Semi-analytical solution to one-dimensional advective-dispersive-reactive transport equation using homotopy analysis method

•HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is adopted to control and adjust the convergence of series solutions.•Approximate solutions produced by HAM agree well with exact solutions. The...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 565; pp. 422 - 428
Main Authors Yu, Chuang, Wang, Hui, Fang, Dongfang, Ma, Jianjun, Cai, Xiaoqing, Yu, Xiaoniu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2018
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2018.08.041

Cover

Loading…
Abstract •HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is adopted to control and adjust the convergence of series solutions.•Approximate solutions produced by HAM agree well with exact solutions. The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate through liners or anti-seepage curtains. However, most existing methods solving this problem are limited to simple initial conditions. In order to eliminate these limitations, homotopy analysis method (HAM) is implemented to solve the contaminant transport model in this paper. Applying auxiliary linear and nonlinear operator, zero order deformation equation is developed to solve contaminant transport problems numerically, with smooth initial conditions and variable source concentration being considered. HAM has been applied to simulate different contamination transport problems in one-dimensional space reported in literature. Good agreement between HAM solutions and analytical solutions has been achieved for all cases considered, demonstrating the feasibility of HAM to solve the contaminant transport model with more general, smooth initial conditions.
AbstractList •HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is adopted to control and adjust the convergence of series solutions.•Approximate solutions produced by HAM agree well with exact solutions. The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate through liners or anti-seepage curtains. However, most existing methods solving this problem are limited to simple initial conditions. In order to eliminate these limitations, homotopy analysis method (HAM) is implemented to solve the contaminant transport model in this paper. Applying auxiliary linear and nonlinear operator, zero order deformation equation is developed to solve contaminant transport problems numerically, with smooth initial conditions and variable source concentration being considered. HAM has been applied to simulate different contamination transport problems in one-dimensional space reported in literature. Good agreement between HAM solutions and analytical solutions has been achieved for all cases considered, demonstrating the feasibility of HAM to solve the contaminant transport model with more general, smooth initial conditions.
The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate through liners or anti-seepage curtains. However, most existing methods solving this problem are limited to simple initial conditions. In order to eliminate these limitations, homotopy analysis method (HAM) is implemented to solve the contaminant transport model in this paper. Applying auxiliary linear and nonlinear operator, zero order deformation equation is developed to solve contaminant transport problems numerically, with smooth initial conditions and variable source concentration being considered. HAM has been applied to simulate different contamination transport problems in one-dimensional space reported in literature. Good agreement between HAM solutions and analytical solutions has been achieved for all cases considered, demonstrating the feasibility of HAM to solve the contaminant transport model with more general, smooth initial conditions.
Author Fang, Dongfang
Yu, Xiaoniu
Yu, Chuang
Wang, Hui
Ma, Jianjun
Cai, Xiaoqing
Author_xml – sequence: 1
  givenname: Chuang
  surname: Yu
  fullname: Yu, Chuang
  organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China
– sequence: 2
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China
– sequence: 3
  givenname: Dongfang
  surname: Fang
  fullname: Fang, Dongfang
  organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China
– sequence: 4
  givenname: Jianjun
  orcidid: 0000-0002-2885-5620
  surname: Ma
  fullname: Ma, Jianjun
  email: jianjun2004ma@gmail.com
  organization: School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510006, China
– sequence: 5
  givenname: Xiaoqing
  surname: Cai
  fullname: Cai, Xiaoqing
  organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China
– sequence: 6
  givenname: Xiaoniu
  surname: Yu
  fullname: Yu, Xiaoniu
  organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China
BookMark eNqFkE9r3DAQxUVJoLtpPkLAx168kWzZkuihlKVtCoEc0pyFIo-7WmzJ0cgLS758tH9OvewwIPE07w36LcmVDx4IuWN0xShr77er7WbfxTCsKsrkiubm7BNZMClUWQkqrsiC0qoqWav4Z7JE3NJcdc0X5P0ZRlcab4Z9ctYMBYZhTi74IoUiryk7N4LHLOQ30-3AJrc7qDhBxMM1gjlqRYrG4xRiKuBtNseMGZ3_V2zCGFKY9sVxDTosRkib0H0h170ZEG7P5w15-fXz7_qhfHz6_Wf947E0dduk0oLpoe9e614olX_ABFDBKZdUye6V2oZWLUhhW8Y5VUq2TLFGGmktY0rwur4hX0-5UwxvM2DSo0MLw2A8hBl1xaRqcnGRR5vTqI0BMUKvp-hGE_eaUX2Arbf6DFsfYGuam7Ps-_afz7p0ZJCpuOGi-_vJDZnCzkHUaB14C52LGbjugruQ8AH5gKRm
CitedBy_id crossref_primary_10_1007_s11270_023_06406_5
crossref_primary_10_3390_sym12111769
crossref_primary_10_1155_2019_1941426
crossref_primary_10_3390_w15081530
crossref_primary_10_1016_j_mex_2022_101819
crossref_primary_10_3390_app11209735
crossref_primary_10_1007_s12040_022_01858_5
crossref_primary_10_1016_j_wasman_2020_10_004
crossref_primary_10_1007_s11356_023_29664_6
crossref_primary_10_1007_s11270_023_06583_3
crossref_primary_10_1061__ASCE_GM_1943_5622_0001598
crossref_primary_10_1007_s10040_019_01948_7
Cites_doi 10.1007/s10596-006-9023-9
10.1061/(ASCE)1084-0699(2008)13:12(1193)
10.1029/93WR00496
10.1016/j.jher.2009.01.003
10.1029/91WR01912
10.1016/j.jhydrol.2014.03.035
10.1016/0020-7462(94)00054-E
10.1007/s00254-008-1587-3
10.1016/j.ijheatmasstransfer.2005.01.005
10.1002/nag.903
10.1061/(ASCE)0733-9410(1991)117:3(485)
10.1016/j.cej.2010.11.047
10.1016/S0893-9659(01)00076-3
10.1029/94WR01329
10.1016/j.ijheatmasstransfer.2006.01.030
10.1016/j.jhydrol.2011.12.001
10.1007/BF00620660
10.1016/0022-1694(93)90236-3
10.1063/1.5027540
10.1016/0893-9659(95)00030-T
10.1016/j.cnsns.2009.09.002
10.1680/geot.2005.55.9.631
10.1016/j.cej.2013.01.095
10.1007/s11242-009-9368-3
10.5194/hess-15-2471-2011
10.1061/(ASCE)0733-9410(1991)117:3(467)
10.1061/(ASCE)0733-9410(1985)111:4(479)
10.1680/geot.1986.36.2.205
10.2136/vzj2005.0206
10.1007/s11771-005-0393-2
10.1061/(ASCE)GT.1943-5606.0000365
10.1023/A:1006596904771
10.1016/j.ijheatmasstransfer.2009.02.002
10.1061/(ASCE)1090-0241(2004)130:5(477)
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2018.08.041
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 428
ExternalDocumentID 10_1016_j_jhydrol_2018_08_041
S0022169418306371
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a365t-ceafefdb3f79969417e074048098db0c5026e87c61440998619158a8cc1197433
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Sep 05 07:14:03 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Tue Jul 01 03:07:46 EDT 2025
Fri Feb 23 02:47:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Initial condition
Transport
Contaminant
Homotopy analysis method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-ceafefdb3f79969417e074048098db0c5026e87c61440998619158a8cc1197433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2885-5620
PQID 2189555547
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2189555547
crossref_primary_10_1016_j_jhydrol_2018_08_041
crossref_citationtrail_10_1016_j_jhydrol_2018_08_041
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2018_08_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liao (b0100) 2010; 15
Chen, Lai, Liu, Ni (b0015) 2012; 420–421
Pérez Guerrero, Pontedeiro, van Genuchten, Skaggs (b0135) 2013; 221
Rowe, R.K., 1989. Movent of pollutants through clayey soil. In: Proc. 37th annual geotechnical conf. Minnesota section ASCE, St.Paul, U.S.A.
Gustavious, David (b0050) 2008; 13
Yong, Mohamed, Warketin (b0205) 1992
Li, Cleall (b0085) 2011; 35
Simpson, Ellery (b0185) 2014; 513
Vanderborght, Kasteel, Herbst, Javaux, Thiéry, Vanclooster, Mouvet, Vereecken (b0200) 2005; 4
Chen (b0035) 2014; 36
Liao (b0115) 2004; 48
Chen, Zhang, Huang (b0030) 2005; 11
Van Genuchten, Alves (b0195) 1982; 9
Leij, Skaggs, Van Genuchten (b0065) 1991; 27
Rowe (b0160) 2005; 55
Pérez Guerrero, Pimentel, Skaggs, van Genuchten (b0130) 2009; 52
Shackelford, Daniel (b0175) 1991; 117
Liao (b0110) 1992
Pérez Guerrero, Skaggs, van Genuchten (b0140) 2009; 80
Golz, Dorroh (b0045) 2001; 14
Yu, Liu, Ma, Yu (b0210) 2018
Shackelford, Daniel (b0180) 1991; 117
Frolkovič, Kačur (b0040) 2006; 10
Toride, Leij, van Genuchten (b0190) 1993; 29
Malusis, Shackelford (b0125) 2004; 130
Liu (b0120) 1998; 30
Chen, Ju (b0010) 2004; 155
Chen, Liu (b0020) 2011; 15
Liao, Su, Chwang (b0105) 2006; 49
Philip (b0145) 1994; 30
Rowe (b0150) 1987
Jaiswal, Kumar, Kumar, Yadav (b0055) 2009; 2
Leij, Toride, van Genuchten (b0070) 1993; 151
Chen, Xie, Ke, Chen (b0025) 2009; 58
Liao (b0090) 1995; 30
Bear, Cheng (b0005) 2008
Ziskind, Shmueli, Gitis (b0215) 2011; 167
Lei, Lin, Liu, Shi, Ma, Yang, Yu (b0060) 2018; 8
Rowe, Booker (b0170) 1986; 36
Logan, Zlotnik (b9000) 1995; 8
Leij, Van Genuchten (b0075) 1995; 18
Rowe, Booker (b0165) 1985; 111
Li, Cleall (b0080) 2010; 136
Liao (b0095) 2005; 48
Pérez Guerrero (10.1016/j.jhydrol.2018.08.041_b0130) 2009; 52
Chen (10.1016/j.jhydrol.2018.08.041_b0035) 2014; 36
Logan (10.1016/j.jhydrol.2018.08.041_b9000) 1995; 8
Leij (10.1016/j.jhydrol.2018.08.041_b0075) 1995; 18
Chen (10.1016/j.jhydrol.2018.08.041_b0030) 2005; 11
Bear (10.1016/j.jhydrol.2018.08.041_b0005) 2008
Pérez Guerrero (10.1016/j.jhydrol.2018.08.041_b0140) 2009; 80
Liao (10.1016/j.jhydrol.2018.08.041_b0090) 1995; 30
Leij (10.1016/j.jhydrol.2018.08.041_b0070) 1993; 151
10.1016/j.jhydrol.2018.08.041_b0155
Liao (10.1016/j.jhydrol.2018.08.041_b0110) 1992
Rowe (10.1016/j.jhydrol.2018.08.041_b0165) 1985; 111
Chen (10.1016/j.jhydrol.2018.08.041_b0010) 2004; 155
Gustavious (10.1016/j.jhydrol.2018.08.041_b0050) 2008; 13
Jaiswal (10.1016/j.jhydrol.2018.08.041_b0055) 2009; 2
Rowe (10.1016/j.jhydrol.2018.08.041_b0160) 2005; 55
Golz (10.1016/j.jhydrol.2018.08.041_b0045) 2001; 14
Philip (10.1016/j.jhydrol.2018.08.041_b0145) 1994; 30
Yong (10.1016/j.jhydrol.2018.08.041_b0205) 1992
Li (10.1016/j.jhydrol.2018.08.041_b0080) 2010; 136
Liao (10.1016/j.jhydrol.2018.08.041_b0095) 2005; 48
Liao (10.1016/j.jhydrol.2018.08.041_b0105) 2006; 49
Toride (10.1016/j.jhydrol.2018.08.041_b0190) 1993; 29
Chen (10.1016/j.jhydrol.2018.08.041_b0015) 2012; 420–421
Van Genuchten (10.1016/j.jhydrol.2018.08.041_b0195) 1982; 9
Ziskind (10.1016/j.jhydrol.2018.08.041_b0215) 2011; 167
Leij (10.1016/j.jhydrol.2018.08.041_b0065) 1991; 27
Chen (10.1016/j.jhydrol.2018.08.041_b0025) 2009; 58
Liao (10.1016/j.jhydrol.2018.08.041_b0115) 2004; 48
Chen (10.1016/j.jhydrol.2018.08.041_b0020) 2011; 15
Liao (10.1016/j.jhydrol.2018.08.041_b0100) 2010; 15
Rowe (10.1016/j.jhydrol.2018.08.041_b0150) 1987
Rowe (10.1016/j.jhydrol.2018.08.041_b0170) 1986; 36
Vanderborght (10.1016/j.jhydrol.2018.08.041_b0200) 2005; 4
Liu (10.1016/j.jhydrol.2018.08.041_b0120) 1998; 30
Pérez Guerrero (10.1016/j.jhydrol.2018.08.041_b0135) 2013; 221
Frolkovič (10.1016/j.jhydrol.2018.08.041_b0040) 2006; 10
Li (10.1016/j.jhydrol.2018.08.041_b0085) 2011; 35
Shackelford (10.1016/j.jhydrol.2018.08.041_b0180) 1991; 117
Lei (10.1016/j.jhydrol.2018.08.041_b0060) 2018; 8
Shackelford (10.1016/j.jhydrol.2018.08.041_b0175) 1991; 117
Simpson (10.1016/j.jhydrol.2018.08.041_b0185) 2014; 513
Malusis (10.1016/j.jhydrol.2018.08.041_b0125) 2004; 130
Yu (10.1016/j.jhydrol.2018.08.041_b0210) 2018
References_xml – volume: 58
  start-page: 1083
  year: 2009
  end-page: 1094
  ident: b0025
  article-title: An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications
  publication-title: Environ. Geol.
– volume: 35
  start-page: 438
  year: 2011
  end-page: 460
  ident: b0085
  article-title: Analytical solutions for advective-dispersive solute transport in double-layered finite porous media
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 513
  start-page: 7
  year: 2014
  end-page: 12
  ident: b0185
  article-title: Exact series solutions of reactive transport models with general initial conditions
  publication-title: J. Hydrol.
– volume: 420–421
  start-page: 191
  year: 2012
  end-page: 204
  ident: b0015
  article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions
  publication-title: J. Hydrol.
– volume: 155
  start-page: 25
  year: 2004
  end-page: 38
  ident: b0010
  article-title: Application of differential transformation to transient advective–dispersive transport equation
  publication-title: Appl. Math. Comput.
– year: 2008
  ident: b0005
  article-title: Modeling Groundwater Flow and Contaminant Transport
– volume: 18
  start-page: 65
  year: 1995
  end-page: 85
  ident: b0075
  article-title: Approximate analytical solutions for solute transport in two-layer porous media
  publication-title: Transp. Porous Media
– volume: 80
  start-page: 373
  year: 2009
  end-page: 387
  ident: b0140
  article-title: Analytical Solution for Multi-Species Contaminant Transport Subject to Sequential First-Order Decay Reactions in Finite Media
  publication-title: Transp. Porous Media
– volume: 29
  start-page: 2167
  year: 1993
  end-page: 2182
  ident: b0190
  article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production
  publication-title: Water Resour. Res.
– volume: 151
  start-page: 193
  year: 1993
  end-page: 228
  ident: b0070
  article-title: Analytical solutions for non-equilibrium solute transport in three-dimensional porous media
  publication-title: J. Hydrol.
– volume: 30
  start-page: 371
  year: 1995
  end-page: 380
  ident: b0090
  article-title: An approximate solution technique not depending on small parameters: A special example
  publication-title: Int. J. Non Linear Mech.
– volume: 36
  start-page: 3209
  year: 2014
  end-page: 3214
  ident: b0035
  article-title: A fundamental theory of environmental ge-otechnics and its application
  publication-title: Chinese J. Geotechnical Eng.
– year: 2018
  ident: b0210
  article-title: Study on transport and transformation of contaminant through layered soil with large deformation
  publication-title: Environ. Sci. Pollut. Res.
– year: 1992
  ident: b0205
  article-title: Principles of Contaminant Transport in Soils
– volume: 36
  start-page: 205
  year: 1986
  end-page: 214
  ident: b0170
  article-title: A finite layer technique for calculating three-dimensional pollutant migration in soil
  publication-title: Geotechnique
– volume: 221
  start-page: 487
  year: 2013
  end-page: 491
  ident: b0135
  article-title: Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 983
  year: 2001
  end-page: 988
  ident: b0045
  article-title: The convection-diffusion equation for a finite domain with time varying boundaries
  publication-title: Appl. Math. Lett.
– volume: 48
  start-page: 2529
  year: 2005
  end-page: 2539
  ident: b0095
  article-title: A new branch of solutions of boundary-layer flows over an impermeable stretched plate
  publication-title: Int. J. Heat Mass Transf.
– start-page: 430
  year: 1987
  end-page: 454
  ident: b0150
  article-title: Pollutant transport through barriers
  publication-title: Geotechnical Practice for Waste Disposal'87/GT Div
– volume: 117
  start-page: 485
  year: 1991
  end-page: 506
  ident: b0180
  article-title: Diffusion in saturated soil. Ii: Results for compacted clay
  publication-title: J. Geotechnical Eng.
– year: 1992
  ident: b0110
  article-title: The proposed homotopy analysis technique for the solution of nonlinear problems
– volume: 167
  start-page: 403
  year: 2011
  end-page: 408
  ident: b0215
  article-title: An analytical solution of the convection–dispersion–reaction equation for a finite region with a pulse boundary condition
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 467
  year: 1991
  end-page: 484
  ident: b0175
  article-title: Diffusion in saturated soil. I: Background
  publication-title: J. Geotechnical Eng.
– volume: 13
  start-page: 1193
  year: 2008
  end-page: 1196
  ident: b0050
  article-title: Analytical Solution to the Advective-Dispersive Equation with a Decaying Source and Contaminant
  publication-title: J. Hydrol. Eng.
– volume: 15
  start-page: 2471
  year: 2011
  end-page: 2479
  ident: b0020
  article-title: Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 10
  start-page: 279
  year: 2006
  end-page: 290
  ident: b0040
  article-title: Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1D
  publication-title: Comput. Geosci.
– volume: 9
  start-page: 79
  year: 1982
  end-page: 80
  ident: b0195
  article-title: Analytical solutions of the one dimensional convective dispersive solute transport equation
  publication-title: Agric. Water Manag.
– volume: 27
  start-page: 2719
  year: 1991
  end-page: 2733
  ident: b0065
  article-title: Analytical Solutions for Solute Transport in Three-Dimensional Semi-infinite Porous Media
  publication-title: Water Resour. Res.
– volume: 130
  start-page: 477
  year: 2004
  end-page: 487
  ident: b0125
  article-title: Predicting solute flux through a clay membrane barrier
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 48
  start-page: 305
  year: 2004
  end-page: 334
  ident: b0115
  article-title: On the homotopy anaylsis method for nonlinear problems
  publication-title: Comput. Math. Appl.
– volume: 111
  start-page: 479
  year: 1985
  end-page: 499
  ident: b0165
  article-title: 1-D Pollutant Migration in Soils of Finite Depth
  publication-title: J. Geotechnical Eng.
– volume: 30
  start-page: 3545
  year: 1994
  end-page: 3551
  ident: b0145
  article-title: Some exact solutions of convection-diffusion and diffusion equations
  publication-title: Water Resour. Res.
– volume: 2
  start-page: 254
  year: 2009
  end-page: 263
  ident: b0055
  article-title: Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media
  publication-title: J. Hydro-Environ. Res.
– volume: 11
  start-page: 168
  year: 2005
  end-page: 172
  ident: b0030
  article-title: Analysis on contaminants transports process through clay-solidified grouting curtain in MSW landfills
  publication-title: J. Central South Univ. Technol.
– volume: 8
  year: 2018
  ident: b0060
  article-title: Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment
  publication-title: AIP Adv.
– volume: 136
  start-page: 1542
  year: 2010
  end-page: 1554
  ident: b0080
  article-title: Analytical solutions for contaminant diffusion in double-layered porous media
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 55
  start-page: 631
  year: 2005
  end-page: 678
  ident: b0160
  article-title: Long-term performance of contaminant barrier systems
  publication-title: Geotechnique
– volume: 8
  start-page: 55
  year: 1995
  end-page: 61
  ident: b9000
  article-title: The convection-diffusion equation with periodic boundary conditions
  publication-title: Appl. Math. Lett.
– volume: 15
  start-page: 2003
  year: 2010
  end-page: 2016
  ident: b0100
  article-title: An optimal homotopy-analysis approach for strongly nonlinear differential equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 52
  start-page: 3297
  year: 2009
  end-page: 3304
  ident: b0130
  article-title: Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
  publication-title: Int. J. Heat Mass Transf.
– reference: Rowe, R.K., 1989. Movent of pollutants through clayey soil. In: Proc. 37th annual geotechnical conf. Minnesota section ASCE, St.Paul, U.S.A.
– volume: 4
  start-page: 206
  year: 2005
  end-page: 221
  ident: b0200
  article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils
  publication-title: Vadose Zone J.
– volume: 30
  start-page: 25
  year: 1998
  end-page: 43
  ident: b0120
  article-title: An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media
  publication-title: Transp. Porous Media
– volume: 49
  start-page: 2437
  year: 2006
  end-page: 2445
  ident: b0105
  article-title: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body
  publication-title: Int. J. Heat Mass Transf.
– volume: 10
  start-page: 279
  year: 2006
  ident: 10.1016/j.jhydrol.2018.08.041_b0040
  article-title: Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1D
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-006-9023-9
– volume: 13
  start-page: 1193
  year: 2008
  ident: 10.1016/j.jhydrol.2018.08.041_b0050
  article-title: Analytical Solution to the Advective-Dispersive Equation with a Decaying Source and Contaminant
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2008)13:12(1193)
– volume: 29
  start-page: 2167
  year: 1993
  ident: 10.1016/j.jhydrol.2018.08.041_b0190
  article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR00496
– volume: 2
  start-page: 254
  year: 2009
  ident: 10.1016/j.jhydrol.2018.08.041_b0055
  article-title: Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2009.01.003
– year: 2018
  ident: 10.1016/j.jhydrol.2018.08.041_b0210
  article-title: Study on transport and transformation of contaminant through layered soil with large deformation
  publication-title: Environ. Sci. Pollut. Res.
– year: 1992
  ident: 10.1016/j.jhydrol.2018.08.041_b0110
– ident: 10.1016/j.jhydrol.2018.08.041_b0155
– volume: 27
  start-page: 2719
  year: 1991
  ident: 10.1016/j.jhydrol.2018.08.041_b0065
  article-title: Analytical Solutions for Solute Transport in Three-Dimensional Semi-infinite Porous Media
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR01912
– volume: 48
  start-page: 305
  year: 2004
  ident: 10.1016/j.jhydrol.2018.08.041_b0115
  article-title: On the homotopy anaylsis method for nonlinear problems
  publication-title: Comput. Math. Appl.
– volume: 513
  start-page: 7
  year: 2014
  ident: 10.1016/j.jhydrol.2018.08.041_b0185
  article-title: Exact series solutions of reactive transport models with general initial conditions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.035
– year: 1992
  ident: 10.1016/j.jhydrol.2018.08.041_b0205
– volume: 30
  start-page: 371
  year: 1995
  ident: 10.1016/j.jhydrol.2018.08.041_b0090
  article-title: An approximate solution technique not depending on small parameters: A special example
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/0020-7462(94)00054-E
– volume: 58
  start-page: 1083
  year: 2009
  ident: 10.1016/j.jhydrol.2018.08.041_b0025
  article-title: An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-008-1587-3
– volume: 48
  start-page: 2529
  year: 2005
  ident: 10.1016/j.jhydrol.2018.08.041_b0095
  article-title: A new branch of solutions of boundary-layer flows over an impermeable stretched plate
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.01.005
– volume: 35
  start-page: 438
  year: 2011
  ident: 10.1016/j.jhydrol.2018.08.041_b0085
  article-title: Analytical solutions for advective-dispersive solute transport in double-layered finite porous media
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.903
– volume: 117
  start-page: 485
  year: 1991
  ident: 10.1016/j.jhydrol.2018.08.041_b0180
  article-title: Diffusion in saturated soil. Ii: Results for compacted clay
  publication-title: J. Geotechnical Eng.
  doi: 10.1061/(ASCE)0733-9410(1991)117:3(485)
– volume: 167
  start-page: 403
  year: 2011
  ident: 10.1016/j.jhydrol.2018.08.041_b0215
  article-title: An analytical solution of the convection–dispersion–reaction equation for a finite region with a pulse boundary condition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.11.047
– volume: 14
  start-page: 983
  year: 2001
  ident: 10.1016/j.jhydrol.2018.08.041_b0045
  article-title: The convection-diffusion equation for a finite domain with time varying boundaries
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(01)00076-3
– volume: 155
  start-page: 25
  year: 2004
  ident: 10.1016/j.jhydrol.2018.08.041_b0010
  article-title: Application of differential transformation to transient advective–dispersive transport equation
  publication-title: Appl. Math. Comput.
– volume: 30
  start-page: 3545
  year: 1994
  ident: 10.1016/j.jhydrol.2018.08.041_b0145
  article-title: Some exact solutions of convection-diffusion and diffusion equations
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR01329
– volume: 49
  start-page: 2437
  year: 2006
  ident: 10.1016/j.jhydrol.2018.08.041_b0105
  article-title: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.01.030
– volume: 420–421
  start-page: 191
  year: 2012
  ident: 10.1016/j.jhydrol.2018.08.041_b0015
  article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.12.001
– volume: 18
  start-page: 65
  year: 1995
  ident: 10.1016/j.jhydrol.2018.08.041_b0075
  article-title: Approximate analytical solutions for solute transport in two-layer porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00620660
– volume: 151
  start-page: 193
  year: 1993
  ident: 10.1016/j.jhydrol.2018.08.041_b0070
  article-title: Analytical solutions for non-equilibrium solute transport in three-dimensional porous media
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(93)90236-3
– start-page: 430
  year: 1987
  ident: 10.1016/j.jhydrol.2018.08.041_b0150
  article-title: Pollutant transport through barriers
– volume: 8
  year: 2018
  ident: 10.1016/j.jhydrol.2018.08.041_b0060
  article-title: Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment
  publication-title: AIP Adv.
  doi: 10.1063/1.5027540
– volume: 8
  start-page: 55
  issue: 3
  year: 1995
  ident: 10.1016/j.jhydrol.2018.08.041_b9000
  article-title: The convection-diffusion equation with periodic boundary conditions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(95)00030-T
– volume: 15
  start-page: 2003
  year: 2010
  ident: 10.1016/j.jhydrol.2018.08.041_b0100
  article-title: An optimal homotopy-analysis approach for strongly nonlinear differential equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.09.002
– volume: 55
  start-page: 631
  year: 2005
  ident: 10.1016/j.jhydrol.2018.08.041_b0160
  article-title: Long-term performance of contaminant barrier systems
  publication-title: Geotechnique
  doi: 10.1680/geot.2005.55.9.631
– volume: 221
  start-page: 487
  year: 2013
  ident: 10.1016/j.jhydrol.2018.08.041_b0135
  article-title: Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.01.095
– volume: 80
  start-page: 373
  year: 2009
  ident: 10.1016/j.jhydrol.2018.08.041_b0140
  article-title: Analytical Solution for Multi-Species Contaminant Transport Subject to Sequential First-Order Decay Reactions in Finite Media
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-009-9368-3
– volume: 15
  start-page: 2471
  year: 2011
  ident: 10.1016/j.jhydrol.2018.08.041_b0020
  article-title: Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-2471-2011
– volume: 117
  start-page: 467
  year: 1991
  ident: 10.1016/j.jhydrol.2018.08.041_b0175
  article-title: Diffusion in saturated soil. I: Background
  publication-title: J. Geotechnical Eng.
  doi: 10.1061/(ASCE)0733-9410(1991)117:3(467)
– volume: 9
  start-page: 79
  year: 1982
  ident: 10.1016/j.jhydrol.2018.08.041_b0195
  article-title: Analytical solutions of the one dimensional convective dispersive solute transport equation
  publication-title: Agric. Water Manag.
– year: 2008
  ident: 10.1016/j.jhydrol.2018.08.041_b0005
– volume: 111
  start-page: 479
  year: 1985
  ident: 10.1016/j.jhydrol.2018.08.041_b0165
  article-title: 1-D Pollutant Migration in Soils of Finite Depth
  publication-title: J. Geotechnical Eng.
  doi: 10.1061/(ASCE)0733-9410(1985)111:4(479)
– volume: 36
  start-page: 205
  year: 1986
  ident: 10.1016/j.jhydrol.2018.08.041_b0170
  article-title: A finite layer technique for calculating three-dimensional pollutant migration in soil
  publication-title: Geotechnique
  doi: 10.1680/geot.1986.36.2.205
– volume: 36
  start-page: 3209
  year: 2014
  ident: 10.1016/j.jhydrol.2018.08.041_b0035
  article-title: A fundamental theory of environmental ge-otechnics and its application
  publication-title: Chinese J. Geotechnical Eng.
– volume: 4
  start-page: 206
  year: 2005
  ident: 10.1016/j.jhydrol.2018.08.041_b0200
  article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2005.0206
– volume: 11
  start-page: 168
  year: 2005
  ident: 10.1016/j.jhydrol.2018.08.041_b0030
  article-title: Analysis on contaminants transports process through clay-solidified grouting curtain in MSW landfills
  publication-title: J. Central South Univ. Technol.
  doi: 10.1007/s11771-005-0393-2
– volume: 136
  start-page: 1542
  year: 2010
  ident: 10.1016/j.jhydrol.2018.08.041_b0080
  article-title: Analytical solutions for contaminant diffusion in double-layered porous media
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000365
– volume: 30
  start-page: 25
  year: 1998
  ident: 10.1016/j.jhydrol.2018.08.041_b0120
  article-title: An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1006596904771
– volume: 52
  start-page: 3297
  year: 2009
  ident: 10.1016/j.jhydrol.2018.08.041_b0130
  article-title: Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.002
– volume: 130
  start-page: 477
  year: 2004
  ident: 10.1016/j.jhydrol.2018.08.041_b0125
  article-title: Predicting solute flux through a clay membrane barrier
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2004)130:5(477)
SSID ssj0000334
Score 2.3443124
Snippet •HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is...
The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 422
SubjectTerms Contaminant
deformation
equations
Homotopy analysis method
hydrology
Initial condition
landfill leachates
Transport
transportation
Title Semi-analytical solution to one-dimensional advective-dispersive-reactive transport equation using homotopy analysis method
URI https://dx.doi.org/10.1016/j.jhydrol.2018.08.041
https://www.proquest.com/docview/2189555547
Volume 565
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6iB72IP3H-IoLXbG2TLulRRJmKXlTwFtI0dRu6ztkJQ_Bv9702VRRkYG8NTSh56cv3mu99j5DjHGWUwkgym-WGiSR0LI1swng3z6rKaUGGgeL1Tbd3Ly4f4ocFctrkwiCt0vv-2qdX3tq3dPxsdsaDAeb4RlGIeZgKYC-v8siFkKif3_74pnkEnItGMRyf_s7i6Qzbw_4smxR4AhGqSslThH_tT788dbX9nK-RVY8b6Un9autkwY02yLIvYd6fbZL3W_c8YAY1Rqrf07RZVLQsaDFyLEMd_1qDg5rsrXZ00IpS4chhZwAfqzZaNoLn1L3USuAU6fGPtI_UvWI8o8ZLmdC6APUWuT8_uzvtMV9ZgRnejUtmncldnqU8lxDvwBRKB1AC08sTlaWBjSEyc0pajBYBQiqIssJYGWUtnjoKzrfJ4ghefYdQFfBUChMpGFJIZ02UJ0ameZCmXQB7okVEM5_aetlxrH7xpBt-2VB7M2g0g8aqmCJskfZXt3GtuzGvg2qMpX8sIA17w7yuR41xNXxceGJiRq6YvmrAP0kMl5C7_x9-j6zgXc0A3CeL5WTqDgDJlOlhtVQPydLJxVXv5hOGEPcP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHvQiPvFtBK_ZbZt0kx5FlPV5UcFbSNPU3UW3q1ZhEfztzrSpi4II9pg2IWSmk2-SmW8IOciRRimMJLNZbphIQsfSyCaMd_OsqpwWZOgoXl51e7fi7C6-a5GjJhcGwyq97a9temWtfUvHr2ZnPBhgjm8UhZiHqQD2cswjnxUxl6ja7Y9pnEfAuWgow_HzaRpPZ9ge9ifZc4FXEKGqqDxF-NsG9cNUV_vPySJZ8MCRHtZzWyItN1omc76GeX-yQt6v3eOAGSQZqc6naaNVtCxoMXIsQyL_moSDmuyttnTQilzhGMTOAD9WbbRsGM-pe6qpwCnGx9_TPsbuFeMJNZ7LhNYVqFfJ7cnxzVGP-dIKzPBuXDLrTO7yLOW5BIcH1lA6wBKYX56oLA1sDK6ZU9KiuwgYUoGbFcbKKGvx2lFwvkZmRjD1dUJVwFMpTKRgSCGdNVGeGJnmQZp2Ae2JDSKa9dTW845j-YsH3QSYDbUXg0YxaCyLKcIN0v7qNq6JN_7qoBph6W8apGFz-KvrfiNcDX8XXpmYkSteXzQAoCSGR8jN_w-_R-Z6N5cX-uL06nyLzOObOhxwm8yUz69uB2BNme5WavsJOuH4pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-analytical+solution+to+one-dimensional+advective-dispersive-reactive+transport+equation+using+homotopy+analysis+method&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Yu%2C+Chuang&rft.au=Wang%2C+Hui&rft.au=Fang%2C+Dongfang&rft.au=Ma%2C+Jianjun&rft.date=2018-10-01&rft.issn=0022-1694&rft.volume=565&rft.spage=422&rft.epage=428&rft_id=info:doi/10.1016%2Fj.jhydrol.2018.08.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2018_08_041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon