Water Concentration in Single‐Crystal (Al,Fe)‐Bearing Bridgmanite Grown From the Hydrous Melt: Implications for Dehydration Melting at the Topmost Lower Mantle
High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using pe...
Saved in:
Published in | Geophysical research letters Vol. 46; no. 17-18; pp. 10346 - 10357 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm−1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%.
Plain Language Summary
Water cycle between surface oceans and Earth's deep interior is a key to understanding the evolution and physical/chemical states of the planet. Early studies show that major transition zone minerals, wadsleyite, and ringwoodite, could accommodate abundant water (1–3 wt%), in the form of lattice‐bonded hydrogen atoms, in their crystal structures. However, water solubility in lower‐mantle bridgmanite, the most abundant mineral in the most volumetric layer of the planet, has remained poorly understood. The scientific challenge here was largely due to difficulties in making large‐sized high‐quality single‐crystals of bridgmanite for reliable characterizations of its water concentration. Here we synthesized single‐crystal bridgmanite of a few hundred micrometers in diameter, which are examined to be inclusion and precipitate free and thus can be used for reliable water concentration measurements using NanoSIMS analyses. Unpolarized and polarized FTIR analyses are used to identify characteristic OH‐stretching bands. Our results show that (Al,Fe)‐bearing bridgmanite could contain as high as 1,020(±70) ppm wt water. This high water concentration in bridgmanite has implications for our understanding of how melting can occur deep in the mantle below the transition zone.
Key Points
High‐quality, inclusion‐free bridgmanite single crystals (Mg0.88Fe3+0.065Fe2+0.035Al0.14Si0.90O3) were synthesized and characterized
The crystals contain ~1,020(±70) ppm wt water using NanoSIMS and show pronounced OH‐stretching bands at ~3230 and ~3460 cm‐1 in FTIR spectra
Dehydration melting at the topmost lower mantle can occur when water content exceeds ~0.1 wt% solubility limit |
---|---|
AbstractList | High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg
0.88
Fe
3+
0.065
Fe
2+
0.035
Al
0.14
Si
0.90
O
3
, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm
−1
. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%.
Water cycle between surface oceans and Earth's deep interior is a key to understanding the evolution and physical/chemical states of the planet. Early studies show that major transition zone minerals, wadsleyite, and ringwoodite, could accommodate abundant water (1–3 wt%), in the form of lattice‐bonded hydrogen atoms, in their crystal structures. However, water solubility in lower‐mantle bridgmanite, the most abundant mineral in the most volumetric layer of the planet, has remained poorly understood. The scientific challenge here was largely due to difficulties in making large‐sized high‐quality single‐crystals of bridgmanite for reliable characterizations of its water concentration. Here we synthesized single‐crystal bridgmanite of a few hundred micrometers in diameter, which are examined to be inclusion and precipitate free and thus can be used for reliable water concentration measurements using NanoSIMS analyses. Unpolarized and polarized FTIR analyses are used to identify characteristic OH‐stretching bands. Our results show that (Al,Fe)‐bearing bridgmanite could contain as high as 1,020(±70) ppm wt water. This high water concentration in bridgmanite has implications for our understanding of how melting can occur deep in the mantle below the transition zone.
High‐quality, inclusion‐free bridgmanite single crystals (Mg
0.88
Fe
3+
0.065
Fe
2+
0.035
Al
0.14
Si
0.90
O
3
) were synthesized and characterized
The crystals contain ~1,020(±70) ppm wt water using NanoSIMS and show pronounced OH‐stretching bands at ~3230 and ~3460 cm
‐1
in FTIR spectra
Dehydration melting at the topmost lower mantle can occur when water content exceeds ~0.1 wt% solubility limit High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm−1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%. Plain Language Summary Water cycle between surface oceans and Earth's deep interior is a key to understanding the evolution and physical/chemical states of the planet. Early studies show that major transition zone minerals, wadsleyite, and ringwoodite, could accommodate abundant water (1–3 wt%), in the form of lattice‐bonded hydrogen atoms, in their crystal structures. However, water solubility in lower‐mantle bridgmanite, the most abundant mineral in the most volumetric layer of the planet, has remained poorly understood. The scientific challenge here was largely due to difficulties in making large‐sized high‐quality single‐crystals of bridgmanite for reliable characterizations of its water concentration. Here we synthesized single‐crystal bridgmanite of a few hundred micrometers in diameter, which are examined to be inclusion and precipitate free and thus can be used for reliable water concentration measurements using NanoSIMS analyses. Unpolarized and polarized FTIR analyses are used to identify characteristic OH‐stretching bands. Our results show that (Al,Fe)‐bearing bridgmanite could contain as high as 1,020(±70) ppm wt water. This high water concentration in bridgmanite has implications for our understanding of how melting can occur deep in the mantle below the transition zone. Key Points High‐quality, inclusion‐free bridgmanite single crystals (Mg0.88Fe3+0.065Fe2+0.035Al0.14Si0.90O3) were synthesized and characterized The crystals contain ~1,020(±70) ppm wt water using NanoSIMS and show pronounced OH‐stretching bands at ~3230 and ~3460 cm‐1 in FTIR spectra Dehydration melting at the topmost lower mantle can occur when water content exceeds ~0.1 wt% solubility limit High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm−1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%. |
Author | Vasiliev, Alexander Ivanova, Anna G. Hauri, Erik H. Okuchi, Takuo Yang, Jing Fu, Suyu Karato, Shun‐ichiro Purevjav, Narangoo Presniakov, Mikhail Yu Lin, Jung‐Fu Gavrilliuk, Alexander G. |
Author_xml | – sequence: 1 givenname: Suyu orcidid: 0000-0002-8837-3957 surname: Fu fullname: Fu, Suyu organization: The University of Texas at Austin – sequence: 2 givenname: Jing orcidid: 0000-0001-8572-4048 surname: Yang fullname: Yang, Jing organization: Carnegie Institution of Washington – sequence: 3 givenname: Shun‐ichiro orcidid: 0000-0002-1483-4589 surname: Karato fullname: Karato, Shun‐ichiro email: afu@jsg.utexas.edu, shun‐ichiro.karato@yale.edu organization: Yale University – sequence: 4 givenname: Alexander surname: Vasiliev fullname: Vasiliev, Alexander organization: Russian Academy of Sciences – sequence: 5 givenname: Mikhail Yu surname: Presniakov fullname: Presniakov, Mikhail Yu organization: Kurchatov Institute – sequence: 6 givenname: Alexander G. orcidid: 0000-0003-0604-586X surname: Gavrilliuk fullname: Gavrilliuk, Alexander G. organization: Immanuel Kant Baltic Federal University – sequence: 7 givenname: Anna G. orcidid: 0000-0003-4497-8863 surname: Ivanova fullname: Ivanova, Anna G. organization: Russian Academy of Science – sequence: 8 givenname: Erik H. orcidid: 0000-0002-7449-4774 surname: Hauri fullname: Hauri, Erik H. organization: Carnegie Institution of Washington – sequence: 9 givenname: Takuo orcidid: 0000-0001-6907-0945 surname: Okuchi fullname: Okuchi, Takuo organization: Okayama University – sequence: 10 givenname: Narangoo orcidid: 0000-0001-7496-2008 surname: Purevjav fullname: Purevjav, Narangoo organization: Okayama University – sequence: 11 givenname: Jung‐Fu orcidid: 0000-0002-0163-5329 surname: Lin fullname: Lin, Jung‐Fu email: afu@jsg.utexas.edu organization: The University of Texas at Austin |
BookMark | eNp9kcFuEzEQhi3USqQtNx7AEheQGjpee9drbm0gaaWtkKCI48rdnW1dee3UdhTlxiPwDrwZT4KT9FAhwckj-_v_fzxzRA6cd0jIawbvGRTqrACmFg3UouLwgkyYEmJaA8gDMgFQuS5k9ZIcxfgAABw4m5Bf33XCQGfedehS0Ml4R42jX427s_j7x89Z2MSkLX17bk_n-C7fXKAO-ZVeBNPfjdqZhHQR_NrRefAjTfdILzd98KtIr9GmD_RqXFrT7awjHXygH_E-A_usLbJ102mnvPHL0cdEG7_ObV1rlyyekMNB24ivns5j8m3-6WZ2OW0-L65m581U80rKacF7ppD3vBrUABWABlRKlP2g1VCzW1n0JfSMVwJVXXe3BZSSDxwROatQ1PyYvNn7LoN_XGFM7YNfBZcj24KDrEtRVSJTxZ7qgo8x4NB2Ju3-ksdnbMug3S6jfb6MLDr9S7QMZtRh8y_8KWNtLG7-y7aLL02phJT8DxK2nbI |
CitedBy_id | crossref_primary_10_1016_j_gca_2025_01_035 crossref_primary_10_1103_PhysRevB_108_214107 crossref_primary_10_1016_j_xinn_2024_100740 crossref_primary_10_2138_am_2023_9130 crossref_primary_10_1029_2023GL104029 crossref_primary_10_1186_s40645_025_00695_6 crossref_primary_10_1016_j_epsl_2024_119095 crossref_primary_10_1038_s42004_024_01389_8 crossref_primary_10_2138_am_2022_8839 crossref_primary_10_3390_min11080885 crossref_primary_10_1029_2024JB030403 crossref_primary_10_2138_am_2022_8435 crossref_primary_10_1016_j_epsl_2022_117708 crossref_primary_10_1016_j_gca_2025_01_025 crossref_primary_10_1016_j_epsl_2021_117088 crossref_primary_10_2138_gselements_20_4_223 crossref_primary_10_2138_am_2022_8680 crossref_primary_10_1073_pnas_1914295117 crossref_primary_10_4131_jshpreview_33_179 crossref_primary_10_1007_s00269_021_01156_4 crossref_primary_10_1029_2020JB020094 crossref_primary_10_1029_2021GL094446 crossref_primary_10_1016_j_epsl_2024_118790 crossref_primary_10_1029_2022JB024288 crossref_primary_10_1016_j_pepi_2021_106824 crossref_primary_10_1146_annurev_earth_080320_062509 crossref_primary_10_1093_nsr_nwab007 crossref_primary_10_2138_am_2022_8009 crossref_primary_10_5026_jgeography_131_179 crossref_primary_10_1029_2020AV000323 crossref_primary_10_1038_s41467_025_56312_z crossref_primary_10_1186_s40645_024_00615_0 crossref_primary_10_1016_j_epsl_2025_119310 crossref_primary_10_1073_pnas_2211243119 crossref_primary_10_1186_s40645_020_00379_3 crossref_primary_10_1016_j_pepi_2021_106815 crossref_primary_10_12677_APP_2021_115030 crossref_primary_10_1038_s41561_024_01464_8 crossref_primary_10_2465_gkk_210120 crossref_primary_10_1186_s40645_024_00670_7 crossref_primary_10_1016_j_epsl_2022_117408 crossref_primary_10_1016_j_gca_2021_12_012 crossref_primary_10_1029_2020GL087607 crossref_primary_10_3389_fchem_2023_1166593 crossref_primary_10_1093_mnras_stad148 crossref_primary_10_2138_rmg_2022_88_07 crossref_primary_10_2138_am_2023_8969 crossref_primary_10_1016_j_epsl_2024_118651 crossref_primary_10_1029_2020GL090973 crossref_primary_10_1007_s11631_023_00642_6 crossref_primary_10_1029_2023JB026469 crossref_primary_10_1029_2021GL095838 crossref_primary_10_1029_2021JB022222 crossref_primary_10_1016_j_pepi_2023_107010 crossref_primary_10_2138_gselements_20_4_235 crossref_primary_10_2138_am_2022_8429 |
Cites_doi | 10.1088/0953-8984/16/14/028 10.2138/am-2017-5863CCBYNCND 10.1038/42685 10.1016/B978-0-444-53802-4.00156-1 10.1016/j.epsl.2017.10.054 10.1007/s00269-012-0542-8 10.1016/j.epsl.2010.11.038 10.2138/am-1999-0330 10.1016/0304-3991(87)90080-5 10.1186/s40645-017-0128-7 10.1002/2015GL067097 10.1016/S0031-9201(01)00192-3 10.1029/2003GL017182 10.1080/08957959.2013.806504 10.2138/am.2008.2657 10.1016/j.rgg.2010.05.005 10.1126/science.264.5165.1558 10.2138/am.2008.2889 10.1002/9781118529492.ch5 10.1134/S0016702918120042 10.1080/0141861021000025829 10.1016/j.epsl.2007.08.015 10.2138/am.2011.3810 10.1016/j.epsl.2017.11.051 10.1016/j.epsl.2013.01.005 10.1038/nature01918 10.1016/j.pepi.2010.08.003 10.1126/science.1181443 10.2138/am-2015-5034 10.3406/bulmi.1982.7582 10.1029/2001GL014457 10.1016/j.epsl.2009.08.012 10.1073/pnas.1117152108 10.1016/S0012-821X(00)00244-2 10.1038/nature02413 10.1126/science.1065998 10.1016/0031-9201(94)90116-3 10.1007/s00269-005-0007-4 10.1016/j.pepi.2003.06.003 10.1038/ngeo969 10.1016/S1386-1425(99)00016-5 10.1007/s00269-007-0144-z 10.1016/j.pepi.2011.08.001 10.2138/am.2005.1624 10.1180/0026461056930248 10.1029/168GM06 10.1016/j.jvolgeores.2014.06.002 10.1016/j.gca.2015.10.025 10.2138/am-2015-5237 10.1029/2001JB000679 10.1016/j.chemgeo.2015.05.005 10.1016/S0012-821X(03)00200-0 10.1038/nature13080 10.1126/science.1204626 10.1007/s11214-017-0387-z 10.2138/am.2006.1937 10.1002/2014JB011397 10.2138/am.2009.3150 10.1029/2000JB900179 10.1016/j.pepi.2010.07.001 10.1126/science.284.5421.1788 10.1126/science.1253358 10.2138/am.2007.2248 10.2138/am-1995-3-403 |
ContentType | Journal Article |
Copyright | 2019. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2019. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2019GL084630 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 10357 |
ExternalDocumentID | 10_1029_2019GL084630 GRL59477 |
Genre | article |
GrantInformation_xml | – fundername: RScF funderid: 16‐12‐10464 – fundername: National Science Foundation funderid: EAR‐1082622; EAR‐1446946; EAR‐1916941 – fundername: National Science Foundation‐Earth Sciences funderid: EAR‐1128799 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A 31~ 6TJ 7XC 88I 8FE 8FG 8FH 8G5 AAFWJ AANHP AAYXX ABJCF ABJNI ABUWG ACBWZ ACCMX ACRPL ACTHY ACYXJ ADNMO AEUYN AFKRA AFZJQ AGQPQ AI. ARAPS ASPBG ATCPS AVWKF AZQEC BDRZF BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K DDYGU DWQXO FEDTE GNUQQ GROUPED_DOAJ GUQSH HCIFZ HVGLF K6- L6V LK5 M2O M2P M7R M7S MVM P62 PALCI PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PTHSS RIWAO RJQFR SAMSI UQL VH1 VOH ZCG 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a3677-23d19e3d36f9f0600a0e9945dfa9f81b72d50d1364e988cb20573f3eee316e483 |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 10:30:11 EDT 2025 Tue Jul 01 01:40:59 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Wed Jan 22 16:37:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17-18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3677-23d19e3d36f9f0600a0e9945dfa9f81b72d50d1364e988cb20573f3eee316e483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0163-5329 0000-0003-0604-586X 0000-0001-8572-4048 0000-0002-8837-3957 0000-0002-1483-4589 0000-0001-7496-2008 0000-0002-7449-4774 0000-0001-6907-0945 0000-0003-4497-8863 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084630 |
PQID | 2307854664 |
PQPubID | 54723 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2307854664 crossref_citationtrail_10_1029_2019GL084630 crossref_primary_10_1029_2019GL084630 wiley_primary_10_1029_2019GL084630_GRL59477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2018; 482 2018; 484 1989; 45 2017; 4 2015; 100 2013; 145‐182 2007; 262 2013; 364 2011; 96 1975 1999; 284 2010; 183 1982; 105 1999; 84 2007; 34 2005; 69 1994; 264 2009; 94 1997; 387 2016; 43 2009; 287 1999; 55 2005; 32 2015; 418 2014; 283 2010; 3 2003; 83 2004; 143 2001; 124 2006; 91 2011; 333 2010; 327 2005; 90 2002; 295 2013; 40 2015; 120 2007; 92 2006 2004; 428 2015; 9 1992; 77 2017; 212 2008; 93 2003; 30 2003; 211 1994; 85 2011; 301 2003; 108 2014; 507 2011; 108 1987; 21 2003; 425 2002; 29 1995; 80 2013; 33 2004; 16 2000; 105 2000; 182 2018; 56 2017; 102 2011; 189 2010; 51 2016; 173 2014; 344 Durben D. J. (e_1_2_6_15_1) 1992; 77 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Hemley R. (e_1_2_6_19_1) 1989; 45 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 55 start-page: 2195 issue: 11 year: 1999 end-page: 2205 article-title: Infrared emission spectroscopic study of brucite publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 264 start-page: 1558 issue: 5165 year: 1994 end-page: 1560 article-title: Synchrotron infrared absorbance measurements of hydrogen in MgSiO perovskite publication-title: Science – volume: 120 start-page: 894 year: 2015 end-page: 908 article-title: Dry (Mg, Fe) SiO perovskite in the Earth's lower mantle publication-title: Journal of Geophysical Research: Solid Earth – volume: 105 start-page: 20 year: 1982 end-page: 29 article-title: The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials publication-title: Bulletin de Mineralogie – volume: 212 start-page: 743 issue: 1‐2 year: 2017 end-page: 810 article-title: Water in the Earth's interior: Distribution and origin publication-title: Space Science Reviews – volume: 80 start-page: 222 issue: 3‐4 year: 1995 end-page: 230 article-title: High‐pressure phase transition in brucite, Mg (OH) 2 publication-title: American Mineralogist – volume: 45 start-page: 35 year: 1989 end-page: 44 article-title: Raman spectroscopy and lattice dynamics of MgSiO ‐perovskite at high pressure publication-title: Perovskite: A Structure of Great Interest to Geophysics and Materials Science – volume: 364 start-page: 37 year: 2013 end-page: 43 article-title: The incorporation of water into lower‐mantle perovskites: A first‐principles study publication-title: Earth and Planetary Science Letters – volume: 507 start-page: 221 issue: 7491 year: 2014 end-page: 224 article-title: Hydrous mantle transition zone indicated by ringwoodite included within diamond publication-title: Nature – volume: 295 start-page: 1885 issue: 5561 year: 2002 end-page: 1887 article-title: Water in Earth's lower mantle publication-title: Science – year: 1975 – volume: 182 start-page: 209 issue: 3‐4 year: 2000 end-page: 221 article-title: Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: Implications for the distribution of water in the Earth's mantle publication-title: Earth and Planetary Science Letters – volume: 143 start-page: 387 year: 2004 end-page: 395 article-title: Hydrous phase stability and partial melt chemistry in H O‐saturated KLB‐1 peridotite up to the uppermost lower mantle conditions publication-title: Physics of the Earth and Planetary Interiors – volume: 484 start-page: 363 year: 2018 end-page: 369 article-title: Water distribution in the lower mantle: Implications for hydrolytic weakening publication-title: Earth and Planetary Science Letters – volume: 77 start-page: 890 issue: 7‐8 year: 1992 end-page: 893 article-title: High‐temperature behavior of metastable MgSiO perovskite: A Raman spectroscopic study publication-title: American Mineralogist – volume: 301 start-page: 413 issue: 3‐4 year: 2011 end-page: 423 article-title: Water distribution across the mantle transition zone and its implications for global material circulation publication-title: Earth and Planetary Science Letters – volume: 418 start-page: 6 year: 2015 end-page: 15 article-title: Hydrous minerals and the storage of water in the deep mantle publication-title: Chemical Geology – volume: 287 start-page: 277 issue: 1‐2 year: 2009 end-page: 283 article-title: Electrical conductivity of wadsleyite at high temperatures and high pressures publication-title: Earth and Planetary Science Letters – volume: 32 start-page: 349 issue: 5‐6 year: 2005 end-page: 361 article-title: Polymorphic phase transition in superhydrous phase B publication-title: Physics and Chemistry of Minerals – volume: 33 start-page: 466 issue: 3 year: 2013 end-page: 484 article-title: High pressure single‐crystal micro X‐ray diffraction analysis with GSE_ADA/RSV software publication-title: High Pressure Research – volume: 30 issue: 17 year: 2003 article-title: Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite publication-title: Geophysical Research Letters – volume: 387 start-page: 694 issue: 6634 year: 1997 end-page: 696 article-title: Perovskite as a possible sink for ferric iron in the lower mantle publication-title: Nature – volume: 183 start-page: 212 issue: 1‐2 year: 2010 end-page: 218 article-title: Adiabatic temperature profile in the mantle publication-title: Physics of the Earth and Planetary Interiors – volume: 3 start-page: 718 issue: 10 year: 2010 end-page: 721 article-title: Seismic evidence for a global low‐velocity layer within the Earth's upper mantle publication-title: Nature Geoscience – volume: 4 start-page: 14 issue: 1 year: 2017 article-title: The responses of the four main substitution mechanisms of H in olivine to H O activity at 1050 °C and 3 GPa publication-title: Progress in Earth and Planetary Science – volume: 108 issue: B2 year: 2003 article-title: Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum publication-title: Journal of Geophysical Research – start-page: 57 year: 2006 end-page: 68 – volume: 85 start-page: 237 issue: 3‐4 year: 1994 end-page: 263 article-title: Effect of water on melting phase relations and melt composition in the system Mg SiO ▪ MgSiO ▪ H O up to 15 GPa publication-title: Physics of the Earth and Planetary Interiors – volume: 344 start-page: 1265 issue: 6189 year: 2014 end-page: 1268 article-title: Dehydration melting at the top of the lower mantle publication-title: Science – volume: 425 start-page: 39 issue: 6953 year: 2003 end-page: 44 article-title: Whole‐mantle convection and the transition‐zone water filter publication-title: Nature – volume: 283 start-page: 1 year: 2014 end-page: 18 article-title: NanoSIMS results from olivine‐hosted melt embayments: Magma ascent rate during explosive basaltic eruptions publication-title: Journal of Volcanology and Geothermal Research – volume: 51 start-page: 644 issue: 6 year: 2010 end-page: 649 article-title: The influence of Al O on the H O content in periclase and ferropericlase at 25 GPa publication-title: Russian Geology and Geophysics – volume: 40 start-page: 19 issue: 1 year: 2013 end-page: 27 article-title: Diffusion and solubility of hydrogen and water in periclase publication-title: Physics and Chemistry of Minerals – volume: 183 start-page: 245 issue: 1‐2 year: 2010 end-page: 251 article-title: Water partitioning in the Earth's mantle publication-title: Physics of the Earth and Planetary Interiors – volume: 34 start-page: 257 issue: 4 year: 2007 end-page: 267 article-title: Aluminum substitution mechanisms in perovskite‐type MgSiO : An investigation by Rietveld analysis publication-title: Physics and Chemistry of Minerals – volume: 428 start-page: 409 issue: 6981 year: 2004 end-page: 412 article-title: Experimental evidence for the existence of iron‐rich metal in the Earth's lower mantle publication-title: Nature – volume: 482 start-page: 93 year: 2018 end-page: 104 article-title: Seismic evidence for water transport out of the mantle transition zone beneath the European Alps publication-title: Earth and Planetary Science Letters – volume: 284 start-page: 1788 issue: 5421 year: 1999 end-page: 1789 article-title: A lesson from ceramics publication-title: Science – volume: 327 start-page: 193 issue: 5962 year: 2010 end-page: 195 article-title: Iron partitioning and density changes of pyrolite in Earth's lower mantle publication-title: Science – volume: 96 start-page: 1725 issue: 11‐12 year: 2011 end-page: 1741 article-title: Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol publication-title: American Mineralogist – volume: 211 start-page: 189 issue: 1‐2 year: 2003 end-page: 203 article-title: Water solubility in Mg‐perovskites and water storage capacity in the lower mantle publication-title: Earth and Planetary Science Letters – volume: 94 start-page: 1130 issue: 8‐9 year: 2009 end-page: 1136 article-title: Single crystal growth of wadsleyite publication-title: American Mineralogist – volume: 84 start-page: 454 issue: 3 year: 1999 end-page: 464 article-title: Vibrational spectra of dense, hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle publication-title: American Mineralogist – volume: 173 start-page: 304 year: 2016 end-page: 318 article-title: Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modelling publication-title: Geochimica et Cosmochimica Acta – volume: 92 start-page: 811 issue: 5‐6 year: 2007 end-page: 828 article-title: Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals publication-title: American Mineralogist – volume: 9 start-page: 105 year: 2015 end-page: 144 article-title: Water in the evolution of the Earth and other terrestrial planets publication-title: Treatise on Geophysics – volume: 69 start-page: 229 issue: 3 year: 2005 end-page: 257 article-title: Water in the Earth's mantle publication-title: Mineralogical Magazine – volume: 108 start-page: 20,918 issue: 52 year: 2011 end-page: 20,922 article-title: Ultrahydrous stishovite from high‐pressure hydrothermal treatment of SiO publication-title: Proceedings of the National Academy of Sciences – volume: 262 start-page: 620 issue: 3‐4 year: 2007 end-page: 634 article-title: High hydrogen solubility in Al‐rich stishovite and water transport in the lower mantle publication-title: Earth and Planetary Science Letters – volume: 100 start-page: 1209 issue: 5‐6 year: 2015 end-page: 1221 article-title: Hydrous species in feldspars: A reassessment based on FTIR and SIMS publication-title: American Mineralogist – volume: 124 start-page: 105 issue: 1‐2 year: 2001 end-page: 117 article-title: Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle publication-title: Physics of the Earth and Planetary Interiors – volume: 83 start-page: 401 issue: 3 year: 2003 end-page: 414 article-title: Effects of pressure on high‐temperature dislocation creep in olivine publication-title: Philosophical Magazine – volume: 105 start-page: 21,457 issue: B9 year: 2000 end-page: 21,469 article-title: Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime publication-title: Journal of Geophysical Research – volume: 93 start-page: 751 issue: 5‐6 year: 2008 end-page: 764 article-title: Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development publication-title: American Mineralogist – volume: 29 issue: 10 year: 2002 article-title: Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth's lower mantle publication-title: Geophysical Research Letters – volume: 102 start-page: 537 issue: 3 year: 2017 end-page: 547 article-title: New SIMS reference materials for measuring water in upper mantle minerals publication-title: American Mineralogist – volume: 100 start-page: 1483 issue: 7 year: 2015 end-page: 1492 article-title: Synthesis of large and homogeneous single crystals of water‐bearing minerals by slow cooling at deep‐mantle pressures publication-title: American Mineralogist – volume: 91 start-page: 278 issue: 2‐3 year: 2006 end-page: 284 article-title: Quantitative polarized infrared analysis of trace OH in populations of randomly oriented mineral grains publication-title: American Mineralogist – volume: 43 start-page: 2480 year: 2016 end-page: 2487 article-title: Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone publication-title: Geophysical Research Letters – volume: 333 start-page: 213 issue: 6039 year: 2011 end-page: 215 article-title: High pre‐eruptive water contents preserved in lunar melt inclusions publication-title: Science – volume: 189 start-page: 92 issue: 1‐2 year: 2011 end-page: 108 article-title: High pressure generation using scaled‐up Kawai‐cell publication-title: Physics of the Earth and Planetary Interiors – volume: 21 start-page: 131 issue: 2 year: 1987 end-page: 145 article-title: EMS‐a software package for electron diffraction analysis and HREM image simulation in materials science publication-title: Ultramicroscopy – volume: 16 start-page: S1177 issue: 14 year: 2004 article-title: Melting curve of H O to 90 GPa measured in a laser‐heated diamond cell publication-title: Journal of Physics: Condensed Matter – volume: 56 start-page: 1117 issue: 12 year: 2018 end-page: 1134 article-title: Water in the Earth's lower mantle publication-title: Geochemistry International – volume: 145‐182 year: 2013 article-title: Electrical conductivity of minerals and rocks publication-title: Physics and Chemistry of the Deep Earth – volume: 90 start-page: 61 issue: 1 year: 2005 end-page: 70 article-title: A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single‐crystal X‐ray diffraction: Oxygen sites for hydrogen storage in Earth's interior publication-title: American Mineralogist – volume: 93 start-page: 950 issue: 5‐6 year: 2008 end-page: 953 article-title: Theoretical infrared absorption coefficient of OH groups in minerals publication-title: American Mineralogist – ident: e_1_2_6_62_1 doi: 10.1088/0953-8984/16/14/028 – ident: e_1_2_6_36_1 doi: 10.2138/am-2017-5863CCBYNCND – ident: e_1_2_6_43_1 doi: 10.1038/42685 – ident: e_1_2_6_28_1 doi: 10.1016/B978-0-444-53802-4.00156-1 – ident: e_1_2_6_41_1 doi: 10.1016/j.epsl.2017.10.054 – ident: e_1_2_6_26_1 doi: 10.1007/s00269-012-0542-8 – ident: e_1_2_6_29_1 doi: 10.1016/j.epsl.2010.11.038 – ident: e_1_2_6_59_1 – ident: e_1_2_6_21_1 doi: 10.2138/am-1999-0330 – ident: e_1_2_6_66_1 doi: 10.1016/0304-3991(87)90080-5 – ident: e_1_2_6_68_1 doi: 10.1186/s40645-017-0128-7 – ident: e_1_2_6_40_1 doi: 10.1002/2015GL067097 – ident: e_1_2_6_53_1 doi: 10.1016/S0031-9201(01)00192-3 – ident: e_1_2_6_9_1 doi: 10.1029/2003GL017182 – ident: e_1_2_6_13_1 doi: 10.1080/08957959.2013.806504 – ident: e_1_2_6_60_1 doi: 10.2138/am.2008.2657 – ident: e_1_2_6_37_1 doi: 10.1016/j.rgg.2010.05.005 – ident: e_1_2_6_44_1 doi: 10.1126/science.264.5165.1558 – ident: e_1_2_6_4_1 doi: 10.2138/am.2008.2889 – volume: 45 start-page: 35 year: 1989 ident: e_1_2_6_19_1 article-title: Raman spectroscopy and lattice dynamics of MgSiO3‐perovskite at high pressure publication-title: Perovskite: A Structure of Great Interest to Geophysics and Materials Science – ident: e_1_2_6_31_1 doi: 10.1002/9781118529492.ch5 – ident: e_1_2_6_27_1 doi: 10.1134/S0016702918120042 – ident: e_1_2_6_30_1 doi: 10.1080/0141861021000025829 – ident: e_1_2_6_39_1 doi: 10.1016/j.epsl.2007.08.015 – ident: e_1_2_6_47_1 doi: 10.2138/am.2011.3810 – ident: e_1_2_6_49_1 doi: 10.1016/j.epsl.2017.11.051 – ident: e_1_2_6_20_1 doi: 10.1016/j.epsl.2013.01.005 – ident: e_1_2_6_6_1 doi: 10.1038/nature01918 – ident: e_1_2_6_23_1 doi: 10.1016/j.pepi.2010.08.003 – ident: e_1_2_6_24_1 doi: 10.1126/science.1181443 – ident: e_1_2_6_48_1 doi: 10.2138/am-2015-5034 – ident: e_1_2_6_56_1 doi: 10.3406/bulmi.1982.7582 – ident: e_1_2_6_10_1 doi: 10.1029/2001GL014457 – ident: e_1_2_6_12_1 doi: 10.1016/j.epsl.2009.08.012 – ident: e_1_2_6_65_1 doi: 10.1073/pnas.1117152108 – ident: e_1_2_6_8_1 doi: 10.1016/S0012-821X(00)00244-2 – ident: e_1_2_6_16_1 doi: 10.1038/nature02413 – ident: e_1_2_6_50_1 doi: 10.1126/science.1065998 – volume: 77 start-page: 890 issue: 7 year: 1992 ident: e_1_2_6_15_1 article-title: High‐temperature behavior of metastable MgSiO3 perovskite: A Raman spectroscopic study publication-title: American Mineralogist – ident: e_1_2_6_22_1 doi: 10.1016/0031-9201(94)90116-3 – ident: e_1_2_6_34_1 doi: 10.1007/s00269-005-0007-4 – ident: e_1_2_6_33_1 doi: 10.1016/j.pepi.2003.06.003 – ident: e_1_2_6_67_1 doi: 10.1038/ngeo969 – ident: e_1_2_6_17_1 doi: 10.1016/S1386-1425(99)00016-5 – ident: e_1_2_6_35_1 doi: 10.1007/s00269-007-0144-z – ident: e_1_2_6_63_1 doi: 10.1016/j.pepi.2011.08.001 – ident: e_1_2_6_25_1 doi: 10.2138/am.2005.1624 – ident: e_1_2_6_7_1 doi: 10.1180/0026461056930248 – ident: e_1_2_6_11_1 doi: 10.1029/168GM06 – ident: e_1_2_6_42_1 doi: 10.1016/j.jvolgeores.2014.06.002 – ident: e_1_2_6_46_1 doi: 10.1016/j.gca.2015.10.025 – ident: e_1_2_6_54_1 doi: 10.2138/am-2015-5237 – ident: e_1_2_6_5_1 doi: 10.1029/2001JB000679 – ident: e_1_2_6_52_1 doi: 10.1016/j.chemgeo.2015.05.005 – ident: e_1_2_6_38_1 doi: 10.1016/S0012-821X(03)00200-0 – ident: e_1_2_6_57_1 doi: 10.1038/nature13080 – ident: e_1_2_6_18_1 doi: 10.1126/science.1204626 – ident: e_1_2_6_58_1 doi: 10.1007/s11214-017-0387-z – ident: e_1_2_6_2_1 doi: 10.2138/am.2006.1937 – ident: e_1_2_6_55_1 doi: 10.1002/2014JB011397 – ident: e_1_2_6_64_1 doi: 10.2138/am.2009.3150 – ident: e_1_2_6_45_1 doi: 10.1029/2000JB900179 – ident: e_1_2_6_32_1 doi: 10.1016/j.pepi.2010.07.001 – ident: e_1_2_6_51_1 doi: 10.1126/science.284.5421.1788 – ident: e_1_2_6_61_1 doi: 10.1126/science.1253358 – ident: e_1_2_6_3_1 doi: 10.2138/am.2007.2248 – ident: e_1_2_6_14_1 doi: 10.2138/am-1995-3-403 |
SSID | ssj0003031 |
Score | 2.548952 |
Snippet | High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa... High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg 0.88 Fe 3+ 0.065 Fe 2+ 0.035 Al 0.14 Si 0.90 O 3 , of hundreds of micrometer size were... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10346 |
SubjectTerms | Analytical methods Bearing Chemical bonds Crystal lattices Crystal structure Crystals Dehydration dehydration melting Earth Earth surface Electron microscopy Hydrogen Hydrogen atoms Hydrogen storage Hydrologic cycle Hydrological cycle Infrared analysis Infrared spectroscopy Iron Lower mantle Mantle Mass spectrometry Mass spectroscopy Melting Micrometers Microscopy Minerals Moisture content Oceans Organic chemistry Petrographic microscopy Platelets Scanning electron microscopy single‐crystal bridgmanite Solubility Stretching Synthesis Transition zone Transmission electron microscopy Water content water solubility |
Title | Water Concentration in Single‐Crystal (Al,Fe)‐Bearing Bridgmanite Grown From the Hydrous Melt: Implications for Dehydration Melting at the Topmost Lower Mantle |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL084630 https://www.proquest.com/docview/2307854664 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKrpC4oOVP7A_IB5BAJZDE-TO3bqEtq8KBbZcVlyg_tloppFWbgsqJR-AdeDOegQdgxnHSFBa0cIlSx46bztfxzGTmMyEPLBn7knFpxMxhhmOlwogj8FIS3049RzIzlSrL9403GDsn5-55q_WjkbW0KuKnyecL60r-R6rQBnLFKtl_kGx9U2iAc5AvHEHCcLyUjN9FSHHYxcrDXNPfYvziFJajTNRpDN3Feoklj2BLdjDg20MipvrqMUAdwwXHWLmlyDAEBqQ-5WDT6sqTwTpdYKbsa5GpQOKrZhY6pim-EBPoUs6PnVThoyqSbI9m8w-zZdEe4m5smGxTZFvJR30xm1dQ0cRDk3amaow2lSmrMn9ovap1lI5yn1QLLy4ZSGKuAr-nk1VeP980mUwXs6rTWbScgtX9cau2pxn5sDapXbU2544R2L6m0i4VOHegzSx30q00vA5yaiT7htb4pcq2TKavi-pzSZn92-Ji2sjNit-kPzTBbtMvlLY4vH9ZW-uMR_Wu3-Zhc_QVsmuDcwPaebdzNn4_ri0IMCvKnR718-mCDRj_rDl-25Ta-EdNL0uZSaM9cl37N7RTgvUGaYn8JrnaV_tHr-FMZRwny1vkmwIv3QIvnea0BO_3L181bOmjTvakJx5Di4YqbUCVKqhShCoFuFENVYoofE6bQKUAVNoAKtVApVGhRmqgUgVUWgL1Nhn3Xo66A0PvGGJEzPN9w2apxQVLmSe5NMGWj0zBueOmMuISHDRQQK6ZWsxzBA-CJLaRDlQyIQSzPOEE7A7ZyWe5uEto7AdBZJm-MIXrSAl-FIwKBL4lj7044vukXf34YaLp9HFXlyy8SNT75GHde17SyPyh31Elx1ArmmWItRqBi_tAwKRKtn-9R9h_O3S54_sHl5z0kFzb_L2OyE6xWIl7YGoX8X2NzJ9PB8-2 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKK0QviF9RKDAHKoEgIomdHyNx2G7ZH5rtAXZpxSUkm7GKlCZVkgrtjUfgHXgA3oknYexkl-UAEofeomTsWB7b8409_oaxJ45KA8WlslIuuCWcDK00IS9lHriZLxS3M2WifI_80Uy8PfFONtiP5V2Ylh9iteGmZ4ZZr_UE1xvSHduAJskk0yWHkU0GlNtdVOUhLr6Qz1a_Hh-Qgvdcd_Bm2h9ZXVoBK-F-EFguzxyJPOO-ksomg5_YKKXwMpVIRSiOWunZmcN9gTIM56mrOQMVR0Tu-ChCTvVeYVsaSNE02up9mH2crRZ_sghtkj4prNAN_C7Wnlr8cr29f1rB39B2HSAbCze4wa530BR67Vi6yTawuMWuDk3q3wU9mWDReX2bfT8mgFpBX994LDraXfhcwHsygzn-_PqtXy0IdObwtJe_GOAzerNPHUdfYV_fDzOUGwhDvQMAg6o8A0KhMFpkVXlRwwTz5hWM1yLdgYA1HOApCbT_0iK6tqQxJafl-VlZNxDpjG8wobGS4x02uxSt3GWbRVngPQYpufUJubVooyeUIghMpULUB5ypnyZyhz1fdn4875jQdUKOPDYn8q6M11W1w_ZW0uctA8hf5HaXeoy7daCOdZh96GkKf_qp0e0_64iH7yJPiiC4_1_Sj9m10XQSxdH46PAB29YybRjcLttsqgt8SLipSR91YxXYp8ueHr8A89Ij9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWrkBcEL9iYQEfWAkEEUns_BiJQ7clbdnuCsEWVlxCUo8FUjapkqxQbzwC78Cdh-JJGDtuKQeQOOwtSsaO5bE939jjbwh56Kk8UkwoJ2ecOdyT4OQZeinzyJchV8yVykT5HoXjGX91EpxskR-ruzAdP8R6w03PDLNe6wm-kMqSDWiOTLRcYjR10X4y1wZVHsDyC7pszYvJEPW75_vJy-PB2LFZBZyMhVHk-Ex6AphkoRLKRXufuSAED6TKhEIQh40MXOmxkIOI43nua8pAxQCAeSHwmGG9F8h2gIbQ7ZHt_rvZh9l67UeD0OXoE9yJ_Si0ofbY4meb7f3TCP5Gtpv42Bi45Cq5YpEp7XdD6RrZgvI6uTgymX-X-GRiRefNDfL9PeLTmg70hcfSsu7SzyV9i1awgJ9fvw3qJWLOgj7qF08TeIxv9rHj8Cvd19fDDOMG0JHeAKBJXZ1SBKF0vJR1ddbQQyja53SyEehOEVfTIXxCge5fWkTXlrWm5HG1OK2alk51wjd6iEOlgJtkdi5auUV6ZVXCbUJz9Ooz9GrBhYArhQgYS8WgzzfzMM_EDnmy6vx0bonQdT6OIjUH8r5IN1W1Q_bW0ouOAOQvcrsrPaZ2GWhSHWUfB5rBH39qdPvPOtLRm2kgeBTd-S_pB-TS62GSTidHB3fJZS3SBcHtkl5bn8E9RE1tft8OVUo-nvfs-AXHcCMV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+Concentration+in+Single%E2%80%90Crystal+%28Al%2CFe%29%E2%80%90Bearing+Bridgmanite+Grown+From+the+Hydrous+Melt%3A+Implications+for+Dehydration+Melting+at+the+Topmost+Lower+Mantle&rft.jtitle=Geophysical+research+letters&rft.au=Fu%2C+Suyu&rft.au=Yang%2C+Jing&rft.au=Karato%2C+Shun%E2%80%90ichiro&rft.au=Vasiliev%2C+Alexander&rft.date=2019-09-01&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=46&rft.issue=17-18&rft.spage=10346&rft.epage=10357&rft_id=info:doi/10.1029%2F2019GL084630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2019GL084630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |