Three-dimensional inter-basin groundwater flow toward a groundwater-fed stream: Identification, partition, and quantification
•3D pathways of IGF are identified with an assessment on flow rates.•IGF contributes 36%∼59% to the baseflow and 32%∼52% to the streamflow in the studied river.•Infiltration recharge and aquifer properties affect the development of IGF. Inter-basin groundwater flow (IGF), defined as groundwater flow...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 629; p. 130524 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •3D pathways of IGF are identified with an assessment on flow rates.•IGF contributes 36%∼59% to the baseflow and 32%∼52% to the streamflow in the studied river.•Infiltration recharge and aquifer properties affect the development of IGF.
Inter-basin groundwater flow (IGF), defined as groundwater flows across the topographic divides, occurs in nature as a common phenomenon, and seriously affect water balance and solute transport in a basin. Although the existence of IGF has been checked in drainage basins with indirect methods, such as using information of hydrogeochemistry, few studies are conducted to directly identify and quantify the IGF in the three-dimensional (3D) space using numerical modeling of groundwater flow. In this study, we identify, partition and quantify IGF based on a regional-scale 3D groundwater flow model covering several traditional surface water basins. The investigation is focused on the Hailiutu River, a groundwater-fed stream in the Ordos Plateau, China. It is the first time that the source zones and 3D paths of IGF as well as its contribution to the streamflow are fully captured for a groundwater-fed stream. Results indicate that the IGF contributes 36%∼59% to the baseflow and 32%∼52% to the streamflow of the Hailiutu River, through different groups of circulation paths with the maximum depth up to ∼ 1000 m. Uncertainty analyses of the model show that the contribution of IGF to the streamflow is positively correlated to the infiltration recharge and hydraulic conductivities of the aquifer media. Several indirect methods are also checked for comparison, but they could only be used to assess the potential contribution of IGF, not the IGF paths. This study will facilitate in deeply understanding the evolution mechanism of the inter-basin groundwater circulation and the interaction between surface water and groundwater. |
---|---|
AbstractList | Inter-basin groundwater flow (IGF), defined as groundwater flows across the topographic divides, occurs in nature as a common phenomenon, and seriously affect water balance and solute transport in a basin. Although the existence of IGF has been checked in drainage basins with indirect methods, such as using information of hydrogeochemistry, few studies are conducted to directly identify and quantify the IGF in the three-dimensional (3D) space using numerical modeling of groundwater flow. In this study, we identify, partition and quantify IGF based on a regional-scale 3D groundwater flow model covering several traditional surface water basins. The investigation is focused on the Hailiutu River, a groundwater-fed stream in the Ordos Plateau, China. It is the first time that the source zones and 3D paths of IGF as well as its contribution to the streamflow are fully captured for a groundwater-fed stream. Results indicate that the IGF contributes 36%∼59% to the baseflow and 32%∼52% to the streamflow of the Hailiutu River, through different groups of circulation paths with the maximum depth up to ∼1000 m. Uncertainty analyses of the model show that the contribution of IGF to the streamflow is positively correlated to the infiltration recharge and hydraulic conductivities of the aquifer media. Several indirect methods are also checked for comparison, but they could only be used to assess the potential contribution of IGF, not the IGF paths. This study will facilitate in deeply understanding the evolution mechanism of the inter-basin groundwater circulation and the interaction between surface water and groundwater. •3D pathways of IGF are identified with an assessment on flow rates.•IGF contributes 36%∼59% to the baseflow and 32%∼52% to the streamflow in the studied river.•Infiltration recharge and aquifer properties affect the development of IGF. Inter-basin groundwater flow (IGF), defined as groundwater flows across the topographic divides, occurs in nature as a common phenomenon, and seriously affect water balance and solute transport in a basin. Although the existence of IGF has been checked in drainage basins with indirect methods, such as using information of hydrogeochemistry, few studies are conducted to directly identify and quantify the IGF in the three-dimensional (3D) space using numerical modeling of groundwater flow. In this study, we identify, partition and quantify IGF based on a regional-scale 3D groundwater flow model covering several traditional surface water basins. The investigation is focused on the Hailiutu River, a groundwater-fed stream in the Ordos Plateau, China. It is the first time that the source zones and 3D paths of IGF as well as its contribution to the streamflow are fully captured for a groundwater-fed stream. Results indicate that the IGF contributes 36%∼59% to the baseflow and 32%∼52% to the streamflow of the Hailiutu River, through different groups of circulation paths with the maximum depth up to ∼ 1000 m. Uncertainty analyses of the model show that the contribution of IGF to the streamflow is positively correlated to the infiltration recharge and hydraulic conductivities of the aquifer media. Several indirect methods are also checked for comparison, but they could only be used to assess the potential contribution of IGF, not the IGF paths. This study will facilitate in deeply understanding the evolution mechanism of the inter-basin groundwater circulation and the interaction between surface water and groundwater. |
ArticleNumber | 130524 |
Author | Han, Peng-Fei Jiang, Xiao-Wei Zhou, Yangxiao Wan, Li Chen, Jinsong Wang, Xu-Sheng Yang, Zhi |
Author_xml | – sequence: 1 givenname: Peng-Fei orcidid: 0000-0001-5335-3019 surname: Han fullname: Han, Peng-Fei organization: Key Laboratory of Groundwater Conservation of Ministry of Water Resources (in preparation), China University of Geosciences, Beijing 100083, China – sequence: 2 givenname: Xu-Sheng orcidid: 0000-0001-8736-2378 surname: Wang fullname: Wang, Xu-Sheng email: wxsh@cugb.edu.cn organization: Key Laboratory of Groundwater Conservation of Ministry of Water Resources (in preparation), China University of Geosciences, Beijing 100083, China – sequence: 3 givenname: Yangxiao orcidid: 0000-0002-0856-7007 surname: Zhou fullname: Zhou, Yangxiao email: y.zhou@un-ihe.org organization: Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, Delft, The Netherlands – sequence: 4 givenname: Zhi surname: Yang fullname: Yang, Zhi email: smartd@hrc.gov.cn organization: Institute of Huaihe River Water Resources Protection, The Huaihe River Commission of the Ministry of Water Resources, P.R.C, Bengbu, China – sequence: 5 givenname: Li surname: Wan fullname: Wan, Li email: wanli@cugb.edu.cn organization: Key Laboratory of Groundwater Conservation of Ministry of Water Resources (in preparation), China University of Geosciences, Beijing 100083, China – sequence: 6 givenname: Jinsong surname: Chen fullname: Chen, Jinsong email: chenjs@cugb.edu.cn organization: Key Laboratory of Groundwater Conservation of Ministry of Water Resources (in preparation), China University of Geosciences, Beijing 100083, China – sequence: 7 givenname: Xiao-Wei orcidid: 0000-0002-7991-0757 surname: Jiang fullname: Jiang, Xiao-Wei email: jxw@cugb.edu.cn organization: Key Laboratory of Groundwater Conservation of Ministry of Water Resources (in preparation), China University of Geosciences, Beijing 100083, China |
BookMark | eNqFkE1PGzEQhi0EEuHjJyD52EM3-GPtTdpDVaEWIiFxgbM1a882jjZ2YjuNOPDfWVgOERfmMqN35n2lec7IcYgBCbnibMoZ19er6Wr57FLsp4IJOeWSKVEfkQmfNfNKNKw5JhPGhKi4nten5CznFRtKynpCXh6XCbFyfo0h-xigpz4UTFUL2Qf6L8VdcHsYFNr1cU9L3ENyFA43VYeO5pIQ1j_owmEovvMWyhD3nW4gFT-OEBzd7uBgfUFOOugzXn70c_L098_jzV11_3C7uPl9X4HUqlRzqQFtzYVuQVhsWtXKQVO80Vxa1ijkEpGr1rWs4Ry5drKeqaa2upbYtvKcfBtzNylud5iLWftsse8hYNxlI7mSWsyEZMOpGk9tijkn7Mwm-TWkZ8OZecNtVuYDt3nDbUbcg-_nJ5_15f3JksD3X7p_jW4cKPz3mEy2HoNF5xPaYlz0XyS8Au7jo98 |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2025_133175 crossref_primary_10_1016_j_gsf_2024_101967 crossref_primary_10_1002_hyp_15304 crossref_primary_10_1016_j_scitotenv_2024_172923 crossref_primary_10_3390_w17010109 |
Cites_doi | 10.5194/hess-22-6415-2018 10.1029/2008JD010636 10.1201/9780429487385 10.1029/2020WR027762 10.3390/w11040685 10.1007/s10040-013-1091-z 10.1029/2023WR034725 10.1016/0022-1694(90)90131-G 10.1016/j.jhydrol.2005.06.014 10.3133/ofr200092 10.5194/hess-20-3673-2016 10.1016/j.jhydrol.2016.04.034 10.1007/s10040-016-1397-8 10.1029/2012WR012509 10.1002/eco.1254 10.1002/2017JD027758 10.1002/hyp.14199 10.1002/2014GL059579 10.1016/j.jhydrol.2015.04.063 10.1029/2004WR003635 10.1016/j.jhydrol.2014.09.067 10.1007/s100400050176 10.1038/ngeo2964 10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N 10.1016/j.advwatres.2017.07.016 10.5194/hess-17-2209-2013 10.1029/2011WR010507 10.1016/0022-1694(94)90004-3 10.1029/2022WR032413 10.3133/ofr94464 10.1029/2019WR026010 10.5194/hess-17-2435-2013 10.1029/2010WR009346 10.1007/s10040-017-1541-0 10.1016/j.jhydrol.2020.124583 10.1002/2014GL060509 10.1029/JZ068i016p04795 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2023.130524 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2023_130524 S002216942301466X |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a365t-936aec4126ba2ce7b5b3936517613c075e13ee15bdb0711e16d348574c643ebb3 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 03:58:04 EDT 2025 Tue Jul 01 01:53:54 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 Sat Feb 17 16:11:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ordos Plateau Divide Particle tracking Inter-basin groundwater flow Numerical model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-936aec4126ba2ce7b5b3936517613c075e13ee15bdb0711e16d348574c643ebb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0856-7007 0000-0001-5335-3019 0000-0002-7991-0757 0000-0001-8736-2378 |
PQID | 3153628230 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153628230 crossref_primary_10_1016_j_jhydrol_2023_130524 crossref_citationtrail_10_1016_j_jhydrol_2023_130524 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_130524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Wörman, Bresciani, Wan, Wang, Jiang (b0220) 2016 Zhang, Wang, Yin, Wang, Love, Lu, Jiang, Yang, Xie, Wang, Sun, Hou, Pang (b0250) 2021; 48 Bazemore, Eshleman, Hollenbeck (b0010) 1994; 162 Mouelhi, Michel, Perrin, Andréassian (b0145) 2006; 318 Wang, Jiang, Wan, Ge, Li (b0200) 2011; 47 Han, Wang, Istanbulluoglu (b0075) 2018; 123 Sloto, Crouse (b0175) 1996 Yang, Z., 2018. Quantitative assessment of groundwater and surface water interactions in the Hailiutu River Basin, Erdos Plateau, China. Delft University of Technology. Doi: 10.1201/9780429487385. Wang, Wan, Jiang, Li, Wang, Zhou, Ji (b0215) 2017; 108 Han, Wang, Wan, Jiang, Hu (b0080) 2019; 11 Yang, Zhou, Wenninger, Uhlenbrook (b0230) 2014; 22 Condon, Markovich, Kelleher, McDonnell, Ferguson, Mclntosh (b0040) 2020; 56 Genereux, Webb, Solomon (b0070) 2009; 45(8):W08413.1-14 Ballarin, A. S., Oliveira, P. T. S., Marchezepe, B. K., Godoi, R. F., Campos, A. M., Campos, F. S., … Neto, A. A. M., 2022. The Impact of an Open Water Balance Assumption on Understanding the Factors Controlling the Long-Term Streamflow Components. Water Resources Research, 58(10): e2022WR032413. doi: 10.1029/2022WR032413. Han, Sankarasubramanian, Wang, Wan, Yao (b0090) 2023; 59 Mesnil, Charlier, Moussa, Caballero, Dörfliger (b0140) 2020; 585 Harbaugh (b0095) 2005 Bouaziz, Weerts, Schellekens, Sprokkereef, Stam, Savenije, Hrachowitz (b0015) 2018; 22 Zhang, Wang, Hu (b0245) 2012; 37 Zhou, Wenninger, Yang, Yin, Huang, Hou, Wang, Zhang, Uhlenbrook (b0255) 2012; 17 Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G. 2000. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model User Guide to Modularization Concepts and the Ground-Water Flow Process. Denver: U. S. Geological Survey Open-file report 00-92.2000, USGS. McDonnell (b0135) 2017; 10 Han, Istanbulluoglu, Wan, Wang (b0085) 2021; 57 Pellicer-Martínez, Martínez-Paz (b0150) 2014; 519 Wittenberg (b0225) 1999; 13 Troch, Carrillo, Sivapalan, Wagener, Sawicz (b0190) 2013; 17 Genereux, Pringle (b0060) 1997; 199 Tóth (b0180) 1963; 68 Genereux, Wood, Pringle (b0065) 2002; 258 Tóth (b0185) 1999; 7 Yang, Zhou, Wenninger, Uhlenbrook, Wang, Wan (b0235) 2017; 25 Jiang, Wang, Wan, Ge (b0115) 2011; 47 Budyko, M.I., 1974. In: Climate and Life. Academic Press, New York, pp. 508 English ed./edited by David H. Miller (Ed.). Wang, Zhou (b0195) 2016; 20 Wang, Jiang, Wan, Han, Guo (b0205) 2015; 527 Lv, Wang, Zhou, Qian, Wan, Eamus, Tao (b0130) 2013; 6 Pollock, D.W., 1994. User’s Guide for MODPATH/MODPATH-PLOT, Version 3: A Particle Tracking Post-processing Package for MODFLOW, the US: Geological Survey Finite-difference Ground-water Flow Model. US Department of Interior. Hou, Zhang, Liu, Wang, Liang, Tao (b0110) 2008 Fan (b0050) 2019; 10 Running, S., Mu, Q., 2017. MOD16A3 MODIS/Terra Net Evapotranspiration Yearly L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/modis/mod16a3.006. Engelen, Kloosterman (b0045) 1996 Jiang, Wan, Wang, Yin, Fu, Lin (b0125) 2014; 41 Hooper, Christophersen, Peters (b0105) 1990; 116 Bresciani, Gleeson, Goderniaux, Dreuzy, Werner, Wörman, Zijl, Batelaan (b0020) 2016; 24 Genereux, Jordan, Carbonell (b0055) 2005; 41 CMA (China Meteorological Administration), 2012. Monthly land surface climatic dataset in China, Climatic Data Center, National Meteorological Information Center, CMA, Beijing, China, available at: http://data.cma.cn/data/index/6d1b5efbdcbf9a58.html. Safeeq, Bart, Pelak, Singh, Dralle, Hartsough, Wagenbrenner (b0165) 2021; 35 Schaller, Fan (b0170) 2009; 114 Wang, Tang (b0210) 2014; 41 Jiang, Wan, Ge, Cao, Hou, Hu, Wang, Li, Liang (b0120) 2012; 48 Tóth (10.1016/j.jhydrol.2023.130524_b0180) 1963; 68 Yang (10.1016/j.jhydrol.2023.130524_b0230) 2014; 22 Genereux (10.1016/j.jhydrol.2023.130524_b0065) 2002; 258 Wang (10.1016/j.jhydrol.2023.130524_b0200) 2011; 47 Wang (10.1016/j.jhydrol.2023.130524_b0210) 2014; 41 Wang (10.1016/j.jhydrol.2023.130524_b0205) 2015; 527 Han (10.1016/j.jhydrol.2023.130524_b0075) 2018; 123 10.1016/j.jhydrol.2023.130524_b0160 Safeeq (10.1016/j.jhydrol.2023.130524_b0165) 2021; 35 10.1016/j.jhydrol.2023.130524_b0240 Sloto (10.1016/j.jhydrol.2023.130524_b0175) 1996 10.1016/j.jhydrol.2023.130524_b0005 Han (10.1016/j.jhydrol.2023.130524_b0085) 2021; 57 Wittenberg (10.1016/j.jhydrol.2023.130524_b0225) 1999; 13 Mesnil (10.1016/j.jhydrol.2023.130524_b0140) 2020; 585 Mouelhi (10.1016/j.jhydrol.2023.130524_b0145) 2006; 318 Fan (10.1016/j.jhydrol.2023.130524_b0050) 2019; 10 Wang (10.1016/j.jhydrol.2023.130524_b0195) 2016; 20 Hou (10.1016/j.jhydrol.2023.130524_b0110) 2008 10.1016/j.jhydrol.2023.130524_b0155 10.1016/j.jhydrol.2023.130524_b0035 Zhou (10.1016/j.jhydrol.2023.130524_b0255) 2012; 17 Lv (10.1016/j.jhydrol.2023.130524_b0130) 2013; 6 Wang (10.1016/j.jhydrol.2023.130524_b0215) 2017; 108 Jiang (10.1016/j.jhydrol.2023.130524_b0125) 2014; 41 Tóth (10.1016/j.jhydrol.2023.130524_b0185) 1999; 7 Han (10.1016/j.jhydrol.2023.130524_b0090) 2023; 59 Troch (10.1016/j.jhydrol.2023.130524_b0190) 2013; 17 Hooper (10.1016/j.jhydrol.2023.130524_b0105) 1990; 116 McDonnell (10.1016/j.jhydrol.2023.130524_b0135) 2017; 10 10.1016/j.jhydrol.2023.130524_b0100 Genereux (10.1016/j.jhydrol.2023.130524_b0060) 1997; 199 10.1016/j.jhydrol.2023.130524_b0025 Harbaugh (10.1016/j.jhydrol.2023.130524_b0095) 2005 Zhang (10.1016/j.jhydrol.2023.130524_b0245) 2012; 37 Bazemore (10.1016/j.jhydrol.2023.130524_b0010) 1994; 162 Genereux (10.1016/j.jhydrol.2023.130524_b0070) 2009; 45(8):W08413.1-14 Schaller (10.1016/j.jhydrol.2023.130524_b0170) 2009; 114 Zhang (10.1016/j.jhydrol.2023.130524_b0250) 2021; 48 Bouaziz (10.1016/j.jhydrol.2023.130524_b0015) 2018; 22 Engelen (10.1016/j.jhydrol.2023.130524_b0045) 1996 Bresciani (10.1016/j.jhydrol.2023.130524_b0020) 2016; 24 Han (10.1016/j.jhydrol.2023.130524_b0080) 2019; 11 Jiang (10.1016/j.jhydrol.2023.130524_b0115) 2011; 47 Jiang (10.1016/j.jhydrol.2023.130524_b0120) 2012; 48 Condon (10.1016/j.jhydrol.2023.130524_b0040) 2020; 56 Genereux (10.1016/j.jhydrol.2023.130524_b0055) 2005; 41 Yang (10.1016/j.jhydrol.2023.130524_b0235) 2017; 25 Pellicer-Martínez (10.1016/j.jhydrol.2023.130524_b0150) 2014; 519 Wang (10.1016/j.jhydrol.2023.130524_b0220) 2016 |
References_xml | – volume: 11 start-page: 685 year: 2019 ident: b0080 article-title: The exact groundwater divide on water table between two rivers: a fundamental model investigation publication-title: WATER – volume: 45(8):W08413.1-14 year: 2009 ident: b0070 article-title: Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: evidence from carbon, helium, and chlorine publication-title: Water Resour. Res. – volume: 68 start-page: 4795 year: 1963 end-page: 4812 ident: b0180 article-title: A theoretical analysis of groundwater flow in small drainage basins publication-title: J. Geophys. Res. – volume: 13 start-page: 715 year: 1999 end-page: 726 ident: b0225 article-title: Baseflow recession and recharge as nonlinear storage processes publication-title: Hydrol. Process. – volume: 7 start-page: 1 year: 1999 end-page: 14 ident: b0185 article-title: Groundwater as a geologic agent: an overview of the causes, processes and manifestations publication-title: Hydrgeol. J. – volume: 114 year: 2009 ident: b0170 article-title: River basins as groundwater exporters and importers: implications for water cycle and climate modeling publication-title: J. Geophys. Res. Atmos. – volume: 20 start-page: 3673 year: 2016 end-page: 3690 ident: b0195 article-title: Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration publication-title: Hydrol. Earth Syst. Sci. – volume: 519 start-page: 1848 year: 2014 end-page: 1858 ident: b0150 article-title: Assessment of interbasin groundwater flows between catchments using a semi-distributed water balance model publication-title: Journal Hydrology. – volume: 17 start-page: 2435 year: 2012 end-page: 2447 ident: b0255 article-title: Groundwater-surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment China-a synthesis publication-title: Hydrology and Earth System Sciences – reference: Ballarin, A. S., Oliveira, P. T. S., Marchezepe, B. K., Godoi, R. F., Campos, A. M., Campos, F. S., … Neto, A. A. M., 2022. The Impact of an Open Water Balance Assumption on Understanding the Factors Controlling the Long-Term Streamflow Components. Water Resources Research, 58(10): e2022WR032413. doi: 10.1029/2022WR032413. – volume: 24 start-page: 1087 year: 2016 end-page: 1090 ident: b0020 article-title: Groundwater flow systems theory: research challenges beyond the specified-head top boundary condition publication-title: Hydrgeol. J. – reference: Running, S., Mu, Q., 2017. MOD16A3 MODIS/Terra Net Evapotranspiration Yearly L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/modis/mod16a3.006. – volume: 47 start-page: W01512 year: 2011 ident: b0115 article-title: An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity publication-title: Water Resour. Res. – volume: 258 year: 2002 ident: b0065 article-title: Chemical tracing of interbasin groundwater transfer in the lowland rainforest of Costa Rica publication-title: J. Hydrol. – volume: 17 start-page: 2209 year: 2013 end-page: 2217 ident: b0190 article-title: Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution publication-title: Hydrol. Earth Syst. Sci. – volume: 41 start-page: 4569 year: 2014 end-page: 4577 ident: b0210 article-title: A one-parameter budyko model for water balance captures emergent behavior in darwinian hydrologic models publication-title: Geophys. Res. Lett. – reference: Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G. 2000. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model User Guide to Modularization Concepts and the Ground-Water Flow Process. Denver: U. S. Geological Survey Open-file report 00-92.2000, USGS. – volume: 48 start-page: W12502 year: 2012 ident: b0120 article-title: A quantitative study on accumulation of age mass around stagnation points in nested flow systems publication-title: Water Resour. Res. – volume: 41 start-page: 2812 year: 2014 end-page: 2819 ident: b0125 article-title: Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method publication-title: Geophys. Res. Lett. – volume: 25 start-page: 1341 year: 2017 end-page: 1355 ident: b0235 article-title: Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, Northwest China publication-title: Hydrogeology Journal – volume: 47 year: 2011 ident: b0200 article-title: A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability publication-title: Water Resour. Res. – volume: 22 start-page: 6415 year: 2018 end-page: 6434 ident: b0015 article-title: Redressing the balance: quantifying net intercatchment groundwater flows publication-title: Hydrol. Earth Syst. Sci. – volume: 318 start-page: 200 year: 2006 end-page: 214 ident: b0145 article-title: Stepwise development of a two-parameter monthly water balance model publication-title: J. Hydrol. – volume: 48 year: 2021 ident: b0250 article-title: Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems publication-title: Geophys. Res. Lett. – year: 2005 ident: b0095 article-title: MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process – reference: Yang, Z., 2018. Quantitative assessment of groundwater and surface water interactions in the Hailiutu River Basin, Erdos Plateau, China. Delft University of Technology. Doi: 10.1201/9780429487385. – reference: Budyko, M.I., 1974. In: Climate and Life. Academic Press, New York, pp. 508 English ed./edited by David H. Miller (Ed.). – volume: 199 year: 1997 ident: b0060 article-title: Chemical mixing model of streamflow generation at La Selva Biological Station, Costa Rica publication-title: J. Hydrol. – reference: Pollock, D.W., 1994. User’s Guide for MODPATH/MODPATH-PLOT, Version 3: A Particle Tracking Post-processing Package for MODFLOW, the US: Geological Survey Finite-difference Ground-water Flow Model. US Department of Interior. – volume: 527 start-page: 433 year: 2015 end-page: 441 ident: b0205 article-title: Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin publication-title: J. Hydrol. – year: 2008 ident: b0110 article-title: Groundwater Investigation in the Ordos Basin – volume: 6 start-page: 142 year: 2013 end-page: 149 ident: b0130 article-title: Groundwater-dependent distribution of vegetation in hailiutu river catchment, a semi-arid region in China publication-title: Ecohydrology – volume: 35 year: 2021 ident: b0165 article-title: How realistic are water-balance closure assumptions? A demonstration from the southern sierra critical zone observatory and kings river experimental watersheds publication-title: Hydrol. Process. – volume: 10 year: 2019 ident: b0050 article-title: Are catchments leaky? publication-title: Wiley Interdisciplinary Reviews: Water – reference: CMA (China Meteorological Administration), 2012. Monthly land surface climatic dataset in China, Climatic Data Center, National Meteorological Information Center, CMA, Beijing, China, available at: http://data.cma.cn/data/index/6d1b5efbdcbf9a58.html. – volume: 37 start-page: 375 year: 2012 end-page: 380 ident: b0245 article-title: Evapotranspiration estimation of Hailiutu River Basin based on MODIS data publication-title: EarthScience-Journal of China University of Geosciences – volume: 123 start-page: 2082 year: 2018 end-page: 2097 ident: b0075 article-title: A null-parameter formula of storage-evapotranspiration relationship at catchment scale and its application for a new hydrological model publication-title: J. Geophys. Res.-Atmos. – volume: 41 start-page: W04011.1 year: 2005 end-page: W04011.17 ident: b0055 article-title: A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica publication-title: Water Resour. Res. – volume: 10 year: 2017 ident: b0135 article-title: Beyond the water balance publication-title: Nature Geoscience – year: 1996 ident: b0045 article-title: Hydrological Systems Analysis: Methods and Applications – volume: 116 start-page: 321 year: 1990 end-page: 343 ident: b0105 article-title: Modelling streamwater chemistry as a mixture of soilwater end-members — an application to the Panola Mountain catchment, Georgia, U.S.A publication-title: J. Hydrol. – volume: 57 start-page: 1 year: 2021 end-page: 28 ident: b0085 article-title: A new hydrologic sensitivity framework for unsteady-state responses to climate change and its application to catchments with croplands in Illinois publication-title: Water Resour. Res. – volume: 22 start-page: 527 year: 2014 end-page: 541 ident: b0230 article-title: A multi-method approach to quantify groundwater/surface water-interactions in the semi-arid Hailiutu River Basin, Northwest China publication-title: Hydrogeology Journal – volume: 585 year: 2020 ident: b0140 article-title: Interbasin groundwater flow: characterization, role of karst areas, impact on annual water balance and flood processes publication-title: J. Hydrol. – volume: 108 start-page: 139 year: 2017 end-page: 156 ident: b0215 article-title: Identifying three-dimensional nested groundwater flow systems in a Tóthian basin publication-title: Adv. Water Resour. – volume: 59 start-page: 1 year: 2023 end-page: 21 ident: b0090 article-title: One-parameter analytical derivation in modified Budyko framework for unsteady-state streamflow elasticity in humid catchments publication-title: Water Resour. Res. – volume: 56 start-page: 1 year: 2020 end-page: 9 ident: b0040 article-title: Where is the bottom of a watershed? publication-title: Water Resour. Res. – start-page: 96 year: 1996 end-page: 4040 ident: b0175 article-title: HYSEP: a computer program for streamflow hydrograph separation and analysis publication-title: US Geological Survey Water-Resources Investigations Report – volume: 162 start-page: 47 year: 1994 end-page: 75 ident: b0010 article-title: The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence publication-title: J. Hydrol. – start-page: 47 year: 2016 end-page: 58 ident: b0220 article-title: On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems publication-title: J. Hydrol. – volume: 22 start-page: 6415 issue: 12 year: 2018 ident: 10.1016/j.jhydrol.2023.130524_b0015 article-title: Redressing the balance: quantifying net intercatchment groundwater flows publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6415-2018 – year: 1996 ident: 10.1016/j.jhydrol.2023.130524_b0045 – volume: 199 issue: 3–4 year: 1997 ident: 10.1016/j.jhydrol.2023.130524_b0060 article-title: Chemical mixing model of streamflow generation at La Selva Biological Station, Costa Rica publication-title: J. Hydrol. – volume: 114 issue: D4 year: 2009 ident: 10.1016/j.jhydrol.2023.130524_b0170 article-title: River basins as groundwater exporters and importers: implications for water cycle and climate modeling publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2008JD010636 – ident: 10.1016/j.jhydrol.2023.130524_b0240 doi: 10.1201/9780429487385 – volume: 57 start-page: 1 year: 2021 ident: 10.1016/j.jhydrol.2023.130524_b0085 article-title: A new hydrologic sensitivity framework for unsteady-state responses to climate change and its application to catchments with croplands in Illinois publication-title: Water Resour. Res. doi: 10.1029/2020WR027762 – volume: 11 start-page: 685 year: 2019 ident: 10.1016/j.jhydrol.2023.130524_b0080 article-title: The exact groundwater divide on water table between two rivers: a fundamental model investigation publication-title: WATER doi: 10.3390/w11040685 – volume: 22 start-page: 527 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2023.130524_b0230 article-title: A multi-method approach to quantify groundwater/surface water-interactions in the semi-arid Hailiutu River Basin, Northwest China publication-title: Hydrogeology Journal doi: 10.1007/s10040-013-1091-z – volume: 59 start-page: 1 issue: 9 year: 2023 ident: 10.1016/j.jhydrol.2023.130524_b0090 article-title: One-parameter analytical derivation in modified Budyko framework for unsteady-state streamflow elasticity in humid catchments publication-title: Water Resour. Res. doi: 10.1029/2023WR034725 – volume: 116 start-page: 321 issue: 1 year: 1990 ident: 10.1016/j.jhydrol.2023.130524_b0105 article-title: Modelling streamwater chemistry as a mixture of soilwater end-members — an application to the Panola Mountain catchment, Georgia, U.S.A publication-title: J. Hydrol. doi: 10.1016/0022-1694(90)90131-G – volume: 318 start-page: 200 issue: 1–4 year: 2006 ident: 10.1016/j.jhydrol.2023.130524_b0145 article-title: Stepwise development of a two-parameter monthly water balance model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.06.014 – ident: 10.1016/j.jhydrol.2023.130524_b0100 doi: 10.3133/ofr200092 – volume: 20 start-page: 3673 year: 2016 ident: 10.1016/j.jhydrol.2023.130524_b0195 article-title: Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-3673-2016 – start-page: 47 year: 2016 ident: 10.1016/j.jhydrol.2023.130524_b0220 article-title: On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.04.034 – volume: 24 start-page: 1087 issue: 5 year: 2016 ident: 10.1016/j.jhydrol.2023.130524_b0020 article-title: Groundwater flow systems theory: research challenges beyond the specified-head top boundary condition publication-title: Hydrgeol. J. doi: 10.1007/s10040-016-1397-8 – volume: 48 start-page: W12502 issue: 12 year: 2012 ident: 10.1016/j.jhydrol.2023.130524_b0120 article-title: A quantitative study on accumulation of age mass around stagnation points in nested flow systems publication-title: Water Resour. Res. doi: 10.1029/2012WR012509 – volume: 10 year: 2019 ident: 10.1016/j.jhydrol.2023.130524_b0050 article-title: Are catchments leaky? publication-title: Wiley Interdisciplinary Reviews: Water – volume: 6 start-page: 142 year: 2013 ident: 10.1016/j.jhydrol.2023.130524_b0130 article-title: Groundwater-dependent distribution of vegetation in hailiutu river catchment, a semi-arid region in China publication-title: Ecohydrology doi: 10.1002/eco.1254 – volume: 123 start-page: 2082 issue: 4 year: 2018 ident: 10.1016/j.jhydrol.2023.130524_b0075 article-title: A null-parameter formula of storage-evapotranspiration relationship at catchment scale and its application for a new hydrological model publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2017JD027758 – volume: 35 issue: 5 year: 2021 ident: 10.1016/j.jhydrol.2023.130524_b0165 article-title: How realistic are water-balance closure assumptions? A demonstration from the southern sierra critical zone observatory and kings river experimental watersheds publication-title: Hydrol. Process. doi: 10.1002/hyp.14199 – volume: 41 start-page: 2812 issue: 8 year: 2014 ident: 10.1016/j.jhydrol.2023.130524_b0125 article-title: Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL059579 – volume: 527 start-page: 433 year: 2015 ident: 10.1016/j.jhydrol.2023.130524_b0205 article-title: Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.04.063 – volume: 41 start-page: W04011.1 issue: 4 year: 2005 ident: 10.1016/j.jhydrol.2023.130524_b0055 article-title: A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica publication-title: Water Resour. Res. doi: 10.1029/2004WR003635 – volume: 519 start-page: 1848 year: 2014 ident: 10.1016/j.jhydrol.2023.130524_b0150 article-title: Assessment of interbasin groundwater flows between catchments using a semi-distributed water balance model publication-title: Journal Hydrology. doi: 10.1016/j.jhydrol.2014.09.067 – volume: 7 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.jhydrol.2023.130524_b0185 article-title: Groundwater as a geologic agent: an overview of the causes, processes and manifestations publication-title: Hydrgeol. J. doi: 10.1007/s100400050176 – volume: 10 issue: 6 year: 2017 ident: 10.1016/j.jhydrol.2023.130524_b0135 article-title: Beyond the water balance publication-title: Nature Geoscience doi: 10.1038/ngeo2964 – volume: 13 start-page: 715 issue: 5 year: 1999 ident: 10.1016/j.jhydrol.2023.130524_b0225 article-title: Baseflow recession and recharge as nonlinear storage processes publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N – ident: 10.1016/j.jhydrol.2023.130524_b0035 – volume: 108 start-page: 139 year: 2017 ident: 10.1016/j.jhydrol.2023.130524_b0215 article-title: Identifying three-dimensional nested groundwater flow systems in a Tóthian basin publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.07.016 – ident: 10.1016/j.jhydrol.2023.130524_b0025 – volume: 258 issue: 1–4 year: 2002 ident: 10.1016/j.jhydrol.2023.130524_b0065 article-title: Chemical tracing of interbasin groundwater transfer in the lowland rainforest of Costa Rica publication-title: J. Hydrol. – volume: 17 start-page: 2209 issue: 6 year: 2013 ident: 10.1016/j.jhydrol.2023.130524_b0190 article-title: Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-2209-2013 – volume: 47 issue: 9 year: 2011 ident: 10.1016/j.jhydrol.2023.130524_b0200 article-title: A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability publication-title: Water Resour. Res. doi: 10.1029/2011WR010507 – volume: 162 start-page: 47 issue: 1–2 year: 1994 ident: 10.1016/j.jhydrol.2023.130524_b0010 article-title: The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence publication-title: J. Hydrol. doi: 10.1016/0022-1694(94)90004-3 – year: 2005 ident: 10.1016/j.jhydrol.2023.130524_b0095 – ident: 10.1016/j.jhydrol.2023.130524_b0160 – ident: 10.1016/j.jhydrol.2023.130524_b0005 doi: 10.1029/2022WR032413 – ident: 10.1016/j.jhydrol.2023.130524_b0155 doi: 10.3133/ofr94464 – volume: 56 start-page: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.130524_b0040 article-title: Where is the bottom of a watershed? publication-title: Water Resour. Res. doi: 10.1029/2019WR026010 – volume: 17 start-page: 2435 year: 2012 ident: 10.1016/j.jhydrol.2023.130524_b0255 article-title: Groundwater-surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment China-a synthesis publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-17-2435-2013 – volume: 48 year: 2021 ident: 10.1016/j.jhydrol.2023.130524_b0250 article-title: Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems publication-title: Geophys. Res. Lett. – volume: 47 start-page: W01512 issue: 1 year: 2011 ident: 10.1016/j.jhydrol.2023.130524_b0115 article-title: An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity publication-title: Water Resour. Res. doi: 10.1029/2010WR009346 – volume: 25 start-page: 1341 issue: 5 year: 2017 ident: 10.1016/j.jhydrol.2023.130524_b0235 article-title: Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, Northwest China publication-title: Hydrogeology Journal doi: 10.1007/s10040-017-1541-0 – volume: 585 year: 2020 ident: 10.1016/j.jhydrol.2023.130524_b0140 article-title: Interbasin groundwater flow: characterization, role of karst areas, impact on annual water balance and flood processes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124583 – start-page: 96 year: 1996 ident: 10.1016/j.jhydrol.2023.130524_b0175 article-title: HYSEP: a computer program for streamflow hydrograph separation and analysis publication-title: US Geological Survey Water-Resources Investigations Report – volume: 41 start-page: 4569 issue: 13 year: 2014 ident: 10.1016/j.jhydrol.2023.130524_b0210 article-title: A one-parameter budyko model for water balance captures emergent behavior in darwinian hydrologic models publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL060509 – volume: 45(8):W08413.1-14 year: 2009 ident: 10.1016/j.jhydrol.2023.130524_b0070 article-title: Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: evidence from carbon, helium, and chlorine publication-title: Water Resour. Res. – volume: 37 start-page: 375 issue: 2 year: 2012 ident: 10.1016/j.jhydrol.2023.130524_b0245 article-title: Evapotranspiration estimation of Hailiutu River Basin based on MODIS data publication-title: EarthScience-Journal of China University of Geosciences – year: 2008 ident: 10.1016/j.jhydrol.2023.130524_b0110 – volume: 68 start-page: 4795 issue: 16 year: 1963 ident: 10.1016/j.jhydrol.2023.130524_b0180 article-title: A theoretical analysis of groundwater flow in small drainage basins publication-title: J. Geophys. Res. doi: 10.1029/JZ068i016p04795 |
SSID | ssj0000334 |
Score | 2.4804556 |
Snippet | •3D pathways of IGF are identified with an assessment on flow rates.•IGF contributes 36%∼59% to the baseflow and 32%∼52% to the streamflow in the studied... Inter-basin groundwater flow (IGF), defined as groundwater flows across the topographic divides, occurs in nature as a common phenomenon, and seriously affect... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130524 |
SubjectTerms | aquifers base flow basins China Divide drainage evolution groundwater groundwater flow hydrogeochemistry hydrologic models Inter-basin groundwater flow Numerical model Ordos Plateau Particle tracking rivers solutes streams surface water topography uncertainty |
Title | Three-dimensional inter-basin groundwater flow toward a groundwater-fed stream: Identification, partition, and quantification |
URI | https://dx.doi.org/10.1016/j.jhydrol.2023.130524 https://www.proquest.com/docview/3153628230 |
Volume | 629 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4hOLQXBBRUykNbqcduEnvX65hbFIFCq3ICKbfVPsYiEXVCmghxgN_OjL0GWqlC4mbveixrv_XM2DPzDWPfeqBylzsncuW1UNqVwvlgRT8NGvATIy9qSqFfF3p0pX6Ms_EaG7a1MJRWGXV_o9NrbR1HunE1u_PJhGp80zTRBfoDRICix1TBrnLa5Z3HlzSPnpSqZQynq1-qeLrTzvT6PixmFIFIJfVFzlL1P_v0j6auzc_ZFtuMfiMfNI-2zdag2mEfYgvz6_tP7OESUQERiK2_YdrgRAWxEGinJhWn6o0q3KFnueDlzeyOL-t8WW5fz4gSAqfqEfv7hDclvGX8p_edz2lZmkNbBX67sq-md9nV2enlcCRibwVhpc6WopDagldJqp1NPeQucxLHsiRH--7Rj4BEAiSZCw6dkAQSHaTqZ4SokuCc3GPr1ayCz4znCJUuvAoeEhUKsCW6SH0U6ZW29FLtM9WuqPGReJz6X9yYNsNsaiIQhoAwDRD7rPMsNm-YN94S6Ldwmb-2kEHr8Jbo1xZeg68XxUxsBbPVHyPRIuiUopFf3n_7A_YRz1ST7H3I1peLFRyhL7N0x_VmPWYbg_Ofo4snBK_3VQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5S55BeSp80TR9b6LEbR9rVyuothAanSXxywLdlHyNik8quYxNy6H_vjLVq0kIJ9CZ2GSH2W8180s58A_DpAHXpS-9lqYOR2vha-hCdHOTRIH1ilNVGUuh8ZIYX-tukmGzBUVcLw2mVyfe3Pn3jrdNIP61mfzGdco1vnmemIj7AAihm8gi2WZ2q6MH24cnpcHTnkJXSnWg4G9wV8vRn-7PL27ic8yFErrg1cpHrf4Wov5z1JgIdP4UniTqKw_bpnsEWNs9hJ3Uxv7x9AT_HBAzKyIL9rdiGYDWIpaRQNW0EF3A08YbI5VLUV_MbsdqkzAp3f0bWGAUXkLjvX0RbxVun33qfxYJXpr10TRQ_1u7e9Eu4OP46PhrK1F5BOmWKlayUcRh0lhvv8oClL7yisSIrKcQHohKYKcSs8NETD8kwM1HpQcGgaoXeq1fQa-YNvgZRElqmCjoGzHSs0NXEkgZkclC7Oii9C7pbURuS9ji3wLiyXZLZzCYgLANhWyB2Yf-32aIV33jIYNDBZf_YRZYCxEOmHzt4Lb1hfGziGpyvr62ioGByPpB88_-3_wA7w_H5mT07GZ3uwWOa0W3u91vorZZrfEfUZuXfp637C3WC-gY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+inter-basin+groundwater+flow+toward+a+groundwater-fed+stream%3A+Identification%2C+partition%2C+and+quantification&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Han%2C+Peng-Fei&rft.au=Wang%2C+Xu-Sheng&rft.au=Zhou%2C+Yangxiao&rft.au=Yang%2C+Zhi&rft.date=2024-02-01&rft.issn=0022-1694&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130524&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |