Semi-analytical solution to one-dimensional advective-dispersive-reactive transport equation using homotopy analysis method
•HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is adopted to control and adjust the convergence of series solutions.•Approximate solutions produced by HAM agree well with exact solutions. The...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 565; pp. 422 - 428 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1694 1879-2707 |
DOI | 10.1016/j.jhydrol.2018.08.041 |
Cover
Loading…
Abstract | •HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is adopted to control and adjust the convergence of series solutions.•Approximate solutions produced by HAM agree well with exact solutions.
The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate through liners or anti-seepage curtains. However, most existing methods solving this problem are limited to simple initial conditions. In order to eliminate these limitations, homotopy analysis method (HAM) is implemented to solve the contaminant transport model in this paper. Applying auxiliary linear and nonlinear operator, zero order deformation equation is developed to solve contaminant transport problems numerically, with smooth initial conditions and variable source concentration being considered. HAM has been applied to simulate different contamination transport problems in one-dimensional space reported in literature. Good agreement between HAM solutions and analytical solutions has been achieved for all cases considered, demonstrating the feasibility of HAM to solve the contaminant transport model with more general, smooth initial conditions. |
---|---|
AbstractList | •HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is adopted to control and adjust the convergence of series solutions.•Approximate solutions produced by HAM agree well with exact solutions.
The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate through liners or anti-seepage curtains. However, most existing methods solving this problem are limited to simple initial conditions. In order to eliminate these limitations, homotopy analysis method (HAM) is implemented to solve the contaminant transport model in this paper. Applying auxiliary linear and nonlinear operator, zero order deformation equation is developed to solve contaminant transport problems numerically, with smooth initial conditions and variable source concentration being considered. HAM has been applied to simulate different contamination transport problems in one-dimensional space reported in literature. Good agreement between HAM solutions and analytical solutions has been achieved for all cases considered, demonstrating the feasibility of HAM to solve the contaminant transport model with more general, smooth initial conditions. The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate through liners or anti-seepage curtains. However, most existing methods solving this problem are limited to simple initial conditions. In order to eliminate these limitations, homotopy analysis method (HAM) is implemented to solve the contaminant transport model in this paper. Applying auxiliary linear and nonlinear operator, zero order deformation equation is developed to solve contaminant transport problems numerically, with smooth initial conditions and variable source concentration being considered. HAM has been applied to simulate different contamination transport problems in one-dimensional space reported in literature. Good agreement between HAM solutions and analytical solutions has been achieved for all cases considered, demonstrating the feasibility of HAM to solve the contaminant transport model with more general, smooth initial conditions. |
Author | Fang, Dongfang Yu, Xiaoniu Yu, Chuang Wang, Hui Ma, Jianjun Cai, Xiaoqing |
Author_xml | – sequence: 1 givenname: Chuang surname: Yu fullname: Yu, Chuang organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China – sequence: 2 givenname: Hui surname: Wang fullname: Wang, Hui organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China – sequence: 3 givenname: Dongfang surname: Fang fullname: Fang, Dongfang organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China – sequence: 4 givenname: Jianjun orcidid: 0000-0002-2885-5620 surname: Ma fullname: Ma, Jianjun email: jianjun2004ma@gmail.com organization: School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510006, China – sequence: 5 givenname: Xiaoqing surname: Cai fullname: Cai, Xiaoqing organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China – sequence: 6 givenname: Xiaoniu surname: Yu fullname: Yu, Xiaoniu organization: College of Architecture and Civil Engineering, Wenzhou University, Wenzhou 325035, China |
BookMark | eNqFkE9r3DAQxUVJoLtpPkLAx168kWzZkuihlKVtCoEc0pyFIo-7WmzJ0cgLS758tH9OvewwIPE07w36LcmVDx4IuWN0xShr77er7WbfxTCsKsrkiubm7BNZMClUWQkqrsiC0qoqWav4Z7JE3NJcdc0X5P0ZRlcab4Z9ctYMBYZhTi74IoUiryk7N4LHLOQ30-3AJrc7qDhBxMM1gjlqRYrG4xRiKuBtNseMGZ3_V2zCGFKY9sVxDTosRkib0H0h170ZEG7P5w15-fXz7_qhfHz6_Wf947E0dduk0oLpoe9e614olX_ABFDBKZdUye6V2oZWLUhhW8Y5VUq2TLFGGmktY0rwur4hX0-5UwxvM2DSo0MLw2A8hBl1xaRqcnGRR5vTqI0BMUKvp-hGE_eaUX2Arbf6DFsfYGuam7Ps-_afz7p0ZJCpuOGi-_vJDZnCzkHUaB14C52LGbjugruQ8AH5gKRm |
CitedBy_id | crossref_primary_10_1007_s11270_023_06406_5 crossref_primary_10_3390_sym12111769 crossref_primary_10_1155_2019_1941426 crossref_primary_10_3390_w15081530 crossref_primary_10_1016_j_mex_2022_101819 crossref_primary_10_3390_app11209735 crossref_primary_10_1007_s12040_022_01858_5 crossref_primary_10_1016_j_wasman_2020_10_004 crossref_primary_10_1007_s11356_023_29664_6 crossref_primary_10_1007_s11270_023_06583_3 crossref_primary_10_1061__ASCE_GM_1943_5622_0001598 crossref_primary_10_1007_s10040_019_01948_7 |
Cites_doi | 10.1007/s10596-006-9023-9 10.1061/(ASCE)1084-0699(2008)13:12(1193) 10.1029/93WR00496 10.1016/j.jher.2009.01.003 10.1029/91WR01912 10.1016/j.jhydrol.2014.03.035 10.1016/0020-7462(94)00054-E 10.1007/s00254-008-1587-3 10.1016/j.ijheatmasstransfer.2005.01.005 10.1002/nag.903 10.1061/(ASCE)0733-9410(1991)117:3(485) 10.1016/j.cej.2010.11.047 10.1016/S0893-9659(01)00076-3 10.1029/94WR01329 10.1016/j.ijheatmasstransfer.2006.01.030 10.1016/j.jhydrol.2011.12.001 10.1007/BF00620660 10.1016/0022-1694(93)90236-3 10.1063/1.5027540 10.1016/0893-9659(95)00030-T 10.1016/j.cnsns.2009.09.002 10.1680/geot.2005.55.9.631 10.1016/j.cej.2013.01.095 10.1007/s11242-009-9368-3 10.5194/hess-15-2471-2011 10.1061/(ASCE)0733-9410(1991)117:3(467) 10.1061/(ASCE)0733-9410(1985)111:4(479) 10.1680/geot.1986.36.2.205 10.2136/vzj2005.0206 10.1007/s11771-005-0393-2 10.1061/(ASCE)GT.1943-5606.0000365 10.1023/A:1006596904771 10.1016/j.ijheatmasstransfer.2009.02.002 10.1061/(ASCE)1090-0241(2004)130:5(477) |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2018.08.041 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 428 |
ExternalDocumentID | 10_1016_j_jhydrol_2018_08_041 S0022169418306371 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a365t-ceafefdb3f79969417e074048098db0c5026e87c61440998619158a8cc1197433 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Sep 05 07:14:03 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Tue Jul 01 03:07:46 EDT 2025 Fri Feb 23 02:47:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Initial condition Transport Contaminant Homotopy analysis method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-ceafefdb3f79969417e074048098db0c5026e87c61440998619158a8cc1197433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2885-5620 |
PQID | 2189555547 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2189555547 crossref_primary_10_1016_j_jhydrol_2018_08_041 crossref_citationtrail_10_1016_j_jhydrol_2018_08_041 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2018_08_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liao (b0100) 2010; 15 Chen, Lai, Liu, Ni (b0015) 2012; 420–421 Pérez Guerrero, Pontedeiro, van Genuchten, Skaggs (b0135) 2013; 221 Rowe, R.K., 1989. Movent of pollutants through clayey soil. In: Proc. 37th annual geotechnical conf. Minnesota section ASCE, St.Paul, U.S.A. Gustavious, David (b0050) 2008; 13 Yong, Mohamed, Warketin (b0205) 1992 Li, Cleall (b0085) 2011; 35 Simpson, Ellery (b0185) 2014; 513 Vanderborght, Kasteel, Herbst, Javaux, Thiéry, Vanclooster, Mouvet, Vereecken (b0200) 2005; 4 Chen (b0035) 2014; 36 Liao (b0115) 2004; 48 Chen, Zhang, Huang (b0030) 2005; 11 Van Genuchten, Alves (b0195) 1982; 9 Leij, Skaggs, Van Genuchten (b0065) 1991; 27 Rowe (b0160) 2005; 55 Pérez Guerrero, Pimentel, Skaggs, van Genuchten (b0130) 2009; 52 Shackelford, Daniel (b0175) 1991; 117 Liao (b0110) 1992 Pérez Guerrero, Skaggs, van Genuchten (b0140) 2009; 80 Golz, Dorroh (b0045) 2001; 14 Yu, Liu, Ma, Yu (b0210) 2018 Shackelford, Daniel (b0180) 1991; 117 Frolkovič, Kačur (b0040) 2006; 10 Toride, Leij, van Genuchten (b0190) 1993; 29 Malusis, Shackelford (b0125) 2004; 130 Liu (b0120) 1998; 30 Chen, Ju (b0010) 2004; 155 Chen, Liu (b0020) 2011; 15 Liao, Su, Chwang (b0105) 2006; 49 Philip (b0145) 1994; 30 Rowe (b0150) 1987 Jaiswal, Kumar, Kumar, Yadav (b0055) 2009; 2 Leij, Toride, van Genuchten (b0070) 1993; 151 Chen, Xie, Ke, Chen (b0025) 2009; 58 Liao (b0090) 1995; 30 Bear, Cheng (b0005) 2008 Ziskind, Shmueli, Gitis (b0215) 2011; 167 Lei, Lin, Liu, Shi, Ma, Yang, Yu (b0060) 2018; 8 Rowe, Booker (b0170) 1986; 36 Logan, Zlotnik (b9000) 1995; 8 Leij, Van Genuchten (b0075) 1995; 18 Rowe, Booker (b0165) 1985; 111 Li, Cleall (b0080) 2010; 136 Liao (b0095) 2005; 48 Pérez Guerrero (10.1016/j.jhydrol.2018.08.041_b0130) 2009; 52 Chen (10.1016/j.jhydrol.2018.08.041_b0035) 2014; 36 Logan (10.1016/j.jhydrol.2018.08.041_b9000) 1995; 8 Leij (10.1016/j.jhydrol.2018.08.041_b0075) 1995; 18 Chen (10.1016/j.jhydrol.2018.08.041_b0030) 2005; 11 Bear (10.1016/j.jhydrol.2018.08.041_b0005) 2008 Pérez Guerrero (10.1016/j.jhydrol.2018.08.041_b0140) 2009; 80 Liao (10.1016/j.jhydrol.2018.08.041_b0090) 1995; 30 Leij (10.1016/j.jhydrol.2018.08.041_b0070) 1993; 151 10.1016/j.jhydrol.2018.08.041_b0155 Liao (10.1016/j.jhydrol.2018.08.041_b0110) 1992 Rowe (10.1016/j.jhydrol.2018.08.041_b0165) 1985; 111 Chen (10.1016/j.jhydrol.2018.08.041_b0010) 2004; 155 Gustavious (10.1016/j.jhydrol.2018.08.041_b0050) 2008; 13 Jaiswal (10.1016/j.jhydrol.2018.08.041_b0055) 2009; 2 Rowe (10.1016/j.jhydrol.2018.08.041_b0160) 2005; 55 Golz (10.1016/j.jhydrol.2018.08.041_b0045) 2001; 14 Philip (10.1016/j.jhydrol.2018.08.041_b0145) 1994; 30 Yong (10.1016/j.jhydrol.2018.08.041_b0205) 1992 Li (10.1016/j.jhydrol.2018.08.041_b0080) 2010; 136 Liao (10.1016/j.jhydrol.2018.08.041_b0095) 2005; 48 Liao (10.1016/j.jhydrol.2018.08.041_b0105) 2006; 49 Toride (10.1016/j.jhydrol.2018.08.041_b0190) 1993; 29 Chen (10.1016/j.jhydrol.2018.08.041_b0015) 2012; 420–421 Van Genuchten (10.1016/j.jhydrol.2018.08.041_b0195) 1982; 9 Ziskind (10.1016/j.jhydrol.2018.08.041_b0215) 2011; 167 Leij (10.1016/j.jhydrol.2018.08.041_b0065) 1991; 27 Chen (10.1016/j.jhydrol.2018.08.041_b0025) 2009; 58 Liao (10.1016/j.jhydrol.2018.08.041_b0115) 2004; 48 Chen (10.1016/j.jhydrol.2018.08.041_b0020) 2011; 15 Liao (10.1016/j.jhydrol.2018.08.041_b0100) 2010; 15 Rowe (10.1016/j.jhydrol.2018.08.041_b0150) 1987 Rowe (10.1016/j.jhydrol.2018.08.041_b0170) 1986; 36 Vanderborght (10.1016/j.jhydrol.2018.08.041_b0200) 2005; 4 Liu (10.1016/j.jhydrol.2018.08.041_b0120) 1998; 30 Pérez Guerrero (10.1016/j.jhydrol.2018.08.041_b0135) 2013; 221 Frolkovič (10.1016/j.jhydrol.2018.08.041_b0040) 2006; 10 Li (10.1016/j.jhydrol.2018.08.041_b0085) 2011; 35 Shackelford (10.1016/j.jhydrol.2018.08.041_b0180) 1991; 117 Lei (10.1016/j.jhydrol.2018.08.041_b0060) 2018; 8 Shackelford (10.1016/j.jhydrol.2018.08.041_b0175) 1991; 117 Simpson (10.1016/j.jhydrol.2018.08.041_b0185) 2014; 513 Malusis (10.1016/j.jhydrol.2018.08.041_b0125) 2004; 130 Yu (10.1016/j.jhydrol.2018.08.041_b0210) 2018 |
References_xml | – volume: 58 start-page: 1083 year: 2009 end-page: 1094 ident: b0025 article-title: An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications publication-title: Environ. Geol. – volume: 35 start-page: 438 year: 2011 end-page: 460 ident: b0085 article-title: Analytical solutions for advective-dispersive solute transport in double-layered finite porous media publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 513 start-page: 7 year: 2014 end-page: 12 ident: b0185 article-title: Exact series solutions of reactive transport models with general initial conditions publication-title: J. Hydrol. – volume: 420–421 start-page: 191 year: 2012 end-page: 204 ident: b0015 article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions publication-title: J. Hydrol. – volume: 155 start-page: 25 year: 2004 end-page: 38 ident: b0010 article-title: Application of differential transformation to transient advective–dispersive transport equation publication-title: Appl. Math. Comput. – year: 2008 ident: b0005 article-title: Modeling Groundwater Flow and Contaminant Transport – volume: 18 start-page: 65 year: 1995 end-page: 85 ident: b0075 article-title: Approximate analytical solutions for solute transport in two-layer porous media publication-title: Transp. Porous Media – volume: 80 start-page: 373 year: 2009 end-page: 387 ident: b0140 article-title: Analytical Solution for Multi-Species Contaminant Transport Subject to Sequential First-Order Decay Reactions in Finite Media publication-title: Transp. Porous Media – volume: 29 start-page: 2167 year: 1993 end-page: 2182 ident: b0190 article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production publication-title: Water Resour. Res. – volume: 151 start-page: 193 year: 1993 end-page: 228 ident: b0070 article-title: Analytical solutions for non-equilibrium solute transport in three-dimensional porous media publication-title: J. Hydrol. – volume: 30 start-page: 371 year: 1995 end-page: 380 ident: b0090 article-title: An approximate solution technique not depending on small parameters: A special example publication-title: Int. J. Non Linear Mech. – volume: 36 start-page: 3209 year: 2014 end-page: 3214 ident: b0035 article-title: A fundamental theory of environmental ge-otechnics and its application publication-title: Chinese J. Geotechnical Eng. – year: 2018 ident: b0210 article-title: Study on transport and transformation of contaminant through layered soil with large deformation publication-title: Environ. Sci. Pollut. Res. – year: 1992 ident: b0205 article-title: Principles of Contaminant Transport in Soils – volume: 36 start-page: 205 year: 1986 end-page: 214 ident: b0170 article-title: A finite layer technique for calculating three-dimensional pollutant migration in soil publication-title: Geotechnique – volume: 221 start-page: 487 year: 2013 end-page: 491 ident: b0135 article-title: Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions publication-title: Chem. Eng. J. – volume: 14 start-page: 983 year: 2001 end-page: 988 ident: b0045 article-title: The convection-diffusion equation for a finite domain with time varying boundaries publication-title: Appl. Math. Lett. – volume: 48 start-page: 2529 year: 2005 end-page: 2539 ident: b0095 article-title: A new branch of solutions of boundary-layer flows over an impermeable stretched plate publication-title: Int. J. Heat Mass Transf. – start-page: 430 year: 1987 end-page: 454 ident: b0150 article-title: Pollutant transport through barriers publication-title: Geotechnical Practice for Waste Disposal'87/GT Div – volume: 117 start-page: 485 year: 1991 end-page: 506 ident: b0180 article-title: Diffusion in saturated soil. Ii: Results for compacted clay publication-title: J. Geotechnical Eng. – year: 1992 ident: b0110 article-title: The proposed homotopy analysis technique for the solution of nonlinear problems – volume: 167 start-page: 403 year: 2011 end-page: 408 ident: b0215 article-title: An analytical solution of the convection–dispersion–reaction equation for a finite region with a pulse boundary condition publication-title: Chem. Eng. J. – volume: 117 start-page: 467 year: 1991 end-page: 484 ident: b0175 article-title: Diffusion in saturated soil. I: Background publication-title: J. Geotechnical Eng. – volume: 13 start-page: 1193 year: 2008 end-page: 1196 ident: b0050 article-title: Analytical Solution to the Advective-Dispersive Equation with a Decaying Source and Contaminant publication-title: J. Hydrol. Eng. – volume: 15 start-page: 2471 year: 2011 end-page: 2479 ident: b0020 article-title: Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition publication-title: Hydrol. Earth Syst. Sci. – volume: 10 start-page: 279 year: 2006 end-page: 290 ident: b0040 article-title: Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1D publication-title: Comput. Geosci. – volume: 9 start-page: 79 year: 1982 end-page: 80 ident: b0195 article-title: Analytical solutions of the one dimensional convective dispersive solute transport equation publication-title: Agric. Water Manag. – volume: 27 start-page: 2719 year: 1991 end-page: 2733 ident: b0065 article-title: Analytical Solutions for Solute Transport in Three-Dimensional Semi-infinite Porous Media publication-title: Water Resour. Res. – volume: 130 start-page: 477 year: 2004 end-page: 487 ident: b0125 article-title: Predicting solute flux through a clay membrane barrier publication-title: J. Geotech. Geoenviron. Eng. – volume: 48 start-page: 305 year: 2004 end-page: 334 ident: b0115 article-title: On the homotopy anaylsis method for nonlinear problems publication-title: Comput. Math. Appl. – volume: 111 start-page: 479 year: 1985 end-page: 499 ident: b0165 article-title: 1-D Pollutant Migration in Soils of Finite Depth publication-title: J. Geotechnical Eng. – volume: 30 start-page: 3545 year: 1994 end-page: 3551 ident: b0145 article-title: Some exact solutions of convection-diffusion and diffusion equations publication-title: Water Resour. Res. – volume: 2 start-page: 254 year: 2009 end-page: 263 ident: b0055 article-title: Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media publication-title: J. Hydro-Environ. Res. – volume: 11 start-page: 168 year: 2005 end-page: 172 ident: b0030 article-title: Analysis on contaminants transports process through clay-solidified grouting curtain in MSW landfills publication-title: J. Central South Univ. Technol. – volume: 8 year: 2018 ident: b0060 article-title: Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment publication-title: AIP Adv. – volume: 136 start-page: 1542 year: 2010 end-page: 1554 ident: b0080 article-title: Analytical solutions for contaminant diffusion in double-layered porous media publication-title: J. Geotech. Geoenviron. Eng. – volume: 55 start-page: 631 year: 2005 end-page: 678 ident: b0160 article-title: Long-term performance of contaminant barrier systems publication-title: Geotechnique – volume: 8 start-page: 55 year: 1995 end-page: 61 ident: b9000 article-title: The convection-diffusion equation with periodic boundary conditions publication-title: Appl. Math. Lett. – volume: 15 start-page: 2003 year: 2010 end-page: 2016 ident: b0100 article-title: An optimal homotopy-analysis approach for strongly nonlinear differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 52 start-page: 3297 year: 2009 end-page: 3304 ident: b0130 article-title: Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique publication-title: Int. J. Heat Mass Transf. – reference: Rowe, R.K., 1989. Movent of pollutants through clayey soil. In: Proc. 37th annual geotechnical conf. Minnesota section ASCE, St.Paul, U.S.A. – volume: 4 start-page: 206 year: 2005 end-page: 221 ident: b0200 article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils publication-title: Vadose Zone J. – volume: 30 start-page: 25 year: 1998 end-page: 43 ident: b0120 article-title: An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media publication-title: Transp. Porous Media – volume: 49 start-page: 2437 year: 2006 end-page: 2445 ident: b0105 article-title: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body publication-title: Int. J. Heat Mass Transf. – volume: 10 start-page: 279 year: 2006 ident: 10.1016/j.jhydrol.2018.08.041_b0040 article-title: Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1D publication-title: Comput. Geosci. doi: 10.1007/s10596-006-9023-9 – volume: 13 start-page: 1193 year: 2008 ident: 10.1016/j.jhydrol.2018.08.041_b0050 article-title: Analytical Solution to the Advective-Dispersive Equation with a Decaying Source and Contaminant publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2008)13:12(1193) – volume: 29 start-page: 2167 year: 1993 ident: 10.1016/j.jhydrol.2018.08.041_b0190 article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production publication-title: Water Resour. Res. doi: 10.1029/93WR00496 – volume: 2 start-page: 254 year: 2009 ident: 10.1016/j.jhydrol.2018.08.041_b0055 article-title: Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2009.01.003 – year: 2018 ident: 10.1016/j.jhydrol.2018.08.041_b0210 article-title: Study on transport and transformation of contaminant through layered soil with large deformation publication-title: Environ. Sci. Pollut. Res. – year: 1992 ident: 10.1016/j.jhydrol.2018.08.041_b0110 – ident: 10.1016/j.jhydrol.2018.08.041_b0155 – volume: 27 start-page: 2719 year: 1991 ident: 10.1016/j.jhydrol.2018.08.041_b0065 article-title: Analytical Solutions for Solute Transport in Three-Dimensional Semi-infinite Porous Media publication-title: Water Resour. Res. doi: 10.1029/91WR01912 – volume: 48 start-page: 305 year: 2004 ident: 10.1016/j.jhydrol.2018.08.041_b0115 article-title: On the homotopy anaylsis method for nonlinear problems publication-title: Comput. Math. Appl. – volume: 513 start-page: 7 year: 2014 ident: 10.1016/j.jhydrol.2018.08.041_b0185 article-title: Exact series solutions of reactive transport models with general initial conditions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.035 – year: 1992 ident: 10.1016/j.jhydrol.2018.08.041_b0205 – volume: 30 start-page: 371 year: 1995 ident: 10.1016/j.jhydrol.2018.08.041_b0090 article-title: An approximate solution technique not depending on small parameters: A special example publication-title: Int. J. Non Linear Mech. doi: 10.1016/0020-7462(94)00054-E – volume: 58 start-page: 1083 year: 2009 ident: 10.1016/j.jhydrol.2018.08.041_b0025 article-title: An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications publication-title: Environ. Geol. doi: 10.1007/s00254-008-1587-3 – volume: 48 start-page: 2529 year: 2005 ident: 10.1016/j.jhydrol.2018.08.041_b0095 article-title: A new branch of solutions of boundary-layer flows over an impermeable stretched plate publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.01.005 – volume: 35 start-page: 438 year: 2011 ident: 10.1016/j.jhydrol.2018.08.041_b0085 article-title: Analytical solutions for advective-dispersive solute transport in double-layered finite porous media publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.903 – volume: 117 start-page: 485 year: 1991 ident: 10.1016/j.jhydrol.2018.08.041_b0180 article-title: Diffusion in saturated soil. Ii: Results for compacted clay publication-title: J. Geotechnical Eng. doi: 10.1061/(ASCE)0733-9410(1991)117:3(485) – volume: 167 start-page: 403 year: 2011 ident: 10.1016/j.jhydrol.2018.08.041_b0215 article-title: An analytical solution of the convection–dispersion–reaction equation for a finite region with a pulse boundary condition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.11.047 – volume: 14 start-page: 983 year: 2001 ident: 10.1016/j.jhydrol.2018.08.041_b0045 article-title: The convection-diffusion equation for a finite domain with time varying boundaries publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(01)00076-3 – volume: 155 start-page: 25 year: 2004 ident: 10.1016/j.jhydrol.2018.08.041_b0010 article-title: Application of differential transformation to transient advective–dispersive transport equation publication-title: Appl. Math. Comput. – volume: 30 start-page: 3545 year: 1994 ident: 10.1016/j.jhydrol.2018.08.041_b0145 article-title: Some exact solutions of convection-diffusion and diffusion equations publication-title: Water Resour. Res. doi: 10.1029/94WR01329 – volume: 49 start-page: 2437 year: 2006 ident: 10.1016/j.jhydrol.2018.08.041_b0105 article-title: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.01.030 – volume: 420–421 start-page: 191 year: 2012 ident: 10.1016/j.jhydrol.2018.08.041_b0015 article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.12.001 – volume: 18 start-page: 65 year: 1995 ident: 10.1016/j.jhydrol.2018.08.041_b0075 article-title: Approximate analytical solutions for solute transport in two-layer porous media publication-title: Transp. Porous Media doi: 10.1007/BF00620660 – volume: 151 start-page: 193 year: 1993 ident: 10.1016/j.jhydrol.2018.08.041_b0070 article-title: Analytical solutions for non-equilibrium solute transport in three-dimensional porous media publication-title: J. Hydrol. doi: 10.1016/0022-1694(93)90236-3 – start-page: 430 year: 1987 ident: 10.1016/j.jhydrol.2018.08.041_b0150 article-title: Pollutant transport through barriers – volume: 8 year: 2018 ident: 10.1016/j.jhydrol.2018.08.041_b0060 article-title: Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment publication-title: AIP Adv. doi: 10.1063/1.5027540 – volume: 8 start-page: 55 issue: 3 year: 1995 ident: 10.1016/j.jhydrol.2018.08.041_b9000 article-title: The convection-diffusion equation with periodic boundary conditions publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(95)00030-T – volume: 15 start-page: 2003 year: 2010 ident: 10.1016/j.jhydrol.2018.08.041_b0100 article-title: An optimal homotopy-analysis approach for strongly nonlinear differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.09.002 – volume: 55 start-page: 631 year: 2005 ident: 10.1016/j.jhydrol.2018.08.041_b0160 article-title: Long-term performance of contaminant barrier systems publication-title: Geotechnique doi: 10.1680/geot.2005.55.9.631 – volume: 221 start-page: 487 year: 2013 ident: 10.1016/j.jhydrol.2018.08.041_b0135 article-title: Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.01.095 – volume: 80 start-page: 373 year: 2009 ident: 10.1016/j.jhydrol.2018.08.041_b0140 article-title: Analytical Solution for Multi-Species Contaminant Transport Subject to Sequential First-Order Decay Reactions in Finite Media publication-title: Transp. Porous Media doi: 10.1007/s11242-009-9368-3 – volume: 15 start-page: 2471 year: 2011 ident: 10.1016/j.jhydrol.2018.08.041_b0020 article-title: Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-2471-2011 – volume: 117 start-page: 467 year: 1991 ident: 10.1016/j.jhydrol.2018.08.041_b0175 article-title: Diffusion in saturated soil. I: Background publication-title: J. Geotechnical Eng. doi: 10.1061/(ASCE)0733-9410(1991)117:3(467) – volume: 9 start-page: 79 year: 1982 ident: 10.1016/j.jhydrol.2018.08.041_b0195 article-title: Analytical solutions of the one dimensional convective dispersive solute transport equation publication-title: Agric. Water Manag. – year: 2008 ident: 10.1016/j.jhydrol.2018.08.041_b0005 – volume: 111 start-page: 479 year: 1985 ident: 10.1016/j.jhydrol.2018.08.041_b0165 article-title: 1-D Pollutant Migration in Soils of Finite Depth publication-title: J. Geotechnical Eng. doi: 10.1061/(ASCE)0733-9410(1985)111:4(479) – volume: 36 start-page: 205 year: 1986 ident: 10.1016/j.jhydrol.2018.08.041_b0170 article-title: A finite layer technique for calculating three-dimensional pollutant migration in soil publication-title: Geotechnique doi: 10.1680/geot.1986.36.2.205 – volume: 36 start-page: 3209 year: 2014 ident: 10.1016/j.jhydrol.2018.08.041_b0035 article-title: A fundamental theory of environmental ge-otechnics and its application publication-title: Chinese J. Geotechnical Eng. – volume: 4 start-page: 206 year: 2005 ident: 10.1016/j.jhydrol.2018.08.041_b0200 article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils publication-title: Vadose Zone J. doi: 10.2136/vzj2005.0206 – volume: 11 start-page: 168 year: 2005 ident: 10.1016/j.jhydrol.2018.08.041_b0030 article-title: Analysis on contaminants transports process through clay-solidified grouting curtain in MSW landfills publication-title: J. Central South Univ. Technol. doi: 10.1007/s11771-005-0393-2 – volume: 136 start-page: 1542 year: 2010 ident: 10.1016/j.jhydrol.2018.08.041_b0080 article-title: Analytical solutions for contaminant diffusion in double-layered porous media publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000365 – volume: 30 start-page: 25 year: 1998 ident: 10.1016/j.jhydrol.2018.08.041_b0120 article-title: An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media publication-title: Transp. Porous Media doi: 10.1023/A:1006596904771 – volume: 52 start-page: 3297 year: 2009 ident: 10.1016/j.jhydrol.2018.08.041_b0130 article-title: Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.02.002 – volume: 130 start-page: 477 year: 2004 ident: 10.1016/j.jhydrol.2018.08.041_b0125 article-title: Predicting solute flux through a clay membrane barrier publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2004)130:5(477) |
SSID | ssj0000334 |
Score | 2.3443124 |
Snippet | •HAM has been applied to solve 1-D reactive transport equation.•General boundary conditions and smooth initial conditions are considered.•A convenient way is... The one-dimensional advective-dispersive-reactive transport equation has been widely applied to describe the transportation process of landfill leachate... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 422 |
SubjectTerms | Contaminant deformation equations Homotopy analysis method hydrology Initial condition landfill leachates Transport transportation |
Title | Semi-analytical solution to one-dimensional advective-dispersive-reactive transport equation using homotopy analysis method |
URI | https://dx.doi.org/10.1016/j.jhydrol.2018.08.041 https://www.proquest.com/docview/2189555547 |
Volume | 565 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6iB72IP3H-IoLXbG2TLulRRJmKXlTwFtI0dRu6ztkJQ_Bv9702VRRkYG8NTSh56cv3mu99j5DjHGWUwkgym-WGiSR0LI1swng3z6rKaUGGgeL1Tbd3Ly4f4ocFctrkwiCt0vv-2qdX3tq3dPxsdsaDAeb4RlGIeZgKYC-v8siFkKif3_74pnkEnItGMRyf_s7i6Qzbw_4smxR4AhGqSslThH_tT788dbX9nK-RVY8b6Un9autkwY02yLIvYd6fbZL3W_c8YAY1Rqrf07RZVLQsaDFyLEMd_1qDg5rsrXZ00IpS4chhZwAfqzZaNoLn1L3USuAU6fGPtI_UvWI8o8ZLmdC6APUWuT8_uzvtMV9ZgRnejUtmncldnqU8lxDvwBRKB1AC08sTlaWBjSEyc0pajBYBQiqIssJYGWUtnjoKzrfJ4ghefYdQFfBUChMpGFJIZ02UJ0ameZCmXQB7okVEM5_aetlxrH7xpBt-2VB7M2g0g8aqmCJskfZXt3GtuzGvg2qMpX8sIA17w7yuR41xNXxceGJiRq6YvmrAP0kMl5C7_x9-j6zgXc0A3CeL5WTqDgDJlOlhtVQPydLJxVXv5hOGEPcP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHvQiPvFtBK_ZbZt0kx5FlPV5UcFbSNPU3UW3q1ZhEfztzrSpi4II9pg2IWSmk2-SmW8IOciRRimMJLNZbphIQsfSyCaMd_OsqpwWZOgoXl51e7fi7C6-a5GjJhcGwyq97a9temWtfUvHr2ZnPBhgjm8UhZiHqQD2cswjnxUxl6ja7Y9pnEfAuWgow_HzaRpPZ9ge9ifZc4FXEKGqqDxF-NsG9cNUV_vPySJZ8MCRHtZzWyItN1omc76GeX-yQt6v3eOAGSQZqc6naaNVtCxoMXIsQyL_moSDmuyttnTQilzhGMTOAD9WbbRsGM-pe6qpwCnGx9_TPsbuFeMJNZ7LhNYVqFfJ7cnxzVGP-dIKzPBuXDLrTO7yLOW5BIcH1lA6wBKYX56oLA1sDK6ZU9KiuwgYUoGbFcbKKGvx2lFwvkZmRjD1dUJVwFMpTKRgSCGdNVGeGJnmQZp2Ae2JDSKa9dTW845j-YsH3QSYDbUXg0YxaCyLKcIN0v7qNq6JN_7qoBph6W8apGFz-KvrfiNcDX8XXpmYkSteXzQAoCSGR8jN_w-_R-Z6N5cX-uL06nyLzOObOhxwm8yUz69uB2BNme5WavsJOuH4pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-analytical+solution+to+one-dimensional+advective-dispersive-reactive+transport+equation+using+homotopy+analysis+method&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Yu%2C+Chuang&rft.au=Wang%2C+Hui&rft.au=Fang%2C+Dongfang&rft.au=Ma%2C+Jianjun&rft.date=2018-10-01&rft.issn=0022-1694&rft.volume=565&rft.spage=422&rft.epage=428&rft_id=info:doi/10.1016%2Fj.jhydrol.2018.08.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2018_08_041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |