Decadal change of rainfall erosivity during rainy season in mainland China and its underlying causes

[Display omitted] •Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season rainfall erosivity in the Yangtze River basin and the source of three rivers.•Atlantic and Indian Ocean warming affected rainy-season rainfall erosi...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 620; p. 129391
Main Authors Cao, Qing, Yuan, Xing, Yan, Qingyun, Zhu, Feilin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season rainfall erosivity in the Yangtze River basin and the source of three rivers.•Atlantic and Indian Ocean warming affected rainy-season rainfall erosivity in northeastern and north China.•The effect of sea surface temperature on rainy-season rainfall erosivity in sub-regions was shown as different resonant periods. Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of rainfall erosivity during rainy season (RERS), when soil erosion occurs most frequently, is critical for environmental management and agricultural planning under climate change. However, whether RERS in mainland China has experienced decadal change and how it responds to large-scale climate indicators is unclear. Here, the decadal changes of RERS over mainland China and its underlying causes according to climate factors are investigated. The multi-scale moving t-test was used to determine the rainy season, and the rotated empirical orthogonal function analysis was applied to divide mainland China into sub-regions. Three abruption-detection methods were used to determine the decadal variation of RERS. Results show that: (1) RERS in China experienced different decadal change characteristics in different sub-regions. In the Yangtze River basin and the source of three rivers, the decadal change of RERS occurred around 2003, while RERS showed a prominent increasing trend over northeastern and northern China after 2008. (2) Significant negative (positive) trend of RERS over the Yangtze River basin (the source of three rivers) after 2003 was related to enhanced monsoon and anomalous divergence (convergence) modulated by Pacific Decadal Oscillation (PDO). By contrast, the prominent increasing trend after 2008 over northeastern and northern China was correlated to the Northern China Cold Vortex and Atlantic and Indian Ocean warming. (3) The non-stationary characteristic between sea surface temperature (SST) and RERS was reflected by the cross-wavelet transform. The influence of PDO over the Yangtze River basin and the source of three rivers was shown as long-term (8–13 years) or short-term (2–6 years) resonant periods. In contrast, the effect of SST over the Indian Ocean and the Atlantic Ocean is mainly presented as short-term resonant periods. These results suggest that the decadal change of RERS is closely related to the changes in SST and particular atmospheric circulation, and understanding these oceanic and atmospheric dynamics is helpful for agricultural security and environmental management under RERS changes.
AbstractList [Display omitted] •Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season rainfall erosivity in the Yangtze River basin and the source of three rivers.•Atlantic and Indian Ocean warming affected rainy-season rainfall erosivity in northeastern and north China.•The effect of sea surface temperature on rainy-season rainfall erosivity in sub-regions was shown as different resonant periods. Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of rainfall erosivity during rainy season (RERS), when soil erosion occurs most frequently, is critical for environmental management and agricultural planning under climate change. However, whether RERS in mainland China has experienced decadal change and how it responds to large-scale climate indicators is unclear. Here, the decadal changes of RERS over mainland China and its underlying causes according to climate factors are investigated. The multi-scale moving t-test was used to determine the rainy season, and the rotated empirical orthogonal function analysis was applied to divide mainland China into sub-regions. Three abruption-detection methods were used to determine the decadal variation of RERS. Results show that: (1) RERS in China experienced different decadal change characteristics in different sub-regions. In the Yangtze River basin and the source of three rivers, the decadal change of RERS occurred around 2003, while RERS showed a prominent increasing trend over northeastern and northern China after 2008. (2) Significant negative (positive) trend of RERS over the Yangtze River basin (the source of three rivers) after 2003 was related to enhanced monsoon and anomalous divergence (convergence) modulated by Pacific Decadal Oscillation (PDO). By contrast, the prominent increasing trend after 2008 over northeastern and northern China was correlated to the Northern China Cold Vortex and Atlantic and Indian Ocean warming. (3) The non-stationary characteristic between sea surface temperature (SST) and RERS was reflected by the cross-wavelet transform. The influence of PDO over the Yangtze River basin and the source of three rivers was shown as long-term (8–13 years) or short-term (2–6 years) resonant periods. In contrast, the effect of SST over the Indian Ocean and the Atlantic Ocean is mainly presented as short-term resonant periods. These results suggest that the decadal change of RERS is closely related to the changes in SST and particular atmospheric circulation, and understanding these oceanic and atmospheric dynamics is helpful for agricultural security and environmental management under RERS changes.
Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of rainfall erosivity during rainy season (RERS), when soil erosion occurs most frequently, is critical for environmental management and agricultural planning under climate change. However, whether RERS in mainland China has experienced decadal change and how it responds to large-scale climate indicators is unclear. Here, the decadal changes of RERS over mainland China and its underlying causes according to climate factors are investigated. The multi-scale moving t-test was used to determine the rainy season, and the rotated empirical orthogonal function analysis was applied to divide mainland China into sub-regions. Three abruption-detection methods were used to determine the decadal variation of RERS. Results show that: (1) RERS in China experienced different decadal change characteristics in different sub-regions. In the Yangtze River basin and the source of three rivers, the decadal change of RERS occurred around 2003, while RERS showed a prominent increasing trend over northeastern and northern China after 2008. (2) Significant negative (positive) trend of RERS over the Yangtze River basin (the source of three rivers) after 2003 was related to enhanced monsoon and anomalous divergence (convergence) modulated by Pacific Decadal Oscillation (PDO). By contrast, the prominent increasing trend after 2008 over northeastern and northern China was correlated to the Northern China Cold Vortex and Atlantic and Indian Ocean warming. (3) The non-stationary characteristic between sea surface temperature (SST) and RERS was reflected by the cross-wavelet transform. The influence of PDO over the Yangtze River basin and the source of three rivers was shown as long-term (8–13 years) or short-term (2–6 years) resonant periods. In contrast, the effect of SST over the Indian Ocean and the Atlantic Ocean is mainly presented as short-term resonant periods. These results suggest that the decadal change of RERS is closely related to the changes in SST and particular atmospheric circulation, and understanding these oceanic and atmospheric dynamics is helpful for agricultural security and environmental management under RERS changes.
ArticleNumber 129391
Author Zhu, Feilin
Yan, Qingyun
Cao, Qing
Yuan, Xing
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0000-0001-9230-4076
  surname: Cao
  fullname: Cao, Qing
  organization: Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 2
  givenname: Xing
  orcidid: 0000-0001-6983-7368
  surname: Yuan
  fullname: Yuan, Xing
  email: xyuan@nuist.edu.cn
  organization: Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 3
  givenname: Qingyun
  surname: Yan
  fullname: Yan, Qingyun
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 4
  givenname: Feilin
  surname: Zhu
  fullname: Zhu, Feilin
  organization: State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
BookMark eNqFkE1PAyEQhjnUxFb9CSYcvbQusOxHPBhTP5MmXvRMZmG2pdlChV2T_fdS68lLuQxk5nkzPDMycd4hIdcsW7CMFbfbxXYzmuC7Bc-4WDBei5pNyDTLOJ-zos7PySzGbZaOEPmUmEfUYKCjegNujdS3NIB1LXQdxeCj_bb9SM0QrFv_dkYaEaJ31Dq6S-8OnKHLjXVADzfbRzo4g6EbD4SGIWK8JGcpMOLVX70gn89PH8vX-er95W35sJqDKGQ_hwpAyrbBTOpK5LI1vNUoGeQy16VBqVlZ12UDDJtGCCg551C3JbRNVVSyEBfk5pi7D_5rwNirnY0au7Qj-iEqwaQoZVnUVRqVx1GdPhkDtmof7A7CqFimDibVVv2ZVAeT6mgycXf_OG176K13fbLTnaTvjzQmC98Wg4raotNobEDdK-PtiYQfFVmZEw
CitedBy_id crossref_primary_10_1002_esp_70029
crossref_primary_10_1016_j_scitotenv_2024_177060
crossref_primary_10_3390_su16010111
crossref_primary_10_1007_s00704_024_05001_w
crossref_primary_10_1016_j_biocon_2024_110943
Cites_doi 10.3390/w8030105
10.1002/hyp.13821
10.1016/j.jhydrol.2008.04.002
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1016/j.catena.2022.106225
10.1016/j.scitotenv.2015.01.008
10.1016/j.jhydrol.2016.02.020
10.1029/2020GL089823
10.1016/j.catena.2022.106373
10.2151/jmsj1965.64.2_273
10.1175/JCLI-D-12-00021.1
10.1071/SR9960139
10.3390/hydrology8040171
10.3390/app11219903
10.1016/j.jhydrol.2012.03.001
10.1016/j.catena.2021.105931
10.1007/s12517-021-07184-2
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1002/joc.1946
10.1016/j.catena.2021.105957
10.1016/j.catena.2020.104837
10.1029/2021GL092873
10.1016/j.agwat.2020.106557
10.1016/j.catena.2020.105060
10.1016/j.atmosres.2021.105791
10.3390/su12062198
10.5194/npg-11-505-2004
10.1175/JCLI-D-14-00006.1
10.1016/j.jhydrol.2017.12.026
10.1016/j.jhydrol.2011.07.031
10.1007/s00382-017-3669-y
10.1175/MWR-D-14-00192.1
10.1016/j.scitotenv.2018.04.400
10.2151/jmsj1965.70.1_95
10.1016/j.catena.2016.07.006
10.1029/2011JD015979
10.5194/npg-11-561-2004
10.1175/JCLI-D-15-0430.1
10.1016/j.catena.2017.06.004
10.1016/j.jhydrol.2009.09.051
10.1016/j.catena.2020.104993
10.1175/JCLI-D-14-00007.1
10.1016/j.catena.2018.04.015
10.1016/j.scitotenv.2020.143990
10.1016/j.geoderma.2013.03.009
10.1175/JCLI-D-20-0612.1
10.1016/j.ecoinf.2019.04.004
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2023.129391
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2023_129391
S0022169423003335
GeographicLocations Indian Ocean
Atlantic Ocean
China
Yangtze River
GeographicLocations_xml – name: Atlantic Ocean
– name: Yangtze River
– name: China
– name: Indian Ocean
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a365t-a8aa55fbe05c8345fd2fce51a454c7de5c17997ba1ebb33a7222a9f7afb868563
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 09:22:00 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Tue Jul 01 01:53:48 EDT 2025
Sat Oct 05 15:36:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Rainfall erosivity
Decadal change
Atmospheric circulation
PDO
Sea surface temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-a8aa55fbe05c8345fd2fce51a454c7de5c17997ba1ebb33a7222a9f7afb868563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9230-4076
0000-0001-6983-7368
PQID 3153757698
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153757698
crossref_primary_10_1016_j_jhydrol_2023_129391
crossref_citationtrail_10_1016_j_jhydrol_2023_129391
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cao, Hao, Shao, Hao, Nyima (b0025) 2018; 557
Bezak, Borrelli, Panagos (b0015) 2021; 198
Xu, Sun, Ji (b0220) 2021; 198
Maraun, Kurths (b0145) 2004; 11
Yu, Rosewell (b0245) 1996; 34
Huang, Chen (b0085) 2010; 34
Liu, Wang, Li, Zhu, Pan, Qin (b0140) 2020; 12
Jebari, Berndtsson, Olsson, Bahri (b0095) 2012; 436
Bothe, Fraedrich, Zhu (b0020) 2010; 30
Beguería, Serrano-Notivoli, Tomas-Burguera (b0010) 2018; 637
Chen, Feng, Wu (b0035) 2013; 26
Han, He, Wang, Hao (b0065) 2018; 51
Zhang, Xie, Liu (b0260) 2002; 22
Kilic, Gunal (b0110) 2021; 14
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J.E., Mo.K.C, Ropelewski.C, Wang.J, Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3): 437-471. DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Torrence, Compo (b0185) 1998; 79
WP dos Santos, W.P., Avanzi, J.C., Viola, M.R., Chou, S.C., Acuña-Guzman, S.F., Pontes, L.M., Curi, N., 2022. Projections of rainfall erosivity in climate change scenarios for the largest watershed within Brazilian territory. Catena, 213: 106225. DOI:10.1016/j.catena.2022.106225.
Petroselli, Apollonio, De Luca, Salvaneschi, Pecci, Marras, Schirone (b0175) 2021; 8
Liu, Huang, Xie, Leng, Huang, Wang, Xue (b0135) 2018; 166
Peatman, Schwendike, Birch, Marsham, Matthews, Yang (b0170) 2021; 1–52
Lee, Heo (b0120) 2011; 409
Zhang, Chao, Fan, Ren, Qi, Ji, Xu (b0250) 2021; 245
Angulo-Martínez, Beguería (b0005) 2009; 379
Hu, Zhou, Wu (b0075) 2021; 34
Huang, Thorne, Smith, Liu, Lawrimore, Banzon, Zhang, Peterson, Menne (b0090) 2016; 29
Wang, Xu, Lupo, Li, Yin (b0195) 2011; 116
Ferro, Carollo, Serio (b0055) 2020; 34
Mello, Viola, Beskow, Norton (b0150) 2013; 202
Yonetani (b0235) 1992; 70
Chen, Xu, Wang, Chen, Lai (b0040) 2020; 195
Yamamoto, Iwashima, Hoshiai (b0230) 1986; 64
Nearing, Yin, Borrelli, Polyakov (b0155) 2017; 157
Liu, Gu, Qin, Yu, Huang, Xie, Zheng, Zhang, Cheng (b0125) 2021; 757
Xue, Zhang, Wang, Sun, Yin (b0225) 2022; 1–16
Grinsted, Moore, Jevrejeva (b0060) 2004; 11
Padulano, Rianna, Santini (b0160) 2021; 34
Wang, Xiao, Wang, Wang, Huang, Hou, Lu (b0190) 2016; 8
Yu, Fan, Zhang, Zheng, Li (b0240) 2021; 48
Huang, Banzon, Freeman, Lawrimore, Liu, Peterson, Smith, Thorne, Woodruff, Zhang (b0080) 2015; 28
Hari, V., Villarini, G., Karmakar, S., Wilcox, L.J., Collins, M.J.G.R.L., 2020. Northward propagation of the intertropical convergence zone and strengthening of Indian summer monsoon rainfall. 47(23): e2020GL089823.
Xie, Bueh (b0205) 2015; 143
Xu, Pan, Han, Zhu, Tian (b0215) 2019; 52
Zhang, J., Ren, Y., Jiao, P., Xiao, P., Li, Z., 2022. Changes in rainfall erosivity from combined effects of multiple factors in China's Loess Plateau. Catena 216: 106373. DOI:10.1016/j.catena.2022.106373.
Qin, Guo, Zuo, Shan, Ma, Sun (b0180) 2016; 147
Capolongo, Diodato, Mannaerts, Piccarreta, Strobl (b0030) 2008; 356
Lee, Bae, Hong, Yang, Panagos, Borrelli, Yang, Kim, Lim (b0115) 2022; 211
Panagos, Ballabio, Borrelli, Meusburger, Klik, Rousseva, Tadic, Michaelides, Hrabalikova, Olsen, Aalto, Lakatos, Rymszewicz, Dumitrescu, Begueria, Alewell (b0165) 2015; 511
Cong, Wu, Ma, Xu, Wang, Sun, Nie (b0045) 2021; 262
Jia, Yu, Li, Li, Zhang, Wang, Ma, Xu, Zhang (b0100) 2022; 210
Watene, Yu, Nie, Zhang, Hategekimana, Mutua, Ongoma, Ayugi (b0200) 2021; 11
Xie, Yin, Liu, Nearing, Zhao (b0210) 2016; 535
Liu, Huang, Thorne, Banzon, Zhang, Freeman, Lawrimore, Peterson, Smith, Woodruff (b0130) 2015; 28
Watene (10.1016/j.jhydrol.2023.129391_b0200) 2021; 11
Liu (10.1016/j.jhydrol.2023.129391_b0125) 2021; 757
Xie (10.1016/j.jhydrol.2023.129391_b0205) 2015; 143
Petroselli (10.1016/j.jhydrol.2023.129391_b0175) 2021; 8
Zhang (10.1016/j.jhydrol.2023.129391_b0250) 2021; 245
10.1016/j.jhydrol.2023.129391_b0070
Huang (10.1016/j.jhydrol.2023.129391_b0080) 2015; 28
Maraun (10.1016/j.jhydrol.2023.129391_b0145) 2004; 11
Padulano (10.1016/j.jhydrol.2023.129391_b0160) 2021; 34
Xu (10.1016/j.jhydrol.2023.129391_b0220) 2021; 198
Cao (10.1016/j.jhydrol.2023.129391_b0025) 2018; 557
Yu (10.1016/j.jhydrol.2023.129391_b0245) 1996; 34
Peatman (10.1016/j.jhydrol.2023.129391_b0170) 2021; 1–52
Wang (10.1016/j.jhydrol.2023.129391_b0195) 2011; 116
Beguería (10.1016/j.jhydrol.2023.129391_b0010) 2018; 637
Yu (10.1016/j.jhydrol.2023.129391_b0240) 2021; 48
Liu (10.1016/j.jhydrol.2023.129391_b0140) 2020; 12
10.1016/j.jhydrol.2023.129391_b0105
Huang (10.1016/j.jhydrol.2023.129391_b0085) 2010; 34
Kilic (10.1016/j.jhydrol.2023.129391_b0110) 2021; 14
Torrence (10.1016/j.jhydrol.2023.129391_b0185) 1998; 79
Wang (10.1016/j.jhydrol.2023.129391_b0190) 2016; 8
Grinsted (10.1016/j.jhydrol.2023.129391_b0060) 2004; 11
Zhang (10.1016/j.jhydrol.2023.129391_b0260) 2002; 22
Capolongo (10.1016/j.jhydrol.2023.129391_b0030) 2008; 356
10.1016/j.jhydrol.2023.129391_b0255
Chen (10.1016/j.jhydrol.2023.129391_b0035) 2013; 26
10.1016/j.jhydrol.2023.129391_b0050
Xue (10.1016/j.jhydrol.2023.129391_b0225) 2022; 1–16
Liu (10.1016/j.jhydrol.2023.129391_b0130) 2015; 28
Panagos (10.1016/j.jhydrol.2023.129391_b0165) 2015; 511
Yonetani (10.1016/j.jhydrol.2023.129391_b0235) 1992; 70
Xu (10.1016/j.jhydrol.2023.129391_b0215) 2019; 52
Angulo-Martínez (10.1016/j.jhydrol.2023.129391_b0005) 2009; 379
Chen (10.1016/j.jhydrol.2023.129391_b0040) 2020; 195
Cong (10.1016/j.jhydrol.2023.129391_b0045) 2021; 262
Lee (10.1016/j.jhydrol.2023.129391_b0115) 2022; 211
Lee (10.1016/j.jhydrol.2023.129391_b0120) 2011; 409
Ferro (10.1016/j.jhydrol.2023.129391_b0055) 2020; 34
Jebari (10.1016/j.jhydrol.2023.129391_b0095) 2012; 436
Hu (10.1016/j.jhydrol.2023.129391_b0075) 2021; 34
Huang (10.1016/j.jhydrol.2023.129391_b0090) 2016; 29
Mello (10.1016/j.jhydrol.2023.129391_b0150) 2013; 202
Bothe (10.1016/j.jhydrol.2023.129391_b0020) 2010; 30
Yamamoto (10.1016/j.jhydrol.2023.129391_b0230) 1986; 64
Nearing (10.1016/j.jhydrol.2023.129391_b0155) 2017; 157
Qin (10.1016/j.jhydrol.2023.129391_b0180) 2016; 147
Jia (10.1016/j.jhydrol.2023.129391_b0100) 2022; 210
Liu (10.1016/j.jhydrol.2023.129391_b0135) 2018; 166
Bezak (10.1016/j.jhydrol.2023.129391_b0015) 2021; 198
Xie (10.1016/j.jhydrol.2023.129391_b0210) 2016; 535
Han (10.1016/j.jhydrol.2023.129391_b0065) 2018; 51
References_xml – volume: 210
  year: 2022
  ident: b0100
  article-title: Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load
  publication-title: Catena
– volume: 8
  start-page: 171
  year: 2021
  ident: b0175
  article-title: Comparative evaluation of the rainfall erosivity in the Rieti Province, Central Italy, using empirical formulas and a stochastic rainfall generator
  publication-title: J. Hydrol.
– volume: 48
  year: 2021
  ident: b0240
  article-title: Reexamining the Indian summer monsoon rainfall–ENSO relationship from its recovery in the 21st century: role of the Indian Ocean SST anomaly associated with types of ENSO evolution
  publication-title: Geophys. Res. Lett.
– volume: 28
  start-page: 931
  year: 2015
  end-page: 951
  ident: b0130
  article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4): Part II. Parametric and structural uncertainty estimations
  publication-title: J. Clim.
– volume: 79
  start-page: 61
  year: 1998
  end-page: 78
  ident: b0185
  article-title: A practical guide to wavelet analysis
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 757
  year: 2021
  ident: b0125
  article-title: The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP
  publication-title: Sci. Total Environ.
– volume: 195
  year: 2020
  ident: b0040
  article-title: Reexamination of the Xie model and spatiotemporal variability in rainfall erosivity in mainland China from 1960 to 2018
  publication-title: Catena
– volume: 116
  year: 2011
  ident: b0195
  article-title: The remote effect of the Tibetan Plateau on downstream flow in early summer
  publication-title: J. Geophys. Res. Atmos.
– volume: 198
  year: 2021
  ident: b0220
  article-title: Spatial-temporal evolution and driving forces of rainfall erosivity in a climatic transitional zone: A case in Huaihe River Basin, eastern China
  publication-title: Catena
– volume: 1–52
  year: 2021
  ident: b0170
  article-title: A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO and equatorial waves
  publication-title: J. Clim.
– volume: 28
  start-page: 911
  year: 2015
  end-page: 930
  ident: b0080
  article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons
  publication-title: J. Clim.
– volume: 12
  start-page: 2198
  year: 2020
  ident: b0140
  article-title: Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018
  publication-title: Sustainability
– volume: 198
  year: 2021
  ident: b0015
  article-title: A first assessment of rainfall erosivity synchrony scale at pan-European scale
  publication-title: Catena
– reference: WP dos Santos, W.P., Avanzi, J.C., Viola, M.R., Chou, S.C., Acuña-Guzman, S.F., Pontes, L.M., Curi, N., 2022. Projections of rainfall erosivity in climate change scenarios for the largest watershed within Brazilian territory. Catena, 213: 106225. DOI:10.1016/j.catena.2022.106225.
– volume: 262
  year: 2021
  ident: b0045
  article-title: Improving numerical forecast of the rainstorms induced by Mongolia cold vortex in North China with the frequency matching method
  publication-title: Atmos. Res.
– volume: 11
  start-page: 9903
  year: 2021
  ident: b0200
  article-title: Spatial-Temporal Variability of Future Rainfall Erosivity and Its Impact on Soil Loss Risk in Kenya
  publication-title: Appl. Sci.
– volume: 379
  start-page: 111
  year: 2009
  end-page: 121
  ident: b0005
  article-title: Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain)
  publication-title: J. Hydrol.
– volume: 356
  start-page: 119
  year: 2008
  end-page: 130
  ident: b0030
  article-title: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy)
  publication-title: J. Hydrol.
– volume: 34
  start-page: 139
  year: 1996
  end-page: 152
  ident: b0245
  article-title: An assessment of a daily rainfall erosivity model for New South Wales
  publication-title: Soil Res.
– volume: 436
  start-page: 102
  year: 2012
  end-page: 110
  ident: b0095
  article-title: Soil erosion estimation based on rainfall disaggregation
  publication-title: J. Hydrol.
– volume: 557
  start-page: 67
  year: 2018
  end-page: 82
  ident: b0025
  article-title: Variability of onset and retreat of the rainy season in mainland China and associations with atmospheric circulation and sea surface temperature
  publication-title: J. Hydrol.
– volume: 202
  start-page: 88
  year: 2013
  end-page: 102
  ident: b0150
  article-title: Multivariate models for annual rainfall erosivity in Brazil
  publication-title: Geoderma
– volume: 8
  start-page: 105
  year: 2016
  ident: b0190
  article-title: The impact of climate change on the duration and division of flood season in the Fenhe River basin
  publication-title: China. Water
– volume: 535
  start-page: 547
  year: 2016
  end-page: 558
  ident: b0210
  article-title: Models for estimating daily rainfall erosivity in China
  publication-title: J. Hydrol.
– reference: Zhang, J., Ren, Y., Jiao, P., Xiao, P., Li, Z., 2022. Changes in rainfall erosivity from combined effects of multiple factors in China's Loess Plateau. Catena 216: 106373. DOI:10.1016/j.catena.2022.106373.
– volume: 166
  start-page: 279
  year: 2018
  end-page: 289
  ident: b0135
  article-title: Spatial-temporal changes of rainfall erosivity in the loess plateau, China: Changing patterns, causes and implications
  publication-title: Catena
– volume: 22
  start-page: 705
  year: 2002
  end-page: 711
  ident: b0260
  article-title: Rainfall erosivity estimation using daily rainfall amounts
  publication-title: Sci. Geogr. Sin.
– volume: 157
  start-page: 357
  year: 2017
  end-page: 362
  ident: b0155
  article-title: Rainfall erosivity: an historical review
  publication-title: Catena
– reference: Hari, V., Villarini, G., Karmakar, S., Wilcox, L.J., Collins, M.J.G.R.L., 2020. Northward propagation of the intertropical convergence zone and strengthening of Indian summer monsoon rainfall. 47(23): e2020GL089823.
– volume: 11
  start-page: 505
  year: 2004
  end-page: 514
  ident: b0145
  article-title: Cross wavelet analysis: significance testing and pitfalls
  publication-title: Nonlinear Processes Geophys.
– volume: 511
  start-page: 801
  year: 2015
  end-page: 814
  ident: b0165
  article-title: Rainfall erosivity in Europe
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0110
  article-title: Spatial-temporal changes in rainfall erosivity in Turkey using CMIP5 global climate change scenario
  publication-title: Arab. J. Geosci.
– volume: 143
  start-page: 845
  year: 2015
  end-page: 863
  ident: b0205
  article-title: Different types of cold vortex circulations over Northeast China and their weather impacts
  publication-title: Mon. Weather Rev.
– volume: 64
  start-page: 273
  year: 1986
  end-page: 281
  ident: b0230
  article-title: An analysis of climatic jump
  publication-title: J. Meteorol. Soc. Japan. Ser. II
– volume: 409
  start-page: 30
  year: 2011
  end-page: 48
  ident: b0120
  article-title: Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea
  publication-title: J. Hydrol.
– volume: 52
  start-page: 14
  year: 2019
  end-page: 25
  ident: b0215
  article-title: Spatial–temporal distribution of rainfall erosivity, erosivity density and correlation with El Niño-Southern Oscillation in the Huaihe River Basin, China
  publication-title: Eco. Inform.
– volume: 147
  start-page: 177
  year: 2016
  end-page: 186
  ident: b0180
  article-title: Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951–2010
  publication-title: Catena
– volume: 34
  start-page: 3571
  year: 2020
  end-page: 3581
  ident: b0055
  article-title: Establishing a threshold for rainfall-induced landslides by a kinetic energy–duration relationship
  publication-title: Hydrol. Process.
– volume: 1–16
  year: 2022
  ident: b0225
  article-title: Distinct influences of cold vortex over Northeast China on local precipitation in early summer and midsummer
  publication-title: Clim. Dyn.
– volume: 29
  start-page: 3119
  year: 2016
  end-page: 3142
  ident: b0090
  article-title: Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4)
  publication-title: J. Clim.
– volume: 51
  start-page: 4065
  year: 2018
  end-page: 4076
  ident: b0065
  article-title: Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China
  publication-title: Clim. Dyn.
– volume: 11
  start-page: 561
  year: 2004
  end-page: 566
  ident: b0060
  article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series
  publication-title: Nonlinear Processes Geophys.
– volume: 34
  start-page: 1035
  year: 2010
  end-page: 1045
  ident: b0085
  article-title: Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference
  publication-title: Chin. J. Atmos. Sci.
– volume: 245
  year: 2021
  ident: b0250
  article-title: Spatial-temporal trends of rainfall erosivity and its implication for sustainable agriculture in the Wei River Basin of China
  publication-title: Agric Water Manag
– reference: Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J.E., Mo.K.C, Ropelewski.C, Wang.J, Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3): 437-471. DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
– volume: 70
  start-page: 95
  year: 1992
  end-page: 104
  ident: b0235
  article-title: Discontinuous changes of precipitation in Japan after 1900 detected by the Lepage test
  publication-title: J. Meteorol. Soc. Japan. Ser. II
– volume: 26
  start-page: 622
  year: 2013
  end-page: 635
  ident: b0035
  article-title: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon
  publication-title: J. Clim.
– volume: 30
  start-page: 844
  year: 2010
  end-page: 855
  ident: b0020
  article-title: The large-scale circulations and summer drought and wetness on the Tibetan plateau
  publication-title: Int. J. Climatol.
– volume: 34
  year: 2021
  ident: b0160
  article-title: Datasets and approaches for the estimation of rainfall erosivity over Italy: A comprehensive comparison study and a new method
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 211
  year: 2022
  ident: b0115
  article-title: Estimation of rainfall erosivity factor in Italy and Switzerland using Bayesian optimization based machine learning models
  publication-title: Catena
– volume: 637
  start-page: 359
  year: 2018
  end-page: 373
  ident: b0010
  article-title: Computation of rainfall erosivity from daily precipitation amounts
  publication-title: Sci. Total Environ.
– volume: 34
  start-page: 3385
  year: 2021
  end-page: 3400
  ident: b0075
  article-title: Impact of developing ENSO on Tibetan Plateau summer rainfall
  publication-title: J. Clim.
– volume: 8
  start-page: 105
  issue: 3
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129391_b0190
  article-title: The impact of climate change on the duration and division of flood season in the Fenhe River basin
  publication-title: China. Water
  doi: 10.3390/w8030105
– volume: 34
  start-page: 3571
  issue: 16
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129391_b0055
  article-title: Establishing a threshold for rainfall-induced landslides by a kinetic energy–duration relationship
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13821
– volume: 22
  start-page: 705
  issue: 6
  year: 2002
  ident: 10.1016/j.jhydrol.2023.129391_b0260
  article-title: Rainfall erosivity estimation using daily rainfall amounts
  publication-title: Sci. Geogr. Sin.
– volume: 356
  start-page: 119
  issue: 1–2
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129391_b0030
  article-title: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.04.002
– volume: 79
  start-page: 61
  issue: 1
  year: 1998
  ident: 10.1016/j.jhydrol.2023.129391_b0185
  article-title: A practical guide to wavelet analysis
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: 10.1016/j.jhydrol.2023.129391_b0050
  doi: 10.1016/j.catena.2022.106225
– volume: 511
  start-page: 801
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129391_b0165
  article-title: Rainfall erosivity in Europe
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.01.008
– volume: 535
  start-page: 547
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129391_b0210
  article-title: Models for estimating daily rainfall erosivity in China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.020
– volume: 34
  start-page: 1035
  issue: 6
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129391_b0085
  article-title: Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference
  publication-title: Chin. J. Atmos. Sci.
– ident: 10.1016/j.jhydrol.2023.129391_b0070
  doi: 10.1029/2020GL089823
– ident: 10.1016/j.jhydrol.2023.129391_b0255
  doi: 10.1016/j.catena.2022.106373
– volume: 64
  start-page: 273
  issue: 2
  year: 1986
  ident: 10.1016/j.jhydrol.2023.129391_b0230
  article-title: An analysis of climatic jump
  publication-title: J. Meteorol. Soc. Japan. Ser. II
  doi: 10.2151/jmsj1965.64.2_273
– volume: 26
  start-page: 622
  issue: 2
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129391_b0035
  article-title: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00021.1
– volume: 34
  start-page: 139
  issue: 1
  year: 1996
  ident: 10.1016/j.jhydrol.2023.129391_b0245
  article-title: An assessment of a daily rainfall erosivity model for New South Wales
  publication-title: Soil Res.
  doi: 10.1071/SR9960139
– volume: 8
  start-page: 171
  issue: 4
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0175
  article-title: Comparative evaluation of the rainfall erosivity in the Rieti Province, Central Italy, using empirical formulas and a stochastic rainfall generator
  publication-title: J. Hydrol.
  doi: 10.3390/hydrology8040171
– volume: 11
  start-page: 9903
  issue: 21
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0200
  article-title: Spatial-Temporal Variability of Future Rainfall Erosivity and Its Impact on Soil Loss Risk in Kenya
  publication-title: Appl. Sci.
  doi: 10.3390/app11219903
– volume: 436
  start-page: 102
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129391_b0095
  article-title: Soil erosion estimation based on rainfall disaggregation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.03.001
– volume: 210
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129391_b0100
  article-title: Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105931
– volume: 14
  start-page: 1
  issue: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0110
  article-title: Spatial-temporal changes in rainfall erosivity in Turkey using CMIP5 global climate change scenario
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-021-07184-2
– ident: 10.1016/j.jhydrol.2023.129391_b0105
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– volume: 30
  start-page: 844
  issue: 6
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129391_b0020
  article-title: The large-scale circulations and summer drought and wetness on the Tibetan plateau
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1946
– volume: 211
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129391_b0115
  article-title: Estimation of rainfall erosivity factor in Italy and Switzerland using Bayesian optimization based machine learning models
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105957
– volume: 195
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129391_b0040
  article-title: Reexamination of the Xie model and spatiotemporal variability in rainfall erosivity in mainland China from 1960 to 2018
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104837
– volume: 34
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0160
  article-title: Datasets and approaches for the estimation of rainfall erosivity over Italy: A comprehensive comparison study and a new method
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 48
  issue: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0240
  article-title: Reexamining the Indian summer monsoon rainfall–ENSO relationship from its recovery in the 21st century: role of the Indian Ocean SST anomaly associated with types of ENSO evolution
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL092873
– volume: 245
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0250
  article-title: Spatial-temporal trends of rainfall erosivity and its implication for sustainable agriculture in the Wei River Basin of China
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106557
– volume: 198
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0015
  article-title: A first assessment of rainfall erosivity synchrony scale at pan-European scale
  publication-title: Catena
  doi: 10.1016/j.catena.2020.105060
– volume: 262
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0045
  article-title: Improving numerical forecast of the rainstorms induced by Mongolia cold vortex in North China with the frequency matching method
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2021.105791
– volume: 12
  start-page: 2198
  issue: 6
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129391_b0140
  article-title: Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018
  publication-title: Sustainability
  doi: 10.3390/su12062198
– volume: 1–52
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0170
  article-title: A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO and equatorial waves
  publication-title: J. Clim.
– volume: 11
  start-page: 505
  issue: 4
  year: 2004
  ident: 10.1016/j.jhydrol.2023.129391_b0145
  article-title: Cross wavelet analysis: significance testing and pitfalls
  publication-title: Nonlinear Processes Geophys.
  doi: 10.5194/npg-11-505-2004
– volume: 28
  start-page: 911
  issue: 3
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129391_b0080
  article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-14-00006.1
– volume: 557
  start-page: 67
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129391_b0025
  article-title: Variability of onset and retreat of the rainy season in mainland China and associations with atmospheric circulation and sea surface temperature
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.12.026
– volume: 409
  start-page: 30
  issue: 1–2
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129391_b0120
  article-title: Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.07.031
– volume: 51
  start-page: 4065
  issue: 11
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129391_b0065
  article-title: Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-017-3669-y
– volume: 143
  start-page: 845
  issue: 3
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129391_b0205
  article-title: Different types of cold vortex circulations over Northeast China and their weather impacts
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-14-00192.1
– volume: 637
  start-page: 359
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129391_b0010
  article-title: Computation of rainfall erosivity from daily precipitation amounts
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.400
– volume: 70
  start-page: 95
  issue: 1
  year: 1992
  ident: 10.1016/j.jhydrol.2023.129391_b0235
  article-title: Discontinuous changes of precipitation in Japan after 1900 detected by the Lepage test
  publication-title: J. Meteorol. Soc. Japan. Ser. II
  doi: 10.2151/jmsj1965.70.1_95
– volume: 147
  start-page: 177
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129391_b0180
  article-title: Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951–2010
  publication-title: Catena
  doi: 10.1016/j.catena.2016.07.006
– volume: 116
  issue: D19
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129391_b0195
  article-title: The remote effect of the Tibetan Plateau on downstream flow in early summer
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2011JD015979
– volume: 11
  start-page: 561
  issue: 5/6
  year: 2004
  ident: 10.1016/j.jhydrol.2023.129391_b0060
  article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series
  publication-title: Nonlinear Processes Geophys.
  doi: 10.5194/npg-11-561-2004
– volume: 1–16
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129391_b0225
  article-title: Distinct influences of cold vortex over Northeast China on local precipitation in early summer and midsummer
  publication-title: Clim. Dyn.
– volume: 29
  start-page: 3119
  issue: 9
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129391_b0090
  article-title: Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4)
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0430.1
– volume: 157
  start-page: 357
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129391_b0155
  article-title: Rainfall erosivity: an historical review
  publication-title: Catena
  doi: 10.1016/j.catena.2017.06.004
– volume: 379
  start-page: 111
  issue: 1–2
  year: 2009
  ident: 10.1016/j.jhydrol.2023.129391_b0005
  article-title: Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.09.051
– volume: 198
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0220
  article-title: Spatial-temporal evolution and driving forces of rainfall erosivity in a climatic transitional zone: A case in Huaihe River Basin, eastern China
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104993
– volume: 28
  start-page: 931
  issue: 3
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129391_b0130
  article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4): Part II. Parametric and structural uncertainty estimations
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-14-00007.1
– volume: 166
  start-page: 279
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129391_b0135
  article-title: Spatial-temporal changes of rainfall erosivity in the loess plateau, China: Changing patterns, causes and implications
  publication-title: Catena
  doi: 10.1016/j.catena.2018.04.015
– volume: 757
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0125
  article-title: The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143990
– volume: 202
  start-page: 88
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129391_b0150
  article-title: Multivariate models for annual rainfall erosivity in Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.009
– volume: 34
  start-page: 3385
  issue: 9
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129391_b0075
  article-title: Impact of developing ENSO on Tibetan Plateau summer rainfall
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-20-0612.1
– volume: 52
  start-page: 14
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129391_b0215
  article-title: Spatial–temporal distribution of rainfall erosivity, erosivity density and correlation with El Niño-Southern Oscillation in the Huaihe River Basin, China
  publication-title: Eco. Inform.
  doi: 10.1016/j.ecoinf.2019.04.004
SSID ssj0000334
Score 2.4450963
Snippet [Display omitted] •Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season...
Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129391
SubjectTerms Atlantic Ocean
Atmospheric circulation
China
climate
climate change
cold
Decadal change
environmental management
hydrology
Indian Ocean
monsoon season
PDO
rain
Rainfall erosivity
Sea surface temperature
sediments
soil erosion
surface water temperature
t-test
watersheds
wet season
Yangtze River
Title Decadal change of rainfall erosivity during rainy season in mainland China and its underlying causes
URI https://dx.doi.org/10.1016/j.jhydrol.2023.129391
https://www.proquest.com/docview/3153757698
Volume 620
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCeIrykpFY05LYTpyxKqACohOV2Cw_1VYlqfoYuvDb8eVBBRKqxBbHdhydnbtzfN99CN2mxmluIh1QzVlAI00D7i1D4Kjzex_HiKYAFH4dxP0hfX5n7w3Uq7EwEFZZ6f5SpxfaurrTqaTZmY3HgPGNojBOvT8AhGQEgOaUJrDK25-bMA9fReuM4dB6g-LpTNqT0drMcziBiEgbLF8a_mWffmnqwvw8HqD9ym_E3fLVDlHDZkdot6IwH62Pkbm3WhrfpITy4txhYH9wcjrF1g9VkETgEpVY1Kwx_B_MMzzO8IcvQ4gjLui0MVyNlwsMALP5FIBQWMvVwi5O0PDx4a3XDyoKhUCSmC0DyaVkzCl7xzQnlDkTOW1ZKCmjOjGWacgIlygZWqUIkYl3F2TqEukUjzmLySlqZnlmzxBOIxOblHuLp1KqQif97CrFuIlVYpTULURrwQld5RcHmoupqAPJJqKStwB5i1LeLdT-7jYrE2xs68DrWRE_VorwRmBb15t6FoX_iuBoRGY2Xy0E8Yo_8VuvlJ____EXaA9KZTjkJWou5yt75V2Wpbou1uQ12uk-vfQHXwAD7fA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLUoLOimAtqqtJQaqV1mpvEjcRYsKiganiuQ2Ll-ihkNCZrMqJpNf6o_yL15gFqpQqrELoljx7p-HDu-5x5CPhc-OuWZS4RTMhHMiUQBMiRRRNj7RMmdQKLw-UU2uhIn1_J6hfzuuTDoVtnN_e2c3szW3ZNhZ83h3XiMHF_G0qyA9QAKkvHes_I0LH_Cvq3ePz6ERv7C2NH3y4NR0kkLJIZncp4YZYyU0Yav0ikuZPQsuiBTI6RwuQ_SYaS03Jo0WMu5yQFGTRFzE63KlMw4lPuCrAmYLlA2YfDr0a8E6iL6EOVYvUfa0HAymNws_azCIw_GBwi1RfovQPwLGhq8O9ogr7qFKv3W2mKTrIRyi6x3muk3y9fEHwZnPLzScodpFSnKTUQzndIAn2pUKWhLg2xSlhR_SFYlHZf0Fu7Rp5I2-t0Ur8bzmiKjbTZF5hV1ZlGH-g25ehbDviWrZVWGd4QWzGe-UACxthA2jQa6k7VS-czm3hq3TURvOO26gOaoqzHVvefaRHf21mhv3dp7mwwest21ET2eyqD6VtF_dE0NqPNU1r2-FTUMWzyLMWWoFrXmgDQ57PUK9f7_i_9E1keX52f67Pji9AN5iSmtL-YOWZ3PFuEjrJfmdrfpn5T8eO4BcQ__kirv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decadal+change+of+rainfall+erosivity+during+rainy+season+in+mainland+China+and+its+underlying+causes&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Cao%2C+Qing&rft.au=Yuan%2C+Xing&rft.au=Ngan%2C+A+H+W&rft.au=Zhu%2C+Feilin&rft.date=2023-05-01&rft.issn=0022-1694&rft.volume=620+p.129391-&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129391&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon