Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow
•A VIC-CAS model, coupled with glacier melting and evolution schemes, was developed.•Good model performances were obtained through a two-stage calibration strategy.•We systematically assessed the runoff and glacier responses to future climate change.•Increased rainfall runoff is the dominant cause o...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 573; pp. 60 - 81 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A VIC-CAS model, coupled with glacier melting and evolution schemes, was developed.•Good model performances were obtained through a two-stage calibration strategy.•We systematically assessed the runoff and glacier responses to future climate change.•Increased rainfall runoff is the dominant cause of the future streamflow increase.
Analyzing the impacts of climate change on hydrology and future projections of water supplies is fundamental for the efficient management and planning of water resources in large river systems on the Tibetan Plateau (TP), which is known as the “water tower of Asia.” However, large uncertainties remain in the projections of streamflow and glaciers in these cryospheric catchments due to great uncertainties in climate change projection and modeling processes. In this work, we developed an extended Variable Infiltration Capacity (VIC) macroscale hydrological model (named VIC-CAS), which was coupled with glacier melting and glacier evolution schemes. A two-stage calibration procedure that used glacier inventory data and the observed streamflow was adopted to derive the model parameters. The calibrated VIC-CAS model was then used to assess the future change in glaciers and runoff using downscaled climate model data in the upstream regimes of the Yellow, Yangtze, Mekong, Salween, and Brahmaputra rivers on the TP. The results indicated that both temperature and precipitation were projected to increase, resulting in a greater than 50% decline of the glacier area by the end of the 21st century in the five catchments. Glacier runoff was already beyond its tipping point at the beginning of the 21st century with a greater than 20% loss of the glacier area except in the upstream of the Yangtze River, where glacier runoff was projected to decrease after the 2030 s. Annual streamflow was projected to increase significantly as a result of increased rainfall-induced runoff, compensating for the reduced glacier/snow melt water in the five major upstream river basins. The increasing rate of warm season streamflow was clearly less than that of annual runoff. A negative trend in warm season streamflow was expected if precipitation did not sufficiently increase. The annual hydrograph remained largely unchanged, except in the upstream of the Yellow River, where peak streamflow was predicted to occur 1 month earlier because of the earlier snowmelt and greater rainfall/precipitation ratio from May to June. |
---|---|
AbstractList | Analyzing the impacts of climate change on hydrology and future projections of water supplies is fundamental for the efficient management and planning of water resources in large river systems on the Tibetan Plateau (TP), which is known as the “water tower of Asia.” However, large uncertainties remain in the projections of streamflow and glaciers in these cryospheric catchments due to great uncertainties in climate change projection and modeling processes. In this work, we developed an extended Variable Infiltration Capacity (VIC) macroscale hydrological model (named VIC-CAS), which was coupled with glacier melting and glacier evolution schemes. A two-stage calibration procedure that used glacier inventory data and the observed streamflow was adopted to derive the model parameters. The calibrated VIC-CAS model was then used to assess the future change in glaciers and runoff using downscaled climate model data in the upstream regimes of the Yellow, Yangtze, Mekong, Salween, and Brahmaputra rivers on the TP. The results indicated that both temperature and precipitation were projected to increase, resulting in a greater than 50% decline of the glacier area by the end of the 21st century in the five catchments. Glacier runoff was already beyond its tipping point at the beginning of the 21st century with a greater than 20% loss of the glacier area except in the upstream of the Yangtze River, where glacier runoff was projected to decrease after the 2030 s. Annual streamflow was projected to increase significantly as a result of increased rainfall-induced runoff, compensating for the reduced glacier/snow melt water in the five major upstream river basins. The increasing rate of warm season streamflow was clearly less than that of annual runoff. A negative trend in warm season streamflow was expected if precipitation did not sufficiently increase. The annual hydrograph remained largely unchanged, except in the upstream of the Yellow River, where peak streamflow was predicted to occur 1 month earlier because of the earlier snowmelt and greater rainfall/precipitation ratio from May to June. •A VIC-CAS model, coupled with glacier melting and evolution schemes, was developed.•Good model performances were obtained through a two-stage calibration strategy.•We systematically assessed the runoff and glacier responses to future climate change.•Increased rainfall runoff is the dominant cause of the future streamflow increase. Analyzing the impacts of climate change on hydrology and future projections of water supplies is fundamental for the efficient management and planning of water resources in large river systems on the Tibetan Plateau (TP), which is known as the “water tower of Asia.” However, large uncertainties remain in the projections of streamflow and glaciers in these cryospheric catchments due to great uncertainties in climate change projection and modeling processes. In this work, we developed an extended Variable Infiltration Capacity (VIC) macroscale hydrological model (named VIC-CAS), which was coupled with glacier melting and glacier evolution schemes. A two-stage calibration procedure that used glacier inventory data and the observed streamflow was adopted to derive the model parameters. The calibrated VIC-CAS model was then used to assess the future change in glaciers and runoff using downscaled climate model data in the upstream regimes of the Yellow, Yangtze, Mekong, Salween, and Brahmaputra rivers on the TP. The results indicated that both temperature and precipitation were projected to increase, resulting in a greater than 50% decline of the glacier area by the end of the 21st century in the five catchments. Glacier runoff was already beyond its tipping point at the beginning of the 21st century with a greater than 20% loss of the glacier area except in the upstream of the Yangtze River, where glacier runoff was projected to decrease after the 2030 s. Annual streamflow was projected to increase significantly as a result of increased rainfall-induced runoff, compensating for the reduced glacier/snow melt water in the five major upstream river basins. The increasing rate of warm season streamflow was clearly less than that of annual runoff. A negative trend in warm season streamflow was expected if precipitation did not sufficiently increase. The annual hydrograph remained largely unchanged, except in the upstream of the Yellow River, where peak streamflow was predicted to occur 1 month earlier because of the earlier snowmelt and greater rainfall/precipitation ratio from May to June. |
Author | Ding, Yongjian Wang, Jian Zhang, Shiqiang Zhao, Qiudong Han, Haidong Xu, Junli Shangguan, Donghui Zhao, Chuancheng Gao, Hongkai |
Author_xml | – sequence: 1 givenname: Qiudong orcidid: 0000-0003-0251-8092 surname: Zhao fullname: Zhao, Qiudong organization: Key Laboratory of Ecohydrology of Inland River Basin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 73000, China – sequence: 2 givenname: Yongjian surname: Ding fullname: Ding, Yongjian email: dyj@lzb.ac.cn organization: State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 3 givenname: Jian surname: Wang fullname: Wang, Jian organization: College of Urban and Plans, Yancheng Teachers University, Yancheng 224002, China – sequence: 4 givenname: Hongkai surname: Gao fullname: Gao, Hongkai organization: School of Geographic Sciences, East China Normal University, Shanghai 200241, China – sequence: 5 givenname: Shiqiang surname: Zhang fullname: Zhang, Shiqiang email: zhangsq@lzb.ac.cn organization: Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China – sequence: 6 givenname: Chuancheng surname: Zhao fullname: Zhao, Chuancheng organization: College of Geography and Environmental Engineering, Lanzhou City University, Lanzhou 730070, China – sequence: 7 givenname: Junli surname: Xu fullname: Xu, Junli organization: College of Urban and Plans, Yancheng Teachers University, Yancheng 224002, China – sequence: 8 givenname: Haidong surname: Han fullname: Han, Haidong organization: Key Laboratory of Ecohydrology of Inland River Basin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 73000, China – sequence: 9 givenname: Donghui surname: Shangguan fullname: Shangguan, Donghui organization: State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China |
BookMark | eNqFkc1q3DAUhUVJoZO0j1DQshu7suWfMV2UEvoHgWaRrsX11bVHRpamkmbCvE8ftMpMVt3kbsRF5ztwz7lmV847Yux9JcpKVN3HpVx2Jx28LWtRDaWQpWjkK7aptv1Q1L3or9hGiLouqm5o3rDrGBeRR8pmw_7eB78QJuNmjtaskIjjDtxM3Kx7wBS5d_xi72eDYPk-eKQY6fyTdsQfzEgJHL-3mYYDfzRpx1evyfKsN2OAZLIUZjAupjMyW0BDgRt3JJd8OHENCTg4zf0YKRxJ85gCwTpZ__iWvZ7ARnr3_N6w39--Ptz-KO5-ff95--WuANm1qdhCK0HoftzKSaPU1Iww4dS01NHYDYSwxYawH8e8ZrGApuknHHVNLbao5Q37cPHNJ_45UExqNRHJWnDkD1HVtezbehiqKkvbixSDjzHQpPYhpxdOqhLqqRW1qOdW1FMrSkiVW8ncp_84NOmcTwpg7Iv05wtNOYVjDlDFHKND0ibkEpX25gWHf57xteY |
CitedBy_id | crossref_primary_10_1016_j_ejrh_2024_101857 crossref_primary_10_1016_j_geosus_2024_01_001 crossref_primary_10_1029_2023EF004222 crossref_primary_10_1016_j_catena_2024_108182 crossref_primary_10_1002_joc_8057 crossref_primary_10_1029_2024JD041010 crossref_primary_10_1016_j_ejrh_2024_101731 crossref_primary_10_5194_hess_28_3897_2024 crossref_primary_10_1016_j_scitotenv_2023_165326 crossref_primary_10_1016_j_accre_2021_12_002 crossref_primary_10_1016_j_scitotenv_2022_157942 crossref_primary_10_1029_2022EF002776 crossref_primary_10_1002_hyp_70014 crossref_primary_10_1029_2022EF003463 crossref_primary_10_1016_j_jhydrol_2023_130556 crossref_primary_10_1007_s11356_023_25478_8 crossref_primary_10_3390_w14111671 crossref_primary_10_5194_hess_27_933_2023 crossref_primary_10_1016_j_scitotenv_2021_146777 crossref_primary_10_5194_hess_26_1545_2022 crossref_primary_10_5194_hess_28_4361_2024 crossref_primary_10_3390_rs16244646 crossref_primary_10_5194_hess_27_1477_2023 crossref_primary_10_1016_j_jhydrol_2024_131384 crossref_primary_10_3389_fenvs_2023_1247753 crossref_primary_10_1002_hyp_14392 crossref_primary_10_1016_j_jhydrol_2020_125542 crossref_primary_10_1016_j_ecolind_2023_110624 crossref_primary_10_1016_j_jhydrol_2022_127448 crossref_primary_10_3390_w13233357 crossref_primary_10_1002_hyp_14276 crossref_primary_10_1360_TB_2023_0381 crossref_primary_10_1029_2021WR029734 crossref_primary_10_3389_fpubh_2022_963202 crossref_primary_10_1016_j_ejrh_2022_101313 crossref_primary_10_1016_j_eiar_2025_107888 crossref_primary_10_1016_j_jenvman_2023_119512 crossref_primary_10_1016_j_envsoft_2025_106376 crossref_primary_10_1175_JCLI_D_21_0214_1 crossref_primary_10_3390_atmos13050799 crossref_primary_10_3390_atmos14040723 crossref_primary_10_1002_hyp_15138 crossref_primary_10_1016_j_catena_2025_108920 crossref_primary_10_1002_wat2_1483 crossref_primary_10_1016_j_jhydrol_2020_125237 crossref_primary_10_3390_w13081098 crossref_primary_10_5194_hess_24_5439_2020 crossref_primary_10_1016_j_catena_2024_108643 crossref_primary_10_1016_j_compag_2020_105756 crossref_primary_10_1029_2020JD034367 crossref_primary_10_5194_hess_26_305_2022 crossref_primary_10_1016_j_atmosres_2023_106670 crossref_primary_10_1016_j_ejrh_2024_101802 crossref_primary_10_1016_j_jhydrol_2022_128310 crossref_primary_10_5194_hess_29_1033_2025 crossref_primary_10_3390_rs13132595 crossref_primary_10_1016_j_accre_2020_11_002 crossref_primary_10_1016_j_jhydrol_2020_125484 crossref_primary_10_1016_j_jhydrol_2022_128710 crossref_primary_10_1016_j_jhydrol_2020_125761 crossref_primary_10_3390_w15050929 crossref_primary_10_1007_s12517_022_09641_y crossref_primary_10_1016_j_jhydrol_2024_131006 crossref_primary_10_3390_su16103901 crossref_primary_10_5194_hess_26_4657_2022 crossref_primary_10_1029_2022WR033597 crossref_primary_10_3390_w16081186 crossref_primary_10_1016_j_scitotenv_2023_168082 crossref_primary_10_3390_su17041713 crossref_primary_10_1016_j_jhydrol_2022_128562 crossref_primary_10_1016_j_jhydrol_2019_124500 crossref_primary_10_1016_j_ejrh_2021_100845 crossref_primary_10_3354_cr01634 crossref_primary_10_3390_rs15010055 crossref_primary_10_1016_j_agwat_2022_107639 crossref_primary_10_3390_rs13204043 crossref_primary_10_1016_j_ejrh_2022_101256 crossref_primary_10_1080_15230430_2024_2356671 crossref_primary_10_3389_feart_2020_574707 crossref_primary_10_3389_feart_2023_1160520 crossref_primary_10_1002_hyp_14069 crossref_primary_10_1360_TB_2023_0075 crossref_primary_10_1016_j_accre_2023_03_006 crossref_primary_10_3390_w15081542 crossref_primary_10_1016_j_jhydrol_2020_125179 crossref_primary_10_1016_j_jenvman_2024_123000 crossref_primary_10_3390_rs16101709 crossref_primary_10_1016_j_ejrh_2023_101403 crossref_primary_10_1038_s43017_022_00344_2 crossref_primary_10_1016_j_ejrh_2023_101368 crossref_primary_10_1016_j_ejrh_2023_101401 crossref_primary_10_1016_j_jhydrol_2023_129404 crossref_primary_10_2166_nh_2020_039 crossref_primary_10_3390_w15112119 crossref_primary_10_1016_j_ejrh_2023_101649 crossref_primary_10_3390_w12113112 crossref_primary_10_1016_j_eng_2023_05_025 crossref_primary_10_1007_s11356_020_09879_7 crossref_primary_10_3390_w13131793 crossref_primary_10_1016_j_scitotenv_2021_147027 crossref_primary_10_3390_land13050583 crossref_primary_10_1029_2020JD034064 crossref_primary_10_1016_j_jhydrol_2025_132779 crossref_primary_10_1029_2023WR036898 crossref_primary_10_5194_hess_28_669_2024 crossref_primary_10_3390_rs14061314 crossref_primary_10_1038_s43017_022_00299_4 crossref_primary_10_1029_2023JD040343 crossref_primary_10_1016_j_gsd_2024_101115 crossref_primary_10_1016_j_iswcr_2024_01_005 crossref_primary_10_1029_2020WR028193 crossref_primary_10_1007_s10661_024_13130_y crossref_primary_10_3390_rs15174144 crossref_primary_10_1002_hyp_15180 crossref_primary_10_1371_journal_pone_0272576 crossref_primary_10_3389_feart_2023_1165390 crossref_primary_10_1016_j_jhydrol_2021_127256 crossref_primary_10_1016_j_jhydrol_2022_127894 crossref_primary_10_3389_fenvs_2022_1088467 crossref_primary_10_3390_w12082293 crossref_primary_10_1016_j_ejrh_2022_101230 crossref_primary_10_1088_1755_1315_428_1_012063 crossref_primary_10_1029_2022WR032721 crossref_primary_10_1016_j_scib_2023_04_037 crossref_primary_10_1016_j_ejrh_2022_101199 crossref_primary_10_1175_JHM_D_22_0015_1 crossref_primary_10_3389_fmicb_2021_615416 crossref_primary_10_1002_hyp_15336 crossref_primary_10_1016_j_jenvman_2025_124353 crossref_primary_10_1038_s41467_023_36804_6 crossref_primary_10_2166_nh_2024_148 crossref_primary_10_1029_2023WR036072 crossref_primary_10_1016_j_ejrh_2024_101828 crossref_primary_10_5194_hess_27_97_2023 crossref_primary_10_1016_j_accre_2024_10_004 crossref_primary_10_1016_j_jhydrol_2023_130057 crossref_primary_10_1016_j_jhydrol_2025_132953 crossref_primary_10_1007_s11629_022_7352_3 crossref_primary_10_1016_j_jhydrol_2025_132797 crossref_primary_10_1016_j_scitotenv_2021_149503 crossref_primary_10_1080_02626667_2021_1957474 crossref_primary_10_1016_j_scitotenv_2020_142774 crossref_primary_10_1029_2024WR037947 crossref_primary_10_1016_j_jhydrol_2024_132099 crossref_primary_10_1016_j_jhydrol_2024_132132 crossref_primary_10_5194_gmd_17_5803_2024 crossref_primary_10_1002_hyp_15066 |
Cites_doi | 10.1016/j.gloplacha.2013.12.001 10.3189/172756505781829566 10.1029/2012JF002523 10.1371/journal.pone.0044659 10.1029/2007WR005956 10.1016/j.advwatres.2012.07.013 10.1007/s11430-010-4073-1 10.1002/jgrd.50665 10.1016/0921-8181(95)00046-1 10.1080/02626669809492107 10.1029/2009JF001373 10.1175/JHM-D-11-058.1 10.1007/s10584-011-0143-4 10.1016/j.gloplacha.2015.10.012 10.5194/hess-17-4481-2013 10.1038/ngeo1896 10.1360/03yd0256 10.1016/S0168-1923(99)00169-0 10.1007/s00382-009-0685-6 10.1016/S0022-1694(03)00257-9 10.1016/j.jhydrol.2018.02.065 10.3189/172756503781830926 10.1016/j.jhydrol.2014.01.014 10.1016/j.jhydrol.2011.08.035 10.1016/j.jhydrol.2010.03.025 10.1029/2003JD003575 10.1002/joc.1047 10.1002/hyp.13145 10.1007/s003820100184 10.1659/0276-4741(2004)024[0166:DODTSO]2.0.CO;2 10.1029/2005GL023460 10.1002/joc.3682 10.5194/hess-19-1615-2015 10.1002/joc.4468 10.1016/j.jhydrol.2013.05.004 10.1038/srep13711 10.1016/j.jhydrol.2015.07.040 10.3189/2015JoG14J170 10.1016/j.jhydrol.2010.02.025 10.1016/j.jhydrol.2013.09.052 10.1175/JCLI-D-13-00321.1 10.3402/tellusa.v48i5.12200 10.1038/s41598-017-05345-6 10.1007/s11629-015-3609-4 10.1002/2016WR019656 10.1002/joc.2388 10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2 10.1016/j.rse.2006.11.017 10.1016/j.atmosenv.2011.10.008 10.1002/hyp.6505 10.1126/science.1183188 10.1038/nclimate2237 10.1002/hyp.6209 10.1029/2005JD007026 10.1002/joc.1615 10.5194/tc-5-1011-2011 10.3189/002214309788608804 10.1016/j.jhydrol.2012.11.005 10.1016/j.scitotenv.2013.10.055 10.1088/1748-9326/5/1/015101 10.3189/002214308787779997 10.1002/hyp.8286 10.1016/j.gloplacha.2008.02.001 10.1175/JCLI-D-12-00321.1 10.1007/s10712-013-9262-y 10.1657/1523-0430(07-513)[ZHANG]2.0.CO;2 10.1029/2008GL036309 10.1002/2014WR016716 10.1191/0309133305pp453ra 10.1002/hyp.8256 10.1007/s10973-012-2260-3 10.1175/JHM-D-14-0231.1 10.1175/JCLI-D-10-05000.1 10.5194/hess-18-747-2014 10.2166/nh.2016.242 10.1038/nature04448 10.3189/002214307784409261 10.1007/s00254-007-1139-2 10.1007/s10584-009-9556-8 10.5194/hess-21-669-2017 10.3189/002214310791190866 10.1029/2008JD010537 10.1175/JCLI-D-11-00738.1 10.5194/hess-11-1323-2007 10.1007/s12665-012-1718-8 10.1175/JHM-D-13-083.1 10.1016/j.jhydrol.2009.09.050 10.1007/s10584-010-9855-0 10.3189/2015JoG14J209 10.5194/hess-15-1227-2011 10.1007/978-90-481-2642-2_690 10.1016/j.jhydrol.2013.12.017 10.1002/2013WR014382 10.1360/03yd0258 10.1038/ngeo156 10.3189/172756410790595831 10.1016/j.quaint.2010.12.001 10.5194/tc-7-141-2013 10.1029/2011JD017131 10.1002/hyp.11224 10.3189/172756407782871288 10.1007/s00477-015-1066-9 10.1029/2008GL034330 10.1029/2004WR003604 10.1002/2015JD023193 10.1029/2005GL025080 10.1080/014311600210209 10.3189/2014AoG66A038 10.1002/hyp.7055 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2019.03.043 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 81 |
ExternalDocumentID | 10_1016_j_jhydrol_2019_03_043 S0022169419302434 |
GeographicLocations | China Yangtze River Yellow River |
GeographicLocations_xml | – name: Yangtze River – name: China – name: Yellow River |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a365t-8a53a0d7b83fdc3de4bafcf45e6eb69eca8c4ec7bbeb68a50a447fcbd2e5c5cd3 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Thu Jul 10 23:29:43 EDT 2025 Tue Jul 01 01:53:13 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Fri Feb 23 02:48:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | VIC-CAS model Climate change Tibetan Plateau Glaciers Streamflow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-8a53a0d7b83fdc3de4bafcf45e6eb69eca8c4ec7bbeb68a50a447fcbd2e5c5cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0251-8092 |
PQID | 2237529911 |
PQPubID | 24069 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2237529911 crossref_primary_10_1016_j_jhydrol_2019_03_043 crossref_citationtrail_10_1016_j_jhydrol_2019_03_043 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_03_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dan, Ji, Xie, Chen, Wen, Richey (b0090) 2012; 117 Zhang, Su, Yang, Hao, Tong (b0545) 2013; 118 Chen, Long, Hong, Zeng, Yan (b0045) 2017; 53 Möller, Schneider (b0365) 2010; 56 Hwang, Graham (b0230) 2013; 17 Gao, He, Ye, Pu (b0140) 2012; 26 Tong, Su, Yang, Zhang, Hao (b0490) 2014; 34 Wang, Li, Yu, Ding, Xing, Lu (b0505) 2018; 559 Zhao, Zhang, Ding, Wang, Han, Xu, Zhao, Guo, Shangguan (b0580) 2015; 16 Lawrence, Slater (b0275) 2005; 32 Cherkauer, Lettenmaier (b0055) 2003; 108 Duan, Xiao (b0095) 2015; 5 Bouwer, Aerts, van de Coterlet, van de Giesen, Gieske, Mannaerts (b0030) 2004 Liu, Xu, Li, Zhang, Zhao, Yang (b0325) 2015; 29 Cuo, Zhang, Bohn, Zhao, Li, Liu, Zhou (b0075) 2015; 120 Global Soil Data Task, 2014. Global Soil Data Products CD-ROM Contents (IGBP-DIS). Data Set. Available Online Segui, Ribes, Martin, Habets, Boe (b9025) 2010; 383 Konz, Uhlenbrook, Braun, Shrestha, Demuth (b0265) 2007; 11 Lu, Wang, Shao, Yu, Hao, Xing, Yong, Li (b0345) 2018; 32 Chiew (b0060) 2010; 387 Gao, Han, Liu, Zhao (b0135) 2017; 48 Zhong, Su, Ma, Salama, Sobrino (b0585) 2011; 24 Liu, Liu, Ren, Fischer, Xu (b0310) 2011; 244 Niu, Ye, Li, Sheng (b0385) 2011; 54 . Moradkhani, Hsu, Gupta, Sorooshian (b0370) 2005; 41 Huang, Kang, Zhang, Jenkins, Guo, Zhang, Wang (b0215) 2012; 46 Ye, Zhu, Zheng, Naruse, Zhang, Kang (b0540) 2007; 53 Zhang, Su, Jiang, Gao, Guo, Ni, You, Lan, Zhou (b0550) 2015; 60 Barria, Walsh, Peel, Karoly (b0020) 2015; 529 Lutz, Immerzeel, Shrestha, Bierkens (b0350) 2014; 4 Guo, Wang, Tian (b0175) 2016; 36 Hock (b0200) 2005; 29 Huss, Zemp, Joerg, Salzmann (b0225) 2014; 510 Li, Cheng, Jin, Kang, Che, Jin, Wu, Nan, Wang, Shen (b0295) 2008; 62 Zhang, Liu, Xu, Shangguan (b0570) 2008; 56 Duethmann, Bolch, Farinotti, Kriegel, Vorogushyn, Merz, Pieczonka, Jiang, Su, Güntner (b0100) 2015; 51 Rees, Collins (b0435) 2006; 20 Grinsted (b0165) 2013; 7 Yang, Wu, Qin, Lin, Tang, Chen (b0515) 2014; 112 Nijssen, Schnur, Lettenmaier (b0380) 2001; 14 Kotlarski, Jacob, Podzun, Paul (b0270) 2010; 34 Shi, Duan, Liu, Yang, Zhang, Sun (b0445) 2016; 13 Shrestha, Wang, Koike, Tsutsui, Xue, Hirabayashi (b0455) 2014; 18 Lohmann, Nolte-Holube, Raschke (b0335) 1996; 48 Radić, Hock (b0410) 2010; 115 Gao, Tang, Shi, Zhu, Bohn, Su, Sheffield, Pan, Lettenmaier, Wood (b0145) 2009 Teng, Vaze, Chiew, Wang, Perraud (b0485) 2012; 13 Bahr, Dyurgerov, Meier (b0005) 2009; 36 Kang, Xu, You, Flügel, Pepin, Yao (b0255) 2010; 5 Berthier, Arnaud, Kumar, Ahmad, Wagnon, Chevallier (b0025) 2007; 108 Elsner, Gangopadhyay, Pruitt, Brekke, Mizukami, Clark (b0115) 2014; 15 MacDougall, Wheler, Flowers (b0355) 2011; 5 Pellicciotti, Ragettli, Carenzo, McPhee (b0395) 2013; 493 Bahr (b0010) 2011 Guo, Liu, Xu, Wu, Shangguan, Yao, Wei, Bao, Yu, Liu, Jiang (b0180) 2015; 61 from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Gao, Ding, Zhao, Hrachowitz, Savenije (b0130) 2017; 31 Lemke, Ren, Alley, Allison, Carrasco, Flato, Fujii, Kaser, Mote, Thomas, Zhang (b0280) 2007 Li, Zhang, Xu, Liu, Zhou, Liu (b0290) 2014; 511 Su, Zhang, Qu, Chen, Yao, Tong, Qi (b0470) 2016; 136 Ding, Wang, Sun (b9000) 2008; 28 Nan, Li, Cheng (b0375) 2005; 48 Cuo, Zhang (b0070) 2017; 7 Immerzeel, Pellicciotti, Bierkens (b0235) 2013; 6 Hidalgo, Amador, Alfaro, Quesada (b0190) 2013; 495 Li, He, Pu, Jia, He, Pang, Zhang, Liu, Wang, Zhu, Wang, Chang, Du, Xin (b0300) 2010; 218 Stahl, Moore, Shea, Hutchinson, Cannon (b0465) 2008; 44 Price, McKenney, Nalder, Hutchinson, Kesteven (b0400) 2000; 101 Hu, Jiang, Fan (b0210) 2014; 38 Immerzeel, van Beek, Konz, Shrestha, Bierkens (b0245) 2012; 110 Zhang, Ye, Liu, Zhang, Hagemann (b0555) 2012; 26 Radić, Hock, Oerlemans (b0405) 2007; 46 Schmidli, Goodess, Frei, Haylock, Hundecha, Ribalaygua, Schmith (b9020) 2007; 112 Zhao, Ye, Ding, Zhang, Yi, Wang, Shangguan, Zhao, Han (b0575) 2013; 68 Wang, Bao, Hoskins, Wu, Liu (b0500) 2008; 35 Hock, Holmgren (b0205) 2005; 51 Hock (b0195) 2003; 282 Miao, Duan, Yang, Borthwick (b0360) 2012; 7 Essery, Morin, Lejeune, Ménard (b0120) 2013; 55 Peel, Srikanthan, McMahon, Karoly (b0390) 2015; 19 Jeelani, Feddema, van der Veen, Stearns (b0250) 2012; 48 Elsner, Cuo, Voisin, Deems, Hamlet, Vano, Mickelson, Lee, Lettenmaier (b0110) 2010; 102 Cui, Graf (b0085) 2009; 94 Huss, Farinotti (b9010) 2012; 117 Van de Wal, Wild (b0495) 2001; 18 Ye, Yao, Naruse (b0535) 2008; 54 Shi, Liu, Kang (b0450) 2009; 50 Immerzeel, van Beek, Bierkens (b0240) 2010; 328 Liu, Sun, Shen, Li (b0315) 2003; 49 Lohmann, Raschke, Nijssen, Lettenmaier (b0340) 1998; 43 Tahir, Chevallier, Arnaud, Neppel, Ahmad (b0480) 2011; 409 Liang, Wood, Lettenmaier (b0305) 1996; 13 Ye, Feng, Zhao, Fang, Shen (b0525) 2013; 111 Konz, Seibert (b0260) 2010; 385 Cuo, Zhang, Wang, Zhang, Zhou, Hao, Su (b0080) 2013; 26 Raper, Braithwaite (b0430) 2006; 439 Li, Zhang, Xu, Teng, Liu, Liu, Mpelasoka (b0285) 2013; 505 Radić, Hock (b0415) 2014; 35 Su, Duan, Chen, Hao, Cuo (b0475) 2013; 26 Ye, Yang, Zhang, Kane (b0530) 2009; 114 Feng, Hu, Qian (b9005) 2004; 24 Liu, Yao, Guo, Xu, Shangguan, Wei, Bao, Wu (b0320) 2015; 70 Luo, Arnold, Liu, Wang, Chen (b9015) 2013; 477 Chen, Li, Fang, Li (b0050) 2017; 21 Wei, Liu, Guo, Yao, Xu, Bao, Jiang (b0510) 2014; 55 Raper, Braithwaite (b0425) 2005; 32 Hansen, Defries, Townshend, Sohlberg (b0185) 2000; 21 Ramanathan, Carmichael (b0420) 2008; 1 Schaefli, Huss (b0440) 2011; 15 Zhang (b0560) 2007; 39 Fujita, Ohta, Ageta (b0125) 2007; 21 Barria, Walsh, Peel, Karoly (b0015) 2015; 529 Carenzo, Pellicciotti, Rimkus, Burlando (b0040) 2009; 55 Guo, Wang (b0170) 2012; 32 Gao, Kang, Cuo, Zhang, Zhang, Zhang, Sillanpaa (b0150) 2015; 61 Duethmann, Peters, Blume, Vorogushyn, Güntner (b0105) 2014; 50 Song, Zhou, Ouyang (b0460) 2004; 24 Gao, Cuo, Zhang (b0155) 2014; 27 Huss, Farinotti, Bauder, Funk (b0220) 2008; 22 Yao, Wang, Liu, Pu, Shen, Lu (b0520) 2004; 47 Lohmann (10.1016/j.jhydrol.2019.03.043_b0335) 1996; 48 Nan (10.1016/j.jhydrol.2019.03.043_b0375) 2005; 48 Su (10.1016/j.jhydrol.2019.03.043_b0475) 2013; 26 Gao (10.1016/j.jhydrol.2019.03.043_b0135) 2017; 48 Immerzeel (10.1016/j.jhydrol.2019.03.043_b0245) 2012; 110 Cui (10.1016/j.jhydrol.2019.03.043_b0085) 2009; 94 Barria (10.1016/j.jhydrol.2019.03.043_b0020) 2015; 529 Cuo (10.1016/j.jhydrol.2019.03.043_b0070) 2017; 7 Segui (10.1016/j.jhydrol.2019.03.043_b9025) 2010; 383 Yang (10.1016/j.jhydrol.2019.03.043_b0515) 2014; 112 Cuo (10.1016/j.jhydrol.2019.03.043_b0075) 2015; 120 Liang (10.1016/j.jhydrol.2019.03.043_b0305) 1996; 13 Ye (10.1016/j.jhydrol.2019.03.043_b0530) 2009; 114 Ramanathan (10.1016/j.jhydrol.2019.03.043_b0420) 2008; 1 Lu (10.1016/j.jhydrol.2019.03.043_b0345) 2018; 32 Zhang (10.1016/j.jhydrol.2019.03.043_b0560) 2007; 39 Huang (10.1016/j.jhydrol.2019.03.043_b0215) 2012; 46 Feng (10.1016/j.jhydrol.2019.03.043_b9005) 2004; 24 Huss (10.1016/j.jhydrol.2019.03.043_b0225) 2014; 510 Carenzo (10.1016/j.jhydrol.2019.03.043_b0040) 2009; 55 Liu (10.1016/j.jhydrol.2019.03.043_b0320) 2015; 70 Duethmann (10.1016/j.jhydrol.2019.03.043_b0105) 2014; 50 Hu (10.1016/j.jhydrol.2019.03.043_b0210) 2014; 38 Wang (10.1016/j.jhydrol.2019.03.043_b0505) 2018; 559 Ding (10.1016/j.jhydrol.2019.03.043_b9000) 2008; 28 Jeelani (10.1016/j.jhydrol.2019.03.043_b0250) 2012; 48 Lutz (10.1016/j.jhydrol.2019.03.043_b0350) 2014; 4 Radić (10.1016/j.jhydrol.2019.03.043_b0410) 2010; 115 10.1016/j.jhydrol.2019.03.043_b0160 Hock (10.1016/j.jhydrol.2019.03.043_b0195) 2003; 282 Kang (10.1016/j.jhydrol.2019.03.043_b0255) 2010; 5 Nijssen (10.1016/j.jhydrol.2019.03.043_b0380) 2001; 14 Möller (10.1016/j.jhydrol.2019.03.043_b0365) 2010; 56 Immerzeel (10.1016/j.jhydrol.2019.03.043_b0235) 2013; 6 Tahir (10.1016/j.jhydrol.2019.03.043_b0480) 2011; 409 Elsner (10.1016/j.jhydrol.2019.03.043_b0110) 2010; 102 Wei (10.1016/j.jhydrol.2019.03.043_b0510) 2014; 55 Chen (10.1016/j.jhydrol.2019.03.043_b0050) 2017; 21 Huss (10.1016/j.jhydrol.2019.03.043_b9010) 2012; 117 Zhang (10.1016/j.jhydrol.2019.03.043_b0550) 2015; 60 Elsner (10.1016/j.jhydrol.2019.03.043_b0115) 2014; 15 Guo (10.1016/j.jhydrol.2019.03.043_b0180) 2015; 61 Essery (10.1016/j.jhydrol.2019.03.043_b0120) 2013; 55 Moradkhani (10.1016/j.jhydrol.2019.03.043_b0370) 2005; 41 Guo (10.1016/j.jhydrol.2019.03.043_b0170) 2012; 32 Hock (10.1016/j.jhydrol.2019.03.043_b0205) 2005; 51 Ye (10.1016/j.jhydrol.2019.03.043_b0525) 2013; 111 Duan (10.1016/j.jhydrol.2019.03.043_b0095) 2015; 5 Gao (10.1016/j.jhydrol.2019.03.043_b0150) 2015; 61 Gao (10.1016/j.jhydrol.2019.03.043_b0145) 2009 Zhang (10.1016/j.jhydrol.2019.03.043_b0555) 2012; 26 Zhao (10.1016/j.jhydrol.2019.03.043_b0575) 2013; 68 Wang (10.1016/j.jhydrol.2019.03.043_b0500) 2008; 35 Lawrence (10.1016/j.jhydrol.2019.03.043_b0275) 2005; 32 Zhang (10.1016/j.jhydrol.2019.03.043_b0545) 2013; 118 Gao (10.1016/j.jhydrol.2019.03.043_b0140) 2012; 26 Niu (10.1016/j.jhydrol.2019.03.043_b0385) 2011; 54 Shrestha (10.1016/j.jhydrol.2019.03.043_b0455) 2014; 18 Bahr (10.1016/j.jhydrol.2019.03.043_b0010) 2011 Yao (10.1016/j.jhydrol.2019.03.043_b0520) 2004; 47 Li (10.1016/j.jhydrol.2019.03.043_b0295) 2008; 62 Duethmann (10.1016/j.jhydrol.2019.03.043_b0100) 2015; 51 Liu (10.1016/j.jhydrol.2019.03.043_b0325) 2015; 29 Rees (10.1016/j.jhydrol.2019.03.043_b0435) 2006; 20 Ye (10.1016/j.jhydrol.2019.03.043_b0535) 2008; 54 Immerzeel (10.1016/j.jhydrol.2019.03.043_b0240) 2010; 328 Liu (10.1016/j.jhydrol.2019.03.043_b0310) 2011; 244 Gao (10.1016/j.jhydrol.2019.03.043_b0130) 2017; 31 Cuo (10.1016/j.jhydrol.2019.03.043_b0080) 2013; 26 Zhang (10.1016/j.jhydrol.2019.03.043_b0570) 2008; 56 Stahl (10.1016/j.jhydrol.2019.03.043_b0465) 2008; 44 Teng (10.1016/j.jhydrol.2019.03.043_b0485) 2012; 13 Radić (10.1016/j.jhydrol.2019.03.043_b0405) 2007; 46 Cherkauer (10.1016/j.jhydrol.2019.03.043_b0055) 2003; 108 Li (10.1016/j.jhydrol.2019.03.043_b0300) 2010; 218 Dan (10.1016/j.jhydrol.2019.03.043_b0090) 2012; 117 Shi (10.1016/j.jhydrol.2019.03.043_b0450) 2009; 50 Song (10.1016/j.jhydrol.2019.03.043_b0460) 2004; 24 Konz (10.1016/j.jhydrol.2019.03.043_b0260) 2010; 385 Hock (10.1016/j.jhydrol.2019.03.043_b0200) 2005; 29 Radić (10.1016/j.jhydrol.2019.03.043_b0415) 2014; 35 Ye (10.1016/j.jhydrol.2019.03.043_b0540) 2007; 53 Berthier (10.1016/j.jhydrol.2019.03.043_b0025) 2007; 108 Kotlarski (10.1016/j.jhydrol.2019.03.043_b0270) 2010; 34 Liu (10.1016/j.jhydrol.2019.03.043_b0315) 2003; 49 Price (10.1016/j.jhydrol.2019.03.043_b0400) 2000; 101 Schmidli (10.1016/j.jhydrol.2019.03.043_b9020) 2007; 112 Grinsted (10.1016/j.jhydrol.2019.03.043_b0165) 2013; 7 Konz (10.1016/j.jhydrol.2019.03.043_b0265) 2007; 11 Chiew (10.1016/j.jhydrol.2019.03.043_b0060) 2010; 387 Lemke (10.1016/j.jhydrol.2019.03.043_b0280) 2007 Huss (10.1016/j.jhydrol.2019.03.043_b0220) 2008; 22 Miao (10.1016/j.jhydrol.2019.03.043_b0360) 2012; 7 MacDougall (10.1016/j.jhydrol.2019.03.043_b0355) 2011; 5 Lohmann (10.1016/j.jhydrol.2019.03.043_b0340) 1998; 43 Raper (10.1016/j.jhydrol.2019.03.043_b0430) 2006; 439 Hidalgo (10.1016/j.jhydrol.2019.03.043_b0190) 2013; 495 Li (10.1016/j.jhydrol.2019.03.043_b0285) 2013; 505 Peel (10.1016/j.jhydrol.2019.03.043_b0390) 2015; 19 Chen (10.1016/j.jhydrol.2019.03.043_b0045) 2017; 53 Su (10.1016/j.jhydrol.2019.03.043_b0470) 2016; 136 Gao (10.1016/j.jhydrol.2019.03.043_b0155) 2014; 27 Tong (10.1016/j.jhydrol.2019.03.043_b0490) 2014; 34 Bahr (10.1016/j.jhydrol.2019.03.043_b0005) 2009; 36 Luo (10.1016/j.jhydrol.2019.03.043_b9015) 2013; 477 Fujita (10.1016/j.jhydrol.2019.03.043_b0125) 2007; 21 Shi (10.1016/j.jhydrol.2019.03.043_b0445) 2016; 13 Zhao (10.1016/j.jhydrol.2019.03.043_b0580) 2015; 16 Guo (10.1016/j.jhydrol.2019.03.043_b0175) 2016; 36 Hwang (10.1016/j.jhydrol.2019.03.043_b0230) 2013; 17 Bouwer (10.1016/j.jhydrol.2019.03.043_b0030) 2004 Schaefli (10.1016/j.jhydrol.2019.03.043_b0440) 2011; 15 Li (10.1016/j.jhydrol.2019.03.043_b0290) 2014; 511 Hansen (10.1016/j.jhydrol.2019.03.043_b0185) 2000; 21 Zhong (10.1016/j.jhydrol.2019.03.043_b0585) 2011; 24 Barria (10.1016/j.jhydrol.2019.03.043_b0015) 2015; 529 Pellicciotti (10.1016/j.jhydrol.2019.03.043_b0395) 2013; 493 Raper (10.1016/j.jhydrol.2019.03.043_b0425) 2005; 32 Van de Wal (10.1016/j.jhydrol.2019.03.043_b0495) 2001; 18 |
References_xml | – volume: 505 start-page: 188 year: 2013 end-page: 201 ident: b0285 article-title: The impact of climate change on runoff in the southeastern Tibetan Plateau publication-title: J. Hydrol. – volume: 24 start-page: 853 year: 2004 end-page: 870 ident: b9005 article-title: Quality control of daily meteorological data in China (1951–2000): a new dataset publication-title: Int. J. Climatol. – volume: 49 start-page: 117 year: 2003 end-page: 124 ident: b0315 article-title: Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply publication-title: J. Glaciol. – volume: 32 start-page: 1 year: 2005 end-page: 5 ident: b0275 article-title: A projection of severe near-surface permafrost degradation during the 21st century publication-title: Geophys. Res. Lett. – volume: 70 start-page: 3 year: 2015 end-page: 16 ident: b0320 article-title: The contemporary glaciers in China based on the second Chinese glacier inventory publication-title: Acta Geogr. Sinica – volume: 56 start-page: 33 year: 2010 end-page: 40 ident: b0365 article-title: Calibration of glacier volume-area relations from surface extent fluctuations and application to future glacier change publication-title: J. Glaciol. – volume: 112 year: 2007 ident: b9020 article-title: Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps publication-title: J. Geophys. Res. – volume: 387 start-page: 10 year: 2010 end-page: 23 ident: b0060 article-title: Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates publication-title: J. Hydrol. – volume: 101 start-page: 81 year: 2000 end-page: 94 ident: b0400 article-title: A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data publication-title: Agric. Forest Meteorol. – volume: 244 start-page: 211 year: 2011 end-page: 220 ident: b0310 article-title: Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model publication-title: Quat. Int. – volume: 7 start-page: 5057 year: 2017 ident: b0070 article-title: Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings publication-title: Sci. Rep. – volume: 29 start-page: 1809 year: 2015 end-page: 1822 ident: b0325 article-title: Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin publication-title: Stoch. Environ. Res. Risk A – volume: 20 start-page: 2157 year: 2006 end-page: 2169 ident: b0435 article-title: Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming publication-title: Hydrol. Process. – volume: 50 start-page: 1 year: 2009 end-page: 4 ident: b0450 article-title: The glacier inventory of China publication-title: Ann. Glaciol. – volume: 22 start-page: 3888 year: 2008 end-page: 3902 ident: b0220 article-title: Modelling runoff from highly glacierized alpine drainage basins in a changing climate publication-title: Hydrol. Process. – volume: 15 start-page: 1227 year: 2011 end-page: 1241 ident: b0440 article-title: Integrating point glacier mass balance observations into hydrologic model identification publication-title: Hydrol. Earth Syst. Sci. – volume: 46 start-page: 234 year: 2007 end-page: 240 ident: b0405 article-title: Volume-area scaling vs flowline modelling in glacier volume projections publication-title: Ann. Glaciol. – volume: 24 start-page: 166 year: 2004 end-page: 173 ident: b0460 article-title: Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios publication-title: Mt. Res. Dev. – reference: ] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. – volume: 115 start-page: F01010 year: 2010 ident: b0410 article-title: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data publication-title: J. Geophys. Res. – volume: 14 start-page: 1790 year: 2001 end-page: 1808 ident: b0380 article-title: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93 publication-title: J. Clim. – volume: 218 start-page: 13 year: 2010 end-page: 28 ident: b0300 article-title: Changes of climate, glaciers and runoff in China's monsoonal temperate glacier region during the last several decades publication-title: Quat. Int. – volume: 48 start-page: 797 year: 2005 end-page: 804 ident: b0375 article-title: Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years publication-title: Sci. China Ser. D – volume: 1 start-page: 221 year: 2008 end-page: 227 ident: b0420 article-title: Global and regional climate changes due to black carbon publication-title: Nat. Geosci. – volume: 54 start-page: 933 year: 2008 end-page: 935 ident: b0535 article-title: Glacier and lake variations in the Mapam Yumco basin, western Himalaya of the Tibetan Plateau, from 1974 to 2003 using remote-sensing and GIS technologies publication-title: J. Glaciol. – volume: 18 start-page: 747 year: 2014 end-page: 761 ident: b0455 article-title: Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data publication-title: Hydrol. Earth Syst. Sci. – volume: 60 start-page: 3036 year: 2015 end-page: 3047 ident: b0550 article-title: An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century (in Chinese) publication-title: Chin. Sci. Bull. – volume: 409 start-page: 104 year: 2011 end-page: 117 ident: b0480 article-title: Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan publication-title: J. Hydrol. – volume: 26 start-page: 3187 year: 2013 end-page: 3208 ident: b0475 article-title: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau publication-title: J. Clim. – volume: 53 start-page: 2431 year: 2017 end-page: 2466 ident: b0045 article-title: Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: how snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? publication-title: Water Resour. Res. – volume: 36 start-page: 1901 year: 2016 end-page: 1916 ident: b0175 article-title: Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau publication-title: Int. J. Climatol. – volume: 282 start-page: 104 year: 2003 end-page: 115 ident: b0195 article-title: Temperature index melt modelling in mountain areas publication-title: J. Hydrol. – volume: 110 start-page: 721 year: 2012 end-page: 736 ident: b0245 article-title: Hydrological response to climate change in a glacierized catchment in the Himalayas publication-title: Clim. Change – volume: 117 start-page: D11102 year: 2012 ident: b0090 article-title: Hydrological projections of climate change scenarios over the 3H region of China: a VIC model assessment publication-title: J. Geophys. Res. – volume: 21 start-page: 2882 year: 2007 end-page: 2891 ident: b0125 article-title: Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau publication-title: Hydrol. Process. – volume: 13 start-page: 122 year: 2012 end-page: 139 ident: b0485 article-title: Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff publication-title: J. Hydrometeorol. – volume: 493 start-page: 1197 year: 2013 end-page: 1210 ident: b0395 article-title: Changes of glaciers in the Andes of Chile and priorities for future work publication-title: Sci. Total Environ. – volume: 439 start-page: 311 year: 2006 end-page: 313 ident: b0430 article-title: Low sea level rise projections from mountain glaciers and icecaps under global warming publication-title: Nature – volume: 47 start-page: 1065 year: 2004 end-page: 1075 ident: b0520 article-title: Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China publication-title: Sci. China Ser. D – volume: 26 start-page: 1686 year: 2012 end-page: 1696 ident: b0555 article-title: A modified monthly degree-day model for evaluating glacier runoff changes in China. Part I: model development publication-title: Hydrol. Process – volume: 53 start-page: 673 year: 2007 end-page: 676 ident: b0540 article-title: Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies publication-title: J. Glaciol. – volume: 112 start-page: 79 year: 2014 end-page: 91 ident: b0515 article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review publication-title: Global Planet. Change – volume: 4 start-page: 587 year: 2014 end-page: 592 ident: b0350 article-title: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation publication-title: Nat. Clim. Change – volume: 108 start-page: 1663 year: 2003 end-page: 1675 ident: b0055 article-title: Simulation of spatial variability in snow and frozen soil publication-title: J. Geophys. Res. Atmos. – volume: 383 start-page: 111 year: 2010 end-page: 124 ident: b9025 article-title: Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins publication-title: J. Hydrol. – volume: 11 start-page: 1323 year: 2007 end-page: 1339 ident: b0265 article-title: Implementation of a process-based catchment model in a poorly gauged, highly glacierized Himalayan headwater publication-title: Hydrol. Earth Syst. Sci. – volume: 29 start-page: 362 year: 2005 end-page: 391 ident: b0200 article-title: Glacier melt: a review of processes and their modelling publication-title: Prog. Phys. Geogr. – volume: 38 start-page: 15 year: 2014 ident: b0210 article-title: Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau publication-title: Chin. J. Atmos. Sci. – volume: 114 start-page: 1291 year: 2009 end-page: 1298 ident: b0530 article-title: Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia publication-title: J. Geophys. Res. – volume: 13 start-page: 195 year: 1996 end-page: 206 ident: b0305 article-title: Surface soil moisture parameterization of the VIC-2L model: evaluation and modification publication-title: Global Planet. Change – volume: 26 start-page: 85 year: 2013 end-page: 109 ident: b0080 article-title: Climate change on the Northern Tibetan Plateau during 1957–2009: spatial patterns and possible mechanisms publication-title: J. Clim. – volume: 55 start-page: 131 year: 2013 end-page: 148 ident: b0120 article-title: A comparison of snow models using observations from an alpine site publication-title: Adv. Water Resour. – volume: 328 start-page: 1382 year: 2010 end-page: 1385 ident: b0240 article-title: Climate change will affect the asian water towers publication-title: Science – volume: 17 start-page: 4481 year: 2013 end-page: 4502 ident: b0230 article-title: Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation publication-title: Hydrol. Earth Syst. Sci. – volume: 118 start-page: 8500 year: 2013 end-page: 8518 ident: b0545 article-title: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau publication-title: J. Geophys. Res. Atmos. – volume: 495 start-page: 94 year: 2013 end-page: 112 ident: b0190 article-title: Hydrological climate change projections for Central America publication-title: J. Hydrol. – year: 2009 ident: b0145 article-title: Water-budget record from variable infiltration capacity (VIC) model – volume: 6 start-page: 742 year: 2013 end-page: 745 ident: b0235 article-title: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds publication-title: Nat. Geosci. – volume: 51 start-page: 4727 year: 2015 end-page: 4750 ident: b0100 article-title: Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia publication-title: Water Resour. Res. – volume: 32 start-page: 1775 year: 2012 end-page: 1781 ident: b0170 article-title: The significant climate warming in the northern Tibetan Plateau and its possible causes publication-title: Int. J. Climatol. – volume: 62 start-page: 210 year: 2008 end-page: 218 ident: b0295 article-title: Cryospheric change in China publication-title: Global Planet. Change – volume: 36 start-page: L03501 year: 2009 ident: b0005 article-title: Sea-level rise from glaciers and ice caps: a lower bound publication-title: Geophys. Res. Lett. – volume: 41 start-page: 237 year: 2005 end-page: 246 ident: b0370 article-title: Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter publication-title: Water Resour. Res. – volume: 385 start-page: 238 year: 2010 end-page: 246 ident: b0260 article-title: On the value of glacier mass balances for hydrological model calibration publication-title: J. Hydrol. – volume: 54 start-page: 615 year: 2011 end-page: 624 ident: b0385 article-title: Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China publication-title: Sci. China Earth Sci. – volume: 35 start-page: L14702 year: 2008 ident: b0500 article-title: Tibetan Plateau warming and precipitation changes in east Asia publication-title: Geophys. Res. Lett. – volume: 136 start-page: 82 year: 2016 end-page: 95 ident: b0470 article-title: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau publication-title: Global Planet. Change – volume: 15 start-page: 1384 year: 2014 end-page: 1403 ident: b0115 article-title: How does the choice of distributed meteorological data affect hydrologic model calibration and streamflow simulations? publication-title: J. Hydrometeorol. – volume: 48 start-page: 1418 year: 2017 end-page: 1437 ident: b0135 article-title: Use of auxiliary data of topography, snow and ice to improve model performance in a glacier-dominated catchment in Central Asia publication-title: Hydrol. Res. – volume: 21 start-page: 1331 year: 2000 end-page: 1364 ident: b0185 article-title: Global land cover classification at 1 km spatial resolution using a classification tree approach publication-title: Int. J. Remote Sens. – volume: 55 start-page: 258 year: 2009 end-page: 274 ident: b0040 article-title: Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model publication-title: J. Glaciol. – volume: 5 start-page: 13711 year: 2015 ident: b0095 article-title: Does the climate warming hiatus exist over the Tibetan Plateau? publication-title: Sci. Rep. – start-page: 25 year: 2004 end-page: 47 ident: b0030 article-title: Evaluating downscaling methods for preparing global circulation model (GCM) data for hydrological impact modelling publication-title: Climate Change in Contrasting River Basins – volume: 510 start-page: 35 year: 2014 end-page: 48 ident: b0225 article-title: High uncertainty in 21st century runoff projections from glacierized basins publication-title: J. Hydrol. – volume: 7 start-page: 141 year: 2013 end-page: 151 ident: b0165 article-title: An estimate of global glacier volume publication-title: Cryosphere – volume: 511 start-page: 28 year: 2014 end-page: 38 ident: b0290 article-title: Runoff predictions in ungauged catchments in southeast Tibetan Plateau publication-title: J. Hydrol. – volume: 559 start-page: 471 year: 2018 end-page: 485 ident: b0505 article-title: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: components partitioning, multidecadal trends and dominated factors identifying publication-title: J. Hydrol. – volume: 48 start-page: 708 year: 1996 end-page: 721 ident: b0335 article-title: A large-scale horizontal routing model to be coupled to land surface parameterization schemes publication-title: Tellus – volume: 529 start-page: 184 year: 2015 end-page: 199 ident: b0015 article-title: Uncertainties in runoff projections in southwestern Australian catchments using a global climate model with perturbed physics publication-title: J. Hydrol. – volume: 51 start-page: 25 year: 2005 end-page: 36 ident: b0205 article-title: A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden publication-title: J. Glaciol. – volume: 529 start-page: 184 year: 2015 end-page: 199 ident: b0020 article-title: Uncertainties in runoff projections in southwestern Australian catchments using a global climate model with perturbed physics publication-title: J. Hydrol. – volume: 31 start-page: 2842 year: 2017 end-page: 2859 ident: b0130 article-title: The importance of aspect for modelling the hydrological response in a glacier catchment in Central Asia publication-title: Hydrol. Process. – volume: 34 start-page: 27 year: 2010 end-page: 46 ident: b0270 article-title: Representing glaciers in a regional climate model publication-title: Clim. Dyn. – volume: 117 start-page: F04010 year: 2012 ident: b9010 article-title: Distributed ice thickness and volume of all glaciers around the globe publication-title: J. Geophys. Res. – volume: 32 start-page: L05502 year: 2005 ident: b0425 article-title: The potential for sea level rise: new estimates from glacier and ice cap area and volume distributions publication-title: Geophys. Res. Lett. – volume: 35 start-page: 813 year: 2014 end-page: 837 ident: b0415 article-title: Glaciers in the earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales publication-title: Surv. Geophys. – volume: 43 start-page: 131 year: 1998 end-page: 141 ident: b0340 article-title: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model publication-title: Hydrol. Sci. J. – volume: 28 start-page: 1139 year: 2008 end-page: 1161 ident: b9000 article-title: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences publication-title: Int. J. Climatol. – volume: 477 start-page: 72 year: 2013 end-page: 85 ident: b9015 article-title: Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China publication-title: J. Hydrol. – volume: 27 start-page: 1876 year: 2014 end-page: 1893 ident: b0155 article-title: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible Mechanisms publication-title: J. Clim. – volume: 46 start-page: 140 year: 2012 end-page: 146 ident: b0215 article-title: Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau publication-title: Atmos. Environ. – reference: Global Soil Data Task, 2014. Global Soil Data Products CD-ROM Contents (IGBP-DIS). Data Set. Available Online – volume: 32 start-page: 2096 year: 2018 end-page: 2117 ident: b0345 article-title: Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: a comprehensive assessment by coupling RegCM4 and VIC model publication-title: Hydrol. Process. – volume: 61 start-page: 447 year: 2015 end-page: 460 ident: b0150 article-title: Simulation and analysis of glacier runoff and mass balance in the Nam Co basin, southern Tibetan Plateau publication-title: J. Glaciol. – volume: 48 start-page: 1 year: 2012 end-page: 16 ident: b0250 article-title: Role of snow and glacier melt in controlling river hydrology Liddar watershed in the (western Himalaya) under current and future climate publication-title: Water Resour. Res. – volume: 13 start-page: 13 year: 2016 end-page: 28 ident: b0445 article-title: Response of Xiao Dongkemadi Glacier in the central Tibetan Plateau to the current climate change and future scenarios by 2050 publication-title: J. Mt. Sci. – volume: 56 start-page: 59 year: 2008 end-page: 68 ident: b0570 article-title: Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China publication-title: Environ. Geol. – volume: 5 start-page: 1011 year: 2011 end-page: 1028 ident: b0355 article-title: A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment publication-title: Cryosphere – year: 2011 ident: b0010 article-title: Estimation of glacier volume and volume change by scaling methods publication-title: Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series – volume: 26 start-page: 1593 year: 2012 end-page: 1603 ident: b0140 article-title: Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008 publication-title: Hydrol. Process. – volume: 19 start-page: 1615 year: 2015 end-page: 1639 ident: b0390 article-title: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data publication-title: Hydrol. Earth Syst. Sci. – volume: 44 start-page: W02422 year: 2008 ident: b0465 article-title: Coupled modelling of glacier and streamflow response to future climate scenarios publication-title: Water Resour. Res. – volume: 55 start-page: 213 year: 2014 end-page: 222 ident: b0510 article-title: Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps publication-title: Ann. Glaciol. – start-page: 338 year: 2007 end-page: 383 ident: b0280 article-title: Observations: changes in snow, ice and frozen ground publication-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate – volume: 102 start-page: 225 year: 2010 end-page: 260 ident: b0110 article-title: Implications of 21st century climate change for the hydrology of Washington State publication-title: Clim. Change – volume: 108 start-page: 327 year: 2007 end-page: 338 ident: b0025 article-title: Remote sensing estimates of glacier mass balances in the HimachalPradesh (Western Himalaya, India) publication-title: Remote Sens. Environ. – volume: 94 start-page: 47 year: 2009 end-page: 61 ident: b0085 article-title: Recent land cover changes on the Tibetan Plateau: a review publication-title: Clim. Change – volume: 61 start-page: 357 year: 2015 end-page: 372 ident: b0180 article-title: The second Chinese glacier inventory: data, methods and results publication-title: J. Glaciol. – volume: 21 start-page: 1 year: 2017 end-page: 23 ident: b0050 article-title: Review article: hydrological modeling in glacierized catchments of central Asia – status and challenges publication-title: Hydrol. Earth Syst. Sci. – volume: 111 start-page: 1731 year: 2013 end-page: 1736 ident: b0525 article-title: Microcalorimetry study on the microbial activity of permafrost on the Tibetan plateau of China publication-title: J. Therm. Anal. Calorim. – volume: 16 start-page: 2383 year: 2015 end-page: 2402 ident: b0580 article-title: Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River Catchment, Central Tian Shan publication-title: J. Hydrometeorol. – volume: 24 start-page: 6540 year: 2011 end-page: 6550 ident: b0585 article-title: Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change publication-title: J. Clim. – volume: 5 year: 2010 ident: b0255 article-title: Review of climate and cryospheric change in the Tibetan Plateau publication-title: Environ. Res. Lett. – reference: . – volume: 50 start-page: 2002 year: 2014 end-page: 2021 ident: b0105 article-title: The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia publication-title: Water Resour. Res. – volume: 120 start-page: 8276 year: 2015 end-page: 8298 ident: b0075 article-title: Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau publication-title: J. Geophys. Res. [Atmos.] – volume: 39 start-page: 631 year: 2007 end-page: 634 ident: b0560 article-title: Perspectives on environmental study of response to climatic and land Cover/Land use change over the Qinghai-Tibetan plateau: an introduction publication-title: Arct. Antarct. Alp. Res. – volume: 7 year: 2012 ident: b0360 article-title: On the applicability of temperature and precipitation data from CMIP3 for China publication-title: PLoS One – volume: 34 start-page: 265 year: 2014 end-page: 285 ident: b0490 article-title: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals publication-title: Int. J. Climatol. – volume: 18 start-page: 359 year: 2001 end-page: 366 ident: b0495 article-title: Modelling the response of glaciers to climate change by applying volumearea scaling in combination with a high resolution GCM publication-title: Clim. Dynam. – volume: 68 start-page: 87 year: 2013 end-page: 101 ident: b0575 article-title: Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China publication-title: Environ. Earth Sci. – volume: 112 start-page: 79 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0515 article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2013.12.001 – volume: 51 start-page: 25 issue: 172 year: 2005 ident: 10.1016/j.jhydrol.2019.03.043_b0205 article-title: A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden publication-title: J. Glaciol. doi: 10.3189/172756505781829566 – volume: 117 start-page: F04010 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b9010 article-title: Distributed ice thickness and volume of all glaciers around the globe publication-title: J. Geophys. Res. doi: 10.1029/2012JF002523 – volume: 7 issue: 9 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0360 article-title: On the applicability of temperature and precipitation data from CMIP3 for China publication-title: PLoS One doi: 10.1371/journal.pone.0044659 – volume: 44 start-page: W02422 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b0465 article-title: Coupled modelling of glacier and streamflow response to future climate scenarios publication-title: Water Resour. Res. doi: 10.1029/2007WR005956 – volume: 55 start-page: 131 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0120 article-title: A comparison of snow models using observations from an alpine site publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.07.013 – volume: 54 start-page: 615 issue: 4 year: 2011 ident: 10.1016/j.jhydrol.2019.03.043_b0385 article-title: Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-010-4073-1 – volume: 118 start-page: 8500 issue: 15 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0545 article-title: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50665 – volume: 13 start-page: 195 issue: 1–4 year: 1996 ident: 10.1016/j.jhydrol.2019.03.043_b0305 article-title: Surface soil moisture parameterization of the VIC-2L model: evaluation and modification publication-title: Global Planet. Change doi: 10.1016/0921-8181(95)00046-1 – volume: 43 start-page: 131 year: 1998 ident: 10.1016/j.jhydrol.2019.03.043_b0340 article-title: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model publication-title: Hydrol. Sci. J. doi: 10.1080/02626669809492107 – volume: 115 start-page: F01010 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0410 article-title: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data publication-title: J. Geophys. Res. doi: 10.1029/2009JF001373 – volume: 13 start-page: 122 issue: 1 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0485 article-title: Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-11-058.1 – volume: 110 start-page: 721 issue: 3–4 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0245 article-title: Hydrological response to climate change in a glacierized catchment in the Himalayas publication-title: Clim. Change doi: 10.1007/s10584-011-0143-4 – volume: 136 start-page: 82 year: 2016 ident: 10.1016/j.jhydrol.2019.03.043_b0470 article-title: Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2015.10.012 – volume: 17 start-page: 4481 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0230 article-title: Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-4481-2013 – volume: 6 start-page: 742 issue: 9 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0235 article-title: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds publication-title: Nat. Geosci. doi: 10.1038/ngeo1896 – volume: 47 start-page: 1065 issue: 12 year: 2004 ident: 10.1016/j.jhydrol.2019.03.043_b0520 article-title: Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China publication-title: Sci. China Ser. D doi: 10.1360/03yd0256 – volume: 101 start-page: 81 issue: 2–3 year: 2000 ident: 10.1016/j.jhydrol.2019.03.043_b0400 article-title: A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data publication-title: Agric. Forest Meteorol. doi: 10.1016/S0168-1923(99)00169-0 – volume: 34 start-page: 27 issue: 1 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0270 article-title: Representing glaciers in a regional climate model publication-title: Clim. Dyn. doi: 10.1007/s00382-009-0685-6 – volume: 282 start-page: 104 issue: 1–4 year: 2003 ident: 10.1016/j.jhydrol.2019.03.043_b0195 article-title: Temperature index melt modelling in mountain areas publication-title: J. Hydrol. doi: 10.1016/S0022-1694(03)00257-9 – volume: 559 start-page: 471 year: 2018 ident: 10.1016/j.jhydrol.2019.03.043_b0505 article-title: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: components partitioning, multidecadal trends and dominated factors identifying publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.065 – volume: 49 start-page: 117 issue: 164 year: 2003 ident: 10.1016/j.jhydrol.2019.03.043_b0315 article-title: Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply publication-title: J. Glaciol. doi: 10.3189/172756503781830926 – volume: 60 start-page: 3036 issue: 32 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0550 article-title: An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century (in Chinese) publication-title: Chin. Sci. Bull. – volume: 511 start-page: 28 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0290 article-title: Runoff predictions in ungauged catchments in southeast Tibetan Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.01.014 – volume: 409 start-page: 104 issue: 1–2 year: 2011 ident: 10.1016/j.jhydrol.2019.03.043_b0480 article-title: Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.08.035 – volume: 387 start-page: 10 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0060 article-title: Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.03.025 – volume: 108 start-page: 1663 issue: D22 year: 2003 ident: 10.1016/j.jhydrol.2019.03.043_b0055 article-title: Simulation of spatial variability in snow and frozen soil publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2003JD003575 – volume: 24 start-page: 853 year: 2004 ident: 10.1016/j.jhydrol.2019.03.043_b9005 article-title: Quality control of daily meteorological data in China (1951–2000): a new dataset publication-title: Int. J. Climatol. doi: 10.1002/joc.1047 – volume: 32 start-page: 2096 issue: 13 year: 2018 ident: 10.1016/j.jhydrol.2019.03.043_b0345 article-title: Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: a comprehensive assessment by coupling RegCM4 and VIC model publication-title: Hydrol. Process. doi: 10.1002/hyp.13145 – volume: 18 start-page: 359 issue: 3–4 year: 2001 ident: 10.1016/j.jhydrol.2019.03.043_b0495 article-title: Modelling the response of glaciers to climate change by applying volumearea scaling in combination with a high resolution GCM publication-title: Clim. Dynam. doi: 10.1007/s003820100184 – volume: 24 start-page: 166 issue: 2 year: 2004 ident: 10.1016/j.jhydrol.2019.03.043_b0460 article-title: Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios publication-title: Mt. Res. Dev. doi: 10.1659/0276-4741(2004)024[0166:DODTSO]2.0.CO;2 – volume: 32 start-page: L05502 year: 2005 ident: 10.1016/j.jhydrol.2019.03.043_b0425 article-title: The potential for sea level rise: new estimates from glacier and ice cap area and volume distributions publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL023460 – volume: 34 start-page: 265 issue: 2 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0490 article-title: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals publication-title: Int. J. Climatol. doi: 10.1002/joc.3682 – volume: 19 start-page: 1615 issue: 4 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0390 article-title: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-1615-2015 – volume: 36 start-page: 1901 issue: 4 year: 2016 ident: 10.1016/j.jhydrol.2019.03.043_b0175 article-title: Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau publication-title: Int. J. Climatol. doi: 10.1002/joc.4468 – volume: 495 start-page: 94 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0190 article-title: Hydrological climate change projections for Central America publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.05.004 – volume: 5 start-page: 13711 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0095 article-title: Does the climate warming hiatus exist over the Tibetan Plateau? publication-title: Sci. Rep. doi: 10.1038/srep13711 – volume: 529 start-page: 184 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0015 article-title: Uncertainties in runoff projections in southwestern Australian catchments using a global climate model with perturbed physics publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.07.040 – volume: 61 start-page: 447 issue: 227 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0150 article-title: Simulation and analysis of glacier runoff and mass balance in the Nam Co basin, southern Tibetan Plateau publication-title: J. Glaciol. doi: 10.3189/2015JoG14J170 – volume: 385 start-page: 238 issue: 1 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0260 article-title: On the value of glacier mass balances for hydrological model calibration publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.02.025 – volume: 505 start-page: 188 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0285 article-title: The impact of climate change on runoff in the southeastern Tibetan Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.09.052 – volume: 27 start-page: 1876 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0155 article-title: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible Mechanisms publication-title: J. Clim. doi: 10.1175/JCLI-D-13-00321.1 – year: 2009 ident: 10.1016/j.jhydrol.2019.03.043_b0145 – volume: 48 start-page: 708 year: 1996 ident: 10.1016/j.jhydrol.2019.03.043_b0335 article-title: A large-scale horizontal routing model to be coupled to land surface parameterization schemes publication-title: Tellus doi: 10.3402/tellusa.v48i5.12200 – volume: 7 start-page: 5057 issue: 1 year: 2017 ident: 10.1016/j.jhydrol.2019.03.043_b0070 article-title: Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings publication-title: Sci. Rep. doi: 10.1038/s41598-017-05345-6 – volume: 13 start-page: 13 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2019.03.043_b0445 article-title: Response of Xiao Dongkemadi Glacier in the central Tibetan Plateau to the current climate change and future scenarios by 2050 publication-title: J. Mt. Sci. doi: 10.1007/s11629-015-3609-4 – ident: 10.1016/j.jhydrol.2019.03.043_b0160 – volume: 53 start-page: 2431 year: 2017 ident: 10.1016/j.jhydrol.2019.03.043_b0045 article-title: Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: how snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? publication-title: Water Resour. Res. doi: 10.1002/2016WR019656 – volume: 32 start-page: 1775 issue: 12 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0170 article-title: The significant climate warming in the northern Tibetan Plateau and its possible causes publication-title: Int. J. Climatol. doi: 10.1002/joc.2388 – volume: 14 start-page: 1790 issue: 8 year: 2001 ident: 10.1016/j.jhydrol.2019.03.043_b0380 article-title: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93 publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2 – volume: 108 start-page: 327 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b0025 article-title: Remote sensing estimates of glacier mass balances in the HimachalPradesh (Western Himalaya, India) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.017 – volume: 46 start-page: 140 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0215 article-title: Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.10.008 – volume: 70 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0320 article-title: The contemporary glaciers in China based on the second Chinese glacier inventory publication-title: Acta Geogr. Sinica – volume: 21 start-page: 2882 issue: 21 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b0125 article-title: Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau publication-title: Hydrol. Process. doi: 10.1002/hyp.6505 – volume: 328 start-page: 1382 issue: 5984 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0240 article-title: Climate change will affect the asian water towers publication-title: Science doi: 10.1126/science.1183188 – volume: 4 start-page: 587 issue: 7 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0350 article-title: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation publication-title: Nat. Clim. Change doi: 10.1038/nclimate2237 – volume: 20 start-page: 2157 issue: 10 year: 2006 ident: 10.1016/j.jhydrol.2019.03.043_b0435 article-title: Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming publication-title: Hydrol. Process. doi: 10.1002/hyp.6209 – volume: 112 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b9020 article-title: Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps publication-title: J. Geophys. Res. doi: 10.1029/2005JD007026 – volume: 28 start-page: 1139 issue: 9 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b9000 article-title: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences publication-title: Int. J. Climatol. doi: 10.1002/joc.1615 – volume: 5 start-page: 1011 issue: 4 year: 2011 ident: 10.1016/j.jhydrol.2019.03.043_b0355 article-title: A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment publication-title: Cryosphere doi: 10.5194/tc-5-1011-2011 – volume: 55 start-page: 258 issue: 190 year: 2009 ident: 10.1016/j.jhydrol.2019.03.043_b0040 article-title: Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model publication-title: J. Glaciol. doi: 10.3189/002214309788608804 – volume: 477 start-page: 72 issue: 16 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b9015 article-title: Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.11.005 – volume: 493 start-page: 1197 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0395 article-title: Changes of glaciers in the Andes of Chile and priorities for future work publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.10.055 – volume: 5 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0255 article-title: Review of climate and cryospheric change in the Tibetan Plateau publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/5/1/015101 – volume: 54 start-page: 933 issue: 188 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b0535 article-title: Glacier and lake variations in the Mapam Yumco basin, western Himalaya of the Tibetan Plateau, from 1974 to 2003 using remote-sensing and GIS technologies publication-title: J. Glaciol. doi: 10.3189/002214308787779997 – volume: 26 start-page: 1686 issue: 11 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0555 article-title: A modified monthly degree-day model for evaluating glacier runoff changes in China. Part I: model development publication-title: Hydrol. Process doi: 10.1002/hyp.8286 – volume: 62 start-page: 210 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b0295 article-title: Cryospheric change in China publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2008.02.001 – volume: 26 start-page: 3187 issue: 10 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0475 article-title: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00321.1 – volume: 35 start-page: 813 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0415 article-title: Glaciers in the earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales publication-title: Surv. Geophys. doi: 10.1007/s10712-013-9262-y – volume: 39 start-page: 631 issue: 4 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b0560 article-title: Perspectives on environmental study of response to climatic and land Cover/Land use change over the Qinghai-Tibetan plateau: an introduction publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1523-0430(07-513)[ZHANG]2.0.CO;2 – volume: 36 start-page: L03501 year: 2009 ident: 10.1016/j.jhydrol.2019.03.043_b0005 article-title: Sea-level rise from glaciers and ice caps: a lower bound publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL036309 – start-page: 338 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b0280 article-title: Observations: changes in snow, ice and frozen ground – volume: 51 start-page: 4727 issue: 6 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0100 article-title: Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia publication-title: Water Resour. Res. doi: 10.1002/2014WR016716 – volume: 29 start-page: 362 issue: 3 year: 2005 ident: 10.1016/j.jhydrol.2019.03.043_b0200 article-title: Glacier melt: a review of processes and their modelling publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133305pp453ra – volume: 26 start-page: 1593 issue: 11 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0140 article-title: Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008 publication-title: Hydrol. Process. doi: 10.1002/hyp.8256 – start-page: 25 year: 2004 ident: 10.1016/j.jhydrol.2019.03.043_b0030 article-title: Evaluating downscaling methods for preparing global circulation model (GCM) data for hydrological impact modelling – volume: 529 start-page: 184 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0020 article-title: Uncertainties in runoff projections in southwestern Australian catchments using a global climate model with perturbed physics publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.07.040 – volume: 111 start-page: 1731 issue: 3 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0525 article-title: Microcalorimetry study on the microbial activity of permafrost on the Tibetan plateau of China publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-012-2260-3 – volume: 16 start-page: 2383 issue: 6 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0580 article-title: Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River Catchment, Central Tian Shan publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-14-0231.1 – volume: 24 start-page: 6540 issue: 24 year: 2011 ident: 10.1016/j.jhydrol.2019.03.043_b0585 article-title: Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change publication-title: J. Clim. doi: 10.1175/JCLI-D-10-05000.1 – volume: 18 start-page: 747 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0455 article-title: Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-747-2014 – volume: 48 start-page: 1418 issue: 5 year: 2017 ident: 10.1016/j.jhydrol.2019.03.043_b0135 article-title: Use of auxiliary data of topography, snow and ice to improve model performance in a glacier-dominated catchment in Central Asia publication-title: Hydrol. Res. doi: 10.2166/nh.2016.242 – volume: 439 start-page: 311 issue: 7074 year: 2006 ident: 10.1016/j.jhydrol.2019.03.043_b0430 article-title: Low sea level rise projections from mountain glaciers and icecaps under global warming publication-title: Nature doi: 10.1038/nature04448 – volume: 53 start-page: 673 issue: 183 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b0540 article-title: Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies publication-title: J. Glaciol. doi: 10.3189/002214307784409261 – volume: 38 start-page: 15 issue: 5 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0210 article-title: Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau publication-title: Chin. J. Atmos. Sci. – volume: 56 start-page: 59 issue: 1 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b0570 article-title: Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China publication-title: Environ. Geol. doi: 10.1007/s00254-007-1139-2 – volume: 94 start-page: 47 issue: 1–2 year: 2009 ident: 10.1016/j.jhydrol.2019.03.043_b0085 article-title: Recent land cover changes on the Tibetan Plateau: a review publication-title: Clim. Change doi: 10.1007/s10584-009-9556-8 – volume: 218 start-page: 13 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0300 article-title: Changes of climate, glaciers and runoff in China's monsoonal temperate glacier region during the last several decades publication-title: Quat. Int. – volume: 21 start-page: 1 year: 2017 ident: 10.1016/j.jhydrol.2019.03.043_b0050 article-title: Review article: hydrological modeling in glacierized catchments of central Asia – status and challenges publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-669-2017 – volume: 56 start-page: 33 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0365 article-title: Calibration of glacier volume-area relations from surface extent fluctuations and application to future glacier change publication-title: J. Glaciol. doi: 10.3189/002214310791190866 – volume: 114 start-page: 1291 issue: D7 year: 2009 ident: 10.1016/j.jhydrol.2019.03.043_b0530 article-title: Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia publication-title: J. Geophys. Res. doi: 10.1029/2008JD010537 – volume: 26 start-page: 85 issue: 1 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0080 article-title: Climate change on the Northern Tibetan Plateau during 1957–2009: spatial patterns and possible mechanisms publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00738.1 – volume: 11 start-page: 1323 issue: 4 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b0265 article-title: Implementation of a process-based catchment model in a poorly gauged, highly glacierized Himalayan headwater publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-1323-2007 – volume: 68 start-page: 87 issue: 1 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0575 article-title: Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-1718-8 – volume: 15 start-page: 1384 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0115 article-title: How does the choice of distributed meteorological data affect hydrologic model calibration and streamflow simulations? publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-13-083.1 – volume: 48 start-page: 1 issue: W12508 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0250 article-title: Role of snow and glacier melt in controlling river hydrology Liddar watershed in the (western Himalaya) under current and future climate publication-title: Water Resour. Res. – volume: 383 start-page: 111 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b9025 article-title: Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.09.050 – volume: 102 start-page: 225 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2019.03.043_b0110 article-title: Implications of 21st century climate change for the hydrology of Washington State publication-title: Clim. Change doi: 10.1007/s10584-010-9855-0 – volume: 61 start-page: 357 issue: 226 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0180 article-title: The second Chinese glacier inventory: data, methods and results publication-title: J. Glaciol. doi: 10.3189/2015JoG14J209 – volume: 15 start-page: 1227 issue: 4 year: 2011 ident: 10.1016/j.jhydrol.2019.03.043_b0440 article-title: Integrating point glacier mass balance observations into hydrologic model identification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1227-2011 – year: 2011 ident: 10.1016/j.jhydrol.2019.03.043_b0010 article-title: Estimation of glacier volume and volume change by scaling methods doi: 10.1007/978-90-481-2642-2_690 – volume: 510 start-page: 35 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0225 article-title: High uncertainty in 21st century runoff projections from glacierized basins publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.12.017 – volume: 50 start-page: 2002 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0105 article-title: The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia publication-title: Water Resour. Res. doi: 10.1002/2013WR014382 – volume: 48 start-page: 797 issue: 6 year: 2005 ident: 10.1016/j.jhydrol.2019.03.043_b0375 article-title: Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years publication-title: Sci. China Ser. D doi: 10.1360/03yd0258 – volume: 1 start-page: 221 issue: 4 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b0420 article-title: Global and regional climate changes due to black carbon publication-title: Nat. Geosci. doi: 10.1038/ngeo156 – volume: 50 start-page: 1 issue: 53 year: 2009 ident: 10.1016/j.jhydrol.2019.03.043_b0450 article-title: The glacier inventory of China publication-title: Ann. Glaciol. doi: 10.3189/172756410790595831 – volume: 244 start-page: 211 issue: 2 year: 2011 ident: 10.1016/j.jhydrol.2019.03.043_b0310 article-title: Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model publication-title: Quat. Int. doi: 10.1016/j.quaint.2010.12.001 – volume: 7 start-page: 141 issue: 1 year: 2013 ident: 10.1016/j.jhydrol.2019.03.043_b0165 article-title: An estimate of global glacier volume publication-title: Cryosphere doi: 10.5194/tc-7-141-2013 – volume: 117 start-page: D11102 year: 2012 ident: 10.1016/j.jhydrol.2019.03.043_b0090 article-title: Hydrological projections of climate change scenarios over the 3H region of China: a VIC model assessment publication-title: J. Geophys. Res. doi: 10.1029/2011JD017131 – volume: 31 start-page: 2842 issue: 16 year: 2017 ident: 10.1016/j.jhydrol.2019.03.043_b0130 article-title: The importance of aspect for modelling the hydrological response in a glacier catchment in Central Asia publication-title: Hydrol. Process. doi: 10.1002/hyp.11224 – volume: 46 start-page: 234 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2019.03.043_b0405 article-title: Volume-area scaling vs flowline modelling in glacier volume projections publication-title: Ann. Glaciol. doi: 10.3189/172756407782871288 – volume: 29 start-page: 1809 issue: 7 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0325 article-title: Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin publication-title: Stoch. Environ. Res. Risk A doi: 10.1007/s00477-015-1066-9 – volume: 35 start-page: L14702 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b0500 article-title: Tibetan Plateau warming and precipitation changes in east Asia publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL034330 – volume: 41 start-page: 237 issue: 5 year: 2005 ident: 10.1016/j.jhydrol.2019.03.043_b0370 article-title: Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter publication-title: Water Resour. Res. doi: 10.1029/2004WR003604 – volume: 120 start-page: 8276 year: 2015 ident: 10.1016/j.jhydrol.2019.03.043_b0075 article-title: Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau publication-title: J. Geophys. Res. [Atmos.] doi: 10.1002/2015JD023193 – volume: 32 start-page: 1 issue: 24 year: 2005 ident: 10.1016/j.jhydrol.2019.03.043_b0275 article-title: A projection of severe near-surface permafrost degradation during the 21st century publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL025080 – volume: 21 start-page: 1331 issue: 6–7 year: 2000 ident: 10.1016/j.jhydrol.2019.03.043_b0185 article-title: Global land cover classification at 1 km spatial resolution using a classification tree approach publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210209 – volume: 55 start-page: 213 issue: 66 year: 2014 ident: 10.1016/j.jhydrol.2019.03.043_b0510 article-title: Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps publication-title: Ann. Glaciol. doi: 10.3189/2014AoG66A038 – volume: 22 start-page: 3888 issue: 19 year: 2008 ident: 10.1016/j.jhydrol.2019.03.043_b0220 article-title: Modelling runoff from highly glacierized alpine drainage basins in a changing climate publication-title: Hydrol. Process. doi: 10.1002/hyp.7055 |
SSID | ssj0000334 |
Score | 2.6207075 |
Snippet | •A VIC-CAS model, coupled with glacier melting and evolution schemes, was developed.•Good model performances were obtained through a two-stage calibration... Analyzing the impacts of climate change on hydrology and future projections of water supplies is fundamental for the efficient management and planning of water... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 60 |
SubjectTerms | China Climate change climate models Glaciers hydrograph hydrologic models inventories melting planning rain rivers runoff snowmelt stream flow Streamflow temperature Tibetan Plateau uncertainty VIC-CAS model warm season water supply watersheds Yangtze River Yellow River |
Title | Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow |
URI | https://dx.doi.org/10.1016/j.jhydrol.2019.03.043 https://www.proquest.com/docview/2237529911 |
Volume | 573 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOBStYWqQIumUq_ZTWzndUSoaGlVxAEkbpZfgay2yWrZFdpLfw0_lJk4AVEJIfXoxBNZnsnMN_Y8GPvOXWK1yGXkeCnRQXEmKiT3ES891YL20nSVmH6fZ5Mr-fM6vd5gJ0MuDIVV9ro_6PROW_dPxv1ujud1TTm-nCeUh1kKKqtHNUGlzEnKR3-fwzxiIeRQMZxmP2fxjKej6e3aLVq6gUhCrVMpXrNP_2jqzvycvmfvetwIx2FpH9iGbz6y7b6F-e16lz1chDMVNEVgZzUCUQ8hqxdCJuQdtA2ElQR1B_OQJOC7NwgE4bI2HsEiXMyQWq-ADmmh65UDOJ8ca2Ij6BtdI6rsSBB9464toO6C19vFGijmFHTjoDV04usdUD6K_lPN2vs9dnX64_JkEvUtGCItsnQZFToVOna5KUTlrHDIO13ZSqY-8yYrvdWFld7mxuAQJ8caWVBZ47hPbWqd-MQ2m7bxnxmkBn2ZyqOllIiCOLp6WWwry22JTjIyYJ_JYeOV7euTU5uMmRoC0aaq55cifqlYKOTXPhs9kc1DgY63CIqBq-qFpCk0Im-RfhukQOFfSFcruvHt6k4hyMpTtOxJcvD_nz9kOzQKgWhf2OZysfJfEfIszVEn00ds6_js1-T8EXdJB6w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5pBeSp80fU6hV2fXkvw6htCwaZIlhw3kJvRy42VrL5tdyv6f_tDOWHJDCyXQoy2NERp55htp5hNjn7lLrRaFTByvJAYoziSl5D7hlScuaC9Nz8R0Ocun1_LrTXazx06GWhhKq4y2P9j03lrHN-M4m-NV01CNL-cp1WFWgmj15CO2T-xU2YjtH5-dT2f3BlkIOZCGk8B9Ic94cbS43bl1R4cQaaA7leJfLuovY917oNOn7EmEjnAcRveM7fn2OTuIt5jf7l6wn1dhWwW9Edhlg1jUQyjshVAMeQddC2EkweLBKtQJ-L4FsSDMG-MRL8LVEqX1FmifFvrrcgD7U2xNmgT9TTcILHsRBOA4cWto-vz1br0DSjsF3TroDG36egdUkqK_18vux0t2ffplfjJN4i0MiRZ5tklKnQk9cYUpRe2scKg-XdtaZj73Jq-81aWV3hbG4CN2nmgpi9oax31mM-vEKzZqu9a_ZpAZDGdqj85SIhDiGO3lE1tbbiuMk1EBh0wOE69spCinmzKWashFW6ioL0X6UhOhUF-H7Oi32CpwdDwkUA5aVX8sNoV-5CHRT8MqUPgj0umKbn23vVOIs4oMnXuavvn_z39kB9P55YW6OJudv2WPqSXkpb1jo816698jAtqYD3GF_wJm7gpd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projecting+climate+change+impacts+on+hydrological+processes+on+the+Tibetan+Plateau+with+model+calibration+against+the+glacier+inventory+data+and+observed+streamflow&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhao%2C+Qiudong&rft.au=Ding%2C+Yongjian&rft.au=Wang%2C+Jian&rft.au=Gao%2C+Hongkai&rft.date=2019-06-01&rft.issn=0022-1694&rft.volume=573+p.60-81&rft.spage=60&rft.epage=81&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.03.043&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |