Study of multispecies convection-dispersion transport equation with variable parameters
•Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow domain.•Problem is modelled for distinct value of retardation factor for each species.•Homotopy analysis method is employed to develop the series solut...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 591; p. 125562 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1694 1879-2707 |
DOI | 10.1016/j.jhydrol.2020.125562 |
Cover
Loading…
Abstract | •Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow domain.•Problem is modelled for distinct value of retardation factor for each species.•Homotopy analysis method is employed to develop the series solution of the problem.
Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear repositories and sites having radioactive substances and chemical solvent. Modeling pollutant migration of reactive multispecies problem with variable transport parameters is quite a challenging issue, necessary for better sightedness of fate and transport of reactive solutes and their geochemical growth in the geological formations. At present most of the solutions for multispecies problem are corresponding to the constant parameters affecting the concentration distribution, not for variable transport parameters, because of the complexity of the modelled equation. This paper dealt with the comparative study of multispecies pollutant transport problem in porous structure to analyse the effect of spatially and temporally varying hydrodynamic dispersion coefficient and transport velocity terms in more general form. For mathematical elaboration, two-species transport problem is considered subjected to the concept of linear isotherm with both the parent and daughter species without using identical retardation factor and model is also incorporated with the first-order decay term under spatially varying initial conditions. Homotopy analysis method (HAM) is adopted to develop the series solution for the concentration segmentation of each species of the model. The advantage of this method is that it is capable to overcome the limitation of existing transform methods for some cases of complex modelled problems. The zeroth order deformation equation is derived by using HAM to generate the semi-analytical solution of the model under certain auxiliary linear operator. The impact of distinct retardation factor for different species and effect of diversity in dependency of modelled parameters over space and time are graphically depicted for both the species and illustrated that it has a valuable impact over multispecies pollutant migration. As there exist no analytical or numerical solution for such complex variable dependency of migration parameters over transport phenomenon, these solutions may be helpful to deliver a better significant about the concentration variation due to space and time dependent transport parameters, responsible for reactive multispecies migration, in more natural way. |
---|---|
AbstractList | •Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow domain.•Problem is modelled for distinct value of retardation factor for each species.•Homotopy analysis method is employed to develop the series solution of the problem.
Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear repositories and sites having radioactive substances and chemical solvent. Modeling pollutant migration of reactive multispecies problem with variable transport parameters is quite a challenging issue, necessary for better sightedness of fate and transport of reactive solutes and their geochemical growth in the geological formations. At present most of the solutions for multispecies problem are corresponding to the constant parameters affecting the concentration distribution, not for variable transport parameters, because of the complexity of the modelled equation. This paper dealt with the comparative study of multispecies pollutant transport problem in porous structure to analyse the effect of spatially and temporally varying hydrodynamic dispersion coefficient and transport velocity terms in more general form. For mathematical elaboration, two-species transport problem is considered subjected to the concept of linear isotherm with both the parent and daughter species without using identical retardation factor and model is also incorporated with the first-order decay term under spatially varying initial conditions. Homotopy analysis method (HAM) is adopted to develop the series solution for the concentration segmentation of each species of the model. The advantage of this method is that it is capable to overcome the limitation of existing transform methods for some cases of complex modelled problems. The zeroth order deformation equation is derived by using HAM to generate the semi-analytical solution of the model under certain auxiliary linear operator. The impact of distinct retardation factor for different species and effect of diversity in dependency of modelled parameters over space and time are graphically depicted for both the species and illustrated that it has a valuable impact over multispecies pollutant migration. As there exist no analytical or numerical solution for such complex variable dependency of migration parameters over transport phenomenon, these solutions may be helpful to deliver a better significant about the concentration variation due to space and time dependent transport parameters, responsible for reactive multispecies migration, in more natural way. Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear repositories and sites having radioactive substances and chemical solvent. Modeling pollutant migration of reactive multispecies problem with variable transport parameters is quite a challenging issue, necessary for better sightedness of fate and transport of reactive solutes and their geochemical growth in the geological formations. At present most of the solutions for multispecies problem are corresponding to the constant parameters affecting the concentration distribution, not for variable transport parameters, because of the complexity of the modelled equation. This paper dealt with the comparative study of multispecies pollutant transport problem in porous structure to analyse the effect of spatially and temporally varying hydrodynamic dispersion coefficient and transport velocity terms in more general form. For mathematical elaboration, two-species transport problem is considered subjected to the concept of linear isotherm with both the parent and daughter species without using identical retardation factor and model is also incorporated with the first-order decay term under spatially varying initial conditions. Homotopy analysis method (HAM) is adopted to develop the series solution for the concentration segmentation of each species of the model. The advantage of this method is that it is capable to overcome the limitation of existing transform methods for some cases of complex modelled problems. The zeroth order deformation equation is derived by using HAM to generate the semi-analytical solution of the model under certain auxiliary linear operator. The impact of distinct retardation factor for different species and effect of diversity in dependency of modelled parameters over space and time are graphically depicted for both the species and illustrated that it has a valuable impact over multispecies pollutant migration. As there exist no analytical or numerical solution for such complex variable dependency of migration parameters over transport phenomenon, these solutions may be helpful to deliver a better significant about the concentration variation due to space and time dependent transport parameters, responsible for reactive multispecies migration, in more natural way. |
ArticleNumber | 125562 |
Author | Singh, Mritunjay Kumar Chaudhary, Manish |
Author_xml | – sequence: 1 givenname: Manish surname: Chaudhary fullname: Chaudhary, Manish – sequence: 2 givenname: Mritunjay Kumar surname: Singh fullname: Singh, Mritunjay Kumar email: drmks29@iitism.ac.in |
BookMark | eNqFkE1Lw0AQhhepYFv9CUKOXlL3M2nxIFL8goIHFY_LZjOhG9Jsurup9N-7MZ68dC4zzLzvC_PM0KS1LSB0TfCCYJLd1ot6eyydbRYU07ijQmT0DE3JMl-lNMf5BE0xpjQl2YpfoJn3NY7FGJ-ir_fQl8fEVsmub4LxHWgDPtG2PYAOxrZpOSydj2MSnGp9Z11IYN-r4Zp8m7BNDsoZVTSQdMqpHYQov0TnlWo8XP31Ofp8evxYv6Sbt-fX9cMmVSwTIQWhl0rntFKUMCU4x5zyouIVE0vMebmEPNOUl8VqVSmoGMdEAGVFTrEgOQE2Rzdjbufsvgcf5M54DU2jWrC9l1RQzkieYRKlYpRqZ713UMnOmZ1yR0mwHEDKWv6BlANIOYKMvrt_Pm3C7_eRh2lOuu9HN0QKBwNO-ki41VAaFwnL0poTCT83HJZp |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_114752 crossref_primary_10_3389_feart_2022_1064110 crossref_primary_10_1007_s12040_024_02505_x crossref_primary_10_1016_j_advwatres_2021_104018 crossref_primary_10_1016_j_jenvman_2023_119350 crossref_primary_10_1016_j_advwatres_2024_104777 crossref_primary_10_1016_j_jhydrol_2025_132977 crossref_primary_10_1007_s12517_023_11580_1 crossref_primary_10_1016_j_gsd_2025_101404 crossref_primary_10_1016_j_camwa_2024_02_012 crossref_primary_10_1061_JENMDT_EMENG_6703 crossref_primary_10_1088_1402_4896_ac71e0 crossref_primary_10_18400_tekderg_975457 crossref_primary_10_1016_j_jhydrol_2022_127826 |
Cites_doi | 10.1023/A:1006507514019 10.1016/j.chaos.2005.03.006 10.1016/0022-1694(95)02891-9 10.1016/j.advwatres.2004.02.013 10.1029/2000WR900239 10.1016/0098-3004(85)90003-2 10.1007/s12665-019-8748-4 10.1007/s11242-009-9368-3 10.1007/s11242-006-9081-4 10.1007/s11600-017-0035-8 10.1016/S0169-7722(00)00195-9 10.1029/2009WR008707 10.1016/j.chaos.2004.05.005 10.1016/j.jhydrol.2011.12.001 10.1080/09715010.2015.1043597 10.1017/S0022112084002858 10.1016/j.jhydrol.2016.08.002 10.1029/2005WR004056 10.1016/S0045-7825(98)00108-X 10.1016/j.advwatres.2016.06.004 10.1016/j.jhydrol.2014.11.061 10.1111/j.1745-6592.1998.tb00618.x 10.1029/1998WR900003 10.1615/InterJFluidMechRes.v32.i1.10 10.1029/91WR02028 10.1016/j.jhydrol.2017.02.014 10.1007/s11242-007-9175-7 10.1029/WR026i003p00437 10.1029/WR022i013p02069 10.1016/j.jhydrol.2014.03.035 10.2172/15010560 10.1016/S0045-7825(98)00109-1 10.1016/j.jconhyd.2014.07.009 10.4141/cjss71-047 10.1016/S1007-5704(97)90008-3 10.1098/rsos.160764 10.1016/j.jhydrol.2016.08.003 10.1016/0022-1694(87)90127-2 10.1016/S0169-7722(98)00105-3 10.1016/0169-7722(90)90013-7 10.1016/0309-1708(79)90012-5 10.1016/j.cemconres.2017.06.002 10.1016/j.mcm.2009.03.003 10.1016/j.cam.2009.04.021 10.4491/eer.2016.147 10.1029/92WR00665 10.1016/0020-7462(94)00054-E 10.1016/j.apm.2016.08.003 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2020.125562 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2020_125562 S0022169420310222 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a365t-e5c8ac72fa213a5440424bf4f358044d8e76c24db99faef34015e23b7205171e3 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 06:45:42 EDT 2025 Tue Jul 01 01:53:25 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 Fri Feb 23 02:48:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multispecies Pollutant transport Homotopy analysis method Linear isotherm Series solution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-e5c8ac72fa213a5440424bf4f358044d8e76c24db99faef34015e23b7205171e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2524317601 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2524317601 crossref_primary_10_1016_j_jhydrol_2020_125562 crossref_citationtrail_10_1016_j_jhydrol_2020_125562 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2020_125562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | (No. PNNL-11720; EW4010). Pacific Northwest National Lab., Richland, WA (US). Serrano (b0225) 1992; 28 Chen, Liu, Liang, Lai (b0055) 2012; 456 Chamkha (b0035) 2005; 32 Clement (b0080) 2001; 37 De Simoni, Carrera, Sanchez-Vila, Guadagnini (b0090) 2005; 41 Van Genuchten, M.T., 1982. Slodicka, Balazova (b0255) 2010; 234 Chaudhary, Thakur, Singh (b0040) 2020; 79 Clement, T.P., 1999. Liu (b0180) 2005; 23 He (b0140) 1998; 167 Chrysikopoulos, Kitanidis, Roberts (b0065) 1990; 26 Liao, S.J., 1992. Singh, Das (b0245) 2015; 520 Simpson, Ellery (b0230) 2014; 513 (No. 1661). US Department of Agriculture, Agricultural Research Service. Huo, Song, Wu (b0150) 2014; 166 A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems Bauer, Attinger, Kinzelbach (b0025) 2001; 49 Inokuti, Sekine, Mura (b0155) 1978; 33 Suk (b0270) 2016; 94 Mahmood, Manaa, Easif (b0190) 2014; 3 Sposito, Gupta, Bhattacharya (b0260) 1979; 2 Domenico (b0095) 1987; 91 Cho (b0060) 1971; 51 (Doctoral dissertation, Ph. D. Thesis, Shanghai Jiao Tong University). He (b0130) 1997; 2 Sun, Petersen, Clement, Skeen (b0285) 1999; 35 Kumar, Smith, Fowler, Velis, Kumar, Arya, Rena, R., Cheeseman, C. (b0160) 2017; 4 Romeiro, Castro, Malta, Landau (b0215) 2007; 70 Natarajan, Kumar (b0205) 2018; 23 Singh, Chatterjee (b0235) 2016; 541 Singh, Chatterjee (b0240) 2017; 65 Finlayson, B.A., 1972. The Method of Weighted Residuals and Variational Principles, Acad. Press. He (b0145) 2005; 26 Chen, Lai, Liu, Ni (b0050) 2012; 420-421 Natarajan (b0200) 2016; 22 Yeh, Tripathi (b0300) 1991; 27 Batu (b0020) 2006 Liao (b0170) 1995; 30 Lunn, Lunn, Mackayb (b0185) 1996; 180 Quezada, Clement, Lee (b0210) 2004; 27 Gao, Zhan, Feng, Fu, Ma, Huang (b0115) 2010; 46 Sudicky (b0265) 1986; 22 Natarajan, Kumar (b0195) 2010; 2 Sun, Petersen, Clement (b0280) 1999; 35 Van Genuchten (b0295) 1985; 11 The proposed homotopy analysis technique for the solution of nonlinear problems Fujikawa, Fukui (b0110) 1990; 6 Analytical solutions of the one-dimensional convective-dispersive solute transport equation Abbas, Jingsong, Ping, Ya, Al-Rekabi (b0005) 2009; 5 Bear (b0030) 1972 Sanskrityayn, Suk, Kumar (b0220) 2017; 547 Guerrero, Skaggs, Van Genuchten (b0125) 2009; 80 Filobello-Nino, Vazquez-Leal, Sarmiento-Reyes, Cervantes-Perez, Perez-Sesma, Jimenez-Fernandez, Pereyra-Diaz, Huerta-Chua, Morales-Mendoza, Gonzalez-Lee, Castro-Gonzalez (b0100) 2017; 41 Chen, Ho, Liang, Wang, Liu (b0045) 2018 He (b0135) 1998; 167 Arnold, Duddu, Brown, Kosson (b0010) 2017; 100 Gharehbaghi (b0120) 2016; 541 Dagan (b0085) 1984; 145 Clement, Sun, Hooker, Petersen (b0070) 1998; 18 Sun, Clement (b0275) 1999; 37 Babolian, Azizi, Saeidian (b0015) 2009; 50 Liao (b0175) 2012 Slodicka, Balazova (b0250) 2008; 73 Sanskrityayn (10.1016/j.jhydrol.2020.125562_b0220) 2017; 547 Liao (10.1016/j.jhydrol.2020.125562_b0170) 1995; 30 Singh (10.1016/j.jhydrol.2020.125562_b0240) 2017; 65 10.1016/j.jhydrol.2020.125562_b0290 Mahmood (10.1016/j.jhydrol.2020.125562_b0190) 2014; 3 Natarajan (10.1016/j.jhydrol.2020.125562_b0200) 2016; 22 Gharehbaghi (10.1016/j.jhydrol.2020.125562_b0120) 2016; 541 Simpson (10.1016/j.jhydrol.2020.125562_b0230) 2014; 513 Chrysikopoulos (10.1016/j.jhydrol.2020.125562_b0065) 1990; 26 De Simoni (10.1016/j.jhydrol.2020.125562_b0090) 2005; 41 Singh (10.1016/j.jhydrol.2020.125562_b0245) 2015; 520 Van Genuchten (10.1016/j.jhydrol.2020.125562_b0295) 1985; 11 Sposito (10.1016/j.jhydrol.2020.125562_b0260) 1979; 2 He (10.1016/j.jhydrol.2020.125562_b0140) 1998; 167 Yeh (10.1016/j.jhydrol.2020.125562_b0300) 1991; 27 Batu (10.1016/j.jhydrol.2020.125562_b0020) 2006 Huo (10.1016/j.jhydrol.2020.125562_b0150) 2014; 166 Slodicka (10.1016/j.jhydrol.2020.125562_b0250) 2008; 73 Singh (10.1016/j.jhydrol.2020.125562_b0235) 2016; 541 Sudicky (10.1016/j.jhydrol.2020.125562_b0265) 1986; 22 Clement (10.1016/j.jhydrol.2020.125562_b0080) 2001; 37 Babolian (10.1016/j.jhydrol.2020.125562_b0015) 2009; 50 Cho (10.1016/j.jhydrol.2020.125562_b0060) 1971; 51 Gao (10.1016/j.jhydrol.2020.125562_b0115) 2010; 46 Fujikawa (10.1016/j.jhydrol.2020.125562_b0110) 1990; 6 Chen (10.1016/j.jhydrol.2020.125562_b0050) 2012; 420-421 10.1016/j.jhydrol.2020.125562_b0105 Kumar (10.1016/j.jhydrol.2020.125562_b0160) 2017; 4 Sun (10.1016/j.jhydrol.2020.125562_b0280) 1999; 35 Natarajan (10.1016/j.jhydrol.2020.125562_b0195) 2010; 2 10.1016/j.jhydrol.2020.125562_b0075 Bear (10.1016/j.jhydrol.2020.125562_b0030) 1972 Natarajan (10.1016/j.jhydrol.2020.125562_b0205) 2018; 23 Romeiro (10.1016/j.jhydrol.2020.125562_b0215) 2007; 70 Slodicka (10.1016/j.jhydrol.2020.125562_b0255) 2010; 234 Abbas (10.1016/j.jhydrol.2020.125562_b0005) 2009; 5 Arnold (10.1016/j.jhydrol.2020.125562_b0010) 2017; 100 Sun (10.1016/j.jhydrol.2020.125562_b0275) 1999; 37 He (10.1016/j.jhydrol.2020.125562_b0145) 2005; 26 Chen (10.1016/j.jhydrol.2020.125562_b0055) 2012; 456 Guerrero (10.1016/j.jhydrol.2020.125562_b0125) 2009; 80 Lunn (10.1016/j.jhydrol.2020.125562_b0185) 1996; 180 Filobello-Nino (10.1016/j.jhydrol.2020.125562_b0100) 2017; 41 Chamkha (10.1016/j.jhydrol.2020.125562_b0035) 2005; 32 10.1016/j.jhydrol.2020.125562_b0165 Chaudhary (10.1016/j.jhydrol.2020.125562_b0040) 2020; 79 Suk (10.1016/j.jhydrol.2020.125562_b0270) 2016; 94 He (10.1016/j.jhydrol.2020.125562_b0130) 1997; 2 Inokuti (10.1016/j.jhydrol.2020.125562_b0155) 1978; 33 Liao (10.1016/j.jhydrol.2020.125562_b0175) 2012 Serrano (10.1016/j.jhydrol.2020.125562_b0225) 1992; 28 Chen (10.1016/j.jhydrol.2020.125562_b0045) 2018 Dagan (10.1016/j.jhydrol.2020.125562_b0085) 1984; 145 Liu (10.1016/j.jhydrol.2020.125562_b0180) 2005; 23 Bauer (10.1016/j.jhydrol.2020.125562_b0025) 2001; 49 Quezada (10.1016/j.jhydrol.2020.125562_b0210) 2004; 27 Domenico (10.1016/j.jhydrol.2020.125562_b0095) 1987; 91 He (10.1016/j.jhydrol.2020.125562_b0135) 1998; 167 Clement (10.1016/j.jhydrol.2020.125562_b0070) 1998; 18 Sun (10.1016/j.jhydrol.2020.125562_b0285) 1999; 35 |
References_xml | – volume: 180 start-page: 195 year: 1996 end-page: 210 ident: b0185 article-title: Determining analytic solutions of multiple species contaminant transport, with sorption and decay publication-title: J. Hydrol. – volume: 167 start-page: 57 year: 1998 end-page: 68 ident: b0135 article-title: Approximate analytical solution for seepage flow with fractional derivatives in porous media publication-title: Comput. Methods App. Mech. Eng. – reference: Analytical solutions of the one-dimensional convective-dispersive solute transport equation – volume: 456 start-page: 101 year: 2012 end-page: 109 ident: b0055 article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition publication-title: J. Hydrol. – reference: Van Genuchten, M.T., 1982. – year: 2012 ident: b0175 article-title: Homotopy analysis method in nonlinear differential equations – volume: 18 start-page: 79 year: 1998 end-page: 92 ident: b0070 article-title: Modeling multispecies reactive transport in ground water publication-title: Groundwater Monit. Remed. – volume: 2 start-page: 3344 year: 2010 end-page: 3350 ident: b0195 article-title: Finite difference approach for modeling multispecies transport in porous media publication-title: Int. J. Sci. Tech. – volume: 35 start-page: 185 year: 1999 end-page: 190 ident: b0285 article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions publication-title: Water Resour. Res. – reference: (No. 1661). US Department of Agriculture, Agricultural Research Service. – volume: 23 start-page: 573 year: 2005 end-page: 576 ident: b0180 article-title: Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method publication-title: Chaos, Solitons Fractals – volume: 27 start-page: 507 year: 2004 end-page: 520 ident: b0210 article-title: Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors publication-title: Adv. Water Resour. – year: 1972 ident: b0030 article-title: Dynamics of Fluids in Porous Media – volume: 26 start-page: 695 year: 2005 end-page: 700 ident: b0145 article-title: Application of homotopy perturbation method to nonlinear wave equations publication-title: Chaos, Solitons Fractals – volume: 541 start-page: 935 year: 2016 end-page: 940 ident: b0120 article-title: Explicit and implicit forms of differential quadrature method for advection–diffusion equation with variable coefficients in semi-infinite domain publication-title: J. Hydrol. – volume: 513 start-page: 7 year: 2014 end-page: 12 ident: b0230 article-title: Exact series solutions of reactive transport models with general initial conditions publication-title: J. Hydrol. – volume: 28 start-page: 1801 year: 1992 end-page: 1808 ident: b0225 article-title: The form of the dispersion equation under recharge and variable velocity, and its analytical solution publication-title: Water Resour. Res. – volume: 65 start-page: 353 year: 2017 end-page: 361 ident: b0240 article-title: Solution of one-dimensional space-and time-fractional advection–dispersion equation by homotopy perturbation method publication-title: Acta Geophys. – volume: 145 start-page: 151 year: 1984 end-page: 177 ident: b0085 article-title: Solute transport in heterogeneous porous formations publication-title: J. Fluid Mech. – reference: Liao, S.J., 1992. – year: 2006 ident: b0020 article-title: Applied flow and solute transport modeling in aquifers: fundamental principles and analytical and numerical methods – volume: 35 start-page: 429 year: 1999 end-page: 440 ident: b0280 article-title: Analytical solutions for multiple species reactive transport in multiple dimensions publication-title: J. Contam. Hydrol. – volume: 167 start-page: 69 year: 1998 end-page: 73 ident: b0140 article-title: Approximate solution of nonlinear differential equations with convolution product nonlinearities publication-title: Comput. Methods App. Mech. Eng. – volume: 2 start-page: 235 year: 1997 end-page: 236 ident: b0130 article-title: Variational iteration method for delay differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – reference: (Doctoral dissertation, Ph. D. Thesis, Shanghai Jiao Tong University). – volume: 23 start-page: 76 year: 2018 end-page: 83 ident: b0205 article-title: Spatial moment analysis of multispecies contaminant transport in porous media publication-title: Environ. Eng. Res. – volume: 541 start-page: 928 year: 2016 end-page: 934 ident: b0235 article-title: Solute dispersion in a semi-infinite aquifer with specified concentration along an arbitrary plane source publication-title: J. Hydrol. – volume: 49 start-page: 217 year: 2001 end-page: 239 ident: b0025 article-title: Transport of a decay chain in homogenous porous media: analytical solutions publication-title: J. Contam. Hydrol. – volume: 79 year: 2020 ident: b0040 article-title: Analysis of 1-D pollutant transport in semi-infinite groundwater reservoir publication-title: Environ. Earth Sci. – volume: 41 start-page: 180 year: 2017 end-page: 194 ident: b0100 article-title: Laplace transform–homotopy perturbation method with arbitrary initial approximation and residual error cancelation publication-title: App. Math. Model. – reference: (No. PNNL-11720; EW4010). Pacific Northwest National Lab., Richland, WA (US). – reference: Clement, T.P., 1999. – volume: 37 start-page: 157 year: 2001 end-page: 163 ident: b0080 article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network publication-title: Water Resour. Res. – volume: 26 start-page: 437 year: 1990 end-page: 446 ident: b0065 article-title: Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor publication-title: Water Resour. Res. – reference: A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems – volume: 22 start-page: 16 year: 2016 end-page: 29 ident: b0200 article-title: Effect of distance-dependent and time-dependent dispersion on non-linearly sorbed multispecies contaminants in porous media publication-title: ISH J. Hydraul. Eng. – reference: Finlayson, B.A., 1972. The Method of Weighted Residuals and Variational Principles, Acad. Press. – volume: 6 start-page: 85 year: 1990 end-page: 102 ident: b0110 article-title: Adsorptive solute transport in fractured rock: analytical solutions for delta-type source conditions publication-title: J. Contam. Hydrol. – volume: 37 start-page: 327 year: 1999 end-page: 346 ident: b0275 article-title: A decomposition method for solving coupled multi–species reactive transport problems publication-title: Transp. Porous Media – volume: 30 start-page: 371 year: 1995 end-page: 380 ident: b0170 article-title: An approximate solution technique not depending on small parameters: a special example publication-title: Int. J. Non-Linear Mech. – volume: 27 start-page: 3075 year: 1991 end-page: 3094 ident: b0300 article-title: A model for simulating transport of reactive multispecies components: model development and demonstration publication-title: Water Resour. Res. – volume: 94 start-page: 412 year: 2016 end-page: 423 ident: b0270 article-title: Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients publication-title: Adv. Water Res. – volume: 5 start-page: 534 year: 2009 end-page: 545 ident: b0005 article-title: Review on LandWll leachate treatments publication-title: J. Appl. Sci. Res. – volume: 50 start-page: 213 year: 2009 end-page: 224 ident: b0015 article-title: Some notes on using the homotopy perturbation method for solving time-dependent differential equations publication-title: Math. Comput. Modell. – volume: 520 start-page: 289 year: 2015 end-page: 299 ident: b0245 article-title: Scale dependent solute dispersion with linear isotherm in heterogeneous medium publication-title: J. Hydrol. – reference: The proposed homotopy analysis technique for the solution of nonlinear problems – volume: 11 start-page: 129 year: 1985 end-page: 147 ident: b0295 article-title: Convective-dispersive transport of solutes involved in sequential first-order decay reactions publication-title: Comput. Geosci. – volume: 70 start-page: 1 year: 2007 end-page: 10 ident: b0215 article-title: A linearization technique for multi-species transport problems publication-title: Transp. Porous media – volume: 32 start-page: 1 year: 2005 end-page: 20 ident: b0035 article-title: Modeling of multi-species contaminant transport with spatially-dependent dispersion and coupled linear/non-linear reaction publication-title: Int. J. Fluid Mech. Res. – volume: 3 start-page: 244 year: 2014 ident: b0190 article-title: Homotopy analysis method for solving nonlinear diffusion equation with convection term publication-title: Int. J. App. Math. Res. – volume: 420-421 start-page: 191 year: 2012 end-page: 204 ident: b0050 article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions publication-title: J. Hydrol. – volume: 51 start-page: 339 year: 1971 end-page: 350 ident: b0060 article-title: Convective transport of ammonium with nitrification in soil publication-title: Can. J. Soil Sci. – volume: 4 year: 2017 ident: b0160 article-title: Challenges and opportunities associated with waste management in India publication-title: Royal Soc. Open Sci. – volume: 73 start-page: 161 year: 2008 end-page: 172 ident: b0250 article-title: Singular value decomposition method for multi-species first-order reactive transport with identical decay rates publication-title: Transp. Porous Media – volume: 33 start-page: 156 year: 1978 end-page: 162 ident: b0155 article-title: General use of the Lagrange multiplier in nonlinear mathematical physics publication-title: Var. Method Mech. Solids – volume: 547 start-page: 517 year: 2017 end-page: 533 ident: b0220 article-title: Analytical solutions for solute transport in groundwater and riverine flow using Green’s Function Method and pertinent coordinate transformation method publication-title: J. Hydrol. – volume: 22 start-page: 2069 year: 1986 end-page: 2082 ident: b0265 article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process publication-title: Water Resour. Res. – volume: 46 year: 2010 ident: b0115 article-title: A new mobile-immobile model for reactive solute transport with scale-dependent dispersion publication-title: Water Resour. Res. – volume: 91 start-page: 49 year: 1987 end-page: 58 ident: b0095 article-title: An analytical model for multidimensional transport of a decaying contaminant species publication-title: J. Hydrol. – volume: 100 start-page: 227 year: 2017 end-page: 244 ident: b0010 article-title: Influence of multi-species solute transport on modeling of hydrated Portland cement leaching in strong nitrate solutions publication-title: Cem. Concr. Res. – volume: 2 start-page: 59 year: 1979 end-page: 68 ident: b0260 article-title: Foundation theories of solute transport in porous media: a critical review publication-title: Adv. Water Resour. – start-page: 1 year: 2018 end-page: 45 ident: b0045 article-title: Analytical model for coupled multispecies advective dispersive transport subject to rate-limited sorption publication-title: Hydrol. Earth Sys. Sci. Discuss. – volume: 41 year: 2005 ident: b0090 article-title: A procedure for the solution of multicomponent reactive transport problems publication-title: Water Resour. Res. – volume: 80 start-page: 373 year: 2009 end-page: 387 ident: b0125 article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media publication-title: Trans. Porous Media – volume: 234 start-page: 1069 year: 2010 end-page: 1077 ident: b0255 article-title: Decomposition method for solving multi-species reactive transport problems coupled with first-order kinetics applicable to a chain with identical reaction rates publication-title: J. Comput. App. Math. – volume: 166 start-page: 11 year: 2014 end-page: 22 ident: b0150 article-title: Multi-component reactive transport in heterogeneous media and its decoupling solution publication-title: J. Contam. Hydrol. – volume: 37 start-page: 327 issue: 3 year: 1999 ident: 10.1016/j.jhydrol.2020.125562_b0275 article-title: A decomposition method for solving coupled multi–species reactive transport problems publication-title: Transp. Porous Media doi: 10.1023/A:1006507514019 – volume: 26 start-page: 695 issue: 3 year: 2005 ident: 10.1016/j.jhydrol.2020.125562_b0145 article-title: Application of homotopy perturbation method to nonlinear wave equations publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2005.03.006 – volume: 180 start-page: 195 issue: 1–4 year: 1996 ident: 10.1016/j.jhydrol.2020.125562_b0185 article-title: Determining analytic solutions of multiple species contaminant transport, with sorption and decay publication-title: J. Hydrol. doi: 10.1016/0022-1694(95)02891-9 – volume: 27 start-page: 507 issue: 5 year: 2004 ident: 10.1016/j.jhydrol.2020.125562_b0210 article-title: Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2004.02.013 – volume: 37 start-page: 157 issue: 1 year: 2001 ident: 10.1016/j.jhydrol.2020.125562_b0080 article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network publication-title: Water Resour. Res. doi: 10.1029/2000WR900239 – year: 1972 ident: 10.1016/j.jhydrol.2020.125562_b0030 – volume: 11 start-page: 129 issue: 2 year: 1985 ident: 10.1016/j.jhydrol.2020.125562_b0295 article-title: Convective-dispersive transport of solutes involved in sequential first-order decay reactions publication-title: Comput. Geosci. doi: 10.1016/0098-3004(85)90003-2 – volume: 79 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2020.125562_b0040 article-title: Analysis of 1-D pollutant transport in semi-infinite groundwater reservoir publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8748-4 – volume: 80 start-page: 373 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2020.125562_b0125 article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media publication-title: Trans. Porous Media doi: 10.1007/s11242-009-9368-3 – volume: 70 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2020.125562_b0215 article-title: A linearization technique for multi-species transport problems publication-title: Transp. Porous media doi: 10.1007/s11242-006-9081-4 – volume: 65 start-page: 353 issue: 2 year: 2017 ident: 10.1016/j.jhydrol.2020.125562_b0240 article-title: Solution of one-dimensional space-and time-fractional advection–dispersion equation by homotopy perturbation method publication-title: Acta Geophys. doi: 10.1007/s11600-017-0035-8 – volume: 5 start-page: 534 issue: 5 year: 2009 ident: 10.1016/j.jhydrol.2020.125562_b0005 article-title: Review on LandWll leachate treatments publication-title: J. Appl. Sci. Res. – volume: 49 start-page: 217 issue: 3-4 year: 2001 ident: 10.1016/j.jhydrol.2020.125562_b0025 article-title: Transport of a decay chain in homogenous porous media: analytical solutions publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(00)00195-9 – volume: 46 issue: 8 year: 2010 ident: 10.1016/j.jhydrol.2020.125562_b0115 article-title: A new mobile-immobile model for reactive solute transport with scale-dependent dispersion publication-title: Water Resour. Res. doi: 10.1029/2009WR008707 – volume: 23 start-page: 573 issue: 2 year: 2005 ident: 10.1016/j.jhydrol.2020.125562_b0180 article-title: Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2004.05.005 – volume: 420-421 start-page: 191 year: 2012 ident: 10.1016/j.jhydrol.2020.125562_b0050 article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.12.001 – volume: 2 start-page: 3344 year: 2010 ident: 10.1016/j.jhydrol.2020.125562_b0195 article-title: Finite difference approach for modeling multispecies transport in porous media publication-title: Int. J. Sci. Tech. – volume: 22 start-page: 16 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2020.125562_b0200 article-title: Effect of distance-dependent and time-dependent dispersion on non-linearly sorbed multispecies contaminants in porous media publication-title: ISH J. Hydraul. Eng. doi: 10.1080/09715010.2015.1043597 – volume: 145 start-page: 151 year: 1984 ident: 10.1016/j.jhydrol.2020.125562_b0085 article-title: Solute transport in heterogeneous porous formations publication-title: J. Fluid Mech. doi: 10.1017/S0022112084002858 – volume: 541 start-page: 935 year: 2016 ident: 10.1016/j.jhydrol.2020.125562_b0120 article-title: Explicit and implicit forms of differential quadrature method for advection–diffusion equation with variable coefficients in semi-infinite domain publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.002 – ident: 10.1016/j.jhydrol.2020.125562_b0165 – ident: 10.1016/j.jhydrol.2020.125562_b0290 – volume: 41 issue: 11 year: 2005 ident: 10.1016/j.jhydrol.2020.125562_b0090 article-title: A procedure for the solution of multicomponent reactive transport problems publication-title: Water Resour. Res. doi: 10.1029/2005WR004056 – volume: 167 start-page: 57 issue: 1–2 year: 1998 ident: 10.1016/j.jhydrol.2020.125562_b0135 article-title: Approximate analytical solution for seepage flow with fractional derivatives in porous media publication-title: Comput. Methods App. Mech. Eng. doi: 10.1016/S0045-7825(98)00108-X – volume: 94 start-page: 412 year: 2016 ident: 10.1016/j.jhydrol.2020.125562_b0270 article-title: Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients publication-title: Adv. Water Res. doi: 10.1016/j.advwatres.2016.06.004 – year: 2006 ident: 10.1016/j.jhydrol.2020.125562_b0020 – volume: 520 start-page: 289 year: 2015 ident: 10.1016/j.jhydrol.2020.125562_b0245 article-title: Scale dependent solute dispersion with linear isotherm in heterogeneous medium publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.11.061 – volume: 18 start-page: 79 issue: 2 year: 1998 ident: 10.1016/j.jhydrol.2020.125562_b0070 article-title: Modeling multispecies reactive transport in ground water publication-title: Groundwater Monit. Remed. doi: 10.1111/j.1745-6592.1998.tb00618.x – volume: 35 start-page: 185 issue: 1 year: 1999 ident: 10.1016/j.jhydrol.2020.125562_b0285 article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions publication-title: Water Resour. Res. doi: 10.1029/1998WR900003 – year: 2012 ident: 10.1016/j.jhydrol.2020.125562_b0175 – volume: 32 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.jhydrol.2020.125562_b0035 article-title: Modeling of multi-species contaminant transport with spatially-dependent dispersion and coupled linear/non-linear reaction publication-title: Int. J. Fluid Mech. Res. doi: 10.1615/InterJFluidMechRes.v32.i1.10 – ident: 10.1016/j.jhydrol.2020.125562_b0105 – volume: 27 start-page: 3075 issue: 12 year: 1991 ident: 10.1016/j.jhydrol.2020.125562_b0300 article-title: A model for simulating transport of reactive multispecies components: model development and demonstration publication-title: Water Resour. Res. doi: 10.1029/91WR02028 – volume: 547 start-page: 517 year: 2017 ident: 10.1016/j.jhydrol.2020.125562_b0220 article-title: Analytical solutions for solute transport in groundwater and riverine flow using Green’s Function Method and pertinent coordinate transformation method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.02.014 – volume: 73 start-page: 161 issue: 2 year: 2008 ident: 10.1016/j.jhydrol.2020.125562_b0250 article-title: Singular value decomposition method for multi-species first-order reactive transport with identical decay rates publication-title: Transp. Porous Media doi: 10.1007/s11242-007-9175-7 – volume: 456 start-page: 101 year: 2012 ident: 10.1016/j.jhydrol.2020.125562_b0055 article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition publication-title: J. Hydrol. – volume: 26 start-page: 437 issue: 3 year: 1990 ident: 10.1016/j.jhydrol.2020.125562_b0065 article-title: Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor publication-title: Water Resour. Res. doi: 10.1029/WR026i003p00437 – volume: 22 start-page: 2069 issue: 13 year: 1986 ident: 10.1016/j.jhydrol.2020.125562_b0265 article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process publication-title: Water Resour. Res. doi: 10.1029/WR022i013p02069 – volume: 3 start-page: 244 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2020.125562_b0190 article-title: Homotopy analysis method for solving nonlinear diffusion equation with convection term publication-title: Int. J. App. Math. Res. – volume: 513 start-page: 7 year: 2014 ident: 10.1016/j.jhydrol.2020.125562_b0230 article-title: Exact series solutions of reactive transport models with general initial conditions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.035 – start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2020.125562_b0045 article-title: Analytical model for coupled multispecies advective dispersive transport subject to rate-limited sorption publication-title: Hydrol. Earth Sys. Sci. Discuss. – ident: 10.1016/j.jhydrol.2020.125562_b0075 doi: 10.2172/15010560 – volume: 167 start-page: 69 issue: 1–2 year: 1998 ident: 10.1016/j.jhydrol.2020.125562_b0140 article-title: Approximate solution of nonlinear differential equations with convolution product nonlinearities publication-title: Comput. Methods App. Mech. Eng. doi: 10.1016/S0045-7825(98)00109-1 – volume: 166 start-page: 11 year: 2014 ident: 10.1016/j.jhydrol.2020.125562_b0150 article-title: Multi-component reactive transport in heterogeneous media and its decoupling solution publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2014.07.009 – volume: 51 start-page: 339 issue: 3 year: 1971 ident: 10.1016/j.jhydrol.2020.125562_b0060 article-title: Convective transport of ammonium with nitrification in soil publication-title: Can. J. Soil Sci. doi: 10.4141/cjss71-047 – volume: 2 start-page: 235 issue: 4 year: 1997 ident: 10.1016/j.jhydrol.2020.125562_b0130 article-title: Variational iteration method for delay differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/S1007-5704(97)90008-3 – volume: 4 issue: 3 year: 2017 ident: 10.1016/j.jhydrol.2020.125562_b0160 article-title: Challenges and opportunities associated with waste management in India publication-title: Royal Soc. Open Sci. doi: 10.1098/rsos.160764 – volume: 541 start-page: 928 year: 2016 ident: 10.1016/j.jhydrol.2020.125562_b0235 article-title: Solute dispersion in a semi-infinite aquifer with specified concentration along an arbitrary plane source publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.003 – volume: 91 start-page: 49 issue: 1–2 year: 1987 ident: 10.1016/j.jhydrol.2020.125562_b0095 article-title: An analytical model for multidimensional transport of a decaying contaminant species publication-title: J. Hydrol. doi: 10.1016/0022-1694(87)90127-2 – volume: 35 start-page: 429 issue: 4 year: 1999 ident: 10.1016/j.jhydrol.2020.125562_b0280 article-title: Analytical solutions for multiple species reactive transport in multiple dimensions publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(98)00105-3 – volume: 6 start-page: 85 issue: 1 year: 1990 ident: 10.1016/j.jhydrol.2020.125562_b0110 article-title: Adsorptive solute transport in fractured rock: analytical solutions for delta-type source conditions publication-title: J. Contam. Hydrol. doi: 10.1016/0169-7722(90)90013-7 – volume: 2 start-page: 59 year: 1979 ident: 10.1016/j.jhydrol.2020.125562_b0260 article-title: Foundation theories of solute transport in porous media: a critical review publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(79)90012-5 – volume: 100 start-page: 227 year: 2017 ident: 10.1016/j.jhydrol.2020.125562_b0010 article-title: Influence of multi-species solute transport on modeling of hydrated Portland cement leaching in strong nitrate solutions publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2017.06.002 – volume: 50 start-page: 213 issue: 1-2 year: 2009 ident: 10.1016/j.jhydrol.2020.125562_b0015 article-title: Some notes on using the homotopy perturbation method for solving time-dependent differential equations publication-title: Math. Comput. Modell. doi: 10.1016/j.mcm.2009.03.003 – volume: 234 start-page: 1069 issue: 4 year: 2010 ident: 10.1016/j.jhydrol.2020.125562_b0255 article-title: Decomposition method for solving multi-species reactive transport problems coupled with first-order kinetics applicable to a chain with identical reaction rates publication-title: J. Comput. App. Math. doi: 10.1016/j.cam.2009.04.021 – volume: 33 start-page: 156 issue: 5 year: 1978 ident: 10.1016/j.jhydrol.2020.125562_b0155 article-title: General use of the Lagrange multiplier in nonlinear mathematical physics publication-title: Var. Method Mech. Solids – volume: 23 start-page: 76 issue: 1 year: 2018 ident: 10.1016/j.jhydrol.2020.125562_b0205 article-title: Spatial moment analysis of multispecies contaminant transport in porous media publication-title: Environ. Eng. Res. doi: 10.4491/eer.2016.147 – volume: 28 start-page: 1801 issue: 7 year: 1992 ident: 10.1016/j.jhydrol.2020.125562_b0225 article-title: The form of the dispersion equation under recharge and variable velocity, and its analytical solution publication-title: Water Resour. Res. doi: 10.1029/92WR00665 – volume: 30 start-page: 371 issue: 3 year: 1995 ident: 10.1016/j.jhydrol.2020.125562_b0170 article-title: An approximate solution technique not depending on small parameters: a special example publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(94)00054-E – volume: 41 start-page: 180 year: 2017 ident: 10.1016/j.jhydrol.2020.125562_b0100 article-title: Laplace transform–homotopy perturbation method with arbitrary initial approximation and residual error cancelation publication-title: App. Math. Model. doi: 10.1016/j.apm.2016.08.003 |
SSID | ssj0000334 |
Score | 2.430371 |
Snippet | •Reactive multispecies migration system with variable transport parameters.•Steady and transient migration system, both, in steady and unsteady flow... Multispecies pollutant migration is most natural phenomenon, frequently occurring in the polluted groundwater system and also evidently occurs in the nuclear... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 125562 |
SubjectTerms | comparative study deformation dispersibility equations groundwater Homotopy analysis method hydrodynamic dispersion Linear isotherm Multispecies Pollutant transport pollutants Series solution solvents sorption isotherms space and time |
Title | Study of multispecies convection-dispersion transport equation with variable parameters |
URI | https://dx.doi.org/10.1016/j.jhydrol.2020.125562 https://www.proquest.com/docview/2524317601 |
Volume | 591 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jPuiLeMXriOBrtzWXpn0cwzEV9-RwbyFpE7ah69w6YS_-dnN6cSjIwJdC06aEk_ScnOT7viB0G4mE2tgITyjGPSaY9lRg3IX7gXYPuI6A7_w0CPpD9jDioxrqVlwYgFWWvr_w6bm3LktapTVb88kEOL6E-EHECKhbujAHDHYmANbX_NzAPNqUskoxHN7esHha0-Z0vE4WKexAENBZ4Dwgf8WnX546Dz-9A7Rfzhtxp2jaIaqZ2RHaLY8wH6-P0QsgAtc4tTjHCAKD0iXBOEeV59wFL4HCfHUMZ5WkOTbvhdY3hgVZ_OEyZ-BSYVAEfwOkzPIEDXt3z92-V56a4Cka8MwzPA5VLIhVxKeKg_4fYdoyCxuejCWhEUFMWKKjyCpjqUuwuCFUCwJyXb6hp6g-S2fmDOF24kKZtVZEyrAk1pFLbsI4ZqFPrTbKniNW2UrGpaQ4nGzxKivs2FSWJpZgYlmY-Bw1v6vNC02NbRXCqiPkj8Ehnd_fVvWm6jjpfhzYDVEzk66WknACkyeXkF78__OXaA_uCnzLFapni5W5drOUTDfyYdhAO537x_7gCzbt6lU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HvQiPrE-I3jd1s1jH8dSLPXVU4veQrKbYIu2tVah_97MblZRkIKXPSTMskyyM5nk-74AXKRxzmxm4iBWXAQ85jpQkXEPEUbadQidIt_5vhd1B_zmUTyuQLviwiCs0sf-MqYX0dq3NL03m9PhEDm-lIZRyimqW7o0twprqE7Fa7DWur7t9r4DMmO8Eg1Hg28iT3PUGD0t8tkEDyEoSi0IEdG_UtSvYF1koM4WbPqlI2mVX7cNK2a8A-v-FvOnxS48IChwQSaWFDBBJFG6OpgUwPKCvhDk2FhskJF5pWpOzGsp901wT5Z8uOIZ6VQERcFfECzztgeDzlW_3Q38xQmBYpGYB0ZkicpiahUNmRIoAUi5ttzimSfneWLiKKM812lqlbHM1VjCUKZjiopdoWH7UBtPxuYAyGXuspm1Nk6V4XmmU1ffJFnGk5BZbZStA698JTOvKo6XWzzLCj42kt7FEl0sSxfXofFlNi1lNZYZJNVAyB_zQ7rQv8z0vBo46f4dPBBRYzN5f5NUUFw_uZr08P-vP4P1bv_-Tt5d926PYAN7SrjLMdTms3dz4hYtc33qJ-UnPcrtBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+multispecies+convection-dispersion+transport+equation+with+variable+parameters&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Chaudhary%2C+Manish&rft.au=Singh%2C+Mritunjay+Kumar&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=591&rft_id=info:doi/10.1016%2Fj.jhydrol.2020.125562&rft.externalDocID=S0022169420310222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |