Study of multispecies convection-dispersion transport equation with variable parameters

•Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow domain.•Problem is modelled for distinct value of retardation factor for each species.•Homotopy analysis method is employed to develop the series solut...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 591; p. 125562
Main Authors Chaudhary, Manish, Singh, Mritunjay Kumar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2020.125562

Cover

Loading…
Abstract •Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow domain.•Problem is modelled for distinct value of retardation factor for each species.•Homotopy analysis method is employed to develop the series solution of the problem. Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear repositories and sites having radioactive substances and chemical solvent. Modeling pollutant migration of reactive multispecies problem with variable transport parameters is quite a challenging issue, necessary for better sightedness of fate and transport of reactive solutes and their geochemical growth in the geological formations. At present most of the solutions for multispecies problem are corresponding to the constant parameters affecting the concentration distribution, not for variable transport parameters, because of the complexity of the modelled equation. This paper dealt with the comparative study of multispecies pollutant transport problem in porous structure to analyse the effect of spatially and temporally varying hydrodynamic dispersion coefficient and transport velocity terms in more general form. For mathematical elaboration, two-species transport problem is considered subjected to the concept of linear isotherm with both the parent and daughter species without using identical retardation factor and model is also incorporated with the first-order decay term under spatially varying initial conditions. Homotopy analysis method (HAM) is adopted to develop the series solution for the concentration segmentation of each species of the model. The advantage of this method is that it is capable to overcome the limitation of existing transform methods for some cases of complex modelled problems. The zeroth order deformation equation is derived by using HAM to generate the semi-analytical solution of the model under certain auxiliary linear operator. The impact of distinct retardation factor for different species and effect of diversity in dependency of modelled parameters over space and time are graphically depicted for both the species and illustrated that it has a valuable impact over multispecies pollutant migration. As there exist no analytical or numerical solution for such complex variable dependency of migration parameters over transport phenomenon, these solutions may be helpful to deliver a better significant about the concentration variation due to space and time dependent transport parameters, responsible for reactive multispecies migration, in more natural way.
AbstractList •Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow domain.•Problem is modelled for distinct value of retardation factor for each species.•Homotopy analysis method is employed to develop the series solution of the problem. Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear repositories and sites having radioactive substances and chemical solvent. Modeling pollutant migration of reactive multispecies problem with variable transport parameters is quite a challenging issue, necessary for better sightedness of fate and transport of reactive solutes and their geochemical growth in the geological formations. At present most of the solutions for multispecies problem are corresponding to the constant parameters affecting the concentration distribution, not for variable transport parameters, because of the complexity of the modelled equation. This paper dealt with the comparative study of multispecies pollutant transport problem in porous structure to analyse the effect of spatially and temporally varying hydrodynamic dispersion coefficient and transport velocity terms in more general form. For mathematical elaboration, two-species transport problem is considered subjected to the concept of linear isotherm with both the parent and daughter species without using identical retardation factor and model is also incorporated with the first-order decay term under spatially varying initial conditions. Homotopy analysis method (HAM) is adopted to develop the series solution for the concentration segmentation of each species of the model. The advantage of this method is that it is capable to overcome the limitation of existing transform methods for some cases of complex modelled problems. The zeroth order deformation equation is derived by using HAM to generate the semi-analytical solution of the model under certain auxiliary linear operator. The impact of distinct retardation factor for different species and effect of diversity in dependency of modelled parameters over space and time are graphically depicted for both the species and illustrated that it has a valuable impact over multispecies pollutant migration. As there exist no analytical or numerical solution for such complex variable dependency of migration parameters over transport phenomenon, these solutions may be helpful to deliver a better significant about the concentration variation due to space and time dependent transport parameters, responsible for reactive multispecies migration, in more natural way.
Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear repositories and sites having radioactive substances and chemical solvent. Modeling pollutant migration of reactive multispecies problem with variable transport parameters is quite a challenging issue, necessary for better sightedness of fate and transport of reactive solutes and their geochemical growth in the geological formations. At present most of the solutions for multispecies problem are corresponding to the constant parameters affecting the concentration distribution, not for variable transport parameters, because of the complexity of the modelled equation. This paper dealt with the comparative study of multispecies pollutant transport problem in porous structure to analyse the effect of spatially and temporally varying hydrodynamic dispersion coefficient and transport velocity terms in more general form. For mathematical elaboration, two-species transport problem is considered subjected to the concept of linear isotherm with both the parent and daughter species without using identical retardation factor and model is also incorporated with the first-order decay term under spatially varying initial conditions. Homotopy analysis method (HAM) is adopted to develop the series solution for the concentration segmentation of each species of the model. The advantage of this method is that it is capable to overcome the limitation of existing transform methods for some cases of complex modelled problems. The zeroth order deformation equation is derived by using HAM to generate the semi-analytical solution of the model under certain auxiliary linear operator. The impact of distinct retardation factor for different species and effect of diversity in dependency of modelled parameters over space and time are graphically depicted for both the species and illustrated that it has a valuable impact over multispecies pollutant migration. As there exist no analytical or numerical solution for such complex variable dependency of migration parameters over transport phenomenon, these solutions may be helpful to deliver a better significant about the concentration variation due to space and time dependent transport parameters, responsible for reactive multispecies migration, in more natural way.
ArticleNumber 125562
Author Singh, Mritunjay Kumar
Chaudhary, Manish
Author_xml – sequence: 1
  givenname: Manish
  surname: Chaudhary
  fullname: Chaudhary, Manish
– sequence: 2
  givenname: Mritunjay Kumar
  surname: Singh
  fullname: Singh, Mritunjay Kumar
  email: drmks29@iitism.ac.in
BookMark eNqFkE1Lw0AQhhepYFv9CUKOXlL3M2nxIFL8goIHFY_LZjOhG9Jsurup9N-7MZ68dC4zzLzvC_PM0KS1LSB0TfCCYJLd1ot6eyydbRYU07ijQmT0DE3JMl-lNMf5BE0xpjQl2YpfoJn3NY7FGJ-ir_fQl8fEVsmub4LxHWgDPtG2PYAOxrZpOSydj2MSnGp9Z11IYN-r4Zp8m7BNDsoZVTSQdMqpHYQov0TnlWo8XP31Ofp8evxYv6Sbt-fX9cMmVSwTIQWhl0rntFKUMCU4x5zyouIVE0vMebmEPNOUl8VqVSmoGMdEAGVFTrEgOQE2Rzdjbufsvgcf5M54DU2jWrC9l1RQzkieYRKlYpRqZ713UMnOmZ1yR0mwHEDKWv6BlANIOYKMvrt_Pm3C7_eRh2lOuu9HN0QKBwNO-ki41VAaFwnL0poTCT83HJZp
CitedBy_id crossref_primary_10_1016_j_jece_2024_114752
crossref_primary_10_3389_feart_2022_1064110
crossref_primary_10_1007_s12040_024_02505_x
crossref_primary_10_1016_j_advwatres_2021_104018
crossref_primary_10_1016_j_jenvman_2023_119350
crossref_primary_10_1016_j_advwatres_2024_104777
crossref_primary_10_1016_j_jhydrol_2025_132977
crossref_primary_10_1007_s12517_023_11580_1
crossref_primary_10_1016_j_gsd_2025_101404
crossref_primary_10_1016_j_camwa_2024_02_012
crossref_primary_10_1061_JENMDT_EMENG_6703
crossref_primary_10_1088_1402_4896_ac71e0
crossref_primary_10_18400_tekderg_975457
crossref_primary_10_1016_j_jhydrol_2022_127826
Cites_doi 10.1023/A:1006507514019
10.1016/j.chaos.2005.03.006
10.1016/0022-1694(95)02891-9
10.1016/j.advwatres.2004.02.013
10.1029/2000WR900239
10.1016/0098-3004(85)90003-2
10.1007/s12665-019-8748-4
10.1007/s11242-009-9368-3
10.1007/s11242-006-9081-4
10.1007/s11600-017-0035-8
10.1016/S0169-7722(00)00195-9
10.1029/2009WR008707
10.1016/j.chaos.2004.05.005
10.1016/j.jhydrol.2011.12.001
10.1080/09715010.2015.1043597
10.1017/S0022112084002858
10.1016/j.jhydrol.2016.08.002
10.1029/2005WR004056
10.1016/S0045-7825(98)00108-X
10.1016/j.advwatres.2016.06.004
10.1016/j.jhydrol.2014.11.061
10.1111/j.1745-6592.1998.tb00618.x
10.1029/1998WR900003
10.1615/InterJFluidMechRes.v32.i1.10
10.1029/91WR02028
10.1016/j.jhydrol.2017.02.014
10.1007/s11242-007-9175-7
10.1029/WR026i003p00437
10.1029/WR022i013p02069
10.1016/j.jhydrol.2014.03.035
10.2172/15010560
10.1016/S0045-7825(98)00109-1
10.1016/j.jconhyd.2014.07.009
10.4141/cjss71-047
10.1016/S1007-5704(97)90008-3
10.1098/rsos.160764
10.1016/j.jhydrol.2016.08.003
10.1016/0022-1694(87)90127-2
10.1016/S0169-7722(98)00105-3
10.1016/0169-7722(90)90013-7
10.1016/0309-1708(79)90012-5
10.1016/j.cemconres.2017.06.002
10.1016/j.mcm.2009.03.003
10.1016/j.cam.2009.04.021
10.4491/eer.2016.147
10.1029/92WR00665
10.1016/0020-7462(94)00054-E
10.1016/j.apm.2016.08.003
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2020.125562
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2020_125562
S0022169420310222
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a365t-e5c8ac72fa213a5440424bf4f358044d8e76c24db99faef34015e23b7205171e3
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 06:45:42 EDT 2025
Tue Jul 01 01:53:25 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
Fri Feb 23 02:48:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multispecies
Pollutant transport
Homotopy analysis method
Linear isotherm
Series solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-e5c8ac72fa213a5440424bf4f358044d8e76c24db99faef34015e23b7205171e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524317601
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524317601
crossref_primary_10_1016_j_jhydrol_2020_125562
crossref_citationtrail_10_1016_j_jhydrol_2020_125562
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (No. PNNL-11720; EW4010). Pacific Northwest National Lab., Richland, WA (US).
Serrano (b0225) 1992; 28
Chen, Liu, Liang, Lai (b0055) 2012; 456
Chamkha (b0035) 2005; 32
Clement (b0080) 2001; 37
De Simoni, Carrera, Sanchez-Vila, Guadagnini (b0090) 2005; 41
Van Genuchten, M.T., 1982.
Slodicka, Balazova (b0255) 2010; 234
Chaudhary, Thakur, Singh (b0040) 2020; 79
Clement, T.P., 1999.
Liu (b0180) 2005; 23
He (b0140) 1998; 167
Chrysikopoulos, Kitanidis, Roberts (b0065) 1990; 26
Liao, S.J., 1992.
Singh, Das (b0245) 2015; 520
Simpson, Ellery (b0230) 2014; 513
(No. 1661). US Department of Agriculture, Agricultural Research Service.
Huo, Song, Wu (b0150) 2014; 166
A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems
Bauer, Attinger, Kinzelbach (b0025) 2001; 49
Inokuti, Sekine, Mura (b0155) 1978; 33
Suk (b0270) 2016; 94
Mahmood, Manaa, Easif (b0190) 2014; 3
Sposito, Gupta, Bhattacharya (b0260) 1979; 2
Domenico (b0095) 1987; 91
Cho (b0060) 1971; 51
(Doctoral dissertation, Ph. D. Thesis, Shanghai Jiao Tong University).
He (b0130) 1997; 2
Sun, Petersen, Clement, Skeen (b0285) 1999; 35
Kumar, Smith, Fowler, Velis, Kumar, Arya, Rena, R., Cheeseman, C. (b0160) 2017; 4
Romeiro, Castro, Malta, Landau (b0215) 2007; 70
Natarajan, Kumar (b0205) 2018; 23
Singh, Chatterjee (b0235) 2016; 541
Singh, Chatterjee (b0240) 2017; 65
Finlayson, B.A., 1972. The Method of Weighted Residuals and Variational Principles, Acad. Press.
He (b0145) 2005; 26
Chen, Lai, Liu, Ni (b0050) 2012; 420-421
Natarajan (b0200) 2016; 22
Yeh, Tripathi (b0300) 1991; 27
Batu (b0020) 2006
Liao (b0170) 1995; 30
Lunn, Lunn, Mackayb (b0185) 1996; 180
Quezada, Clement, Lee (b0210) 2004; 27
Gao, Zhan, Feng, Fu, Ma, Huang (b0115) 2010; 46
Sudicky (b0265) 1986; 22
Natarajan, Kumar (b0195) 2010; 2
Sun, Petersen, Clement (b0280) 1999; 35
Van Genuchten (b0295) 1985; 11
The proposed homotopy analysis technique for the solution of nonlinear problems
Fujikawa, Fukui (b0110) 1990; 6
Analytical solutions of the one-dimensional convective-dispersive solute transport equation
Abbas, Jingsong, Ping, Ya, Al-Rekabi (b0005) 2009; 5
Bear (b0030) 1972
Sanskrityayn, Suk, Kumar (b0220) 2017; 547
Guerrero, Skaggs, Van Genuchten (b0125) 2009; 80
Filobello-Nino, Vazquez-Leal, Sarmiento-Reyes, Cervantes-Perez, Perez-Sesma, Jimenez-Fernandez, Pereyra-Diaz, Huerta-Chua, Morales-Mendoza, Gonzalez-Lee, Castro-Gonzalez (b0100) 2017; 41
Chen, Ho, Liang, Wang, Liu (b0045) 2018
He (b0135) 1998; 167
Arnold, Duddu, Brown, Kosson (b0010) 2017; 100
Gharehbaghi (b0120) 2016; 541
Dagan (b0085) 1984; 145
Clement, Sun, Hooker, Petersen (b0070) 1998; 18
Sun, Clement (b0275) 1999; 37
Babolian, Azizi, Saeidian (b0015) 2009; 50
Liao (b0175) 2012
Slodicka, Balazova (b0250) 2008; 73
Sanskrityayn (10.1016/j.jhydrol.2020.125562_b0220) 2017; 547
Liao (10.1016/j.jhydrol.2020.125562_b0170) 1995; 30
Singh (10.1016/j.jhydrol.2020.125562_b0240) 2017; 65
10.1016/j.jhydrol.2020.125562_b0290
Mahmood (10.1016/j.jhydrol.2020.125562_b0190) 2014; 3
Natarajan (10.1016/j.jhydrol.2020.125562_b0200) 2016; 22
Gharehbaghi (10.1016/j.jhydrol.2020.125562_b0120) 2016; 541
Simpson (10.1016/j.jhydrol.2020.125562_b0230) 2014; 513
Chrysikopoulos (10.1016/j.jhydrol.2020.125562_b0065) 1990; 26
De Simoni (10.1016/j.jhydrol.2020.125562_b0090) 2005; 41
Singh (10.1016/j.jhydrol.2020.125562_b0245) 2015; 520
Van Genuchten (10.1016/j.jhydrol.2020.125562_b0295) 1985; 11
Sposito (10.1016/j.jhydrol.2020.125562_b0260) 1979; 2
He (10.1016/j.jhydrol.2020.125562_b0140) 1998; 167
Yeh (10.1016/j.jhydrol.2020.125562_b0300) 1991; 27
Batu (10.1016/j.jhydrol.2020.125562_b0020) 2006
Huo (10.1016/j.jhydrol.2020.125562_b0150) 2014; 166
Slodicka (10.1016/j.jhydrol.2020.125562_b0250) 2008; 73
Singh (10.1016/j.jhydrol.2020.125562_b0235) 2016; 541
Sudicky (10.1016/j.jhydrol.2020.125562_b0265) 1986; 22
Clement (10.1016/j.jhydrol.2020.125562_b0080) 2001; 37
Babolian (10.1016/j.jhydrol.2020.125562_b0015) 2009; 50
Cho (10.1016/j.jhydrol.2020.125562_b0060) 1971; 51
Gao (10.1016/j.jhydrol.2020.125562_b0115) 2010; 46
Fujikawa (10.1016/j.jhydrol.2020.125562_b0110) 1990; 6
Chen (10.1016/j.jhydrol.2020.125562_b0050) 2012; 420-421
10.1016/j.jhydrol.2020.125562_b0105
Kumar (10.1016/j.jhydrol.2020.125562_b0160) 2017; 4
Sun (10.1016/j.jhydrol.2020.125562_b0280) 1999; 35
Natarajan (10.1016/j.jhydrol.2020.125562_b0195) 2010; 2
10.1016/j.jhydrol.2020.125562_b0075
Bear (10.1016/j.jhydrol.2020.125562_b0030) 1972
Natarajan (10.1016/j.jhydrol.2020.125562_b0205) 2018; 23
Romeiro (10.1016/j.jhydrol.2020.125562_b0215) 2007; 70
Slodicka (10.1016/j.jhydrol.2020.125562_b0255) 2010; 234
Abbas (10.1016/j.jhydrol.2020.125562_b0005) 2009; 5
Arnold (10.1016/j.jhydrol.2020.125562_b0010) 2017; 100
Sun (10.1016/j.jhydrol.2020.125562_b0275) 1999; 37
He (10.1016/j.jhydrol.2020.125562_b0145) 2005; 26
Chen (10.1016/j.jhydrol.2020.125562_b0055) 2012; 456
Guerrero (10.1016/j.jhydrol.2020.125562_b0125) 2009; 80
Lunn (10.1016/j.jhydrol.2020.125562_b0185) 1996; 180
Filobello-Nino (10.1016/j.jhydrol.2020.125562_b0100) 2017; 41
Chamkha (10.1016/j.jhydrol.2020.125562_b0035) 2005; 32
10.1016/j.jhydrol.2020.125562_b0165
Chaudhary (10.1016/j.jhydrol.2020.125562_b0040) 2020; 79
Suk (10.1016/j.jhydrol.2020.125562_b0270) 2016; 94
He (10.1016/j.jhydrol.2020.125562_b0130) 1997; 2
Inokuti (10.1016/j.jhydrol.2020.125562_b0155) 1978; 33
Liao (10.1016/j.jhydrol.2020.125562_b0175) 2012
Serrano (10.1016/j.jhydrol.2020.125562_b0225) 1992; 28
Chen (10.1016/j.jhydrol.2020.125562_b0045) 2018
Dagan (10.1016/j.jhydrol.2020.125562_b0085) 1984; 145
Liu (10.1016/j.jhydrol.2020.125562_b0180) 2005; 23
Bauer (10.1016/j.jhydrol.2020.125562_b0025) 2001; 49
Quezada (10.1016/j.jhydrol.2020.125562_b0210) 2004; 27
Domenico (10.1016/j.jhydrol.2020.125562_b0095) 1987; 91
He (10.1016/j.jhydrol.2020.125562_b0135) 1998; 167
Clement (10.1016/j.jhydrol.2020.125562_b0070) 1998; 18
Sun (10.1016/j.jhydrol.2020.125562_b0285) 1999; 35
References_xml – volume: 180
  start-page: 195
  year: 1996
  end-page: 210
  ident: b0185
  article-title: Determining analytic solutions of multiple species contaminant transport, with sorption and decay
  publication-title: J. Hydrol.
– volume: 167
  start-page: 57
  year: 1998
  end-page: 68
  ident: b0135
  article-title: Approximate analytical solution for seepage flow with fractional derivatives in porous media
  publication-title: Comput. Methods App. Mech. Eng.
– reference: Analytical solutions of the one-dimensional convective-dispersive solute transport equation
– volume: 456
  start-page: 101
  year: 2012
  end-page: 109
  ident: b0055
  article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition
  publication-title: J. Hydrol.
– reference: Van Genuchten, M.T., 1982.
– year: 2012
  ident: b0175
  article-title: Homotopy analysis method in nonlinear differential equations
– volume: 18
  start-page: 79
  year: 1998
  end-page: 92
  ident: b0070
  article-title: Modeling multispecies reactive transport in ground water
  publication-title: Groundwater Monit. Remed.
– volume: 2
  start-page: 3344
  year: 2010
  end-page: 3350
  ident: b0195
  article-title: Finite difference approach for modeling multispecies transport in porous media
  publication-title: Int. J. Sci. Tech.
– volume: 35
  start-page: 185
  year: 1999
  end-page: 190
  ident: b0285
  article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions
  publication-title: Water Resour. Res.
– reference: (No. 1661). US Department of Agriculture, Agricultural Research Service.
– volume: 23
  start-page: 573
  year: 2005
  end-page: 576
  ident: b0180
  article-title: Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method
  publication-title: Chaos, Solitons Fractals
– volume: 27
  start-page: 507
  year: 2004
  end-page: 520
  ident: b0210
  article-title: Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors
  publication-title: Adv. Water Resour.
– year: 1972
  ident: b0030
  article-title: Dynamics of Fluids in Porous Media
– volume: 26
  start-page: 695
  year: 2005
  end-page: 700
  ident: b0145
  article-title: Application of homotopy perturbation method to nonlinear wave equations
  publication-title: Chaos, Solitons Fractals
– volume: 541
  start-page: 935
  year: 2016
  end-page: 940
  ident: b0120
  article-title: Explicit and implicit forms of differential quadrature method for advection–diffusion equation with variable coefficients in semi-infinite domain
  publication-title: J. Hydrol.
– volume: 513
  start-page: 7
  year: 2014
  end-page: 12
  ident: b0230
  article-title: Exact series solutions of reactive transport models with general initial conditions
  publication-title: J. Hydrol.
– volume: 28
  start-page: 1801
  year: 1992
  end-page: 1808
  ident: b0225
  article-title: The form of the dispersion equation under recharge and variable velocity, and its analytical solution
  publication-title: Water Resour. Res.
– volume: 65
  start-page: 353
  year: 2017
  end-page: 361
  ident: b0240
  article-title: Solution of one-dimensional space-and time-fractional advection–dispersion equation by homotopy perturbation method
  publication-title: Acta Geophys.
– volume: 145
  start-page: 151
  year: 1984
  end-page: 177
  ident: b0085
  article-title: Solute transport in heterogeneous porous formations
  publication-title: J. Fluid Mech.
– reference: Liao, S.J., 1992.
– year: 2006
  ident: b0020
  article-title: Applied flow and solute transport modeling in aquifers: fundamental principles and analytical and numerical methods
– volume: 35
  start-page: 429
  year: 1999
  end-page: 440
  ident: b0280
  article-title: Analytical solutions for multiple species reactive transport in multiple dimensions
  publication-title: J. Contam. Hydrol.
– volume: 167
  start-page: 69
  year: 1998
  end-page: 73
  ident: b0140
  article-title: Approximate solution of nonlinear differential equations with convolution product nonlinearities
  publication-title: Comput. Methods App. Mech. Eng.
– volume: 2
  start-page: 235
  year: 1997
  end-page: 236
  ident: b0130
  article-title: Variational iteration method for delay differential equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– reference: (Doctoral dissertation, Ph. D. Thesis, Shanghai Jiao Tong University).
– volume: 23
  start-page: 76
  year: 2018
  end-page: 83
  ident: b0205
  article-title: Spatial moment analysis of multispecies contaminant transport in porous media
  publication-title: Environ. Eng. Res.
– volume: 541
  start-page: 928
  year: 2016
  end-page: 934
  ident: b0235
  article-title: Solute dispersion in a semi-infinite aquifer with specified concentration along an arbitrary plane source
  publication-title: J. Hydrol.
– volume: 49
  start-page: 217
  year: 2001
  end-page: 239
  ident: b0025
  article-title: Transport of a decay chain in homogenous porous media: analytical solutions
  publication-title: J. Contam. Hydrol.
– volume: 79
  year: 2020
  ident: b0040
  article-title: Analysis of 1-D pollutant transport in semi-infinite groundwater reservoir
  publication-title: Environ. Earth Sci.
– volume: 41
  start-page: 180
  year: 2017
  end-page: 194
  ident: b0100
  article-title: Laplace transform–homotopy perturbation method with arbitrary initial approximation and residual error cancelation
  publication-title: App. Math. Model.
– reference: (No. PNNL-11720; EW4010). Pacific Northwest National Lab., Richland, WA (US).
– reference: Clement, T.P., 1999.
– volume: 37
  start-page: 157
  year: 2001
  end-page: 163
  ident: b0080
  article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network
  publication-title: Water Resour. Res.
– volume: 26
  start-page: 437
  year: 1990
  end-page: 446
  ident: b0065
  article-title: Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor
  publication-title: Water Resour. Res.
– reference: A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems
– volume: 22
  start-page: 16
  year: 2016
  end-page: 29
  ident: b0200
  article-title: Effect of distance-dependent and time-dependent dispersion on non-linearly sorbed multispecies contaminants in porous media
  publication-title: ISH J. Hydraul. Eng.
– reference: Finlayson, B.A., 1972. The Method of Weighted Residuals and Variational Principles, Acad. Press.
– volume: 6
  start-page: 85
  year: 1990
  end-page: 102
  ident: b0110
  article-title: Adsorptive solute transport in fractured rock: analytical solutions for delta-type source conditions
  publication-title: J. Contam. Hydrol.
– volume: 37
  start-page: 327
  year: 1999
  end-page: 346
  ident: b0275
  article-title: A decomposition method for solving coupled multi–species reactive transport problems
  publication-title: Transp. Porous Media
– volume: 30
  start-page: 371
  year: 1995
  end-page: 380
  ident: b0170
  article-title: An approximate solution technique not depending on small parameters: a special example
  publication-title: Int. J. Non-Linear Mech.
– volume: 27
  start-page: 3075
  year: 1991
  end-page: 3094
  ident: b0300
  article-title: A model for simulating transport of reactive multispecies components: model development and demonstration
  publication-title: Water Resour. Res.
– volume: 94
  start-page: 412
  year: 2016
  end-page: 423
  ident: b0270
  article-title: Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients
  publication-title: Adv. Water Res.
– volume: 5
  start-page: 534
  year: 2009
  end-page: 545
  ident: b0005
  article-title: Review on LandWll leachate treatments
  publication-title: J. Appl. Sci. Res.
– volume: 50
  start-page: 213
  year: 2009
  end-page: 224
  ident: b0015
  article-title: Some notes on using the homotopy perturbation method for solving time-dependent differential equations
  publication-title: Math. Comput. Modell.
– volume: 520
  start-page: 289
  year: 2015
  end-page: 299
  ident: b0245
  article-title: Scale dependent solute dispersion with linear isotherm in heterogeneous medium
  publication-title: J. Hydrol.
– reference: The proposed homotopy analysis technique for the solution of nonlinear problems
– volume: 11
  start-page: 129
  year: 1985
  end-page: 147
  ident: b0295
  article-title: Convective-dispersive transport of solutes involved in sequential first-order decay reactions
  publication-title: Comput. Geosci.
– volume: 70
  start-page: 1
  year: 2007
  end-page: 10
  ident: b0215
  article-title: A linearization technique for multi-species transport problems
  publication-title: Transp. Porous media
– volume: 32
  start-page: 1
  year: 2005
  end-page: 20
  ident: b0035
  article-title: Modeling of multi-species contaminant transport with spatially-dependent dispersion and coupled linear/non-linear reaction
  publication-title: Int. J. Fluid Mech. Res.
– volume: 3
  start-page: 244
  year: 2014
  ident: b0190
  article-title: Homotopy analysis method for solving nonlinear diffusion equation with convection term
  publication-title: Int. J. App. Math. Res.
– volume: 420-421
  start-page: 191
  year: 2012
  end-page: 204
  ident: b0050
  article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions
  publication-title: J. Hydrol.
– volume: 51
  start-page: 339
  year: 1971
  end-page: 350
  ident: b0060
  article-title: Convective transport of ammonium with nitrification in soil
  publication-title: Can. J. Soil Sci.
– volume: 4
  year: 2017
  ident: b0160
  article-title: Challenges and opportunities associated with waste management in India
  publication-title: Royal Soc. Open Sci.
– volume: 73
  start-page: 161
  year: 2008
  end-page: 172
  ident: b0250
  article-title: Singular value decomposition method for multi-species first-order reactive transport with identical decay rates
  publication-title: Transp. Porous Media
– volume: 33
  start-page: 156
  year: 1978
  end-page: 162
  ident: b0155
  article-title: General use of the Lagrange multiplier in nonlinear mathematical physics
  publication-title: Var. Method Mech. Solids
– volume: 547
  start-page: 517
  year: 2017
  end-page: 533
  ident: b0220
  article-title: Analytical solutions for solute transport in groundwater and riverine flow using Green’s Function Method and pertinent coordinate transformation method
  publication-title: J. Hydrol.
– volume: 22
  start-page: 2069
  year: 1986
  end-page: 2082
  ident: b0265
  article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process
  publication-title: Water Resour. Res.
– volume: 46
  year: 2010
  ident: b0115
  article-title: A new mobile-immobile model for reactive solute transport with scale-dependent dispersion
  publication-title: Water Resour. Res.
– volume: 91
  start-page: 49
  year: 1987
  end-page: 58
  ident: b0095
  article-title: An analytical model for multidimensional transport of a decaying contaminant species
  publication-title: J. Hydrol.
– volume: 100
  start-page: 227
  year: 2017
  end-page: 244
  ident: b0010
  article-title: Influence of multi-species solute transport on modeling of hydrated Portland cement leaching in strong nitrate solutions
  publication-title: Cem. Concr. Res.
– volume: 2
  start-page: 59
  year: 1979
  end-page: 68
  ident: b0260
  article-title: Foundation theories of solute transport in porous media: a critical review
  publication-title: Adv. Water Resour.
– start-page: 1
  year: 2018
  end-page: 45
  ident: b0045
  article-title: Analytical model for coupled multispecies advective dispersive transport subject to rate-limited sorption
  publication-title: Hydrol. Earth Sys. Sci. Discuss.
– volume: 41
  year: 2005
  ident: b0090
  article-title: A procedure for the solution of multicomponent reactive transport problems
  publication-title: Water Resour. Res.
– volume: 80
  start-page: 373
  year: 2009
  end-page: 387
  ident: b0125
  article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media
  publication-title: Trans. Porous Media
– volume: 234
  start-page: 1069
  year: 2010
  end-page: 1077
  ident: b0255
  article-title: Decomposition method for solving multi-species reactive transport problems coupled with first-order kinetics applicable to a chain with identical reaction rates
  publication-title: J. Comput. App. Math.
– volume: 166
  start-page: 11
  year: 2014
  end-page: 22
  ident: b0150
  article-title: Multi-component reactive transport in heterogeneous media and its decoupling solution
  publication-title: J. Contam. Hydrol.
– volume: 37
  start-page: 327
  issue: 3
  year: 1999
  ident: 10.1016/j.jhydrol.2020.125562_b0275
  article-title: A decomposition method for solving coupled multi–species reactive transport problems
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1006507514019
– volume: 26
  start-page: 695
  issue: 3
  year: 2005
  ident: 10.1016/j.jhydrol.2020.125562_b0145
  article-title: Application of homotopy perturbation method to nonlinear wave equations
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2005.03.006
– volume: 180
  start-page: 195
  issue: 1–4
  year: 1996
  ident: 10.1016/j.jhydrol.2020.125562_b0185
  article-title: Determining analytic solutions of multiple species contaminant transport, with sorption and decay
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(95)02891-9
– volume: 27
  start-page: 507
  issue: 5
  year: 2004
  ident: 10.1016/j.jhydrol.2020.125562_b0210
  article-title: Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2004.02.013
– volume: 37
  start-page: 157
  issue: 1
  year: 2001
  ident: 10.1016/j.jhydrol.2020.125562_b0080
  article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900239
– year: 1972
  ident: 10.1016/j.jhydrol.2020.125562_b0030
– volume: 11
  start-page: 129
  issue: 2
  year: 1985
  ident: 10.1016/j.jhydrol.2020.125562_b0295
  article-title: Convective-dispersive transport of solutes involved in sequential first-order decay reactions
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(85)90003-2
– volume: 79
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2020.125562_b0040
  article-title: Analysis of 1-D pollutant transport in semi-infinite groundwater reservoir
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8748-4
– volume: 80
  start-page: 373
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2020.125562_b0125
  article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media
  publication-title: Trans. Porous Media
  doi: 10.1007/s11242-009-9368-3
– volume: 70
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2020.125562_b0215
  article-title: A linearization technique for multi-species transport problems
  publication-title: Transp. Porous media
  doi: 10.1007/s11242-006-9081-4
– volume: 65
  start-page: 353
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125562_b0240
  article-title: Solution of one-dimensional space-and time-fractional advection–dispersion equation by homotopy perturbation method
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-017-0035-8
– volume: 5
  start-page: 534
  issue: 5
  year: 2009
  ident: 10.1016/j.jhydrol.2020.125562_b0005
  article-title: Review on LandWll leachate treatments
  publication-title: J. Appl. Sci. Res.
– volume: 49
  start-page: 217
  issue: 3-4
  year: 2001
  ident: 10.1016/j.jhydrol.2020.125562_b0025
  article-title: Transport of a decay chain in homogenous porous media: analytical solutions
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(00)00195-9
– volume: 46
  issue: 8
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125562_b0115
  article-title: A new mobile-immobile model for reactive solute transport with scale-dependent dispersion
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008707
– volume: 23
  start-page: 573
  issue: 2
  year: 2005
  ident: 10.1016/j.jhydrol.2020.125562_b0180
  article-title: Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2004.05.005
– volume: 420-421
  start-page: 191
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125562_b0050
  article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.12.001
– volume: 2
  start-page: 3344
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125562_b0195
  article-title: Finite difference approach for modeling multispecies transport in porous media
  publication-title: Int. J. Sci. Tech.
– volume: 22
  start-page: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125562_b0200
  article-title: Effect of distance-dependent and time-dependent dispersion on non-linearly sorbed multispecies contaminants in porous media
  publication-title: ISH J. Hydraul. Eng.
  doi: 10.1080/09715010.2015.1043597
– volume: 145
  start-page: 151
  year: 1984
  ident: 10.1016/j.jhydrol.2020.125562_b0085
  article-title: Solute transport in heterogeneous porous formations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112084002858
– volume: 541
  start-page: 935
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125562_b0120
  article-title: Explicit and implicit forms of differential quadrature method for advection–diffusion equation with variable coefficients in semi-infinite domain
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.002
– ident: 10.1016/j.jhydrol.2020.125562_b0165
– ident: 10.1016/j.jhydrol.2020.125562_b0290
– volume: 41
  issue: 11
  year: 2005
  ident: 10.1016/j.jhydrol.2020.125562_b0090
  article-title: A procedure for the solution of multicomponent reactive transport problems
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004056
– volume: 167
  start-page: 57
  issue: 1–2
  year: 1998
  ident: 10.1016/j.jhydrol.2020.125562_b0135
  article-title: Approximate analytical solution for seepage flow with fractional derivatives in porous media
  publication-title: Comput. Methods App. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00108-X
– volume: 94
  start-page: 412
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125562_b0270
  article-title: Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients
  publication-title: Adv. Water Res.
  doi: 10.1016/j.advwatres.2016.06.004
– year: 2006
  ident: 10.1016/j.jhydrol.2020.125562_b0020
– volume: 520
  start-page: 289
  year: 2015
  ident: 10.1016/j.jhydrol.2020.125562_b0245
  article-title: Scale dependent solute dispersion with linear isotherm in heterogeneous medium
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.11.061
– volume: 18
  start-page: 79
  issue: 2
  year: 1998
  ident: 10.1016/j.jhydrol.2020.125562_b0070
  article-title: Modeling multispecies reactive transport in ground water
  publication-title: Groundwater Monit. Remed.
  doi: 10.1111/j.1745-6592.1998.tb00618.x
– volume: 35
  start-page: 185
  issue: 1
  year: 1999
  ident: 10.1016/j.jhydrol.2020.125562_b0285
  article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900003
– year: 2012
  ident: 10.1016/j.jhydrol.2020.125562_b0175
– volume: 32
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.jhydrol.2020.125562_b0035
  article-title: Modeling of multi-species contaminant transport with spatially-dependent dispersion and coupled linear/non-linear reaction
  publication-title: Int. J. Fluid Mech. Res.
  doi: 10.1615/InterJFluidMechRes.v32.i1.10
– ident: 10.1016/j.jhydrol.2020.125562_b0105
– volume: 27
  start-page: 3075
  issue: 12
  year: 1991
  ident: 10.1016/j.jhydrol.2020.125562_b0300
  article-title: A model for simulating transport of reactive multispecies components: model development and demonstration
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR02028
– volume: 547
  start-page: 517
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125562_b0220
  article-title: Analytical solutions for solute transport in groundwater and riverine flow using Green’s Function Method and pertinent coordinate transformation method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.02.014
– volume: 73
  start-page: 161
  issue: 2
  year: 2008
  ident: 10.1016/j.jhydrol.2020.125562_b0250
  article-title: Singular value decomposition method for multi-species first-order reactive transport with identical decay rates
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-007-9175-7
– volume: 456
  start-page: 101
  year: 2012
  ident: 10.1016/j.jhydrol.2020.125562_b0055
  article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition
  publication-title: J. Hydrol.
– volume: 26
  start-page: 437
  issue: 3
  year: 1990
  ident: 10.1016/j.jhydrol.2020.125562_b0065
  article-title: Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor
  publication-title: Water Resour. Res.
  doi: 10.1029/WR026i003p00437
– volume: 22
  start-page: 2069
  issue: 13
  year: 1986
  ident: 10.1016/j.jhydrol.2020.125562_b0265
  article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i013p02069
– volume: 3
  start-page: 244
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2020.125562_b0190
  article-title: Homotopy analysis method for solving nonlinear diffusion equation with convection term
  publication-title: Int. J. App. Math. Res.
– volume: 513
  start-page: 7
  year: 2014
  ident: 10.1016/j.jhydrol.2020.125562_b0230
  article-title: Exact series solutions of reactive transport models with general initial conditions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.035
– start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125562_b0045
  article-title: Analytical model for coupled multispecies advective dispersive transport subject to rate-limited sorption
  publication-title: Hydrol. Earth Sys. Sci. Discuss.
– ident: 10.1016/j.jhydrol.2020.125562_b0075
  doi: 10.2172/15010560
– volume: 167
  start-page: 69
  issue: 1–2
  year: 1998
  ident: 10.1016/j.jhydrol.2020.125562_b0140
  article-title: Approximate solution of nonlinear differential equations with convolution product nonlinearities
  publication-title: Comput. Methods App. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00109-1
– volume: 166
  start-page: 11
  year: 2014
  ident: 10.1016/j.jhydrol.2020.125562_b0150
  article-title: Multi-component reactive transport in heterogeneous media and its decoupling solution
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2014.07.009
– volume: 51
  start-page: 339
  issue: 3
  year: 1971
  ident: 10.1016/j.jhydrol.2020.125562_b0060
  article-title: Convective transport of ammonium with nitrification in soil
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss71-047
– volume: 2
  start-page: 235
  issue: 4
  year: 1997
  ident: 10.1016/j.jhydrol.2020.125562_b0130
  article-title: Variational iteration method for delay differential equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/S1007-5704(97)90008-3
– volume: 4
  issue: 3
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125562_b0160
  article-title: Challenges and opportunities associated with waste management in India
  publication-title: Royal Soc. Open Sci.
  doi: 10.1098/rsos.160764
– volume: 541
  start-page: 928
  year: 2016
  ident: 10.1016/j.jhydrol.2020.125562_b0235
  article-title: Solute dispersion in a semi-infinite aquifer with specified concentration along an arbitrary plane source
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.003
– volume: 91
  start-page: 49
  issue: 1–2
  year: 1987
  ident: 10.1016/j.jhydrol.2020.125562_b0095
  article-title: An analytical model for multidimensional transport of a decaying contaminant species
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(87)90127-2
– volume: 35
  start-page: 429
  issue: 4
  year: 1999
  ident: 10.1016/j.jhydrol.2020.125562_b0280
  article-title: Analytical solutions for multiple species reactive transport in multiple dimensions
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(98)00105-3
– volume: 6
  start-page: 85
  issue: 1
  year: 1990
  ident: 10.1016/j.jhydrol.2020.125562_b0110
  article-title: Adsorptive solute transport in fractured rock: analytical solutions for delta-type source conditions
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/0169-7722(90)90013-7
– volume: 2
  start-page: 59
  year: 1979
  ident: 10.1016/j.jhydrol.2020.125562_b0260
  article-title: Foundation theories of solute transport in porous media: a critical review
  publication-title: Adv. Water Resour.
  doi: 10.1016/0309-1708(79)90012-5
– volume: 100
  start-page: 227
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125562_b0010
  article-title: Influence of multi-species solute transport on modeling of hydrated Portland cement leaching in strong nitrate solutions
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.06.002
– volume: 50
  start-page: 213
  issue: 1-2
  year: 2009
  ident: 10.1016/j.jhydrol.2020.125562_b0015
  article-title: Some notes on using the homotopy perturbation method for solving time-dependent differential equations
  publication-title: Math. Comput. Modell.
  doi: 10.1016/j.mcm.2009.03.003
– volume: 234
  start-page: 1069
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2020.125562_b0255
  article-title: Decomposition method for solving multi-species reactive transport problems coupled with first-order kinetics applicable to a chain with identical reaction rates
  publication-title: J. Comput. App. Math.
  doi: 10.1016/j.cam.2009.04.021
– volume: 33
  start-page: 156
  issue: 5
  year: 1978
  ident: 10.1016/j.jhydrol.2020.125562_b0155
  article-title: General use of the Lagrange multiplier in nonlinear mathematical physics
  publication-title: Var. Method Mech. Solids
– volume: 23
  start-page: 76
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2020.125562_b0205
  article-title: Spatial moment analysis of multispecies contaminant transport in porous media
  publication-title: Environ. Eng. Res.
  doi: 10.4491/eer.2016.147
– volume: 28
  start-page: 1801
  issue: 7
  year: 1992
  ident: 10.1016/j.jhydrol.2020.125562_b0225
  article-title: The form of the dispersion equation under recharge and variable velocity, and its analytical solution
  publication-title: Water Resour. Res.
  doi: 10.1029/92WR00665
– volume: 30
  start-page: 371
  issue: 3
  year: 1995
  ident: 10.1016/j.jhydrol.2020.125562_b0170
  article-title: An approximate solution technique not depending on small parameters: a special example
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(94)00054-E
– volume: 41
  start-page: 180
  year: 2017
  ident: 10.1016/j.jhydrol.2020.125562_b0100
  article-title: Laplace transform–homotopy perturbation method with arbitrary initial approximation and residual error cancelation
  publication-title: App. Math. Model.
  doi: 10.1016/j.apm.2016.08.003
SSID ssj0000334
Score 2.430371
Snippet •Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow...
Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125562
SubjectTerms comparative study
deformation
dispersibility
equations
groundwater
Homotopy analysis method
hydrodynamic dispersion
Linear isotherm
Multispecies
Pollutant transport
pollutants
Series solution
solvents
sorption isotherms
space and time
Title Study of multispecies convection-dispersion transport equation with variable parameters
URI https://dx.doi.org/10.1016/j.jhydrol.2020.125562
https://www.proquest.com/docview/2524317601
Volume 591
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jPuiLeMXriOBrtzWXpn0cwzEV9-RwbyFpE7ah69w6YS_-dnN6cSjIwJdC06aEk_ScnOT7viB0G4mE2tgITyjGPSaY9lRg3IX7gXYPuI6A7_w0CPpD9jDioxrqVlwYgFWWvr_w6bm3LktapTVb88kEOL6E-EHECKhbujAHDHYmANbX_NzAPNqUskoxHN7esHha0-Z0vE4WKexAENBZ4Dwgf8WnX546Dz-9A7Rfzhtxp2jaIaqZ2RHaLY8wH6-P0QsgAtc4tTjHCAKD0iXBOEeV59wFL4HCfHUMZ5WkOTbvhdY3hgVZ_OEyZ-BSYVAEfwOkzPIEDXt3z92-V56a4Cka8MwzPA5VLIhVxKeKg_4fYdoyCxuejCWhEUFMWKKjyCpjqUuwuCFUCwJyXb6hp6g-S2fmDOF24kKZtVZEyrAk1pFLbsI4ZqFPrTbKniNW2UrGpaQ4nGzxKivs2FSWJpZgYlmY-Bw1v6vNC02NbRXCqiPkj8Ehnd_fVvWm6jjpfhzYDVEzk66WknACkyeXkF78__OXaA_uCnzLFapni5W5drOUTDfyYdhAO537x_7gCzbt6lU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HvQiPrE-I3jd1s1jH8dSLPXVU4veQrKbYIu2tVah_97MblZRkIKXPSTMskyyM5nk-74AXKRxzmxm4iBWXAQ85jpQkXEPEUbadQidIt_5vhd1B_zmUTyuQLviwiCs0sf-MqYX0dq3NL03m9PhEDm-lIZRyimqW7o0twprqE7Fa7DWur7t9r4DMmO8Eg1Hg28iT3PUGD0t8tkEDyEoSi0IEdG_UtSvYF1koM4WbPqlI2mVX7cNK2a8A-v-FvOnxS48IChwQSaWFDBBJFG6OpgUwPKCvhDk2FhskJF5pWpOzGsp901wT5Z8uOIZ6VQERcFfECzztgeDzlW_3Q38xQmBYpGYB0ZkicpiahUNmRIoAUi5ttzimSfneWLiKKM812lqlbHM1VjCUKZjiopdoWH7UBtPxuYAyGXuspm1Nk6V4XmmU1ffJFnGk5BZbZStA698JTOvKo6XWzzLCj42kt7FEl0sSxfXofFlNi1lNZYZJNVAyB_zQ7rQv8z0vBo46f4dPBBRYzN5f5NUUFw_uZr08P-vP4P1bv_-Tt5d926PYAN7SrjLMdTms3dz4hYtc33qJ-UnPcrtBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+multispecies+convection-dispersion+transport+equation+with+variable+parameters&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Chaudhary%2C+Manish&rft.au=Singh%2C+Mritunjay+Kumar&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=591&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125562&rft.externalDocID=S0022169420310222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon