Revisiting the Active Sites at the MoS2/H2O Interface via Grand-Canonical DFT: The Role of Water Dissociation

MoS2 is a promising low-cost catalyst for the hydrogen evolution reaction (HER). However, the nature of the active sites remains a subject of debate. By taking the electrochemcal potential explicitly into account using grand-canonical density functional theory (DFT) in combination with the linearize...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 28; pp. 31401 - 31410
Main Authors Abidi, Nawras, Bonduelle-Skrzypczak, Audrey, Steinmann, Stephan N
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:MoS2 is a promising low-cost catalyst for the hydrogen evolution reaction (HER). However, the nature of the active sites remains a subject of debate. By taking the electrochemcal potential explicitly into account using grand-canonical density functional theory (DFT) in combination with the linearized Poisson–Boltzmann equation, we herein revisit the active sites of 2H-MoS2. In addition to the well-known catalytically active edge sites, also specific point defects on the otherwise inert basal plane provide highly active sites for HER. Given that HER takes place in water, we also assess the reactivity of these active sites with respect to H2O. The thermodynamics of proton reduction as a function of the electrochemical potential reveals that four edge sites and three basal plane defects feature thermodynamic overpotentials below 0.2 V. In contrast to current proposals, many of these active sites involve adsorbed OH. The results demonstrate that even though H2O and OH block “active” sites, HER can also occur on these “blocked” sites, reducing protons on surface OH/H2O entities. As a consequence, our results revise the active sites, highlighting the so far overlooked need to take the liquid component (H2O) of the functional interface into account when considering the stability and activity of the various active sites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.0c06489