Dynamic Electric Field Alignment Determines the Water Rotational Motion around Protein
Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxat...
Saved in:
Published in | The journal of physical chemistry. B Vol. 127; no. 6; pp. 1376 - 1384 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule. |
---|---|
AbstractList | Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule. Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule. |
Author | Hu, Kang Shirakashi, Ryo |
AuthorAffiliation | Institute of Industrial Science Department of Mechanical Engineering |
AuthorAffiliation_xml | – name: Institute of Industrial Science – name: Department of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: Kang orcidid: 0000-0001-5863-1049 surname: Hu fullname: Hu, Kang email: kanghu@iis.u-tokyo.ac.jp organization: Department of Mechanical Engineering – sequence: 2 givenname: Ryo surname: Shirakashi fullname: Shirakashi, Ryo organization: Institute of Industrial Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36749793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPAyEUhYnRWK3uXRmWLmwFhoHp0lhfiUZjfCwnlLkoZgYqMAv_vdRWFybqgnBu7ncgOWcbrTvvAKE9SsaUMHqkdBy_zvVszDSRnJRraIuWjIzykesrLSgRA7Qd4yshrGSV2ESDQkg-kZNiCz1O353qrManLegUsjiz0Db4uLXPrgOX8BQShM46iDi9AH5SecR3PqlkvVMtvvYLgVXwvWvwbfAJrNtBG0a1EXZX9xA9nJ3en1yMrm7OL0-Or0aqEGUaTbiSqhGGEQplxQ3jzFQV0yVlotKFERrYjBrDqqYBASSzvFSGGq64VJOiGKKD5bvz4N96iKnubNTQtsqB72NdEE64JEzwf1EmJc-_Esoyur9C-1kHTT0PtlPhvf6KLQNkCejgYwxgvhFK6kUzdW6mXjRTr5rJFvHDou0ywxSUbf8yHi6Nnxvfhxx6_B3_AAlIo2U |
CitedBy_id | crossref_primary_10_1016_j_cplett_2024_141302 crossref_primary_10_1016_j_molliq_2023_121707 crossref_primary_10_1016_j_saa_2024_124707 |
Cites_doi | 10.1021/acs.jpcb.6b02592 10.1021/jp3111259 10.1039/C7CP05216B 10.1021/jp9027589 10.1073/pnas.95.5.2267 10.1063/1.4997723 10.1021/jp2019389 10.1021/ja0775873 10.1021/acs.jpcb.1c07096 10.1063/1.4990693 10.1016/j.bpc.2006.04.009 10.1073/pnas.1602916113 10.1103/PhysRevLett.45.1196 10.1103/PhysRevA.36.226 10.1016/j.molliq.2019.02.055 10.1063/5.0098506 10.1063/1.5031005 10.1063/1.3471383 10.1021/ct700301q 10.1016/j.jnoncrysol.2014.08.057 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.1063/1.4967774 10.1021/jp2053426 10.1021/ja405201s 10.1063/1.464397 10.1021/jacs.6b08845 10.1021/acs.chemrev.6b00765 10.1021/jacs.6b12463 10.1063/1.5026744 10.1038/s41586-021-03504-4 10.1021/acscentsci.2c00702 10.1126/science.1122154 10.1146/annurev.physchem.012809.103503 10.1021/ja025905m 10.1021/acs.chemrev.5b00664 10.1016/0010-4655(96)00043-4 10.1016/j.csbj.2020.06.029 10.1016/j.cplett.2010.12.077 10.1021/jp0133788 10.1002/anie.201309317 10.1021/j100308a038 10.1021/acs.jpca.1c08020 10.1063/1.2408420 10.1039/D0CP02416C 10.1021/acs.jpcb.7b03966 10.1021/acs.cgd.1c01463 10.1021/acs.jpclett.7b01013 10.1016/j.bbapap.2012.02.008 10.1063/5.0020015 10.1039/C6CP04000D 10.1073/pnas.082335099 10.1021/ja00214a001 10.1021/acs.jpcb.2c00970 10.1063/1.5026861 10.1021/ja403917z |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jpcb.2c07405 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 1384 |
ExternalDocumentID | 36749793 10_1021_acs_jpcb_2c07405 d294277233 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC .K2 123 29L 4.4 55A 5VS 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZGI ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a365t-94a7ad6f201e584f242f882c51268c3f6ce2b1ff28dde6e0ad645af1f4a47a933 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Jul 10 19:06:32 EDT 2025 Fri Jul 11 09:13:46 EDT 2025 Thu Jan 02 22:53:07 EST 2025 Tue Jul 01 04:29:13 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Sat Feb 18 06:07:55 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-94a7ad6f201e584f242f882c51268c3f6ce2b1ff28dde6e0ad645af1f4a47a933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5863-1049 |
PMID | 36749793 |
PQID | 2774268012 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3040470264 proquest_miscellaneous_2774268012 pubmed_primary_36749793 crossref_primary_10_1021_acs_jpcb_2c07405 crossref_citationtrail_10_1021_acs_jpcb_2c07405 acs_journals_10_1021_acs_jpcb_2c07405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-16 |
PublicationDateYYYYMMDD | 2023-02-16 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 Kremer F. (ref15/cit15) 2012 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref54/cit54 doi: 10.1021/acs.jpcb.6b02592 – ident: ref46/cit46 doi: 10.1021/jp3111259 – ident: ref50/cit50 doi: 10.1039/C7CP05216B – ident: ref7/cit7 doi: 10.1021/jp9027589 – ident: ref40/cit40 doi: 10.1073/pnas.95.5.2267 – ident: ref13/cit13 doi: 10.1063/1.4997723 – ident: ref47/cit47 doi: 10.1021/jp2019389 – ident: ref12/cit12 doi: 10.1021/ja0775873 – ident: ref55/cit55 doi: 10.1021/acs.jpcb.1c07096 – ident: ref6/cit6 doi: 10.1063/1.4990693 – ident: ref38/cit38 doi: 10.1016/j.bpc.2006.04.009 – ident: ref51/cit51 doi: 10.1073/pnas.1602916113 – ident: ref32/cit32 doi: 10.1103/PhysRevLett.45.1196 – ident: ref16/cit16 doi: 10.1103/PhysRevA.36.226 – ident: ref17/cit17 doi: 10.1016/j.molliq.2019.02.055 – ident: ref44/cit44 doi: 10.1063/5.0098506 – ident: ref22/cit22 doi: 10.1063/1.5031005 – ident: ref20/cit20 doi: 10.1063/1.3471383 – ident: ref27/cit27 doi: 10.1021/ct700301q – ident: ref49/cit49 doi: 10.1016/j.jnoncrysol.2014.08.057 – ident: ref30/cit30 doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – ident: ref56/cit56 doi: 10.1063/1.4967774 – ident: ref9/cit9 doi: 10.1021/jp2053426 – ident: ref37/cit37 doi: 10.1021/ja405201s – ident: ref33/cit33 doi: 10.1063/1.464397 – ident: ref10/cit10 doi: 10.1021/jacs.6b08845 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.6b00765 – ident: ref8/cit8 doi: 10.1021/jacs.6b12463 – ident: ref21/cit21 doi: 10.1063/1.5026744 – ident: ref45/cit45 doi: 10.1038/s41586-021-03504-4 – ident: ref26/cit26 doi: 10.1021/acscentsci.2c00702 – ident: ref11/cit11 doi: 10.1126/science.1122154 – ident: ref5/cit5 doi: 10.1146/annurev.physchem.012809.103503 – ident: ref4/cit4 doi: 10.1021/ja025905m – ident: ref1/cit1 doi: 10.1021/acs.chemrev.5b00664 – ident: ref34/cit34 doi: 10.1016/0010-4655(96)00043-4 – ident: ref3/cit3 doi: 10.1016/j.csbj.2020.06.029 – ident: ref41/cit41 doi: 10.1016/j.cplett.2010.12.077 – ident: ref52/cit52 doi: 10.1021/jp0133788 – ident: ref19/cit19 doi: 10.1002/anie.201309317 – ident: ref29/cit29 doi: 10.1021/j100308a038 – volume-title: Broadband Dielectric Spectroscopy year: 2012 ident: ref15/cit15 – ident: ref43/cit43 doi: 10.1021/acs.jpca.1c08020 – ident: ref31/cit31 doi: 10.1063/1.2408420 – ident: ref39/cit39 doi: 10.1039/D0CP02416C – ident: ref53/cit53 doi: 10.1021/acs.jpcb.7b03966 – ident: ref42/cit42 doi: 10.1021/acs.cgd.1c01463 – ident: ref24/cit24 doi: 10.1021/acs.jpclett.7b01013 – ident: ref48/cit48 doi: 10.1016/j.bbapap.2012.02.008 – ident: ref14/cit14 doi: 10.1063/5.0020015 – ident: ref23/cit23 doi: 10.1039/C6CP04000D – ident: ref18/cit18 doi: 10.1073/pnas.082335099 – ident: ref28/cit28 doi: 10.1021/ja00214a001 – ident: ref36/cit36 doi: 10.1021/acs.jpcb.2c00970 – ident: ref25/cit25 doi: 10.1063/1.5026861 – ident: ref35/cit35 doi: 10.1021/ja403917z |
SSID | ssj0025286 |
Score | 2.4309323 |
Snippet | Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD)... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1376 |
SubjectTerms | B: Liquids; Chemical and Dynamical Processes in Solution electric field Electricity fluorescence lysozyme molecular dynamics Molecular Dynamics Simulation Proteins Rotation Water |
Title | Dynamic Electric Field Alignment Determines the Water Rotational Motion around Protein |
URI | http://dx.doi.org/10.1021/acs.jpcb.2c07405 https://www.ncbi.nlm.nih.gov/pubmed/36749793 https://www.proquest.com/docview/2774268012 https://www.proquest.com/docview/3040470264 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDh5TGW9Jj1UUVUhFi7S1yHBsVqrRq0gtfz9hJi9gqblFkx_LYnnnjmcxD6DykieEkjD0VE-0xrkIP_BDu1ZkC9BqqRGjrKPZuRPeRXfd5_7NMzvcIPvGvpMqqr2MVV4kCc2fLla4QAWfYwqDm_dy5ggHdn0TcuUO1WUjyty9YQ6Syr4boD3TprExno6ArylxxQptc8lad5nFVvf8s3fiPCWyi9RJs4kaxO7bQkk630WpzxvG2g55aBSE9bjs2HHjo2Iw23BgOXlyaAG6V6TI6wwAV8TNA0wm-G-XlHSLuORYgLCeWngnf2qoPg3QXPXbaD82uVzIteJIKnsPKyEAmwgAa0IBIDNhtA9BbARoQoaLG0obFvjEkBG0odA3aMi6Nb5hkgaxTuoeW01GqDxA2QaLrseQBJTUmiZCcghJRSiRMm5CLCroAgUTlSckiFwQnfuRegpSiUkoVdDVbnkiV5cota8ZwQY_LeY9xUapjQduz2YpHIHIbJJGpHk2ziAAehkmD3f67DQXNxwLwXlkF7RfbZT4iFQGrg9I7_Oc8j9CaZbC3ieC-OEbL-WSqTwDn5PGp2-AfwNP3sg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hONBLebSF8FwkeujBId6XnWMUiMIjCFFouVnr9S4KIAfFzoVfz-zGTgUCRG_Wah_eh2e-8czOB7Afs8wKGqeBTqkJuNBxgHaICNpcI3qNdSaNMxQH57J_zU9uxM0chPVdGHyJAnsqvBP_X3aB8MCV3T3qtEk1aj2XtXQBsQh1h7rT_T2zsXBcf6FIeKuoVXsm3-rB6SNdvNRH74BMr2x6S3A5e00fY3LfnJRpUz-9yuD4X_NYhq8V9CSd6VlZgTmTr8Jit2Z8-wZ_Dqf09OTIc-PgQ8_Ft5HOw_DWBw2Qwyp4xhQEgSP5i0B1TC5HZfVHkQw8JxBRY0fWRC5cDohh_h2ue0dX3X5Q8S4EiklR4j6pSGXSIjYwiE8sanGLQFwjNpCxZtaRiKWhtTRG2ShNC-tyoWxoueKRajP2A-bzUW7WgdgoM-1UiYjRFldUKsFQpGgtM25sLGQDfuKCJNV3UyTeJU7DxBfiKiXVKjXgoN6lRFfJyx2HxsMHLX7NWjxOE3d8UHev3vgEl9y5TFRuRpMioYiOcdKoxd-vw1AO8ghtWd6AtempmY3IZMTbKAI3PjnPXVjsXw3OkrPj89NN-OK47V2IeCi3YL4cT8w2IqAy3fFn_hnThgAi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5FQaJcSqFAAy0sEhw4OI29DzvHKA-FlkZRS9LcrPV6FwUiJ4qdC7-e2Y0dqVVTlZu12vdrvvHMzgfwJaKp4UGUeCoJtMe4ijzUQ7jXZgrRa6RSoa2ieDUSwwm7mPFZDXj1FgY7kWNNuTPi21O9Sk0ZYcA_t-m_VyppBgoln41c-sxa7ezG7nRvdnoWtu0eFXGnGbUq6-RDNViZpPK7MmkP0HQCZ_ASpruuOj-TP81NkTTV33tRHP97LEdwWEJQ0tnumVdQ09lrOOhWzG_HMO1taepJ33Hk4MfA-rmRzmL-yzkPkF7pRKNzggCS3CJgXZPrZVH-WSRXjhuIyLUlbSJjGwtinr2ByaD_szv0Sv4FT1LBC1wvGcpUGMQIGnGKQWluEJArxAgiUtRYMrHENyaI8I4UuoV5GZfGN0yyULYpfQv1bJnpEyAmTHU7kTykQYvJQEhO8WpRSqRMm4iLBnzFCYnL85PHzjQe-LFLxFmKy1lqwHm1UrEqg5hbLo3FIyW-7UqstgE8Hsn7uVr8GKfcmk5kppebPA4QJeOgUZrvz0PxPmQh6rSsAe-2O2fXIhUha-NV-P6J4_wEz8e9Qfzj--jyA7ywFPfWU9wXp1Av1ht9hkCoSD66bf8PIw0CpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Electric+Field+Alignment+Determines+the+Water+Rotational+Motion+around+Protein&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Hu%2C+Kang&rft.au=Shirakashi%2C+Ryo&rft.date=2023-02-16&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=127&rft.issue=6&rft.spage=1376&rft.epage=1384&rft_id=info:doi/10.1021%2Facs.jpcb.2c07405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcb_2c07405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |