Decadal change of rainfall erosivity during rainy season in mainland China and its underlying causes
[Display omitted] •Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season rainfall erosivity in the Yangtze River basin and the source of three rivers.•Atlantic and Indian Ocean warming affected rainy-season rainfall erosi...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 620; p. 129391 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season rainfall erosivity in the Yangtze River basin and the source of three rivers.•Atlantic and Indian Ocean warming affected rainy-season rainfall erosivity in northeastern and north China.•The effect of sea surface temperature on rainy-season rainfall erosivity in sub-regions was shown as different resonant periods.
Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of rainfall erosivity during rainy season (RERS), when soil erosion occurs most frequently, is critical for environmental management and agricultural planning under climate change. However, whether RERS in mainland China has experienced decadal change and how it responds to large-scale climate indicators is unclear. Here, the decadal changes of RERS over mainland China and its underlying causes according to climate factors are investigated. The multi-scale moving t-test was used to determine the rainy season, and the rotated empirical orthogonal function analysis was applied to divide mainland China into sub-regions. Three abruption-detection methods were used to determine the decadal variation of RERS. Results show that: (1) RERS in China experienced different decadal change characteristics in different sub-regions. In the Yangtze River basin and the source of three rivers, the decadal change of RERS occurred around 2003, while RERS showed a prominent increasing trend over northeastern and northern China after 2008. (2) Significant negative (positive) trend of RERS over the Yangtze River basin (the source of three rivers) after 2003 was related to enhanced monsoon and anomalous divergence (convergence) modulated by Pacific Decadal Oscillation (PDO). By contrast, the prominent increasing trend after 2008 over northeastern and northern China was correlated to the Northern China Cold Vortex and Atlantic and Indian Ocean warming. (3) The non-stationary characteristic between sea surface temperature (SST) and RERS was reflected by the cross-wavelet transform. The influence of PDO over the Yangtze River basin and the source of three rivers was shown as long-term (8–13 years) or short-term (2–6 years) resonant periods. In contrast, the effect of SST over the Indian Ocean and the Atlantic Ocean is mainly presented as short-term resonant periods. These results suggest that the decadal change of RERS is closely related to the changes in SST and particular atmospheric circulation, and understanding these oceanic and atmospheric dynamics is helpful for agricultural security and environmental management under RERS changes. |
---|---|
AbstractList | [Display omitted]
•Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season rainfall erosivity in the Yangtze River basin and the source of three rivers.•Atlantic and Indian Ocean warming affected rainy-season rainfall erosivity in northeastern and north China.•The effect of sea surface temperature on rainy-season rainfall erosivity in sub-regions was shown as different resonant periods.
Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of rainfall erosivity during rainy season (RERS), when soil erosion occurs most frequently, is critical for environmental management and agricultural planning under climate change. However, whether RERS in mainland China has experienced decadal change and how it responds to large-scale climate indicators is unclear. Here, the decadal changes of RERS over mainland China and its underlying causes according to climate factors are investigated. The multi-scale moving t-test was used to determine the rainy season, and the rotated empirical orthogonal function analysis was applied to divide mainland China into sub-regions. Three abruption-detection methods were used to determine the decadal variation of RERS. Results show that: (1) RERS in China experienced different decadal change characteristics in different sub-regions. In the Yangtze River basin and the source of three rivers, the decadal change of RERS occurred around 2003, while RERS showed a prominent increasing trend over northeastern and northern China after 2008. (2) Significant negative (positive) trend of RERS over the Yangtze River basin (the source of three rivers) after 2003 was related to enhanced monsoon and anomalous divergence (convergence) modulated by Pacific Decadal Oscillation (PDO). By contrast, the prominent increasing trend after 2008 over northeastern and northern China was correlated to the Northern China Cold Vortex and Atlantic and Indian Ocean warming. (3) The non-stationary characteristic between sea surface temperature (SST) and RERS was reflected by the cross-wavelet transform. The influence of PDO over the Yangtze River basin and the source of three rivers was shown as long-term (8–13 years) or short-term (2–6 years) resonant periods. In contrast, the effect of SST over the Indian Ocean and the Atlantic Ocean is mainly presented as short-term resonant periods. These results suggest that the decadal change of RERS is closely related to the changes in SST and particular atmospheric circulation, and understanding these oceanic and atmospheric dynamics is helpful for agricultural security and environmental management under RERS changes. Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of rainfall erosivity during rainy season (RERS), when soil erosion occurs most frequently, is critical for environmental management and agricultural planning under climate change. However, whether RERS in mainland China has experienced decadal change and how it responds to large-scale climate indicators is unclear. Here, the decadal changes of RERS over mainland China and its underlying causes according to climate factors are investigated. The multi-scale moving t-test was used to determine the rainy season, and the rotated empirical orthogonal function analysis was applied to divide mainland China into sub-regions. Three abruption-detection methods were used to determine the decadal variation of RERS. Results show that: (1) RERS in China experienced different decadal change characteristics in different sub-regions. In the Yangtze River basin and the source of three rivers, the decadal change of RERS occurred around 2003, while RERS showed a prominent increasing trend over northeastern and northern China after 2008. (2) Significant negative (positive) trend of RERS over the Yangtze River basin (the source of three rivers) after 2003 was related to enhanced monsoon and anomalous divergence (convergence) modulated by Pacific Decadal Oscillation (PDO). By contrast, the prominent increasing trend after 2008 over northeastern and northern China was correlated to the Northern China Cold Vortex and Atlantic and Indian Ocean warming. (3) The non-stationary characteristic between sea surface temperature (SST) and RERS was reflected by the cross-wavelet transform. The influence of PDO over the Yangtze River basin and the source of three rivers was shown as long-term (8–13 years) or short-term (2–6 years) resonant periods. In contrast, the effect of SST over the Indian Ocean and the Atlantic Ocean is mainly presented as short-term resonant periods. These results suggest that the decadal change of RERS is closely related to the changes in SST and particular atmospheric circulation, and understanding these oceanic and atmospheric dynamics is helpful for agricultural security and environmental management under RERS changes. |
ArticleNumber | 129391 |
Author | Zhu, Feilin Yan, Qingyun Cao, Qing Yuan, Xing |
Author_xml | – sequence: 1 givenname: Qing orcidid: 0000-0001-9230-4076 surname: Cao fullname: Cao, Qing organization: Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 2 givenname: Xing orcidid: 0000-0001-6983-7368 surname: Yuan fullname: Yuan, Xing email: xyuan@nuist.edu.cn organization: Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 3 givenname: Qingyun surname: Yan fullname: Yan, Qingyun organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 4 givenname: Feilin surname: Zhu fullname: Zhu, Feilin organization: State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China |
BookMark | eNqFkE1PAyEQhjnUxFb9CSYcvbQusOxHPBhTP5MmXvRMZmG2pdlChV2T_fdS68lLuQxk5nkzPDMycd4hIdcsW7CMFbfbxXYzmuC7Bc-4WDBei5pNyDTLOJ-zos7PySzGbZaOEPmUmEfUYKCjegNujdS3NIB1LXQdxeCj_bb9SM0QrFv_dkYaEaJ31Dq6S-8OnKHLjXVADzfbRzo4g6EbD4SGIWK8JGcpMOLVX70gn89PH8vX-er95W35sJqDKGQ_hwpAyrbBTOpK5LI1vNUoGeQy16VBqVlZ12UDDJtGCCg551C3JbRNVVSyEBfk5pi7D_5rwNirnY0au7Qj-iEqwaQoZVnUVRqVx1GdPhkDtmof7A7CqFimDibVVv2ZVAeT6mgycXf_OG176K13fbLTnaTvjzQmC98Wg4raotNobEDdK-PtiYQfFVmZEw |
CitedBy_id | crossref_primary_10_1002_esp_70029 crossref_primary_10_1016_j_scitotenv_2024_177060 crossref_primary_10_3390_su16010111 crossref_primary_10_1007_s00704_024_05001_w crossref_primary_10_1016_j_biocon_2024_110943 |
Cites_doi | 10.3390/w8030105 10.1002/hyp.13821 10.1016/j.jhydrol.2008.04.002 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1016/j.catena.2022.106225 10.1016/j.scitotenv.2015.01.008 10.1016/j.jhydrol.2016.02.020 10.1029/2020GL089823 10.1016/j.catena.2022.106373 10.2151/jmsj1965.64.2_273 10.1175/JCLI-D-12-00021.1 10.1071/SR9960139 10.3390/hydrology8040171 10.3390/app11219903 10.1016/j.jhydrol.2012.03.001 10.1016/j.catena.2021.105931 10.1007/s12517-021-07184-2 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1002/joc.1946 10.1016/j.catena.2021.105957 10.1016/j.catena.2020.104837 10.1029/2021GL092873 10.1016/j.agwat.2020.106557 10.1016/j.catena.2020.105060 10.1016/j.atmosres.2021.105791 10.3390/su12062198 10.5194/npg-11-505-2004 10.1175/JCLI-D-14-00006.1 10.1016/j.jhydrol.2017.12.026 10.1016/j.jhydrol.2011.07.031 10.1007/s00382-017-3669-y 10.1175/MWR-D-14-00192.1 10.1016/j.scitotenv.2018.04.400 10.2151/jmsj1965.70.1_95 10.1016/j.catena.2016.07.006 10.1029/2011JD015979 10.5194/npg-11-561-2004 10.1175/JCLI-D-15-0430.1 10.1016/j.catena.2017.06.004 10.1016/j.jhydrol.2009.09.051 10.1016/j.catena.2020.104993 10.1175/JCLI-D-14-00007.1 10.1016/j.catena.2018.04.015 10.1016/j.scitotenv.2020.143990 10.1016/j.geoderma.2013.03.009 10.1175/JCLI-D-20-0612.1 10.1016/j.ecoinf.2019.04.004 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2023.129391 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
ExternalDocumentID | 10_1016_j_jhydrol_2023_129391 S0022169423003335 |
GeographicLocations | Indian Ocean Atlantic Ocean China Yangtze River |
GeographicLocations_xml | – name: Atlantic Ocean – name: Yangtze River – name: China – name: Indian Ocean |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV ADVLN AEBSH AEKER AENEX AEQOU AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a365t-a8aa55fbe05c8345fd2fce51a454c7de5c17997ba1ebb33a7222a9f7afb868563 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 09:22:00 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 01:53:48 EDT 2025 Sat Oct 05 15:36:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rainfall erosivity Decadal change Atmospheric circulation PDO Sea surface temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-a8aa55fbe05c8345fd2fce51a454c7de5c17997ba1ebb33a7222a9f7afb868563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9230-4076 0000-0001-6983-7368 |
PQID | 3153757698 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153757698 crossref_primary_10_1016_j_jhydrol_2023_129391 crossref_citationtrail_10_1016_j_jhydrol_2023_129391 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cao, Hao, Shao, Hao, Nyima (b0025) 2018; 557 Bezak, Borrelli, Panagos (b0015) 2021; 198 Xu, Sun, Ji (b0220) 2021; 198 Maraun, Kurths (b0145) 2004; 11 Yu, Rosewell (b0245) 1996; 34 Huang, Chen (b0085) 2010; 34 Liu, Wang, Li, Zhu, Pan, Qin (b0140) 2020; 12 Jebari, Berndtsson, Olsson, Bahri (b0095) 2012; 436 Bothe, Fraedrich, Zhu (b0020) 2010; 30 Beguería, Serrano-Notivoli, Tomas-Burguera (b0010) 2018; 637 Chen, Feng, Wu (b0035) 2013; 26 Han, He, Wang, Hao (b0065) 2018; 51 Zhang, Xie, Liu (b0260) 2002; 22 Kilic, Gunal (b0110) 2021; 14 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J.E., Mo.K.C, Ropelewski.C, Wang.J, Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3): 437-471. DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. Torrence, Compo (b0185) 1998; 79 WP dos Santos, W.P., Avanzi, J.C., Viola, M.R., Chou, S.C., Acuña-Guzman, S.F., Pontes, L.M., Curi, N., 2022. Projections of rainfall erosivity in climate change scenarios for the largest watershed within Brazilian territory. Catena, 213: 106225. DOI:10.1016/j.catena.2022.106225. Petroselli, Apollonio, De Luca, Salvaneschi, Pecci, Marras, Schirone (b0175) 2021; 8 Liu, Huang, Xie, Leng, Huang, Wang, Xue (b0135) 2018; 166 Peatman, Schwendike, Birch, Marsham, Matthews, Yang (b0170) 2021; 1–52 Lee, Heo (b0120) 2011; 409 Zhang, Chao, Fan, Ren, Qi, Ji, Xu (b0250) 2021; 245 Angulo-Martínez, Beguería (b0005) 2009; 379 Hu, Zhou, Wu (b0075) 2021; 34 Huang, Thorne, Smith, Liu, Lawrimore, Banzon, Zhang, Peterson, Menne (b0090) 2016; 29 Wang, Xu, Lupo, Li, Yin (b0195) 2011; 116 Ferro, Carollo, Serio (b0055) 2020; 34 Mello, Viola, Beskow, Norton (b0150) 2013; 202 Yonetani (b0235) 1992; 70 Chen, Xu, Wang, Chen, Lai (b0040) 2020; 195 Yamamoto, Iwashima, Hoshiai (b0230) 1986; 64 Nearing, Yin, Borrelli, Polyakov (b0155) 2017; 157 Liu, Gu, Qin, Yu, Huang, Xie, Zheng, Zhang, Cheng (b0125) 2021; 757 Xue, Zhang, Wang, Sun, Yin (b0225) 2022; 1–16 Grinsted, Moore, Jevrejeva (b0060) 2004; 11 Padulano, Rianna, Santini (b0160) 2021; 34 Wang, Xiao, Wang, Wang, Huang, Hou, Lu (b0190) 2016; 8 Yu, Fan, Zhang, Zheng, Li (b0240) 2021; 48 Huang, Banzon, Freeman, Lawrimore, Liu, Peterson, Smith, Thorne, Woodruff, Zhang (b0080) 2015; 28 Hari, V., Villarini, G., Karmakar, S., Wilcox, L.J., Collins, M.J.G.R.L., 2020. Northward propagation of the intertropical convergence zone and strengthening of Indian summer monsoon rainfall. 47(23): e2020GL089823. Xie, Bueh (b0205) 2015; 143 Xu, Pan, Han, Zhu, Tian (b0215) 2019; 52 Zhang, J., Ren, Y., Jiao, P., Xiao, P., Li, Z., 2022. Changes in rainfall erosivity from combined effects of multiple factors in China's Loess Plateau. Catena 216: 106373. DOI:10.1016/j.catena.2022.106373. Qin, Guo, Zuo, Shan, Ma, Sun (b0180) 2016; 147 Capolongo, Diodato, Mannaerts, Piccarreta, Strobl (b0030) 2008; 356 Lee, Bae, Hong, Yang, Panagos, Borrelli, Yang, Kim, Lim (b0115) 2022; 211 Panagos, Ballabio, Borrelli, Meusburger, Klik, Rousseva, Tadic, Michaelides, Hrabalikova, Olsen, Aalto, Lakatos, Rymszewicz, Dumitrescu, Begueria, Alewell (b0165) 2015; 511 Cong, Wu, Ma, Xu, Wang, Sun, Nie (b0045) 2021; 262 Jia, Yu, Li, Li, Zhang, Wang, Ma, Xu, Zhang (b0100) 2022; 210 Watene, Yu, Nie, Zhang, Hategekimana, Mutua, Ongoma, Ayugi (b0200) 2021; 11 Xie, Yin, Liu, Nearing, Zhao (b0210) 2016; 535 Liu, Huang, Thorne, Banzon, Zhang, Freeman, Lawrimore, Peterson, Smith, Woodruff (b0130) 2015; 28 Watene (10.1016/j.jhydrol.2023.129391_b0200) 2021; 11 Liu (10.1016/j.jhydrol.2023.129391_b0125) 2021; 757 Xie (10.1016/j.jhydrol.2023.129391_b0205) 2015; 143 Petroselli (10.1016/j.jhydrol.2023.129391_b0175) 2021; 8 Zhang (10.1016/j.jhydrol.2023.129391_b0250) 2021; 245 10.1016/j.jhydrol.2023.129391_b0070 Huang (10.1016/j.jhydrol.2023.129391_b0080) 2015; 28 Maraun (10.1016/j.jhydrol.2023.129391_b0145) 2004; 11 Padulano (10.1016/j.jhydrol.2023.129391_b0160) 2021; 34 Xu (10.1016/j.jhydrol.2023.129391_b0220) 2021; 198 Cao (10.1016/j.jhydrol.2023.129391_b0025) 2018; 557 Yu (10.1016/j.jhydrol.2023.129391_b0245) 1996; 34 Peatman (10.1016/j.jhydrol.2023.129391_b0170) 2021; 1–52 Wang (10.1016/j.jhydrol.2023.129391_b0195) 2011; 116 Beguería (10.1016/j.jhydrol.2023.129391_b0010) 2018; 637 Yu (10.1016/j.jhydrol.2023.129391_b0240) 2021; 48 Liu (10.1016/j.jhydrol.2023.129391_b0140) 2020; 12 10.1016/j.jhydrol.2023.129391_b0105 Huang (10.1016/j.jhydrol.2023.129391_b0085) 2010; 34 Kilic (10.1016/j.jhydrol.2023.129391_b0110) 2021; 14 Torrence (10.1016/j.jhydrol.2023.129391_b0185) 1998; 79 Wang (10.1016/j.jhydrol.2023.129391_b0190) 2016; 8 Grinsted (10.1016/j.jhydrol.2023.129391_b0060) 2004; 11 Zhang (10.1016/j.jhydrol.2023.129391_b0260) 2002; 22 Capolongo (10.1016/j.jhydrol.2023.129391_b0030) 2008; 356 10.1016/j.jhydrol.2023.129391_b0255 Chen (10.1016/j.jhydrol.2023.129391_b0035) 2013; 26 10.1016/j.jhydrol.2023.129391_b0050 Xue (10.1016/j.jhydrol.2023.129391_b0225) 2022; 1–16 Liu (10.1016/j.jhydrol.2023.129391_b0130) 2015; 28 Panagos (10.1016/j.jhydrol.2023.129391_b0165) 2015; 511 Yonetani (10.1016/j.jhydrol.2023.129391_b0235) 1992; 70 Xu (10.1016/j.jhydrol.2023.129391_b0215) 2019; 52 Angulo-Martínez (10.1016/j.jhydrol.2023.129391_b0005) 2009; 379 Chen (10.1016/j.jhydrol.2023.129391_b0040) 2020; 195 Cong (10.1016/j.jhydrol.2023.129391_b0045) 2021; 262 Lee (10.1016/j.jhydrol.2023.129391_b0115) 2022; 211 Lee (10.1016/j.jhydrol.2023.129391_b0120) 2011; 409 Ferro (10.1016/j.jhydrol.2023.129391_b0055) 2020; 34 Jebari (10.1016/j.jhydrol.2023.129391_b0095) 2012; 436 Hu (10.1016/j.jhydrol.2023.129391_b0075) 2021; 34 Huang (10.1016/j.jhydrol.2023.129391_b0090) 2016; 29 Mello (10.1016/j.jhydrol.2023.129391_b0150) 2013; 202 Bothe (10.1016/j.jhydrol.2023.129391_b0020) 2010; 30 Yamamoto (10.1016/j.jhydrol.2023.129391_b0230) 1986; 64 Nearing (10.1016/j.jhydrol.2023.129391_b0155) 2017; 157 Qin (10.1016/j.jhydrol.2023.129391_b0180) 2016; 147 Jia (10.1016/j.jhydrol.2023.129391_b0100) 2022; 210 Liu (10.1016/j.jhydrol.2023.129391_b0135) 2018; 166 Bezak (10.1016/j.jhydrol.2023.129391_b0015) 2021; 198 Xie (10.1016/j.jhydrol.2023.129391_b0210) 2016; 535 Han (10.1016/j.jhydrol.2023.129391_b0065) 2018; 51 |
References_xml | – volume: 210 year: 2022 ident: b0100 article-title: Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load publication-title: Catena – volume: 8 start-page: 171 year: 2021 ident: b0175 article-title: Comparative evaluation of the rainfall erosivity in the Rieti Province, Central Italy, using empirical formulas and a stochastic rainfall generator publication-title: J. Hydrol. – volume: 48 year: 2021 ident: b0240 article-title: Reexamining the Indian summer monsoon rainfall–ENSO relationship from its recovery in the 21st century: role of the Indian Ocean SST anomaly associated with types of ENSO evolution publication-title: Geophys. Res. Lett. – volume: 28 start-page: 931 year: 2015 end-page: 951 ident: b0130 article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4): Part II. Parametric and structural uncertainty estimations publication-title: J. Clim. – volume: 79 start-page: 61 year: 1998 end-page: 78 ident: b0185 article-title: A practical guide to wavelet analysis publication-title: Bull. Am. Meteorol. Soc. – volume: 757 year: 2021 ident: b0125 article-title: The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP publication-title: Sci. Total Environ. – volume: 195 year: 2020 ident: b0040 article-title: Reexamination of the Xie model and spatiotemporal variability in rainfall erosivity in mainland China from 1960 to 2018 publication-title: Catena – volume: 116 year: 2011 ident: b0195 article-title: The remote effect of the Tibetan Plateau on downstream flow in early summer publication-title: J. Geophys. Res. Atmos. – volume: 198 year: 2021 ident: b0220 article-title: Spatial-temporal evolution and driving forces of rainfall erosivity in a climatic transitional zone: A case in Huaihe River Basin, eastern China publication-title: Catena – volume: 1–52 year: 2021 ident: b0170 article-title: A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO and equatorial waves publication-title: J. Clim. – volume: 28 start-page: 911 year: 2015 end-page: 930 ident: b0080 article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons publication-title: J. Clim. – volume: 12 start-page: 2198 year: 2020 ident: b0140 article-title: Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018 publication-title: Sustainability – volume: 198 year: 2021 ident: b0015 article-title: A first assessment of rainfall erosivity synchrony scale at pan-European scale publication-title: Catena – reference: WP dos Santos, W.P., Avanzi, J.C., Viola, M.R., Chou, S.C., Acuña-Guzman, S.F., Pontes, L.M., Curi, N., 2022. Projections of rainfall erosivity in climate change scenarios for the largest watershed within Brazilian territory. Catena, 213: 106225. DOI:10.1016/j.catena.2022.106225. – volume: 262 year: 2021 ident: b0045 article-title: Improving numerical forecast of the rainstorms induced by Mongolia cold vortex in North China with the frequency matching method publication-title: Atmos. Res. – volume: 11 start-page: 9903 year: 2021 ident: b0200 article-title: Spatial-Temporal Variability of Future Rainfall Erosivity and Its Impact on Soil Loss Risk in Kenya publication-title: Appl. Sci. – volume: 379 start-page: 111 year: 2009 end-page: 121 ident: b0005 article-title: Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain) publication-title: J. Hydrol. – volume: 356 start-page: 119 year: 2008 end-page: 130 ident: b0030 article-title: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy) publication-title: J. Hydrol. – volume: 34 start-page: 139 year: 1996 end-page: 152 ident: b0245 article-title: An assessment of a daily rainfall erosivity model for New South Wales publication-title: Soil Res. – volume: 436 start-page: 102 year: 2012 end-page: 110 ident: b0095 article-title: Soil erosion estimation based on rainfall disaggregation publication-title: J. Hydrol. – volume: 557 start-page: 67 year: 2018 end-page: 82 ident: b0025 article-title: Variability of onset and retreat of the rainy season in mainland China and associations with atmospheric circulation and sea surface temperature publication-title: J. Hydrol. – volume: 202 start-page: 88 year: 2013 end-page: 102 ident: b0150 article-title: Multivariate models for annual rainfall erosivity in Brazil publication-title: Geoderma – volume: 8 start-page: 105 year: 2016 ident: b0190 article-title: The impact of climate change on the duration and division of flood season in the Fenhe River basin publication-title: China. Water – volume: 535 start-page: 547 year: 2016 end-page: 558 ident: b0210 article-title: Models for estimating daily rainfall erosivity in China publication-title: J. Hydrol. – reference: Zhang, J., Ren, Y., Jiao, P., Xiao, P., Li, Z., 2022. Changes in rainfall erosivity from combined effects of multiple factors in China's Loess Plateau. Catena 216: 106373. DOI:10.1016/j.catena.2022.106373. – volume: 166 start-page: 279 year: 2018 end-page: 289 ident: b0135 article-title: Spatial-temporal changes of rainfall erosivity in the loess plateau, China: Changing patterns, causes and implications publication-title: Catena – volume: 22 start-page: 705 year: 2002 end-page: 711 ident: b0260 article-title: Rainfall erosivity estimation using daily rainfall amounts publication-title: Sci. Geogr. Sin. – volume: 157 start-page: 357 year: 2017 end-page: 362 ident: b0155 article-title: Rainfall erosivity: an historical review publication-title: Catena – reference: Hari, V., Villarini, G., Karmakar, S., Wilcox, L.J., Collins, M.J.G.R.L., 2020. Northward propagation of the intertropical convergence zone and strengthening of Indian summer monsoon rainfall. 47(23): e2020GL089823. – volume: 11 start-page: 505 year: 2004 end-page: 514 ident: b0145 article-title: Cross wavelet analysis: significance testing and pitfalls publication-title: Nonlinear Processes Geophys. – volume: 511 start-page: 801 year: 2015 end-page: 814 ident: b0165 article-title: Rainfall erosivity in Europe publication-title: Sci. Total Environ. – volume: 14 start-page: 1 year: 2021 end-page: 13 ident: b0110 article-title: Spatial-temporal changes in rainfall erosivity in Turkey using CMIP5 global climate change scenario publication-title: Arab. J. Geosci. – volume: 143 start-page: 845 year: 2015 end-page: 863 ident: b0205 article-title: Different types of cold vortex circulations over Northeast China and their weather impacts publication-title: Mon. Weather Rev. – volume: 64 start-page: 273 year: 1986 end-page: 281 ident: b0230 article-title: An analysis of climatic jump publication-title: J. Meteorol. Soc. Japan. Ser. II – volume: 409 start-page: 30 year: 2011 end-page: 48 ident: b0120 article-title: Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea publication-title: J. Hydrol. – volume: 52 start-page: 14 year: 2019 end-page: 25 ident: b0215 article-title: Spatial–temporal distribution of rainfall erosivity, erosivity density and correlation with El Niño-Southern Oscillation in the Huaihe River Basin, China publication-title: Eco. Inform. – volume: 147 start-page: 177 year: 2016 end-page: 186 ident: b0180 article-title: Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951–2010 publication-title: Catena – volume: 34 start-page: 3571 year: 2020 end-page: 3581 ident: b0055 article-title: Establishing a threshold for rainfall-induced landslides by a kinetic energy–duration relationship publication-title: Hydrol. Process. – volume: 1–16 year: 2022 ident: b0225 article-title: Distinct influences of cold vortex over Northeast China on local precipitation in early summer and midsummer publication-title: Clim. Dyn. – volume: 29 start-page: 3119 year: 2016 end-page: 3142 ident: b0090 article-title: Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4) publication-title: J. Clim. – volume: 51 start-page: 4065 year: 2018 end-page: 4076 ident: b0065 article-title: Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China publication-title: Clim. Dyn. – volume: 11 start-page: 561 year: 2004 end-page: 566 ident: b0060 article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series publication-title: Nonlinear Processes Geophys. – volume: 34 start-page: 1035 year: 2010 end-page: 1045 ident: b0085 article-title: Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference publication-title: Chin. J. Atmos. Sci. – volume: 245 year: 2021 ident: b0250 article-title: Spatial-temporal trends of rainfall erosivity and its implication for sustainable agriculture in the Wei River Basin of China publication-title: Agric Water Manag – reference: Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J.E., Mo.K.C, Ropelewski.C, Wang.J, Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3): 437-471. DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. – volume: 70 start-page: 95 year: 1992 end-page: 104 ident: b0235 article-title: Discontinuous changes of precipitation in Japan after 1900 detected by the Lepage test publication-title: J. Meteorol. Soc. Japan. Ser. II – volume: 26 start-page: 622 year: 2013 end-page: 635 ident: b0035 article-title: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon publication-title: J. Clim. – volume: 30 start-page: 844 year: 2010 end-page: 855 ident: b0020 article-title: The large-scale circulations and summer drought and wetness on the Tibetan plateau publication-title: Int. J. Climatol. – volume: 34 year: 2021 ident: b0160 article-title: Datasets and approaches for the estimation of rainfall erosivity over Italy: A comprehensive comparison study and a new method publication-title: J. Hydrol.: Reg. Stud. – volume: 211 year: 2022 ident: b0115 article-title: Estimation of rainfall erosivity factor in Italy and Switzerland using Bayesian optimization based machine learning models publication-title: Catena – volume: 637 start-page: 359 year: 2018 end-page: 373 ident: b0010 article-title: Computation of rainfall erosivity from daily precipitation amounts publication-title: Sci. Total Environ. – volume: 34 start-page: 3385 year: 2021 end-page: 3400 ident: b0075 article-title: Impact of developing ENSO on Tibetan Plateau summer rainfall publication-title: J. Clim. – volume: 8 start-page: 105 issue: 3 year: 2016 ident: 10.1016/j.jhydrol.2023.129391_b0190 article-title: The impact of climate change on the duration and division of flood season in the Fenhe River basin publication-title: China. Water doi: 10.3390/w8030105 – volume: 34 start-page: 3571 issue: 16 year: 2020 ident: 10.1016/j.jhydrol.2023.129391_b0055 article-title: Establishing a threshold for rainfall-induced landslides by a kinetic energy–duration relationship publication-title: Hydrol. Process. doi: 10.1002/hyp.13821 – volume: 22 start-page: 705 issue: 6 year: 2002 ident: 10.1016/j.jhydrol.2023.129391_b0260 article-title: Rainfall erosivity estimation using daily rainfall amounts publication-title: Sci. Geogr. Sin. – volume: 356 start-page: 119 issue: 1–2 year: 2008 ident: 10.1016/j.jhydrol.2023.129391_b0030 article-title: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.04.002 – volume: 79 start-page: 61 issue: 1 year: 1998 ident: 10.1016/j.jhydrol.2023.129391_b0185 article-title: A practical guide to wavelet analysis publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: 10.1016/j.jhydrol.2023.129391_b0050 doi: 10.1016/j.catena.2022.106225 – volume: 511 start-page: 801 year: 2015 ident: 10.1016/j.jhydrol.2023.129391_b0165 article-title: Rainfall erosivity in Europe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.01.008 – volume: 535 start-page: 547 year: 2016 ident: 10.1016/j.jhydrol.2023.129391_b0210 article-title: Models for estimating daily rainfall erosivity in China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.020 – volume: 34 start-page: 1035 issue: 6 year: 2010 ident: 10.1016/j.jhydrol.2023.129391_b0085 article-title: Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference publication-title: Chin. J. Atmos. Sci. – ident: 10.1016/j.jhydrol.2023.129391_b0070 doi: 10.1029/2020GL089823 – ident: 10.1016/j.jhydrol.2023.129391_b0255 doi: 10.1016/j.catena.2022.106373 – volume: 64 start-page: 273 issue: 2 year: 1986 ident: 10.1016/j.jhydrol.2023.129391_b0230 article-title: An analysis of climatic jump publication-title: J. Meteorol. Soc. Japan. Ser. II doi: 10.2151/jmsj1965.64.2_273 – volume: 26 start-page: 622 issue: 2 year: 2013 ident: 10.1016/j.jhydrol.2023.129391_b0035 article-title: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00021.1 – volume: 34 start-page: 139 issue: 1 year: 1996 ident: 10.1016/j.jhydrol.2023.129391_b0245 article-title: An assessment of a daily rainfall erosivity model for New South Wales publication-title: Soil Res. doi: 10.1071/SR9960139 – volume: 8 start-page: 171 issue: 4 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0175 article-title: Comparative evaluation of the rainfall erosivity in the Rieti Province, Central Italy, using empirical formulas and a stochastic rainfall generator publication-title: J. Hydrol. doi: 10.3390/hydrology8040171 – volume: 11 start-page: 9903 issue: 21 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0200 article-title: Spatial-Temporal Variability of Future Rainfall Erosivity and Its Impact on Soil Loss Risk in Kenya publication-title: Appl. Sci. doi: 10.3390/app11219903 – volume: 436 start-page: 102 year: 2012 ident: 10.1016/j.jhydrol.2023.129391_b0095 article-title: Soil erosion estimation based on rainfall disaggregation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.03.001 – volume: 210 year: 2022 ident: 10.1016/j.jhydrol.2023.129391_b0100 article-title: Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load publication-title: Catena doi: 10.1016/j.catena.2021.105931 – volume: 14 start-page: 1 issue: 12 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0110 article-title: Spatial-temporal changes in rainfall erosivity in Turkey using CMIP5 global climate change scenario publication-title: Arab. J. Geosci. doi: 10.1007/s12517-021-07184-2 – ident: 10.1016/j.jhydrol.2023.129391_b0105 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume: 30 start-page: 844 issue: 6 year: 2010 ident: 10.1016/j.jhydrol.2023.129391_b0020 article-title: The large-scale circulations and summer drought and wetness on the Tibetan plateau publication-title: Int. J. Climatol. doi: 10.1002/joc.1946 – volume: 211 year: 2022 ident: 10.1016/j.jhydrol.2023.129391_b0115 article-title: Estimation of rainfall erosivity factor in Italy and Switzerland using Bayesian optimization based machine learning models publication-title: Catena doi: 10.1016/j.catena.2021.105957 – volume: 195 year: 2020 ident: 10.1016/j.jhydrol.2023.129391_b0040 article-title: Reexamination of the Xie model and spatiotemporal variability in rainfall erosivity in mainland China from 1960 to 2018 publication-title: Catena doi: 10.1016/j.catena.2020.104837 – volume: 34 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0160 article-title: Datasets and approaches for the estimation of rainfall erosivity over Italy: A comprehensive comparison study and a new method publication-title: J. Hydrol.: Reg. Stud. – volume: 48 issue: 12 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0240 article-title: Reexamining the Indian summer monsoon rainfall–ENSO relationship from its recovery in the 21st century: role of the Indian Ocean SST anomaly associated with types of ENSO evolution publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL092873 – volume: 245 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0250 article-title: Spatial-temporal trends of rainfall erosivity and its implication for sustainable agriculture in the Wei River Basin of China publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106557 – volume: 198 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0015 article-title: A first assessment of rainfall erosivity synchrony scale at pan-European scale publication-title: Catena doi: 10.1016/j.catena.2020.105060 – volume: 262 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0045 article-title: Improving numerical forecast of the rainstorms induced by Mongolia cold vortex in North China with the frequency matching method publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2021.105791 – volume: 12 start-page: 2198 issue: 6 year: 2020 ident: 10.1016/j.jhydrol.2023.129391_b0140 article-title: Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018 publication-title: Sustainability doi: 10.3390/su12062198 – volume: 1–52 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0170 article-title: A local-to-large scale view of Maritime Continent rainfall: Control by ENSO, MJO and equatorial waves publication-title: J. Clim. – volume: 11 start-page: 505 issue: 4 year: 2004 ident: 10.1016/j.jhydrol.2023.129391_b0145 article-title: Cross wavelet analysis: significance testing and pitfalls publication-title: Nonlinear Processes Geophys. doi: 10.5194/npg-11-505-2004 – volume: 28 start-page: 911 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2023.129391_b0080 article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons publication-title: J. Clim. doi: 10.1175/JCLI-D-14-00006.1 – volume: 557 start-page: 67 year: 2018 ident: 10.1016/j.jhydrol.2023.129391_b0025 article-title: Variability of onset and retreat of the rainy season in mainland China and associations with atmospheric circulation and sea surface temperature publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.12.026 – volume: 409 start-page: 30 issue: 1–2 year: 2011 ident: 10.1016/j.jhydrol.2023.129391_b0120 article-title: Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.07.031 – volume: 51 start-page: 4065 issue: 11 year: 2018 ident: 10.1016/j.jhydrol.2023.129391_b0065 article-title: Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China publication-title: Clim. Dyn. doi: 10.1007/s00382-017-3669-y – volume: 143 start-page: 845 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2023.129391_b0205 article-title: Different types of cold vortex circulations over Northeast China and their weather impacts publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-14-00192.1 – volume: 637 start-page: 359 year: 2018 ident: 10.1016/j.jhydrol.2023.129391_b0010 article-title: Computation of rainfall erosivity from daily precipitation amounts publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.400 – volume: 70 start-page: 95 issue: 1 year: 1992 ident: 10.1016/j.jhydrol.2023.129391_b0235 article-title: Discontinuous changes of precipitation in Japan after 1900 detected by the Lepage test publication-title: J. Meteorol. Soc. Japan. Ser. II doi: 10.2151/jmsj1965.70.1_95 – volume: 147 start-page: 177 year: 2016 ident: 10.1016/j.jhydrol.2023.129391_b0180 article-title: Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951–2010 publication-title: Catena doi: 10.1016/j.catena.2016.07.006 – volume: 116 issue: D19 year: 2011 ident: 10.1016/j.jhydrol.2023.129391_b0195 article-title: The remote effect of the Tibetan Plateau on downstream flow in early summer publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2011JD015979 – volume: 11 start-page: 561 issue: 5/6 year: 2004 ident: 10.1016/j.jhydrol.2023.129391_b0060 article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series publication-title: Nonlinear Processes Geophys. doi: 10.5194/npg-11-561-2004 – volume: 1–16 year: 2022 ident: 10.1016/j.jhydrol.2023.129391_b0225 article-title: Distinct influences of cold vortex over Northeast China on local precipitation in early summer and midsummer publication-title: Clim. Dyn. – volume: 29 start-page: 3119 issue: 9 year: 2016 ident: 10.1016/j.jhydrol.2023.129391_b0090 article-title: Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4) publication-title: J. Clim. doi: 10.1175/JCLI-D-15-0430.1 – volume: 157 start-page: 357 year: 2017 ident: 10.1016/j.jhydrol.2023.129391_b0155 article-title: Rainfall erosivity: an historical review publication-title: Catena doi: 10.1016/j.catena.2017.06.004 – volume: 379 start-page: 111 issue: 1–2 year: 2009 ident: 10.1016/j.jhydrol.2023.129391_b0005 article-title: Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.09.051 – volume: 198 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0220 article-title: Spatial-temporal evolution and driving forces of rainfall erosivity in a climatic transitional zone: A case in Huaihe River Basin, eastern China publication-title: Catena doi: 10.1016/j.catena.2020.104993 – volume: 28 start-page: 931 issue: 3 year: 2015 ident: 10.1016/j.jhydrol.2023.129391_b0130 article-title: Extended reconstructed sea surface temperature version 4 (ERSST. v4): Part II. Parametric and structural uncertainty estimations publication-title: J. Clim. doi: 10.1175/JCLI-D-14-00007.1 – volume: 166 start-page: 279 year: 2018 ident: 10.1016/j.jhydrol.2023.129391_b0135 article-title: Spatial-temporal changes of rainfall erosivity in the loess plateau, China: Changing patterns, causes and implications publication-title: Catena doi: 10.1016/j.catena.2018.04.015 – volume: 757 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0125 article-title: The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143990 – volume: 202 start-page: 88 year: 2013 ident: 10.1016/j.jhydrol.2023.129391_b0150 article-title: Multivariate models for annual rainfall erosivity in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.009 – volume: 34 start-page: 3385 issue: 9 year: 2021 ident: 10.1016/j.jhydrol.2023.129391_b0075 article-title: Impact of developing ENSO on Tibetan Plateau summer rainfall publication-title: J. Clim. doi: 10.1175/JCLI-D-20-0612.1 – volume: 52 start-page: 14 year: 2019 ident: 10.1016/j.jhydrol.2023.129391_b0215 article-title: Spatial–temporal distribution of rainfall erosivity, erosivity density and correlation with El Niño-Southern Oscillation in the Huaihe River Basin, China publication-title: Eco. Inform. doi: 10.1016/j.ecoinf.2019.04.004 |
SSID | ssj0000334 |
Score | 2.4450963 |
Snippet | [Display omitted]
•Rainy-season rainfall erosivity in China has decadal change around 2003 and 2008.•Pacific Decadal Oscillation modulated rainy-season... Rainfall erosivity is a crucial indicator of soil erosion that affects sediment management and agricultural security. Understanding the decadal change of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129391 |
SubjectTerms | Atlantic Ocean Atmospheric circulation China climate climate change cold Decadal change environmental management hydrology Indian Ocean monsoon season PDO rain Rainfall erosivity Sea surface temperature sediments soil erosion surface water temperature t-test watersheds wet season Yangtze River |
Title | Decadal change of rainfall erosivity during rainy season in mainland China and its underlying causes |
URI | https://dx.doi.org/10.1016/j.jhydrol.2023.129391 https://www.proquest.com/docview/3153757698 |
Volume | 620 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCeIrykpFY05LYTpyxKqACohOV2Cw_1VYlqfoYuvDb8eVBBRKqxBbHdhydnbtzfN99CN2mxmluIh1QzVlAI00D7i1D4Kjzex_HiKYAFH4dxP0hfX5n7w3Uq7EwEFZZ6f5SpxfaurrTqaTZmY3HgPGNojBOvT8AhGQEgOaUJrDK25-bMA9fReuM4dB6g-LpTNqT0drMcziBiEgbLF8a_mWffmnqwvw8HqD9ym_E3fLVDlHDZkdot6IwH62Pkbm3WhrfpITy4txhYH9wcjrF1g9VkETgEpVY1Kwx_B_MMzzO8IcvQ4gjLui0MVyNlwsMALP5FIBQWMvVwi5O0PDx4a3XDyoKhUCSmC0DyaVkzCl7xzQnlDkTOW1ZKCmjOjGWacgIlygZWqUIkYl3F2TqEukUjzmLySlqZnlmzxBOIxOblHuLp1KqQif97CrFuIlVYpTULURrwQld5RcHmoupqAPJJqKStwB5i1LeLdT-7jYrE2xs68DrWRE_VorwRmBb15t6FoX_iuBoRGY2Xy0E8Yo_8VuvlJ____EXaA9KZTjkJWou5yt75V2Wpbou1uQ12uk-vfQHXwAD7fA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLUoLOimAtqqtJQaqV1mpvEjcRYsKiganiuQ2Ll-ihkNCZrMqJpNf6o_yL15gFqpQqrELoljx7p-HDu-5x5CPhc-OuWZS4RTMhHMiUQBMiRRRNj7RMmdQKLw-UU2uhIn1_J6hfzuuTDoVtnN_e2c3szW3ZNhZ83h3XiMHF_G0qyA9QAKkvHes_I0LH_Cvq3ePz6ERv7C2NH3y4NR0kkLJIZncp4YZYyU0Yav0ikuZPQsuiBTI6RwuQ_SYaS03Jo0WMu5yQFGTRFzE63KlMw4lPuCrAmYLlA2YfDr0a8E6iL6EOVYvUfa0HAymNws_azCIw_GBwi1RfovQPwLGhq8O9ogr7qFKv3W2mKTrIRyi6x3muk3y9fEHwZnPLzScodpFSnKTUQzndIAn2pUKWhLg2xSlhR_SFYlHZf0Fu7Rp5I2-t0Ur8bzmiKjbTZF5hV1ZlGH-g25ehbDviWrZVWGd4QWzGe-UACxthA2jQa6k7VS-czm3hq3TURvOO26gOaoqzHVvefaRHf21mhv3dp7mwwest21ET2eyqD6VtF_dE0NqPNU1r2-FTUMWzyLMWWoFrXmgDQ57PUK9f7_i_9E1keX52f67Pji9AN5iSmtL-YOWZ3PFuEjrJfmdrfpn5T8eO4BcQ__kirv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decadal+change+of+rainfall+erosivity+during+rainy+season+in+mainland+China+and+its+underlying+causes&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Cao%2C+Qing&rft.au=Yuan%2C+Xing&rft.au=Ngan%2C+A+H+W&rft.au=Zhu%2C+Feilin&rft.date=2023-05-01&rft.issn=0022-1694&rft.volume=620+p.129391-&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129391&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |