Dynamic Electric Field Alignment Determines the Water Rotational Motion around Protein

Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxat...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 127; no. 6; pp. 1376 - 1384
Main Authors Hu, Kang, Shirakashi, Ryo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.
AbstractList Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.
Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.
Author Hu, Kang
Shirakashi, Ryo
AuthorAffiliation Institute of Industrial Science
Department of Mechanical Engineering
AuthorAffiliation_xml – name: Institute of Industrial Science
– name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Kang
  orcidid: 0000-0001-5863-1049
  surname: Hu
  fullname: Hu, Kang
  email: kanghu@iis.u-tokyo.ac.jp
  organization: Department of Mechanical Engineering
– sequence: 2
  givenname: Ryo
  surname: Shirakashi
  fullname: Shirakashi, Ryo
  organization: Institute of Industrial Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36749793$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPAyEUhYnRWK3uXRmWLmwFhoHp0lhfiUZjfCwnlLkoZgYqMAv_vdRWFybqgnBu7ncgOWcbrTvvAKE9SsaUMHqkdBy_zvVszDSRnJRraIuWjIzykesrLSgRA7Qd4yshrGSV2ESDQkg-kZNiCz1O353qrManLegUsjiz0Db4uLXPrgOX8BQShM46iDi9AH5SecR3PqlkvVMtvvYLgVXwvWvwbfAJrNtBG0a1EXZX9xA9nJ3en1yMrm7OL0-Or0aqEGUaTbiSqhGGEQplxQ3jzFQV0yVlotKFERrYjBrDqqYBASSzvFSGGq64VJOiGKKD5bvz4N96iKnubNTQtsqB72NdEE64JEzwf1EmJc-_Esoyur9C-1kHTT0PtlPhvf6KLQNkCejgYwxgvhFK6kUzdW6mXjRTr5rJFvHDou0ywxSUbf8yHi6Nnxvfhxx6_B3_AAlIo2U
CitedBy_id crossref_primary_10_1016_j_cplett_2024_141302
crossref_primary_10_1016_j_molliq_2023_121707
crossref_primary_10_1016_j_saa_2024_124707
Cites_doi 10.1021/acs.jpcb.6b02592
10.1021/jp3111259
10.1039/C7CP05216B
10.1021/jp9027589
10.1073/pnas.95.5.2267
10.1063/1.4997723
10.1021/jp2019389
10.1021/ja0775873
10.1021/acs.jpcb.1c07096
10.1063/1.4990693
10.1016/j.bpc.2006.04.009
10.1073/pnas.1602916113
10.1103/PhysRevLett.45.1196
10.1103/PhysRevA.36.226
10.1016/j.molliq.2019.02.055
10.1063/5.0098506
10.1063/1.5031005
10.1063/1.3471383
10.1021/ct700301q
10.1016/j.jnoncrysol.2014.08.057
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1063/1.4967774
10.1021/jp2053426
10.1021/ja405201s
10.1063/1.464397
10.1021/jacs.6b08845
10.1021/acs.chemrev.6b00765
10.1021/jacs.6b12463
10.1063/1.5026744
10.1038/s41586-021-03504-4
10.1021/acscentsci.2c00702
10.1126/science.1122154
10.1146/annurev.physchem.012809.103503
10.1021/ja025905m
10.1021/acs.chemrev.5b00664
10.1016/0010-4655(96)00043-4
10.1016/j.csbj.2020.06.029
10.1016/j.cplett.2010.12.077
10.1021/jp0133788
10.1002/anie.201309317
10.1021/j100308a038
10.1021/acs.jpca.1c08020
10.1063/1.2408420
10.1039/D0CP02416C
10.1021/acs.jpcb.7b03966
10.1021/acs.cgd.1c01463
10.1021/acs.jpclett.7b01013
10.1016/j.bbapap.2012.02.008
10.1063/5.0020015
10.1039/C6CP04000D
10.1073/pnas.082335099
10.1021/ja00214a001
10.1021/acs.jpcb.2c00970
10.1063/1.5026861
10.1021/ja403917z
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jpcb.2c07405
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 1384
ExternalDocumentID 36749793
10_1021_acs_jpcb_2c07405
d294277233
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
55A
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZGI
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a365t-94a7ad6f201e584f242f882c51268c3f6ce2b1ff28dde6e0ad645af1f4a47a933
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Thu Jul 10 19:06:32 EDT 2025
Fri Jul 11 09:13:46 EDT 2025
Thu Jan 02 22:53:07 EST 2025
Tue Jul 01 04:29:13 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Sat Feb 18 06:07:55 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-94a7ad6f201e584f242f882c51268c3f6ce2b1ff28dde6e0ad645af1f4a47a933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5863-1049
PMID 36749793
PQID 2774268012
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3040470264
proquest_miscellaneous_2774268012
pubmed_primary_36749793
crossref_primary_10_1021_acs_jpcb_2c07405
crossref_citationtrail_10_1021_acs_jpcb_2c07405
acs_journals_10_1021_acs_jpcb_2c07405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-16
PublicationDateYYYYMMDD 2023-02-16
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
Kremer F. (ref15/cit15) 2012
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref54/cit54
  doi: 10.1021/acs.jpcb.6b02592
– ident: ref46/cit46
  doi: 10.1021/jp3111259
– ident: ref50/cit50
  doi: 10.1039/C7CP05216B
– ident: ref7/cit7
  doi: 10.1021/jp9027589
– ident: ref40/cit40
  doi: 10.1073/pnas.95.5.2267
– ident: ref13/cit13
  doi: 10.1063/1.4997723
– ident: ref47/cit47
  doi: 10.1021/jp2019389
– ident: ref12/cit12
  doi: 10.1021/ja0775873
– ident: ref55/cit55
  doi: 10.1021/acs.jpcb.1c07096
– ident: ref6/cit6
  doi: 10.1063/1.4990693
– ident: ref38/cit38
  doi: 10.1016/j.bpc.2006.04.009
– ident: ref51/cit51
  doi: 10.1073/pnas.1602916113
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.45.1196
– ident: ref16/cit16
  doi: 10.1103/PhysRevA.36.226
– ident: ref17/cit17
  doi: 10.1016/j.molliq.2019.02.055
– ident: ref44/cit44
  doi: 10.1063/5.0098506
– ident: ref22/cit22
  doi: 10.1063/1.5031005
– ident: ref20/cit20
  doi: 10.1063/1.3471383
– ident: ref27/cit27
  doi: 10.1021/ct700301q
– ident: ref49/cit49
  doi: 10.1016/j.jnoncrysol.2014.08.057
– ident: ref30/cit30
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– ident: ref56/cit56
  doi: 10.1063/1.4967774
– ident: ref9/cit9
  doi: 10.1021/jp2053426
– ident: ref37/cit37
  doi: 10.1021/ja405201s
– ident: ref33/cit33
  doi: 10.1063/1.464397
– ident: ref10/cit10
  doi: 10.1021/jacs.6b08845
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.6b00765
– ident: ref8/cit8
  doi: 10.1021/jacs.6b12463
– ident: ref21/cit21
  doi: 10.1063/1.5026744
– ident: ref45/cit45
  doi: 10.1038/s41586-021-03504-4
– ident: ref26/cit26
  doi: 10.1021/acscentsci.2c00702
– ident: ref11/cit11
  doi: 10.1126/science.1122154
– ident: ref5/cit5
  doi: 10.1146/annurev.physchem.012809.103503
– ident: ref4/cit4
  doi: 10.1021/ja025905m
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.5b00664
– ident: ref34/cit34
  doi: 10.1016/0010-4655(96)00043-4
– ident: ref3/cit3
  doi: 10.1016/j.csbj.2020.06.029
– ident: ref41/cit41
  doi: 10.1016/j.cplett.2010.12.077
– ident: ref52/cit52
  doi: 10.1021/jp0133788
– ident: ref19/cit19
  doi: 10.1002/anie.201309317
– ident: ref29/cit29
  doi: 10.1021/j100308a038
– volume-title: Broadband Dielectric Spectroscopy
  year: 2012
  ident: ref15/cit15
– ident: ref43/cit43
  doi: 10.1021/acs.jpca.1c08020
– ident: ref31/cit31
  doi: 10.1063/1.2408420
– ident: ref39/cit39
  doi: 10.1039/D0CP02416C
– ident: ref53/cit53
  doi: 10.1021/acs.jpcb.7b03966
– ident: ref42/cit42
  doi: 10.1021/acs.cgd.1c01463
– ident: ref24/cit24
  doi: 10.1021/acs.jpclett.7b01013
– ident: ref48/cit48
  doi: 10.1016/j.bbapap.2012.02.008
– ident: ref14/cit14
  doi: 10.1063/5.0020015
– ident: ref23/cit23
  doi: 10.1039/C6CP04000D
– ident: ref18/cit18
  doi: 10.1073/pnas.082335099
– ident: ref28/cit28
  doi: 10.1021/ja00214a001
– ident: ref36/cit36
  doi: 10.1021/acs.jpcb.2c00970
– ident: ref25/cit25
  doi: 10.1063/1.5026861
– ident: ref35/cit35
  doi: 10.1021/ja403917z
SSID ssj0025286
Score 2.4309323
Snippet Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD)...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1376
SubjectTerms B: Liquids; Chemical and Dynamical Processes in Solution
electric field
Electricity
fluorescence
lysozyme
molecular dynamics
Molecular Dynamics Simulation
Proteins
Rotation
Water
Title Dynamic Electric Field Alignment Determines the Water Rotational Motion around Protein
URI http://dx.doi.org/10.1021/acs.jpcb.2c07405
https://www.ncbi.nlm.nih.gov/pubmed/36749793
https://www.proquest.com/docview/2774268012
https://www.proquest.com/docview/3040470264
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDh5TGW9Jj1UUVUhFi7S1yHBsVqrRq0gtfz9hJi9gqblFkx_LYnnnjmcxD6DykieEkjD0VE-0xrkIP_BDu1ZkC9BqqRGjrKPZuRPeRXfd5_7NMzvcIPvGvpMqqr2MVV4kCc2fLla4QAWfYwqDm_dy5ggHdn0TcuUO1WUjyty9YQ6Syr4boD3TprExno6ArylxxQptc8lad5nFVvf8s3fiPCWyi9RJs4kaxO7bQkk630WpzxvG2g55aBSE9bjs2HHjo2Iw23BgOXlyaAG6V6TI6wwAV8TNA0wm-G-XlHSLuORYgLCeWngnf2qoPg3QXPXbaD82uVzIteJIKnsPKyEAmwgAa0IBIDNhtA9BbARoQoaLG0obFvjEkBG0odA3aMi6Nb5hkgaxTuoeW01GqDxA2QaLrseQBJTUmiZCcghJRSiRMm5CLCroAgUTlSckiFwQnfuRegpSiUkoVdDVbnkiV5cota8ZwQY_LeY9xUapjQduz2YpHIHIbJJGpHk2ziAAehkmD3f67DQXNxwLwXlkF7RfbZT4iFQGrg9I7_Oc8j9CaZbC3ieC-OEbL-WSqTwDn5PGp2-AfwNP3sg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hONBLebSF8FwkeujBId6XnWMUiMIjCFFouVnr9S4KIAfFzoVfz-zGTgUCRG_Wah_eh2e-8czOB7Afs8wKGqeBTqkJuNBxgHaICNpcI3qNdSaNMxQH57J_zU9uxM0chPVdGHyJAnsqvBP_X3aB8MCV3T3qtEk1aj2XtXQBsQh1h7rT_T2zsXBcf6FIeKuoVXsm3-rB6SNdvNRH74BMr2x6S3A5e00fY3LfnJRpUz-9yuD4X_NYhq8V9CSd6VlZgTmTr8Jit2Z8-wZ_Dqf09OTIc-PgQ8_Ft5HOw_DWBw2Qwyp4xhQEgSP5i0B1TC5HZfVHkQw8JxBRY0fWRC5cDohh_h2ue0dX3X5Q8S4EiklR4j6pSGXSIjYwiE8sanGLQFwjNpCxZtaRiKWhtTRG2ShNC-tyoWxoueKRajP2A-bzUW7WgdgoM-1UiYjRFldUKsFQpGgtM25sLGQDfuKCJNV3UyTeJU7DxBfiKiXVKjXgoN6lRFfJyx2HxsMHLX7NWjxOE3d8UHev3vgEl9y5TFRuRpMioYiOcdKoxd-vw1AO8ghtWd6AtempmY3IZMTbKAI3PjnPXVjsXw3OkrPj89NN-OK47V2IeCi3YL4cT8w2IqAy3fFn_hnThgAi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5FQaJcSqFAAy0sEhw4OI29DzvHKA-FlkZRS9LcrPV6FwUiJ4qdC7-e2Y0dqVVTlZu12vdrvvHMzgfwJaKp4UGUeCoJtMe4ijzUQ7jXZgrRa6RSoa2ieDUSwwm7mPFZDXj1FgY7kWNNuTPi21O9Sk0ZYcA_t-m_VyppBgoln41c-sxa7ezG7nRvdnoWtu0eFXGnGbUq6-RDNViZpPK7MmkP0HQCZ_ASpruuOj-TP81NkTTV33tRHP97LEdwWEJQ0tnumVdQ09lrOOhWzG_HMO1taepJ33Hk4MfA-rmRzmL-yzkPkF7pRKNzggCS3CJgXZPrZVH-WSRXjhuIyLUlbSJjGwtinr2ByaD_szv0Sv4FT1LBC1wvGcpUGMQIGnGKQWluEJArxAgiUtRYMrHENyaI8I4UuoV5GZfGN0yyULYpfQv1bJnpEyAmTHU7kTykQYvJQEhO8WpRSqRMm4iLBnzFCYnL85PHzjQe-LFLxFmKy1lqwHm1UrEqg5hbLo3FIyW-7UqstgE8Hsn7uVr8GKfcmk5kppebPA4QJeOgUZrvz0PxPmQh6rSsAe-2O2fXIhUha-NV-P6J4_wEz8e9Qfzj--jyA7ywFPfWU9wXp1Av1ht9hkCoSD66bf8PIw0CpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Electric+Field+Alignment+Determines+the+Water+Rotational+Motion+around+Protein&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Hu%2C+Kang&rft.au=Shirakashi%2C+Ryo&rft.date=2023-02-16&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=127&rft.issue=6&rft.spage=1376&rft.epage=1384&rft_id=info:doi/10.1021%2Facs.jpcb.2c07405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcb_2c07405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon