Deep hydrothermal and shallow groundwater borne lithium and boron loadings to a mega brine lake in Qinghai Tibet Plateau based on multi-tracer models

•Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers disproportionate Li and B loadings to the brine lake.•Ra-226 is dominated by co-precipitation in the lake, with a coefficient of 4.72 to 6....

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 598; p. 126313
Main Authors Kong, Fancui, Yang, Yingkui, Luo, Xin, Sha, Zhanjiang, Wang, Jianping, Ma, Yujun, Ling, Zhiyong, He, Bingyi, Liu, Wanping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers disproportionate Li and B loadings to the brine lake.•Ra-226 is dominated by co-precipitation in the lake, with a coefficient of 4.72 to 6.07 y−1. Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the mineralization processes under intensive evaporation. Lacustrine groundwater discharge (LGD) is the vital conveyor for the loadings of resource elements in the brine lakes. Da Qaidam Lake, located in the Qaidam basin of the Qinghai–Tibet Plateau (QTP), is one of the largest brine lakes for boron and lithium resources in China. Lithium and boron in the lake are considered to be dominantly sourced from deep hydrothermal groundwater and shallow groundwater, but the partitioning of deep and shallow components to the lake and the derived lithium and boron loadings remain unknown, LGD derived boron and lithium provide the primary source of the salt lake. vitally regulates the formation, evolution and mineralization of Li and B resources in the brine lake. This study performs systematical investigations of radium isotopes (226Ra, 228Ra, 224Ra and 223Ra), lithium, boron, and other hydrogeochemical parameters in different water endmembers around the brine lake. The results indicate that radium isotopes are significantly enriched in the hydrothermal groundwater and will be removed by co-precipitation with barite precipitates in the lake water. The multi-tracer models coupled radium bass balance, conservative tracer buildup and water budget were deployed to precisely constrain radium co-precipitation rates, and to quantify the deep and shallow LGD (total LGD = LGDD + LGDS) and the derived lithium and boron loadings. Radium co-precipitation coefficient is obtained to be 4.7–6.1 y−1. LGDD and total LGD are estimated to be 8.8 × 106 and 3.3 × 107 m3 y−1, respectively, which account for 11.9% and 57.2% of the total water input. LGDD and total LGD derived lithium/boron loadings constitute up to 70.2/60.1%, and 79.0/77.7% of the total loadings, respectively, indicating the significance of disproportionate LGDD in delivering resource elements into the brine lake. This study presents the first attempt to partition the deep hydrothermal and shallow LGD to a mega the QTP brine lake by multi-tracer models and the findings contribute to the understanding of lithium and boron budgets in the brine lakes of the QTP and worldwide.
AbstractList Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the mineralization processes under intensive evaporation. Lacustrine groundwater discharge (LGD) is the vital conveyor for the loadings of resource elements in the brine lakes. Da Qaidam Lake, located in the Qaidam basin of the Qinghai–Tibet Plateau (QTP), is one of the largest brine lakes for boron and lithium resources in China. Lithium and boron in the lake are considered to be dominantly sourced from deep hydrothermal groundwater and shallow groundwater, but the partitioning of deep and shallow components to the lake and the derived lithium and boron loadings remain unknown, LGD derived boron and lithium provide the primary source of the salt lake. vitally regulates the formation, evolution and mineralization of Li and B resources in the brine lake. This study performs systematical investigations of radium isotopes (²²⁶Ra, ²²⁸Ra, ²²⁴Ra and ²²³Ra), lithium, boron, and other hydrogeochemical parameters in different water endmembers around the brine lake. The results indicate that radium isotopes are significantly enriched in the hydrothermal groundwater and will be removed by co-precipitation with barite precipitates in the lake water. The multi-tracer models coupled radium bass balance, conservative tracer buildup and water budget were deployed to precisely constrain radium co-precipitation rates, and to quantify the deep and shallow LGD (total LGD = LGDD + LGDS) and the derived lithium and boron loadings. Radium co-precipitation coefficient is obtained to be 4.7–6.1 y⁻¹. LGDD and total LGD are estimated to be 8.8 × 10⁶ and 3.3 × 10⁷ m³ y⁻¹, respectively, which account for 11.9% and 57.2% of the total water input. LGDD and total LGD derived lithium/boron loadings constitute up to 70.2/60.1%, and 79.0/77.7% of the total loadings, respectively, indicating the significance of disproportionate LGDD in delivering resource elements into the brine lake. This study presents the first attempt to partition the deep hydrothermal and shallow LGD to a mega the QTP brine lake by multi-tracer models and the findings contribute to the understanding of lithium and boron budgets in the brine lakes of the QTP and worldwide.
•Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers disproportionate Li and B loadings to the brine lake.•Ra-226 is dominated by co-precipitation in the lake, with a coefficient of 4.72 to 6.07 y−1. Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the mineralization processes under intensive evaporation. Lacustrine groundwater discharge (LGD) is the vital conveyor for the loadings of resource elements in the brine lakes. Da Qaidam Lake, located in the Qaidam basin of the Qinghai–Tibet Plateau (QTP), is one of the largest brine lakes for boron and lithium resources in China. Lithium and boron in the lake are considered to be dominantly sourced from deep hydrothermal groundwater and shallow groundwater, but the partitioning of deep and shallow components to the lake and the derived lithium and boron loadings remain unknown, LGD derived boron and lithium provide the primary source of the salt lake. vitally regulates the formation, evolution and mineralization of Li and B resources in the brine lake. This study performs systematical investigations of radium isotopes (226Ra, 228Ra, 224Ra and 223Ra), lithium, boron, and other hydrogeochemical parameters in different water endmembers around the brine lake. The results indicate that radium isotopes are significantly enriched in the hydrothermal groundwater and will be removed by co-precipitation with barite precipitates in the lake water. The multi-tracer models coupled radium bass balance, conservative tracer buildup and water budget were deployed to precisely constrain radium co-precipitation rates, and to quantify the deep and shallow LGD (total LGD = LGDD + LGDS) and the derived lithium and boron loadings. Radium co-precipitation coefficient is obtained to be 4.7–6.1 y−1. LGDD and total LGD are estimated to be 8.8 × 106 and 3.3 × 107 m3 y−1, respectively, which account for 11.9% and 57.2% of the total water input. LGDD and total LGD derived lithium/boron loadings constitute up to 70.2/60.1%, and 79.0/77.7% of the total loadings, respectively, indicating the significance of disproportionate LGDD in delivering resource elements into the brine lake. This study presents the first attempt to partition the deep hydrothermal and shallow LGD to a mega the QTP brine lake by multi-tracer models and the findings contribute to the understanding of lithium and boron budgets in the brine lakes of the QTP and worldwide.
ArticleNumber 126313
Author Liu, Wanping
Kong, Fancui
Sha, Zhanjiang
Ling, Zhiyong
Luo, Xin
Wang, Jianping
He, Bingyi
Yang, Yingkui
Ma, Yujun
Author_xml – sequence: 1
  givenname: Fancui
  surname: Kong
  fullname: Kong, Fancui
  email: kfc@isl.ac.cn
  organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
– sequence: 2
  givenname: Yingkui
  surname: Yang
  fullname: Yang, Yingkui
  organization: Qinghai University, Xining 810016, China
– sequence: 3
  givenname: Xin
  surname: Luo
  fullname: Luo, Xin
  email: xinluo@hku.hk
  organization: Department of Earth Sciences, The University of Hong Kong, PR China
– sequence: 4
  givenname: Zhanjiang
  surname: Sha
  fullname: Sha, Zhanjiang
  organization: Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
– sequence: 5
  givenname: Jianping
  surname: Wang
  fullname: Wang, Jianping
  email: jianpingwang@isl.ac.cn
  organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
– sequence: 6
  givenname: Yujun
  surname: Ma
  fullname: Ma, Yujun
  organization: Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
– sequence: 7
  givenname: Zhiyong
  surname: Ling
  fullname: Ling, Zhiyong
  organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
– sequence: 8
  givenname: Bingyi
  surname: He
  fullname: He, Bingyi
  organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
– sequence: 9
  givenname: Wanping
  surname: Liu
  fullname: Liu, Wanping
  organization: Qinghai Salt Lake Industry Co., Ltd., Golmud 816000, China
BookMark eNqFkc1uUzEQhS1UJNLCIyB5yeYG_90_sUCoQEGqBEjZW3PtSeLgawfbl6oPwvvWabpi09mMND7fGXnOJbkIMSAhbzlbc8a794f1YX9vU_RrwQRfc9FJLl-QFR_6sRE96y_IijEhGt6N6hW5zPnAakmpVuTfZ8QjfcTLHtMMnkKwNO_B-3hHdykuwd5BwUSnmAJS78reLfOjqk5ioD6CdWGXaYkU6Iw7oFNyJyn8RuoC_VVf9-Doxk1Y6E9f3WChE2S0tPLz4otrSgJTl8zRos-vycst-IxvnvoV2Xz9srn-1tz-uPl-_em2Adm1pVGjVVLCZEY-qm3X9kKYjnfcMj5ZgYMEOfRsGrhp-y1O3dgOOKkOQKFCbuQVeXe2Pab4Z8Fc9OyyQe8hYFyyFq1QgvdqUFXanqUmxZwTbvUxuRnSveZMn1LQB_2Ugj6loM8pVO7Df5xxBYqLoX7Y-Wfpj2e63gT_Okw6G4fBoHUJTdE2umccHgB0KKt7
CitedBy_id crossref_primary_10_1007_s00343_023_2258_7
crossref_primary_10_1016_j_jhydrol_2024_130883
crossref_primary_10_1016_j_scitotenv_2024_177672
crossref_primary_10_1007_s10498_024_09425_8
crossref_primary_10_1007_s10498_024_09427_6
crossref_primary_10_1016_j_jhydrol_2024_130731
crossref_primary_10_1016_j_scitotenv_2023_161612
crossref_primary_10_1016_j_scitotenv_2023_169629
crossref_primary_10_1111_gwat_13461
crossref_primary_10_4236_ars_2025_141004
crossref_primary_10_1360_SSTe_2024_0015
crossref_primary_10_1016_j_jglr_2022_07_007
crossref_primary_10_1016_j_gloplacha_2024_104654
crossref_primary_10_3390_w16223286
crossref_primary_10_3389_feart_2023_1118118
crossref_primary_10_1016_j_jenvrad_2025_107680
crossref_primary_10_1002_hyp_14942
crossref_primary_10_1007_s11430_024_1413_0
Cites_doi 10.1016/j.rse.2013.07.005
10.1029/JC078i036p08880
10.1002/hyp.10384
10.1029/1999JC000289
10.1016/j.jhydrol.2014.02.040
10.1016/j.gca.2012.10.046
10.1016/j.jhydrol.2017.01.017
10.1023/B:BIOG.0000006065.77764.a0
10.1016/j.csr.2008.09.002
10.1016/j.marchem.2003.10.001
10.1016/j.earscirev.2019.102938
10.1016/j.jhydrol.2015.12.051
10.1016/0016-7037(95)00356-8
10.1016/0016-7037(89)90294-9
10.1016/j.gca.2013.09.041
10.1016/j.earscirev.2013.11.010
10.1016/j.chemgeo.2014.04.026
10.1016/j.gca.2003.10.014
10.1002/wrcr.20372
10.1016/j.gca.2011.06.042
10.1016/j.jhydrol.2013.08.021
10.1016/j.gca.2011.07.013
10.1016/j.marchem.2007.06.015
10.1002/2016GC006502
10.1016/0016-7037(85)90264-9
10.1016/0167-5087(84)90683-5
10.1016/j.jhydrol.2019.01.066
10.1016/0016-7037(92)90225-8
10.1016/j.oregeorev.2019.103277
10.1016/j.chemgeo.2019.01.020
10.1016/j.jhydrol.2020.124782
10.1016/j.marchem.2006.06.015
10.2343/geochemj.2.0273
10.1016/j.jglr.2020.03.006
10.1016/j.gca.2013.08.005
10.1016/j.chemgeo.2015.06.014
10.1016/j.jhydrol.2017.09.001
10.1016/j.gca.2004.03.031
10.1016/j.marpolbul.2014.03.005
10.1016/j.gca.2020.06.004
10.1016/j.marchem.2014.07.002
10.1016/j.epsl.2014.03.010
10.1016/j.epsl.2005.06.011
10.1016/j.jhydrol.2017.03.049
10.1016/j.epsl.2017.01.043
10.1029/95JC03139
10.1016/j.jhydrol.2013.01.043
10.1016/S0016-7037(00)00363-X
10.1016/j.gca.2012.03.022
10.1016/j.gca.2018.04.019
10.1016/j.watres.2018.07.004
10.1029/JC090iC04p06995
10.1016/S0016-7037(98)00126-4
10.1016/j.marchem.2007.11.006
10.1002/hyp.10403
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2021.126313
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2021_126313
S0022169421003607
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a365t-49d433abc9194f65722c6161d01bd2e83a3870b81c57feb6958eb46aa4e4e1c3
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Thu Jul 10 18:48:45 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Tue Jul 01 01:53:29 EDT 2025
Fri Feb 23 02:42:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lacustrine groundwater discharge (LGD)
Hydrothermal groundwater
Da Qaidam Lake
Radium isotopes
Co-precipitation
Lithium and boron resource
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-49d433abc9194f65722c6161d01bd2e83a3870b81c57feb6958eb46aa4e4e1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524217484
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524217484
crossref_primary_10_1016_j_jhydrol_2021_126313
crossref_citationtrail_10_1016_j_jhydrol_2021_126313
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kong, Sha, Luo, Du, Jiao, Moore, Yang, Su (b0090) 2019; 510
Lewandowski, Meinikmann, Ruhtz, Pöschke, Kirillin (b0115) 2013; 138
Moore (b0180) 1984; 223
Rosenberg, Sade, Ganor (b0245) 2018; 233
Moore, Krest (b0205) 2004; 86
Garcia-Solsona, Garcia-Orellana, Masqué, Dulaiova (b0030) 2008; 109
Rosenberg, Sadeh, Metz, Pina, Ganor (b0250) 2014; 125
Moore, Arnold (b0200) 1996; 1978–2012
Burnett, Wattayakorn, Supcharoen, Sioudom, Kum, Chanyotha, Kritsananuwat (b0015) 2017; 549
Liu, Xiao, Peng, An, He (b0130) 2000; 64
Luo, Jiao, Moore, Lee (b0140) 2014; 82
Kiro, Yechieli, Voss, Starinsky, Weinstein (b0080) 2012; 88
Langmuir, Riese (b0100) 1985; 49
Wei, Jiang, Tan, Zhang, Li, Yang (b0300) 2014; 380
Luo, Jiao, Moore, Cherry, Wang, Liu (b0145) 2018; 144
Rosenberg, Metz, Oren, Volkman, Ganor (b0230) 2011; 75
Breier, Edmonds (b0010) 2007; 103
Kong, Yang, Ma, Lin, Wang, Sha (b0095) 2021; 33
Moore, Reid (b0210) 1973; 78
Wang (b0285) 1998
Xiao, Y., Sun, D., Wang, Y., Qi, H. and Jin, L. (1992) Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. Cosmochim. Acta (United States) 56.
Teng, McDonough, Rudnick, Dalpe, Tomascak, Chappell, Gao (b0265) 2004; 68
Meinikmann, Lewandowski, Nützmann (b0170) 2013; 502
Lewandowski, Meinikmann, Nützmann, Rosenberry (b0110) 2015; 29
Luo, Jiao, Wang, Liu, Lian, Yang (b0150) 2017; 546
Peterson, Burnett, Taniguchi, Chen, Santos, Misra (b0225) 2008; 28
Wang, H., Wang, W., Zhao, B., Zhao, A., Li, H., 2016. Report on hydrogeology of water supply in baligou water source Qinghai province. Qinghai hydrogeologcai engineering geologicai exploration institute, p. 83.
Key, Stallard, Moore, Sarmiento (b0050) 1985; 90
Kiro, Goldstein, Garcia-Veigas, Levy, Kushnir, Stein, Lazar (b0060) 2017; 464
Song, Niu, Su, Zhang, Zhang (b0260) 2014; 129
Luo, Jiao, Wang, Liu (b0160) 2016; 534
Mercedes-Martín, Ayora, Tritlla, Sánchez-Román (b0175) 2019; 198
Moore (b0195) 2008; 109
Uuml, Zheng, Chen, Zhang, Liu, Wu, Yu (b0270) 2013; 47
Zhu (b0340) 2004; 68
Zheng, Liu (b0330) 2010; 84
Li (b0120) 1994; 2
Knights, Parks, Sawyer, David, Browning, Danner, Wallace (b0085) 2017; 554
Rosenberg, Metz, Ganor (b0240) 2013; 103
Huh, Chan, Zhang, Edmond (b0045) 1998; 62
Liao, Wang, Yi, Shi, Cheng, Kong, Mu, Guo, Cheng, Dong, Liu (b0125) 2020; 585
Zheng, Xiang, Wei, Zheng (b0335) 1989
Kiro, Weinstein, Starinsky, Yechieli (b0065) 2013; 122
Wang, Du (b0290) 2016; 17
Luo, Kuang, Jiao, Liang, Mao, Zhang, Li (b0165) 2018
Wang, Du, Ji, Wen, Liu, Zhang (b0295) 2014; 167
Xue (b0315) 2001; 18
Luo, Jiao (b0135) 2019; 571
Moore (b0185) 2000; 1978–2012
Luo, Jiao, Wang, Liu, Lian, Yang (b0155) 2017; 546
Chen, Chafetz, Lapen (b0020) 2020; 283
Kiro, Weinstein, Starinsky, Yechieli (b0075) 2015; 411
Gnanapragasam, Lewis (b0035) 1995; 59
Anderson, Naftz, Day-Lewis, Henderson, Rosenberry, Stolp, Jewell (b0005) 2014; 512
Rosenberry, Lewandowski, Meinikmann, Nützmann (b0255) 2015; 29
Rosenberg, Metz, Ganor (b0235) 2011; 75
Dimova, Burnett, Chanton, Corbett (b0025) 2013; 486
He, Luo, Yang, Kong, Li, Deng, Zhang, Yang (b0040) 2020; 117
Moore (b0190) 2003; 66
Langston, Hayashi, Roy (b0105) 2013; 49
Kiro, Weinstein, Starinsky, Yechieli (b0070) 2014; 394
Wallace, Ji, Robinson (b0275) 2020; 46
Peterson, Burnett, Taniguchi, Chen, Santos, Ishitobi (b0220) 2008; 1978–2012
Yang (b0320) 1983
Zhang (b0325) 1987
Kim, Ryu, Yang, Yun (b0055) 2005; 237
Xiao, Y., Qi, H., Wang, Y., Jin, L., 1994. Lithum isotopic composition of brine, sediments and source water in Da Qaidam lake, Qinghai, China. Geochimica 23.
Nordstrom, Ball, Donahoe, Whittemore (b0215) 1989; 53
Rosenberg (10.1016/j.jhydrol.2021.126313_b0240) 2013; 103
Zheng (10.1016/j.jhydrol.2021.126313_b0335) 1989
Moore (10.1016/j.jhydrol.2021.126313_b0205) 2004; 86
Uuml (10.1016/j.jhydrol.2021.126313_b0270) 2013; 47
Moore (10.1016/j.jhydrol.2021.126313_b0195) 2008; 109
Kiro (10.1016/j.jhydrol.2021.126313_b0070) 2014; 394
Liao (10.1016/j.jhydrol.2021.126313_b0125) 2020; 585
Garcia-Solsona (10.1016/j.jhydrol.2021.126313_b0030) 2008; 109
Liu (10.1016/j.jhydrol.2021.126313_b0130) 2000; 64
Moore (10.1016/j.jhydrol.2021.126313_b0180) 1984; 223
Peterson (10.1016/j.jhydrol.2021.126313_b0225) 2008; 28
Moore (10.1016/j.jhydrol.2021.126313_b0210) 1973; 78
Luo (10.1016/j.jhydrol.2021.126313_b0135) 2019; 571
Li (10.1016/j.jhydrol.2021.126313_b0120) 1994; 2
Lewandowski (10.1016/j.jhydrol.2021.126313_b0115) 2013; 138
Zhu (10.1016/j.jhydrol.2021.126313_b0340) 2004; 68
Dimova (10.1016/j.jhydrol.2021.126313_b0025) 2013; 486
Wallace (10.1016/j.jhydrol.2021.126313_b0275) 2020; 46
Rosenberg (10.1016/j.jhydrol.2021.126313_b0250) 2014; 125
Zheng (10.1016/j.jhydrol.2021.126313_b0330) 2010; 84
He (10.1016/j.jhydrol.2021.126313_b0040) 2020; 117
Kiro (10.1016/j.jhydrol.2021.126313_b0060) 2017; 464
Wang (10.1016/j.jhydrol.2021.126313_b0290) 2016; 17
Rosenberg (10.1016/j.jhydrol.2021.126313_b0245) 2018; 233
10.1016/j.jhydrol.2021.126313_b0280
Rosenberg (10.1016/j.jhydrol.2021.126313_b0230) 2011; 75
Teng (10.1016/j.jhydrol.2021.126313_b0265) 2004; 68
Breier (10.1016/j.jhydrol.2021.126313_b0010) 2007; 103
Langmuir (10.1016/j.jhydrol.2021.126313_b0100) 1985; 49
Key (10.1016/j.jhydrol.2021.126313_b0050) 1985; 90
Kiro (10.1016/j.jhydrol.2021.126313_b0075) 2015; 411
Luo (10.1016/j.jhydrol.2021.126313_b0145) 2018; 144
Mercedes-Martín (10.1016/j.jhydrol.2021.126313_b0175) 2019; 198
Moore (10.1016/j.jhydrol.2021.126313_b0200) 1996; 1978–2012
Luo (10.1016/j.jhydrol.2021.126313_b0155) 2017; 546
Nordstrom (10.1016/j.jhydrol.2021.126313_b0215) 1989; 53
10.1016/j.jhydrol.2021.126313_b0310
Yang (10.1016/j.jhydrol.2021.126313_b0320) 1983
Luo (10.1016/j.jhydrol.2021.126313_b0160) 2016; 534
Kong (10.1016/j.jhydrol.2021.126313_b0095) 2021; 33
Kong (10.1016/j.jhydrol.2021.126313_b0090) 2019; 510
Huh (10.1016/j.jhydrol.2021.126313_b0045) 1998; 62
Gnanapragasam (10.1016/j.jhydrol.2021.126313_b0035) 1995; 59
Wang (10.1016/j.jhydrol.2021.126313_b0285) 1998
Lewandowski (10.1016/j.jhydrol.2021.126313_b0110) 2015; 29
Luo (10.1016/j.jhydrol.2021.126313_b0150) 2017; 546
Moore (10.1016/j.jhydrol.2021.126313_b0190) 2003; 66
Anderson (10.1016/j.jhydrol.2021.126313_b0005) 2014; 512
Knights (10.1016/j.jhydrol.2021.126313_b0085) 2017; 554
Peterson (10.1016/j.jhydrol.2021.126313_b0220) 2008; 1978–2012
Song (10.1016/j.jhydrol.2021.126313_b0260) 2014; 129
Rosenberg (10.1016/j.jhydrol.2021.126313_b0235) 2011; 75
Rosenberry (10.1016/j.jhydrol.2021.126313_b0255) 2015; 29
Meinikmann (10.1016/j.jhydrol.2021.126313_b0170) 2013; 502
Zhang (10.1016/j.jhydrol.2021.126313_b0325) 1987
Kiro (10.1016/j.jhydrol.2021.126313_b0065) 2013; 122
Wang (10.1016/j.jhydrol.2021.126313_b0295) 2014; 167
Langston (10.1016/j.jhydrol.2021.126313_b0105) 2013; 49
Luo (10.1016/j.jhydrol.2021.126313_b0165) 2018
Xue (10.1016/j.jhydrol.2021.126313_b0315) 2001; 18
Chen (10.1016/j.jhydrol.2021.126313_b0020) 2020; 283
Luo (10.1016/j.jhydrol.2021.126313_b0140) 2014; 82
Wei (10.1016/j.jhydrol.2021.126313_b0300) 2014; 380
Moore (10.1016/j.jhydrol.2021.126313_b0185) 2000; 1978–2012
Burnett (10.1016/j.jhydrol.2021.126313_b0015) 2017; 549
Kim (10.1016/j.jhydrol.2021.126313_b0055) 2005; 237
Kiro (10.1016/j.jhydrol.2021.126313_b0080) 2012; 88
10.1016/j.jhydrol.2021.126313_b0305
References_xml – year: 1998
  ident: b0285
  article-title: The Lake of China
– volume: 394
  start-page: 146
  year: 2014
  end-page: 158
  ident: b0070
  article-title: The extent of seawater circulation in the aquifer and its role in elemental mass balances: a lesson from the Dead Sea
  publication-title: Earth Planet. Sci. Lett.
– volume: 122
  start-page: 17
  year: 2013
  end-page: 35
  ident: b0065
  article-title: Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer
  publication-title: Geochim. Cosmochim. Acta
– volume: 33
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0095
  article-title: The distribution and Sources of radium isotopes in Da Qaidam salt lake
  publication-title: J. Lake Sci.
– volume: 2
  start-page: 18
  year: 1994
  end-page: 24
  ident: b0120
  article-title: Distributive regularity of Boron and Lithium in Da Qaidam Salt Lake
  publication-title: J. Salt Lake Sci.
– volume: 82
  start-page: 144
  year: 2014
  end-page: 154
  ident: b0140
  article-title: Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production
  publication-title: Mar. Pollut. Bull.
– volume: 534
  start-page: 87
  year: 2016
  end-page: 103
  ident: b0160
  article-title: Temporal
  publication-title: J. Hydrol.
– volume: 68
  start-page: 3327
  year: 2004
  end-page: 3337
  ident: b0340
  article-title: Coprecipitation in the barite isostructural family: 1. Binary mixing properties
  publication-title: Geochim. Cosmochim. Acta
– volume: 125
  start-page: 290
  year: 2014
  end-page: 307
  ident: b0250
  article-title: Nucleation and growth kinetics of RaxBa 1− xSO 4 solid solution in NaCl aqueous solutions
  publication-title: Geochim. Cosmochim. Acta
– volume: 84
  start-page: 1585
  year: 2010
  end-page: 1600
  ident: b0330
  article-title: Hydrochemistry and minerals assemblages of Salt Lakes in the Qinghai-Tibet Plateau, China
  publication-title: Acta Geol. Sin.
– volume: 411
  start-page: 155
  year: 2015
  end-page: 171
  ident: b0075
  article-title: Application of radon and radium isotopes to groundwater flow dynamics: an example from the Dead Sea
  publication-title: Chem. Geol.
– volume: 486
  start-page: 112
  year: 2013
  end-page: 122
  ident: b0025
  article-title: Application of radon-222 to investigate groundwater discharge into small shallow lakes
  publication-title: J. Hydrol.
– reference: Xiao, Y., Qi, H., Wang, Y., Jin, L., 1994. Lithum isotopic composition of brine, sediments and source water in Da Qaidam lake, Qinghai, China. Geochimica 23.
– start-page: 1
  year: 2018
  end-page: 54
  ident: b0165
  article-title: Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a Proglacial Lake in Qinghai-Tibet Plateau: using 222Rn and stable isotopes
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 46
  start-page: 476
  year: 2020
  end-page: 485
  ident: b0275
  article-title: Hydrogeological controls on heterogeneous groundwater discharge to a large glacial lake
  publication-title: J. Great Lakes Res.
– volume: 138
  start-page: 119
  year: 2013
  end-page: 125
  ident: b0115
  article-title: Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation
  publication-title: Remote Sens. Environ.
– volume: 103
  start-page: 131
  year: 2007
  end-page: 145
  ident: b0010
  article-title: High
  publication-title: Mar. Chem.
– volume: 49
  start-page: 1593
  year: 1985
  end-page: 1601
  ident: b0100
  article-title: The thermodynamic properties of radium
  publication-title: Geochim. Cosmochim. Acta
– volume: 502
  start-page: 202
  year: 2013
  end-page: 211
  ident: b0170
  article-title: Lacustrine groundwater discharge: combined determination of volumes and spatial patterns
  publication-title: J. Hydrol.
– volume: 554
  start-page: 331
  year: 2017
  end-page: 341
  ident: b0085
  article-title: Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States
  publication-title: J. Hydrol.
– volume: 18
  start-page: 44
  year: 2001
  end-page: 46
  ident: b0315
  article-title: Characteristics of River Silt in the Qaidam Basin, China
  publication-title: Arid Zone Res.
– volume: 88
  start-page: 237
  year: 2012
  end-page: 254
  ident: b0080
  article-title: Modeling radium distribution in coastal aquifers during sea level changes: the Dead Sea case
  publication-title: Geochim. Cosmochim. Acta
– volume: 167
  start-page: 113
  year: 2014
  end-page: 122
  ident: b0295
  article-title: An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay—a typical multi-species culture ecosystem in China
  publication-title: Mar. Chem.
– volume: 283
  start-page: 184
  year: 2020
  end-page: 200
  ident: b0020
  article-title: Silicon isotope variations in hydrothermal systems at Yellowstone National Park, Wyoming, U.S.A
  publication-title: Geochim. Cosmochim. Acta
– volume: 109
  start-page: 198
  year: 2008
  end-page: 219
  ident: b0030
  article-title: Uncertainties associated with
  publication-title: Mar. Chem.
– volume: 62
  start-page: 2039
  year: 1998
  end-page: 2051
  ident: b0045
  article-title: Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget
  publication-title: Geochim. Cosmochim. Acta
– volume: 198
  start-page: 102938
  year: 2019
  ident: b0175
  article-title: The hydrochemical evolution of alkaline volcanic lakes: a model to understand the South Atlantic Pre-salt mineral assemblages
  publication-title: Earth Sci. Rev.
– volume: 549
  start-page: 79
  year: 2017
  end-page: 91
  ident: b0015
  article-title: Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia
  publication-title: J. Hydrol.
– year: 1989
  ident: b0335
  article-title: Saline Lakes on the Qinghai Xizang(Tibet)
– volume: 86
  start-page: 105
  year: 2004
  end-page: 119
  ident: b0205
  article-title: Distribution of
  publication-title: Mar. Chem.
– volume: 17
  start-page: 4366
  year: 2016
  end-page: 4382
  ident: b0290
  article-title: Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China
  publication-title: Geochem. Geophys. Geosyst.
– volume: 29
  start-page: 2895
  year: 2015
  end-page: 2921
  ident: b0255
  article-title: Groundwater-the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology
  publication-title: Hydrol. Process.
– volume: 571
  start-page: 528
  year: 2019
  end-page: 544
  ident: b0135
  article-title: Unraveling controlling factors of concentration discharge relationships in a fractured aquifer dominant spring-shed: evidence from mean transit time and radium reactive transport model
  publication-title: J. Hydrol.
– volume: 103
  start-page: 121
  year: 2013
  end-page: 137
  ident: b0240
  article-title: Radium removal in a large scale evaporitic system
  publication-title: Geochim. Cosmochim. Acta
– volume: 68
  start-page: 4167
  year: 2004
  end-page: 4178
  ident: b0265
  article-title: Lithium isotopic composition and concentration of the upper continental crust
  publication-title: Geochim. Cosmochim. Acta
– volume: 233
  start-page: 50
  year: 2018
  end-page: 65
  ident: b0245
  article-title: The precipitation of gypsum, celestine, and barite and coprecipitation of radium during seawater evaporation
  publication-title: Geochim. Cosmochim. Acta
– volume: 144
  start-page: 603
  year: 2018
  end-page: 615
  ident: b0145
  article-title: Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary
  publication-title: Water Res.
– start-page: 38
  year: 1983
  end-page: 63
  ident: b0320
  article-title: Geological of the Da Qaidam and XiaoQaidam salt lake Boron ore in Qaidam basin, qinghai province
  publication-title: Qinghai Geol.
– volume: 129
  start-page: 59
  year: 2014
  end-page: 84
  ident: b0260
  article-title: Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China
  publication-title: Earth Sci. Rev.
– volume: 380
  start-page: 74
  year: 2014
  end-page: 83
  ident: b0300
  article-title: Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: boron budget and sources
  publication-title: Chem. Geol.
– volume: 29
  start-page: 2922
  year: 2015
  end-page: 2955
  ident: b0110
  article-title: Groundwater–the disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients
  publication-title: Hydrol. Process.
– volume: 90
  start-page: 6995
  year: 1985
  end-page: 7004
  ident: b0050
  article-title: Distribution and flux of
  publication-title: J. Geophys. Res.
– volume: 59
  start-page: 5103
  year: 1995
  end-page: 5111
  ident: b0035
  article-title: Elastic strain energy and the distribution coefficient of radium in solid solutions with calcium salts
  publication-title: Geochim. Cosmochim. Acta
– volume: 510
  start-page: 31
  year: 2019
  end-page: 46
  ident: b0090
  article-title: Evaluation of lacustrine groundwater discharge and associated nutrients, trace elements and DIC loadings into Qinghai Lake in Qinghai-Tibetan Plateau, using radium isotopes and hydrological methods
  publication-title: Chem. Geol.
– volume: 28
  start-page: 2700
  year: 2008
  end-page: 2707
  ident: b0225
  article-title: Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers
  publication-title: Cont. Shelf Res.
– volume: 53
  start-page: 1727
  year: 1989
  end-page: 1740
  ident: b0215
  article-title: Groundwater chemistry and water-rock interactions at Stripa
  publication-title: Geochim. Cosmochim. Acta
– reference: Wang, H., Wang, W., Zhao, B., Zhao, A., Li, H., 2016. Report on hydrogeology of water supply in baligou water source Qinghai province. Qinghai hydrogeologcai engineering geologicai exploration institute, p. 83.
– volume: 223
  start-page: 407
  year: 1984
  end-page: 411
  ident: b0180
  article-title: Radium isotope measurements using germanium detectors
  publication-title: Nucl. Instrum. Methods Phys. Res.
– volume: 49
  start-page: 5411
  year: 2013
  end-page: 5426
  ident: b0105
  article-title: Quantifying groundwater-surface water interactions in a proglacial moraine using heat and solute tracers
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 513
  year: 2013
  end-page: 523
  ident: b0270
  article-title: Origin of boron in the Damxung Co Salt Lake (central Tibet): evidence from boron geochemistry and isotopes
  publication-title: Geochem J
– volume: 512
  start-page: 177
  year: 2014
  end-page: 194
  ident: b0005
  article-title: Quantity and quality of groundwater discharge in a hypersaline lake environment
  publication-title: J. Hydrol.
– reference: Xiao, Y., Sun, D., Wang, Y., Qi, H. and Jin, L. (1992) Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. Cosmochim. Acta (United States) 56.
– volume: 237
  start-page: 156
  year: 2005
  end-page: 166
  ident: b0055
  article-title: Submarine groundwater discharge (SGD) into the Yellow Sea revealed by
  publication-title: Earth Planet. Sci. Lett.
– volume: 1978–2012
  start-page: 22117
  year: 2000
  end-page: 22122
  ident: b0185
  article-title: Ages of continental shelf waters determined from 223Ra and 224Ra
  publication-title: J. Geophys. Res. Oceans
– volume: 117
  start-page: 103277
  year: 2020
  ident: b0040
  article-title: Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes
  publication-title: Ore Geol. Rev.
– volume: 66
  start-page: 75
  year: 2003
  end-page: 93
  ident: b0190
  article-title: Sources and fluxes of submarine groundwater discharge delineated by radium isotopes
  publication-title: Biogeochemistry
– volume: 546
  start-page: 189
  year: 2017
  end-page: 203
  ident: b0155
  article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable 18O/2H and radium isotopes
  publication-title: J. Hydrol.
– volume: 75
  start-page: 5389
  year: 2011
  end-page: 5402
  ident: b0235
  article-title: Co-precipitation of radium in high ionic strength systems: 1. Thermodynamic properties of the Na–Ra–Cl–SO 4–H 2 O system–estimating Pitzer parameters for RaCl 2
  publication-title: Geochim. Cosmochim. Acta
– volume: 109
  start-page: 188
  year: 2008
  end-page: 197
  ident: b0195
  article-title: Fifteen years experience in measuring
  publication-title: Mar. Chem.
– volume: 1978–2012
  start-page: 1321
  year: 1996
  end-page: 1329
  ident: b0200
  article-title: Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter
  publication-title: J. Geophys. Res. Oceans
– volume: 585
  start-page: 124782
  year: 2020
  ident: b0125
  article-title: Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China
  publication-title: J. Hydrol.
– volume: 75
  start-page: 5403
  year: 2011
  end-page: 5422
  ident: b0230
  article-title: Co-precipitation of radium in high ionic strength systems: 2. Kinetic and ionic strength effects
  publication-title: Geochim. Cosmochim. Acta
– volume: 464
  start-page: 211
  year: 2017
  end-page: 226
  ident: b0060
  article-title: Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean
  publication-title: Earth Planet. Sci. Lett.
– volume: 64
  start-page: 2177
  year: 2000
  end-page: 2183
  ident: b0130
  article-title: Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin
  publication-title: Geochim. Cosmochim. Acta
– volume: 546
  start-page: 189
  year: 2017
  end-page: 203
  ident: b0150
  article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable18O/2H and radium isotopes
  publication-title: J. Hydrol.
– volume: 78
  start-page: 8880
  year: 1973
  end-page: 8886
  ident: b0210
  article-title: Extraction of radium from natural waters using manganese-impregnated acrylic fibers
  publication-title: J. Geophys. Res.
– year: 1987
  ident: b0325
  article-title: The Salt Lake of Qaidam Basin
– volume: 1978–2012
  start-page: 113
  year: 2008
  ident: b0220
  article-title: Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China
  publication-title: J. Geophys. Res.:Oceans
– volume: 138
  start-page: 119
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126313_b0115
  article-title: Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.005
– volume: 78
  start-page: 8880
  year: 1973
  ident: 10.1016/j.jhydrol.2021.126313_b0210
  article-title: Extraction of radium from natural waters using manganese-impregnated acrylic fibers
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC078i036p08880
– volume: 84
  start-page: 1585
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126313_b0330
  article-title: Hydrochemistry and minerals assemblages of Salt Lakes in the Qinghai-Tibet Plateau, China
  publication-title: Acta Geol. Sin.
– volume: 2
  start-page: 18
  year: 1994
  ident: 10.1016/j.jhydrol.2021.126313_b0120
  article-title: Distributive regularity of Boron and Lithium in Da Qaidam Salt Lake
  publication-title: J. Salt Lake Sci.
– volume: 29
  start-page: 2922
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126313_b0110
  article-title: Groundwater–the disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10384
– volume: 1978–2012
  start-page: 22117
  issue: 105
  year: 2000
  ident: 10.1016/j.jhydrol.2021.126313_b0185
  article-title: Ages of continental shelf waters determined from 223Ra and 224Ra
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/1999JC000289
– volume: 33
  start-page: 1
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126313_b0095
  article-title: The distribution and Sources of radium isotopes in Da Qaidam salt lake
  publication-title: J. Lake Sci.
– year: 1987
  ident: 10.1016/j.jhydrol.2021.126313_b0325
– volume: 512
  start-page: 177
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126313_b0005
  article-title: Quantity and quality of groundwater discharge in a hypersaline lake environment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.02.040
– volume: 103
  start-page: 121
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126313_b0240
  article-title: Radium removal in a large scale evaporitic system
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.10.046
– volume: 546
  start-page: 189
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126313_b0155
  article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable 18O/2H and radium isotopes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.01.017
– volume: 546
  start-page: 189
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126313_b0150
  article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable18O/2H and radium isotopes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.01.017
– volume: 66
  start-page: 75
  year: 2003
  ident: 10.1016/j.jhydrol.2021.126313_b0190
  article-title: Sources and fluxes of submarine groundwater discharge delineated by radium isotopes
  publication-title: Biogeochemistry
  doi: 10.1023/B:BIOG.0000006065.77764.a0
– volume: 28
  start-page: 2700
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126313_b0225
  article-title: Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2008.09.002
– volume: 86
  start-page: 105
  year: 2004
  ident: 10.1016/j.jhydrol.2021.126313_b0205
  article-title: Distribution of 223Ra and224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2003.10.001
– volume: 198
  start-page: 102938
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126313_b0175
  article-title: The hydrochemical evolution of alkaline volcanic lakes: a model to understand the South Atlantic Pre-salt mineral assemblages
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102938
– ident: 10.1016/j.jhydrol.2021.126313_b0305
– volume: 18
  start-page: 44
  year: 2001
  ident: 10.1016/j.jhydrol.2021.126313_b0315
  article-title: Characteristics of River Silt in the Qaidam Basin, China
  publication-title: Arid Zone Res.
– volume: 534
  start-page: 87
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126313_b0160
  article-title: Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: implication of water balance in the Badain Jaran Desert, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.051
– volume: 59
  start-page: 5103
  year: 1995
  ident: 10.1016/j.jhydrol.2021.126313_b0035
  article-title: Elastic strain energy and the distribution coefficient of radium in solid solutions with calcium salts
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(95)00356-8
– start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126313_b0165
  article-title: Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a Proglacial Lake in Qinghai-Tibet Plateau: using 222Rn and stable isotopes
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 53
  start-page: 1727
  year: 1989
  ident: 10.1016/j.jhydrol.2021.126313_b0215
  article-title: Groundwater chemistry and water-rock interactions at Stripa
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(89)90294-9
– volume: 125
  start-page: 290
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126313_b0250
  article-title: Nucleation and growth kinetics of RaxBa 1− xSO 4 solid solution in NaCl aqueous solutions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.09.041
– volume: 129
  start-page: 59
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126313_b0260
  article-title: Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2013.11.010
– volume: 380
  start-page: 74
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126313_b0300
  article-title: Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: boron budget and sources
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2014.04.026
– volume: 68
  start-page: 3327
  year: 2004
  ident: 10.1016/j.jhydrol.2021.126313_b0340
  article-title: Coprecipitation in the barite isostructural family: 1. Binary mixing properties
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2003.10.014
– volume: 49
  start-page: 5411
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126313_b0105
  article-title: Quantifying groundwater-surface water interactions in a proglacial moraine using heat and solute tracers
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20372
– volume: 75
  start-page: 5389
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126313_b0235
  article-title: Co-precipitation of radium in high ionic strength systems: 1. Thermodynamic properties of the Na–Ra–Cl–SO 4–H 2 O system–estimating Pitzer parameters for RaCl 2
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.06.042
– volume: 502
  start-page: 202
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126313_b0170
  article-title: Lacustrine groundwater discharge: combined determination of volumes and spatial patterns
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.08.021
– volume: 1978–2012
  start-page: 113
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126313_b0220
  article-title: Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China
  publication-title: J. Geophys. Res.:Oceans
– volume: 75
  start-page: 5403
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126313_b0230
  article-title: Co-precipitation of radium in high ionic strength systems: 2. Kinetic and ionic strength effects
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.07.013
– volume: 109
  start-page: 188
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126313_b0195
  article-title: Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2007.06.015
– volume: 17
  start-page: 4366
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126313_b0290
  article-title: Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2016GC006502
– volume: 49
  start-page: 1593
  year: 1985
  ident: 10.1016/j.jhydrol.2021.126313_b0100
  article-title: The thermodynamic properties of radium
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(85)90264-9
– volume: 223
  start-page: 407
  year: 1984
  ident: 10.1016/j.jhydrol.2021.126313_b0180
  article-title: Radium isotope measurements using germanium detectors
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/0167-5087(84)90683-5
– volume: 571
  start-page: 528
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126313_b0135
  article-title: Unraveling controlling factors of concentration discharge relationships in a fractured aquifer dominant spring-shed: evidence from mean transit time and radium reactive transport model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.01.066
– ident: 10.1016/j.jhydrol.2021.126313_b0310
  doi: 10.1016/0016-7037(92)90225-8
– volume: 117
  start-page: 103277
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126313_b0040
  article-title: Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.103277
– volume: 510
  start-page: 31
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126313_b0090
  article-title: Evaluation of lacustrine groundwater discharge and associated nutrients, trace elements and DIC loadings into Qinghai Lake in Qinghai-Tibetan Plateau, using radium isotopes and hydrological methods
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2019.01.020
– volume: 585
  start-page: 124782
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126313_b0125
  article-title: Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124782
– volume: 103
  start-page: 131
  year: 2007
  ident: 10.1016/j.jhydrol.2021.126313_b0010
  article-title: High 226Ra and 228Ra activities in Nueces Bay, Texas indicate large submarine saline discharges
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2006.06.015
– volume: 47
  start-page: 513
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126313_b0270
  article-title: Origin of boron in the Damxung Co Salt Lake (central Tibet): evidence from boron geochemistry and isotopes
  publication-title: Geochem J
  doi: 10.2343/geochemj.2.0273
– volume: 46
  start-page: 476
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126313_b0275
  article-title: Hydrogeological controls on heterogeneous groundwater discharge to a large glacial lake
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2020.03.006
– volume: 122
  start-page: 17
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126313_b0065
  article-title: Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.08.005
– volume: 411
  start-page: 155
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126313_b0075
  article-title: Application of radon and radium isotopes to groundwater flow dynamics: an example from the Dead Sea
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2015.06.014
– start-page: 38
  year: 1983
  ident: 10.1016/j.jhydrol.2021.126313_b0320
  article-title: Geological of the Da Qaidam and XiaoQaidam salt lake Boron ore in Qaidam basin, qinghai province
  publication-title: Qinghai Geol.
– volume: 554
  start-page: 331
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126313_b0085
  article-title: Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.09.001
– year: 1989
  ident: 10.1016/j.jhydrol.2021.126313_b0335
– volume: 68
  start-page: 4167
  year: 2004
  ident: 10.1016/j.jhydrol.2021.126313_b0265
  article-title: Lithium isotopic composition and concentration of the upper continental crust
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.03.031
– volume: 82
  start-page: 144
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126313_b0140
  article-title: Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2014.03.005
– volume: 283
  start-page: 184
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126313_b0020
  article-title: Silicon isotope variations in hydrothermal systems at Yellowstone National Park, Wyoming, U.S.A
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2020.06.004
– volume: 167
  start-page: 113
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126313_b0295
  article-title: An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay—a typical multi-species culture ecosystem in China
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2014.07.002
– volume: 394
  start-page: 146
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126313_b0070
  article-title: The extent of seawater circulation in the aquifer and its role in elemental mass balances: a lesson from the Dead Sea
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2014.03.010
– volume: 237
  start-page: 156
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126313_b0055
  article-title: Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: implications for global silicate fluxes
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.06.011
– volume: 549
  start-page: 79
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126313_b0015
  article-title: Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.03.049
– volume: 464
  start-page: 211
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126313_b0060
  article-title: Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2017.01.043
– volume: 1978–2012
  start-page: 1321
  issue: 101
  year: 1996
  ident: 10.1016/j.jhydrol.2021.126313_b0200
  article-title: Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/95JC03139
– volume: 486
  start-page: 112
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126313_b0025
  article-title: Application of radon-222 to investigate groundwater discharge into small shallow lakes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.01.043
– volume: 64
  start-page: 2177
  year: 2000
  ident: 10.1016/j.jhydrol.2021.126313_b0130
  article-title: Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00363-X
– volume: 88
  start-page: 237
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126313_b0080
  article-title: Modeling radium distribution in coastal aquifers during sea level changes: the Dead Sea case
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.03.022
– volume: 233
  start-page: 50
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126313_b0245
  article-title: The precipitation of gypsum, celestine, and barite and coprecipitation of radium during seawater evaporation
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2018.04.019
– ident: 10.1016/j.jhydrol.2021.126313_b0280
– volume: 144
  start-page: 603
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126313_b0145
  article-title: Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.07.004
– volume: 90
  start-page: 6995
  year: 1985
  ident: 10.1016/j.jhydrol.2021.126313_b0050
  article-title: Distribution and flux of 226Ra and 228Ra in the Amazon River estuary
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC090iC04p06995
– volume: 62
  start-page: 2039
  year: 1998
  ident: 10.1016/j.jhydrol.2021.126313_b0045
  article-title: Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00126-4
– volume: 109
  start-page: 198
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126313_b0030
  article-title: Uncertainties associated with233Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC)
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2007.11.006
– year: 1998
  ident: 10.1016/j.jhydrol.2021.126313_b0285
– volume: 29
  start-page: 2895
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126313_b0255
  article-title: Groundwater-the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10403
SSID ssj0000334
Score 2.4517741
Snippet •Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers...
Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126313
SubjectTerms barite
basins
bass
boron
China
Co-precipitation
coprecipitation
Da Qaidam Lake
evaporation
evolution
groundwater
hydrogeochemistry
Hydrothermal groundwater
Lacustrine groundwater discharge (LGD)
lithium
Lithium and boron resource
mineralization
radium
Radium isotopes
salt lakes
water budget
Title Deep hydrothermal and shallow groundwater borne lithium and boron loadings to a mega brine lake in Qinghai Tibet Plateau based on multi-tracer models
URI https://dx.doi.org/10.1016/j.jhydrol.2021.126313
https://www.proquest.com/docview/2524217484
Volume 598
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8QAviE8xGNMh8Zq2_krqx2kwFRATSEXaW2Q7F5rSJlWbatrL_gv-X3xOwgQSmsRjkjs78tl3Z9397hh7W1LVt9KKxGmrE-W4TMLNNktQKGcQrdElAYU_X6Szb-rjpb48YGcDFobSKnvd3-n0qK37N-N-NcebqiKMrxA8NSpcWoIajohypTLa5aOb2zSPiZRqqBhO1LconvFytFxcF9uGIhCCj7hIJZf_sk9_aepofs4fsYe93win3a89ZgdYP2H3-xbmi-un7Oc7xA3EmcinWwdiWxewo2YpzRUQeqMuroJnuYUg9hoh-N-Lar-OVI7qGMCqiQn1O2gbsLDG7xYcgQNhZX8gVDV8DV8XtoJ55bCFL6swmt0DGcICAn9MTkzarfVhkthiZ_eMzc_fz89mSd9zIbEy1W2iTKGktM4bblSZ6kwInwavsJhwVwicSivDCXdT7nVWokuNnqJTqbUKFXIvn7PDuqnxBYPUT9AU3gdKoWzhTWmMRx0W2RnlM37E1LDQue_rkVNbjFU-JJ4t814-Ockn7-RzxEa_2TZdQY67GKaDFPM_dlYejMZdrG8Gqefh1FEoxdbY7He50BRKpzqsL_9_-FfsAT11yb_H7LDd7vF1cHFadxL38Am7d_rh0-ziF5FH_nM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclfehexj5Zt267wV6dVF9O9Fi6lXRtwwYZ9E1I8nlxltghcSj9Q_r_TufYKxuMwl4tnWR00t0J3e93jH3MifUtdyLx2ulEeS6TeLMdJiiUN4jO6JyAwleTdPxdfbnW13vstMPCUFpla_t3Nr2x1u2XQbuag1VREMZXCJ4aFS8t0QwTonyf2Kl0j-2fnF-MJ_cGWUrVkYaTwD2QZzDvz2e32bqiRwjB-1ykkst_uai_jHXjgc6esMdt6Agnu797yvawfMYO2irms9vn7O4T4gqamSisW8bOrsxgQ_VSqhsgAEeZ3cTgcg1R8yVCDMFnxXbZ9PJEZQCLqsmp30BdgYMl_nDgCR8IC_cToSjhW2yduQKmhccavi7iaG4L5AsziPJNfmJSr12IkzRVdjYv2PTs8_R0nLRlFxInU10nymRKSueD4UblqR4KEdIYGGbH3GcCR9LJeMj9iAc9zNGnRo_Qq9Q5hQp5kC9Zr6xKfMUgDcdoshBiT6FcFkxuTEAdF9kbFYb8kKluoW1oKcmpMsbCdrlnc9vqx5J-7E4_h6z_W2y14-R4SGDUadH-sbls9BsPiX7otG7jwaPXFFditd1Yoek1nahYX___8O_ZwXh6dWkvzycXb9gjatnlAh-xXr3e4tsY8dT-XbujfwE-EgEz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+hydrothermal+and+shallow+groundwater+borne+lithium+and+boron+loadings+to+a+mega+brine+lake+in+Qinghai+Tibet+Plateau+based+on+multi-tracer+models&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Kong%2C+Fancui&rft.au=Yang%2C+Yingkui&rft.au=Luo%2C+Xin&rft.au=Sha%2C+Zhanjiang&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=598&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126313&rft.externalDocID=S0022169421003607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon