_01_035
crossref_primary_10_1103_PhysRevB_108_214107
crossref_primary_10_1016_j_xinn_2024_100740
crossref_primary_10_2138_am_2023_9130
crossref_primary_10_1029_2023GL104029
crossref_primary_10_1186_s40645_025_00695_6
crossref_primary_10_1016_j_epsl_2024_119095
crossref_primary_10_1038_s42004_024_01389_8
crossref_primary_10_2138_am_2022_8839
crossref_primary_10_3390_min11080885
crossref_primary_10_1029_2024JB030403
crossref_primary_10_2138_am_2022_8435
crossref_primary_10_1016_j_epsl_2022_117708
crossref_primary_10_1016_j_gca_2025_01_025
crossref_primary_10_1016_j_epsl_2021_117088
crossref_primary_10_2138_gselements_20_4_223
crossref_primary_10_2138_am_2022_8680
crossref_primary_10_1073_pnas_1914295117
crossref_primary_10_4131_jshpreview_33_179
crossref_primary_10_1007_s00269_021_01156_4
crossref_primary_10_1029_2020JB020094
crossref_primary_10_1029_2021GL094446
crossref_primary_10_1016_j_epsl_2024_118790
crossref_primary_10_1029_2022JB024288
crossref_primary_10_1016_j_pepi_2021_106824
crossref_primary_10_1146_annurev_earth_080320_062509
crossref_primary_10_1093_nsr_nwab007
crossref_primary_10_2138_am_2022_8009
crossref_primary_10_5026_jgeography_131_179
crossref_primary_10_1029_2020AV000323
crossref_primary_10_1038_s41467_025_56312_z
crossref_primary_10_1186_s40645_024_00615_0
crossref_primary_10_1016_j_epsl_2025_119310
crossref_primary_10_1073_pnas_2211243119
crossref_primary_10_1186_s40645_020_00379_3
crossref_primary_10_1016_j_pepi_2021_106815
crossref_primary_10_12677_APP_2021_115030
crossref_primary_10_1038_s41561_024_01464_8
crossref_primary_10_2465_gkk_210120
crossref_primary_10_1186_s40645_024_00670_7
crossref_primary_10_1016_j_epsl_2022_117408
crossref_primary_10_1016_j_gca_2021_12_012
crossref_primary_10_1029_2020GL087607
crossref_primary_10_3389_fchem_2023_1166593
crossref_primary_10_1093_mnras_stad148
crossref_primary_10_2138_rmg_2022_88_07
crossref_primary_10_2138_am_2023_8969
crossref_primary_10_1016_j_epsl_2024_118651
crossref_primary_10_1029_2020GL090973
crossref_primary_10_1007_s11631_023_00642_6
crossref_primary_10_1029_2023JB026469
crossref_primary_10_1029_2021GL095838
crossref_primary_10_1029_2021JB022222
crossref_primary_10_1016_j_pepi_2023_107010
crossref_primary_10_2138_gselements_20_4_235
crossref_primary_10_2138_am_2022_8429
Cites_doi 10.1088/0953-8984/16/14/028
10.2138/am-2017-5863CCBYNCND
10.1038/42685
10.1016/B978-0-444-53802-4.00156-1
10.1016/j.epsl.2017.10.054
10.1007/s00269-012-0542-8
10.1016/j.epsl.2010.11.038
10.2138/am-1999-0330
10.1016/0304-3991(87)90080-5
10.1186/s40645-017-0128-7
10.1002/2015GL067097
10.1016/S0031-9201(01)00192-3
10.1029/2003GL017182
10.1080/08957959.2013.806504
10.2138/am.2008.2657
10.1016/j.rgg.2010.05.005
10.1126/science.264.5165.1558
10.2138/am.2008.2889
10.1002/9781118529492.ch5
10.1134/S0016702918120042
10.1080/0141861021000025829
10.1016/j.epsl.2007.08.015
10.2138/am.2011.3810
10.1016/j.epsl.2017.11.051
10.1016/j.epsl.2013.01.005
10.1038/nature01918
10.1016/j.pepi.2010.08.003
10.1126/science.1181443
10.2138/am-2015-5034
10.3406/bulmi.1982.7582
10.1029/2001GL014457
10.1016/j.epsl.2009.08.012
10.1073/pnas.1117152108
10.1016/S0012-821X(00)00244-2
10.1038/nature02413
10.1126/science.1065998
10.1016/0031-9201(94)90116-3
10.1007/s00269-005-0007-4
10.1016/j.pepi.2003.06.003
10.1038/ngeo969
10.1016/S1386-1425(99)00016-5
10.1007/s00269-007-0144-z
10.1016/j.pepi.2011.08.001
10.2138/am.2005.1624
10.1180/0026461056930248
10.1029/168GM06
10.1016/j.jvolgeores.2014.06.002
10.1016/j.gca.2015.10.025
10.2138/am-2015-5237
10.1029/2001JB000679
10.1016/j.chemgeo.2015.05.005
10.1016/S0012-821X(03)00200-0
10.1038/nature13080
10.1126/science.1204626
10.1007/s11214-017-0387-z
10.2138/am.2006.1937
10.1002/2014JB011397
10.2138/am.2009.3150
10.1029/2000JB900179
10.1016/j.pepi.2010.07.001
10.1126/science.284.5421.1788
10.1126/science.1253358
10.2138/am.2007.2248
10.2138/am-1995-3-403
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2019GL084630
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 10357
ExternalDocumentID 10_1029_2019GL084630
GRL59477
Genre article
GrantInformation_xml – fundername: RScF
  funderid: 16‐12‐10464
– fundername: National Science Foundation
  funderid: EAR‐1082622; EAR‐1446946; EAR‐1916941
– fundername: National Science Foundation‐Earth Sciences
  funderid: EAR‐1128799
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
31~
6TJ
7XC
88I
8FE
8FG
8FH
8G5
AAFWJ
AANHP
AAYXX
ABJCF
ABJNI
ABUWG
ACBWZ
ACCMX
ACRPL
ACTHY
ACYXJ
ADNMO
AEUYN
AFKRA
AFZJQ
AGQPQ
AI.
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BDRZF
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
DDYGU
DWQXO
FEDTE
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
P62
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
ZCG
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a3677-23d19e3d36f9f0600a0e9945dfa9f81b72d50d1364e988cb20573f3eee316e483
ISSN 0094-8276
IngestDate Fri Jul 25 10:30:11 EDT 2025
Tue Jul 01 01:40:59 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Wed Jan 22 16:37:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17-18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3677-23d19e3d36f9f0600a0e9945dfa9f81b72d50d1364e988cb20573f3eee316e483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0163-5329
0000-0003-0604-586X
0000-0001-8572-4048
0000-0002-8837-3957
0000-0002-1483-4589
0000-0001-7496-2008
0000-0002-7449-4774
0000-0001-6907-0945
0000-0003-4497-8863
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084630
PQID 2307854664
PQPubID 54723
PageCount 12
ParticipantIDs proquest_journals_2307854664
crossref_citationtrail_10_1029_2019GL084630
crossref_primary_10_1029_2019GL084630
wiley_primary_10_1029_2019GL084630_GRL59477
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 482
2018; 484
1989; 45
2017; 4
2015; 100
2013; 145‐182
2007; 262
2013; 364
2011; 96
1975
1999; 284
2010; 183
1982; 105
1999; 84
2007; 34
2005; 69
1994; 264
2009; 94
1997; 387
2016; 43
2009; 287
1999; 55
2005; 32
2015; 418
2014; 283
2010; 3
2003; 83
2004; 143
2001; 124
2006; 91
2011; 333
2010; 327
2005; 90
2002; 295
2013; 40
2015; 120
2007; 92
2006
2004; 428
2015; 9
1992; 77
2017; 212
2008; 93
2003; 30
2003; 211
1994; 85
2011; 301
2003; 108
2014; 507
2011; 108
1987; 21
2003; 425
2002; 29
1995; 80
2013; 33
2004; 16
2000; 105
2000; 182
2018; 56
2017; 102
2011; 189
2010; 51
2016; 173
2014; 344
Durben D. J. (e_1_2_6_15_1) 1992; 77
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Hemley R. (e_1_2_6_19_1) 1989; 45
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 55
  start-page: 2195
  issue: 11
  year: 1999
  end-page: 2205
  article-title: Infrared emission spectroscopic study of brucite
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 264
  start-page: 1558
  issue: 5165
  year: 1994
  end-page: 1560
  article-title: Synchrotron infrared absorbance measurements of hydrogen in MgSiO perovskite
  publication-title: Science
– volume: 120
  start-page: 894
  year: 2015
  end-page: 908
  article-title: Dry (Mg, Fe) SiO perovskite in the Earth's lower mantle
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 105
  start-page: 20
  year: 1982
  end-page: 29
  article-title: The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials
  publication-title: Bulletin de Mineralogie
– volume: 212
  start-page: 743
  issue: 1‐2
  year: 2017
  end-page: 810
  article-title: Water in the Earth's interior: Distribution and origin
  publication-title: Space Science Reviews
– volume: 80
  start-page: 222
  issue: 3‐4
  year: 1995
  end-page: 230
  article-title: High‐pressure phase transition in brucite, Mg (OH) 2
  publication-title: American Mineralogist
– volume: 45
  start-page: 35
  year: 1989
  end-page: 44
  article-title: Raman spectroscopy and lattice dynamics of MgSiO ‐perovskite at high pressure
  publication-title: Perovskite: A Structure of Great Interest to Geophysics and Materials Science
– volume: 364
  start-page: 37
  year: 2013
  end-page: 43
  article-title: The incorporation of water into lower‐mantle perovskites: A first‐principles study
  publication-title: Earth and Planetary Science Letters
– volume: 507
  start-page: 221
  issue: 7491
  year: 2014
  end-page: 224
  article-title: Hydrous mantle transition zone indicated by ringwoodite included within diamond
  publication-title: Nature
– volume: 295
  start-page: 1885
  issue: 5561
  year: 2002
  end-page: 1887
  article-title: Water in Earth's lower mantle
  publication-title: Science
– year: 1975
– volume: 182
  start-page: 209
  issue: 3‐4
  year: 2000
  end-page: 221
  article-title: Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: Implications for the distribution of water in the Earth's mantle
  publication-title: Earth and Planetary Science Letters
– volume: 143
  start-page: 387
  year: 2004
  end-page: 395
  article-title: Hydrous phase stability and partial melt chemistry in H O‐saturated KLB‐1 peridotite up to the uppermost lower mantle conditions
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 484
  start-page: 363
  year: 2018
  end-page: 369
  article-title: Water distribution in the lower mantle: Implications for hydrolytic weakening
  publication-title: Earth and Planetary Science Letters
– volume: 77
  start-page: 890
  issue: 7‐8
  year: 1992
  end-page: 893
  article-title: High‐temperature behavior of metastable MgSiO perovskite: A Raman spectroscopic study
  publication-title: American Mineralogist
– volume: 301
  start-page: 413
  issue: 3‐4
  year: 2011
  end-page: 423
  article-title: Water distribution across the mantle transition zone and its implications for global material circulation
  publication-title: Earth and Planetary Science Letters
– volume: 418
  start-page: 6
  year: 2015
  end-page: 15
  article-title: Hydrous minerals and the storage of water in the deep mantle
  publication-title: Chemical Geology
– volume: 287
  start-page: 277
  issue: 1‐2
  year: 2009
  end-page: 283
  article-title: Electrical conductivity of wadsleyite at high temperatures and high pressures
  publication-title: Earth and Planetary Science Letters
– volume: 32
  start-page: 349
  issue: 5‐6
  year: 2005
  end-page: 361
  article-title: Polymorphic phase transition in superhydrous phase B
  publication-title: Physics and Chemistry of Minerals
– volume: 33
  start-page: 466
  issue: 3
  year: 2013
  end-page: 484
  article-title: High pressure single‐crystal micro X‐ray diffraction analysis with GSE_ADA/RSV software
  publication-title: High Pressure Research
– volume: 30
  issue: 17
  year: 2003
  article-title: Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite
  publication-title: Geophysical Research Letters
– volume: 387
  start-page: 694
  issue: 6634
  year: 1997
  end-page: 696
  article-title: Perovskite as a possible sink for ferric iron in the lower mantle
  publication-title: Nature
– volume: 183
  start-page: 212
  issue: 1‐2
  year: 2010
  end-page: 218
  article-title: Adiabatic temperature profile in the mantle
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 3
  start-page: 718
  issue: 10
  year: 2010
  end-page: 721
  article-title: Seismic evidence for a global low‐velocity layer within the Earth's upper mantle
  publication-title: Nature Geoscience
– volume: 4
  start-page: 14
  issue: 1
  year: 2017
  article-title: The responses of the four main substitution mechanisms of H in olivine to H O activity at 1050 °C and 3 GPa
  publication-title: Progress in Earth and Planetary Science
– volume: 108
  issue: B2
  year: 2003
  article-title: Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum
  publication-title: Journal of Geophysical Research
– start-page: 57
  year: 2006
  end-page: 68
– volume: 85
  start-page: 237
  issue: 3‐4
  year: 1994
  end-page: 263
  article-title: Effect of water on melting phase relations and melt composition in the system Mg SiO ▪ MgSiO ▪ H O up to 15 GPa
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 344
  start-page: 1265
  issue: 6189
  year: 2014
  end-page: 1268
  article-title: Dehydration melting at the top of the lower mantle
  publication-title: Science
– volume: 425
  start-page: 39
  issue: 6953
  year: 2003
  end-page: 44
  article-title: Whole‐mantle convection and the transition‐zone water filter
  publication-title: Nature
– volume: 283
  start-page: 1
  year: 2014
  end-page: 18
  article-title: NanoSIMS results from olivine‐hosted melt embayments: Magma ascent rate during explosive basaltic eruptions
  publication-title: Journal of Volcanology and Geothermal Research
– volume: 51
  start-page: 644
  issue: 6
  year: 2010
  end-page: 649
  article-title: The influence of Al O on the H O content in periclase and ferropericlase at 25 GPa
  publication-title: Russian Geology and Geophysics
– volume: 40
  start-page: 19
  issue: 1
  year: 2013
  end-page: 27
  article-title: Diffusion and solubility of hydrogen and water in periclase
  publication-title: Physics and Chemistry of Minerals
– volume: 183
  start-page: 245
  issue: 1‐2
  year: 2010
  end-page: 251
  article-title: Water partitioning in the Earth's mantle
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 34
  start-page: 257
  issue: 4
  year: 2007
  end-page: 267
  article-title: Aluminum substitution mechanisms in perovskite‐type MgSiO : An investigation by Rietveld analysis
  publication-title: Physics and Chemistry of Minerals
– volume: 428
  start-page: 409
  issue: 6981
  year: 2004
  end-page: 412
  article-title: Experimental evidence for the existence of iron‐rich metal in the Earth's lower mantle
  publication-title: Nature
– volume: 482
  start-page: 93
  year: 2018
  end-page: 104
  article-title: Seismic evidence for water transport out of the mantle transition zone beneath the European Alps
  publication-title: Earth and Planetary Science Letters
– volume: 284
  start-page: 1788
  issue: 5421
  year: 1999
  end-page: 1789
  article-title: A lesson from ceramics
  publication-title: Science
– volume: 327
  start-page: 193
  issue: 5962
  year: 2010
  end-page: 195
  article-title: Iron partitioning and density changes of pyrolite in Earth's lower mantle
  publication-title: Science
– volume: 96
  start-page: 1725
  issue: 11‐12
  year: 2011
  end-page: 1741
  article-title: Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol
  publication-title: American Mineralogist
– volume: 211
  start-page: 189
  issue: 1‐2
  year: 2003
  end-page: 203
  article-title: Water solubility in Mg‐perovskites and water storage capacity in the lower mantle
  publication-title: Earth and Planetary Science Letters
– volume: 94
  start-page: 1130
  issue: 8‐9
  year: 2009
  end-page: 1136
  article-title: Single crystal growth of wadsleyite
  publication-title: American Mineralogist
– volume: 84
  start-page: 454
  issue: 3
  year: 1999
  end-page: 464
  article-title: Vibrational spectra of dense, hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle
  publication-title: American Mineralogist
– volume: 173
  start-page: 304
  year: 2016
  end-page: 318
  article-title: Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modelling
  publication-title: Geochimica et Cosmochimica Acta
– volume: 92
  start-page: 811
  issue: 5‐6
  year: 2007
  end-page: 828
  article-title: Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals
  publication-title: American Mineralogist
– volume: 9
  start-page: 105
  year: 2015
  end-page: 144
  article-title: Water in the evolution of the Earth and other terrestrial planets
  publication-title: Treatise on Geophysics
– volume: 69
  start-page: 229
  issue: 3
  year: 2005
  end-page: 257
  article-title: Water in the Earth's mantle
  publication-title: Mineralogical Magazine
– volume: 108
  start-page: 20,918
  issue: 52
  year: 2011
  end-page: 20,922
  article-title: Ultrahydrous stishovite from high‐pressure hydrothermal treatment of SiO
  publication-title: Proceedings of the National Academy of Sciences
– volume: 262
  start-page: 620
  issue: 3‐4
  year: 2007
  end-page: 634
  article-title: High hydrogen solubility in Al‐rich stishovite and water transport in the lower mantle
  publication-title: Earth and Planetary Science Letters
– volume: 100
  start-page: 1209
  issue: 5‐6
  year: 2015
  end-page: 1221
  article-title: Hydrous species in feldspars: A reassessment based on FTIR and SIMS
  publication-title: American Mineralogist
– volume: 124
  start-page: 105
  issue: 1‐2
  year: 2001
  end-page: 117
  article-title: Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 83
  start-page: 401
  issue: 3
  year: 2003
  end-page: 414
  article-title: Effects of pressure on high‐temperature dislocation creep in olivine
  publication-title: Philosophical Magazine
– volume: 105
  start-page: 21,457
  issue: B9
  year: 2000
  end-page: 21,469
  article-title: Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime
  publication-title: Journal of Geophysical Research
– volume: 93
  start-page: 751
  issue: 5‐6
  year: 2008
  end-page: 764
  article-title: Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development
  publication-title: American Mineralogist
– volume: 29
  issue: 10
  year: 2002
  article-title: Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth's lower mantle
  publication-title: Geophysical Research Letters
– volume: 102
  start-page: 537
  issue: 3
  year: 2017
  end-page: 547
  article-title: New SIMS reference materials for measuring water in upper mantle minerals
  publication-title: American Mineralogist
– volume: 100
  start-page: 1483
  issue: 7
  year: 2015
  end-page: 1492
  article-title: Synthesis of large and homogeneous single crystals of water‐bearing minerals by slow cooling at deep‐mantle pressures
  publication-title: American Mineralogist
– volume: 91
  start-page: 278
  issue: 2‐3
  year: 2006
  end-page: 284
  article-title: Quantitative polarized infrared analysis of trace OH in populations of randomly oriented mineral grains
  publication-title: American Mineralogist
– volume: 43
  start-page: 2480
  year: 2016
  end-page: 2487
  article-title: Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone
  publication-title: Geophysical Research Letters
– volume: 333
  start-page: 213
  issue: 6039
  year: 2011
  end-page: 215
  article-title: High pre‐eruptive water contents preserved in lunar melt inclusions
  publication-title: Science
– volume: 189
  start-page: 92
  issue: 1‐2
  year: 2011
  end-page: 108
  article-title: High pressure generation using scaled‐up Kawai‐cell
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 21
  start-page: 131
  issue: 2
  year: 1987
  end-page: 145
  article-title: EMS‐a software package for electron diffraction analysis and HREM image simulation in materials science
  publication-title: Ultramicroscopy
– volume: 16
  start-page: S1177
  issue: 14
  year: 2004
  article-title: Melting curve of H O to 90 GPa measured in a laser‐heated diamond cell
  publication-title: Journal of Physics: Condensed Matter
– volume: 56
  start-page: 1117
  issue: 12
  year: 2018
  end-page: 1134
  article-title: Water in the Earth's lower mantle
  publication-title: Geochemistry International
– volume: 145‐182
  year: 2013
  article-title: Electrical conductivity of minerals and rocks
  publication-title: Physics and Chemistry of the Deep Earth
– volume: 90
  start-page: 61
  issue: 1
  year: 2005
  end-page: 70
  article-title: A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single‐crystal X‐ray diffraction: Oxygen sites for hydrogen storage in Earth's interior
  publication-title: American Mineralogist
– volume: 93
  start-page: 950
  issue: 5‐6
  year: 2008
  end-page: 953
  article-title: Theoretical infrared absorption coefficient of OH groups in minerals
  publication-title: American Mineralogist
– ident: e_1_2_6_62_1
  doi: 10.1088/0953-8984/16/14/028
– ident: e_1_2_6_36_1
  doi: 10.2138/am-2017-5863CCBYNCND
– ident: e_1_2_6_43_1
  doi: 10.1038/42685
– ident: e_1_2_6_28_1
  doi: 10.1016/B978-0-444-53802-4.00156-1
– ident: e_1_2_6_41_1
  doi: 10.1016/j.epsl.2017.10.054
– ident: e_1_2_6_26_1
  doi: 10.1007/s00269-012-0542-8
– ident: e_1_2_6_29_1
  doi: 10.1016/j.epsl.2010.11.038
– ident: e_1_2_6_59_1
– ident: e_1_2_6_21_1
  doi: 10.2138/am-1999-0330
– ident: e_1_2_6_66_1
  doi: 10.1016/0304-3991(87)90080-5
– ident: e_1_2_6_68_1
  doi: 10.1186/s40645-017-0128-7
– ident: e_1_2_6_40_1
  doi: 10.1002/2015GL067097
– ident: e_1_2_6_53_1
  doi: 10.1016/S0031-9201(01)00192-3
– ident: e_1_2_6_9_1
  doi: 10.1029/2003GL017182
– ident: e_1_2_6_13_1
  doi: 10.1080/08957959.2013.806504
– ident: e_1_2_6_60_1
  doi: 10.2138/am.2008.2657
– ident: e_1_2_6_37_1
  doi: 10.1016/j.rgg.2010.05.005
– ident: e_1_2_6_44_1
  doi: 10.1126/science.264.5165.1558
– ident: e_1_2_6_4_1
  doi: 10.2138/am.2008.2889
– volume: 45
  start-page: 35
  year: 1989
  ident: e_1_2_6_19_1
  article-title: Raman spectroscopy and lattice dynamics of MgSiO3‐perovskite at high pressure
  publication-title: Perovskite: A Structure of Great Interest to Geophysics and Materials Science
– ident: e_1_2_6_31_1
  doi: 10.1002/9781118529492.ch5
– ident: e_1_2_6_27_1
  doi: 10.1134/S0016702918120042
– ident: e_1_2_6_30_1
  doi: 10.1080/0141861021000025829
– ident: e_1_2_6_39_1
  doi: 10.1016/j.epsl.2007.08.015
– ident: e_1_2_6_47_1
  doi: 10.2138/am.2011.3810
– ident: e_1_2_6_49_1
  doi: 10.1016/j.epsl.2017.11.051
– ident: e_1_2_6_20_1
  doi: 10.1016/j.epsl.2013.01.005
– ident: e_1_2_6_6_1
  doi: 10.1038/nature01918
– ident: e_1_2_6_23_1
  doi: 10.1016/j.pepi.2010.08.003
– ident: e_1_2_6_24_1
  doi: 10.1126/science.1181443
– ident: e_1_2_6_48_1
  doi: 10.2138/am-2015-5034
– ident: e_1_2_6_56_1
  doi: 10.3406/bulmi.1982.7582
– ident: e_1_2_6_10_1
  doi: 10.1029/2001GL014457
– ident: e_1_2_6_12_1
  doi: 10.1016/j.epsl.2009.08.012
– ident: e_1_2_6_65_1
  doi: 10.1073/pnas.1117152108
– ident: e_1_2_6_8_1
  doi: 10.1016/S0012-821X(00)00244-2
– ident: e_1_2_6_16_1
  doi: 10.1038/nature02413
– ident: e_1_2_6_50_1
  doi: 10.1126/science.1065998
– volume: 77
  start-page: 890
  issue: 7
  year: 1992
  ident: e_1_2_6_15_1
  article-title: High‐temperature behavior of metastable MgSiO3 perovskite: A Raman spectroscopic study
  publication-title: American Mineralogist
– ident: e_1_2_6_22_1
  doi: 10.1016/0031-9201(94)90116-3
– ident: e_1_2_6_34_1
  doi: 10.1007/s00269-005-0007-4
– ident: e_1_2_6_33_1
  doi: 10.1016/j.pepi.2003.06.003
– ident: e_1_2_6_67_1
  doi: 10.1038/ngeo969
– ident: e_1_2_6_17_1
  doi: 10.1016/S1386-1425(99)00016-5
– ident: e_1_2_6_35_1
  doi: 10.1007/s00269-007-0144-z
– ident: e_1_2_6_63_1
  doi: 10.1016/j.pepi.2011.08.001
– ident: e_1_2_6_25_1
  doi: 10.2138/am.2005.1624
– ident: e_1_2_6_7_1
  doi: 10.1180/0026461056930248
– ident: e_1_2_6_11_1
  doi: 10.1029/168GM06
– ident: e_1_2_6_42_1
  doi: 10.1016/j.jvolgeores.2014.06.002
– ident: e_1_2_6_46_1
  doi: 10.1016/j.gca.2015.10.025
– ident: e_1_2_6_54_1
  doi: 10.2138/am-2015-5237
– ident: e_1_2_6_5_1
  doi: 10.1029/2001JB000679
– ident: e_1_2_6_52_1
  doi: 10.1016/j.chemgeo.2015.05.005
– ident: e_1_2_6_38_1
  doi: 10.1016/S0012-821X(03)00200-0
– ident: e_1_2_6_57_1
  doi: 10.1038/nature13080
– ident: e_1_2_6_18_1
  doi: 10.1126/science.1204626
– ident: e_1_2_6_58_1
  doi: 10.1007/s11214-017-0387-z
– ident: e_1_2_6_2_1
  doi: 10.2138/am.2006.1937
– ident: e_1_2_6_55_1
  doi: 10.1002/2014JB011397
– ident: e_1_2_6_64_1
  doi: 10.2138/am.2009.3150
– ident: e_1_2_6_45_1
  doi: 10.1029/2000JB900179
– ident: e_1_2_6_32_1
  doi: 10.1016/j.pepi.2010.07.001
– ident: e_1_2_6_51_1
  doi: 10.1126/science.284.5421.1788
– ident: e_1_2_6_61_1
  doi: 10.1126/science.1253358
– ident: e_1_2_6_3_1
  doi: 10.2138/am.2007.2248
– ident: e_1_2_6_14_1
  doi: 10.2138/am-1995-3-403
SSID ssj0003031
Score 2.548952
Snippet High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa...
High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg 0.88 Fe 3+ 0.065 Fe 2+ 0.035 Al 0.14 Si 0.90 O 3 , of hundreds of micrometer size were...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10346
SubjectTerms Analytical methods
Bearing
Chemical bonds
Crystal lattices
Crystal structure
Crystals
Dehydration
dehydration melting
Earth
Earth surface
Electron microscopy
Hydrogen
Hydrogen atoms
Hydrogen storage
Hydrologic cycle
Hydrological cycle
Infrared analysis
Infrared spectroscopy
Iron
Lower mantle
Mantle
Mass spectrometry
Mass spectroscopy
Melting
Micrometers
Microscopy
Minerals
Moisture content
Oceans
Organic chemistry
Petrographic microscopy
Platelets
Scanning electron microscopy
single‐crystal bridgmanite
Solubility
Stretching
Synthesis
Transition zone
Transmission electron microscopy
Water content
water solubility
Title Water Concentration in Single‐Crystal (Al,Fe)‐Bearing Bridgmanite Grown From the Hydrous Melt: Implications for Dehydration Melting at the Topmost Lower Mantle
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL084630
https://www.proquest.com/docview/2307854664
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKrpC4oOVP7A_IB5BAJZDE-TO3bqEtq8KBbZcVlyg_tloppFWbgsqJR-AdeDOegQdgxnHSFBa0cIlSx46bztfxzGTmMyEPLBn7knFpxMxhhmOlwogj8FIS3049RzIzlSrL9403GDsn5-55q_WjkbW0KuKnyecL60r-R6rQBnLFKtl_kGx9U2iAc5AvHEHCcLyUjN9FSHHYxcrDXNPfYvziFJajTNRpDN3Feoklj2BLdjDg20MipvrqMUAdwwXHWLmlyDAEBqQ-5WDT6sqTwTpdYKbsa5GpQOKrZhY6pim-EBPoUs6PnVThoyqSbI9m8w-zZdEe4m5smGxTZFvJR30xm1dQ0cRDk3amaow2lSmrMn9ovap1lI5yn1QLLy4ZSGKuAr-nk1VeP980mUwXs6rTWbScgtX9cau2pxn5sDapXbU2544R2L6m0i4VOHegzSx30q00vA5yaiT7htb4pcq2TKavi-pzSZn92-Ji2sjNit-kPzTBbtMvlLY4vH9ZW-uMR_Wu3-Zhc_QVsmuDcwPaebdzNn4_ri0IMCvKnR718-mCDRj_rDl-25Ta-EdNL0uZSaM9cl37N7RTgvUGaYn8JrnaV_tHr-FMZRwny1vkmwIv3QIvnea0BO_3L181bOmjTvakJx5Di4YqbUCVKqhShCoFuFENVYoofE6bQKUAVNoAKtVApVGhRmqgUgVUWgL1Nhn3Xo66A0PvGGJEzPN9w2apxQVLmSe5NMGWj0zBueOmMuISHDRQQK6ZWsxzBA-CJLaRDlQyIQSzPOEE7A7ZyWe5uEto7AdBZJm-MIXrSAl-FIwKBL4lj7044vukXf34YaLp9HFXlyy8SNT75GHde17SyPyh31Elx1ArmmWItRqBi_tAwKRKtn-9R9h_O3S54_sHl5z0kFzb_L2OyE6xWIl7YGoX8X2NzJ9PB8-2
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKK0QviF9RKDAHKoEgIomdHyNx2G7ZH5rtAXZpxSUkm7GKlCZVkgrtjUfgHXgA3oknYexkl-UAEofeomTsWB7b8409_oaxJ45KA8WlslIuuCWcDK00IS9lHriZLxS3M2WifI_80Uy8PfFONtiP5V2Ylh9iteGmZ4ZZr_UE1xvSHduAJskk0yWHkU0GlNtdVOUhLr6Qz1a_Hh-Qgvdcd_Bm2h9ZXVoBK-F-EFguzxyJPOO-ksomg5_YKKXwMpVIRSiOWunZmcN9gTIM56mrOQMVR0Tu-ChCTvVeYVsaSNE02up9mH2crRZ_sghtkj4prNAN_C7Wnlr8cr29f1rB39B2HSAbCze4wa530BR67Vi6yTawuMWuDk3q3wU9mWDReX2bfT8mgFpBX994LDraXfhcwHsygzn-_PqtXy0IdObwtJe_GOAzerNPHUdfYV_fDzOUGwhDvQMAg6o8A0KhMFpkVXlRwwTz5hWM1yLdgYA1HOApCbT_0iK6tqQxJafl-VlZNxDpjG8wobGS4x02uxSt3GWbRVngPQYpufUJubVooyeUIghMpULUB5ypnyZyhz1fdn4875jQdUKOPDYn8q6M11W1w_ZW0uctA8hf5HaXeoy7daCOdZh96GkKf_qp0e0_64iH7yJPiiC4_1_Sj9m10XQSxdH46PAB29YybRjcLttsqgt8SLipSR91YxXYp8ueHr8A89Ij9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWrkBcEL9iYQEfWAkEEUns_BiJQ7clbdnuCsEWVlxCUo8FUjapkqxQbzwC78Cdh-JJGDtuKQeQOOwtSsaO5bE939jjbwh56Kk8UkwoJ2ecOdyT4OQZeinzyJchV8yVykT5HoXjGX91EpxskR-ruzAdP8R6w03PDLNe6wm-kMqSDWiOTLRcYjR10X4y1wZVHsDyC7pszYvJEPW75_vJy-PB2LFZBZyMhVHk-Ex6AphkoRLKRXufuSAED6TKhEIQh40MXOmxkIOI43nua8pAxQCAeSHwmGG9F8h2gIbQ7ZHt_rvZh9l67UeD0OXoE9yJ_Si0ofbY4meb7f3TCP5Gtpv42Bi45Cq5YpEp7XdD6RrZgvI6uTgymX-X-GRiRefNDfL9PeLTmg70hcfSsu7SzyV9i1awgJ9fvw3qJWLOgj7qF08TeIxv9rHj8Cvd19fDDOMG0JHeAKBJXZ1SBKF0vJR1ddbQQyja53SyEehOEVfTIXxCge5fWkTXlrWm5HG1OK2alk51wjd6iEOlgJtkdi5auUV6ZVXCbUJz9Ooz9GrBhYArhQgYS8WgzzfzMM_EDnmy6vx0bonQdT6OIjUH8r5IN1W1Q_bW0ouOAOQvcrsrPaZ2GWhSHWUfB5rBH39qdPvPOtLRm2kgeBTd-S_pB-TS62GSTidHB3fJZS3SBcHtkl5bn8E9RE1tft8OVUo-nvfs-AXHcCMV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+Concentration+in+Single%E2%80%90Crystal+%28Al%2CFe%29%E2%80%90Bearing+Bridgmanite+Grown+From+the+Hydrous+Melt%3A+Implications+for+Dehydration+Melting+at+the+Topmost+Lower+Mantle&rft.jtitle=Geophysical+research+letters&rft.au=Fu%2C+Suyu&rft.au=Yang%2C+Jing&rft.au=Karato%2C+Shun%E2%80%90ichiro&rft.au=Vasiliev%2C+Alexander&rft.date=2019-09-01&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=46&rft.issue=17-18&rft.spage=10346&rft.epage=10357&rft_id=info:doi/10.1029%2F2019GL084630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2019GL084630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon