ANISOTROPIC NONLINEAR DIFFUSION WITH ABSORPTION: EXISTENCE AND EXTINCTION

The authors prove that the nonlinear parabolic partial differential equation (The equation is abbreviated) with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonnegative generalized solution u. They also give necessary and sufficient conditions on the constituti...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Mathematics and Mathematical Sciences Vol. 1996; no. 3; pp. 427 - 434
Main Authors Lair, Alan V., Oxley, Mark E.
Format Journal Article
LanguageEnglish
Published Hindawi Limiteds 1996
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The authors prove that the nonlinear parabolic partial differential equation (The equation is abbreviated) with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonnegative generalized solution u. They also give necessary and sufficient conditions on the constitutive functions φ_(ij) and f which ensure the existence of a time t_0>0 for which u vanishes for all t≥t_0.
AbstractList The authors prove that the nonlinear parabolic partial differential equation ut=i,j=1n2xixjij(u)f(u) with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonnegative generalized solution u. They also give necessary and sufficient conditions on the constitutive functions ij and f which ensure the existence of a time t0 > 0 for which u vanishes for all tt0.
The authors prove that the nonlinear parabolic partial differential equation ∂u∂t=∑i,j=1n∂2∂xi∂xjφij(u)−f(u) with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonnegative generalized solution u. They also give necessary and sufficient conditions on the constitutive functions φij and f which ensure the existence of a time t0>0 for which u vanishes for all t≥t0.
The authors prove that the nonlinear parabolic partial differential equation (The equation is abbreviated) with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonnegative generalized solution u. They also give necessary and sufficient conditions on the constitutive functions φ_(ij) and f which ensure the existence of a time t_0>0 for which u vanishes for all t≥t_0.
The authors prove that the nonlinear parabolic partial differential equation urn:x-wiley:01611712:media:ijmm347450:ijmm347450-math-0001 with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonnegative generalized solution u . They also give necessary and sufficient conditions on the constitutive functions φ i j and f which ensure the existence of a time t 0 > 0 for which u vanishes for all t ≥ t 0 .
Author ALAN V. LAIR
MARK E. OXLEY
Author_xml – sequence: 1
  givenname: Alan V.
  surname: Lair
  fullname: Lair, Alan V.
– sequence: 2
  givenname: Mark E.
  surname: Oxley
  fullname: Oxley, Mark E.
BookMark eNplUU1r20AQXUIKcdL-gN506k3tzGo_e1MVOVkwkrEU2tuyklZFxrHSlX3ov48Ul0LpYRjevDdvYN4tuT6OR0_IR4TPiJx_qQAFokSqBQAIhCuyQqFkDIzya7Ja6Hjhb8jtNO0BUFHKV8SkhanKelduTRYVZbExRZ7uonuzXj9Vpiyi76Z-jNJvVbnb1jP-GuU_TFXnRZZHaXE_o9oU2cK8J-96d5j8hz_9jjyt8zp7jDflg8nSTewSISFmXDUKJADvGAPtJThsOHRcuUZQp0G3su84Ni12QlHBsBeSotedY8InLrkj5uLbjW5vX8Lw7MJvO7rBvg3G8NO6cBrag7dt0gClsmt6RMY8OnA9102jBW0FKD57fbp4vYTx19lPJ_s8TK0_HNzRj-fJUsUSRVHPQrwI2zBOU_D938MIdgnA_hfAvLO57LghDKfB7sdzOM6fsVu6aIGyOQWLWguk9m1EgQJQ-S9gSyUseQX-MYWy
CitedBy_id crossref_primary_10_1007_s40840_014_0028_6
crossref_primary_10_1109_4233_897062
crossref_primary_10_4236_am_2015_65071
crossref_primary_10_1016_j_na_2005_05_037
ContentType Journal Article
DBID 188
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1155/S0161171296000610
DatabaseName Airiti Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1687-0425
EndPage 434
ExternalDocumentID oai_doaj_org_article_c3b0227dbf1144e1a0af59bb962c6085
10_1155_S0161171296000610
P20161024001_199612_201612020027_201612020027_427_434
GroupedDBID -~9
-~X
188
24P
29J
2UF
2WC
4.4
5GY
5VS
AAFWJ
AAJEY
ABCQX
ACGFO
ACIPV
ACIWK
ADBBV
AFPKN
AI.
AIAGR
AINHJ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CNMHZ
CS3
CVCKV
EBS
EJD
ESX
GROUPED_DOAJ
H13
IAO
IEA
IL9
KQ8
L7B
LO0
M~E
OK1
P0W
P2P
REM
RHU
RHW
RHX
RNS
TR2
TWZ
UNMZH
UPT
UZ4
VH1
WH7
3V.
8FE
8FG
8R4
8R5
AAYXX
ABDBF
ABJCF
ABUWG
AFKRA
ARAPS
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
CWDGH
E3Z
HCIFZ
IPNFZ
ITC
K6V
K7-
L6V
M7S
NHB
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RIG
TUS
~8M
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a3670-458b807005d4409e70a1b50d58ab62a909c7fd51bc1d682641f6721e9da46e3a3
IEDL.DBID DOA
ISSN 0161-1712
IngestDate Mon Nov 04 19:59:25 EST 2024
Fri Aug 16 21:08:01 EDT 2024
Fri Dec 06 09:38:18 EST 2024
Tue Oct 01 22:50:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Anisotropic nonlinear diffusion
finite extinction time
generalized solution
Language English
License http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3670-458b807005d4409e70a1b50d58ab62a909c7fd51bc1d682641f6721e9da46e3a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doaj.org/article/c3b0227dbf1144e1a0af59bb962c6085
PQID 28438219
PQPubID 23500
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_c3b0227dbf1144e1a0af59bb962c6085
proquest_miscellaneous_28438219
crossref_primary_10_1155_S0161171296000610
airiti_journals_P20161024001_199612_201612020027_201612020027_427_434
PublicationCentury 1900
PublicationDate 1996-00-00
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – year: 1996
  text: 1996-00-00
PublicationDecade 1990
PublicationTitle International Journal of Mathematics and Mathematical Sciences
PublicationYear 1996
Publisher Hindawi Limiteds
Hindawi Limited
Publisher_xml – name: Hindawi Limiteds
– name: Hindawi Limited
SSID ssj0018225
Score 1.4459164
Snippet The authors prove that the nonlinear parabolic partial differential equation (The equation is abbreviated) with homogeneous Dirichlet boundary conditions and a...
The authors prove that the nonlinear parabolic partial differential equation urn:x-wiley:01611712:media:ijmm347450:ijmm347450-math-0001 with homogeneous...
The authors prove that the nonlinear parabolic partial differential equation ut=i,j=1n2xixjij(u)f(u) with homogeneous Dirichlet boundary conditions and a...
The authors prove that the nonlinear parabolic partial differential equation ∂u∂t=∑i,j=1n∂2∂xi∂xjφij(u)−f(u) with homogeneous Dirichlet boundary conditions and...
SourceID doaj
proquest
crossref
airiti
SourceType Open Website
Aggregation Database
Publisher
StartPage 427
SubjectTerms Anisotropic nonlinear diffusion
finite extinction time
generalized solution
Title ANISOTROPIC NONLINEAR DIFFUSION WITH ABSORPTION: EXISTENCE AND EXTINCTION
URI https://www.airitilibrary.com/Article/Detail/P20161024001-199612-201612020027-201612020027-427-434
https://search.proquest.com/docview/28438219
https://doaj.org/article/c3b0227dbf1144e1a0af59bb962c6085
Volume 1996
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iHvQgfuL87MGTUEzaJE28qWxMRVFU2C0kTQq7dLJu_7_vpZ04dvDioYU8CgkvL--7vxByqXOpfKh4GoQNKec0T21VYg3eOy1cjjKN3RYvcvjJH0di9OuqL-wJa-GBW8Zdl7lDlDvvKvDceWCW2kpo57TMSgn-QtS-NFsEU139AMxe27woWcoKlnX1TDCe1-9IRBr47mjAQRlv2DEiCC2Zpojgv6Kgo9UZ7JDtzl1Mbttl7pK1UO-RrecfrNVmnzzc1uNmMptOvsZlUrfIF3aa4M0nc0yFJZhqTaxrJtOoHm4SRL-MrnJiaw-j2biOfzcckM9B_-N-mHYXJKQWcddSLpRTcGap8MBlHQpqmRPUC2WdzKymuiwqL5grmZcQR3BWSYj4gvaWy5Db_JCsw7rCEUm49ooVTusy82DXChXPsqtCATNYRXuk3zLJdDLemNcMOYkYaZQZbGZmmYmkjGLnR7E84PjkvEeuFjw2Xy2eholxiBBmZWd65A534edDhMKOBBAQ0wmI-UtAeuRisYcGjg7WQ2wdJvPGgGXOFWjs4_-Y5oRstg3dmJ05Jeuz6Tycgb8yc-dRNOH99Ka-AQym3xw
link.rule.ids 314,780,784,864,2102,4024,27923,27924,27925
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANISOTROPIC+NONLINEAR+DIFFUSION+WITH+ABSORPTION%3A+EXISTENCE+AND+EXTINCTION&rft.jtitle=International+Journal+of+Mathematics+and+Mathematical+Sciences&rft.au=ALAN+V.+LAIR&rft.au=MARK+E.+OXLEY&rft.date=1996&rft.pub=Hindawi+Limiteds&rft.issn=0161-1712&rft.volume=1996&rft.spage=427&rft.epage=434&rft_id=info:doi/10.1155%2FS0161171296000610&rft.externalDocID=P20161024001_199612_201612020027_201612020027_427_434
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2FP20161024001-c.jpg