Deep hydrothermal and shallow groundwater borne lithium and boron loadings to a mega brine lake in Qinghai Tibet Plateau based on multi-tracer models
•Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers disproportionate Li and B loadings to the brine lake.•Ra-226 is dominated by co-precipitation in the lake, with a coefficient of 4.72 to 6....
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 598; p. 126313 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers disproportionate Li and B loadings to the brine lake.•Ra-226 is dominated by co-precipitation in the lake, with a coefficient of 4.72 to 6.07 y−1.
Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the mineralization processes under intensive evaporation. Lacustrine groundwater discharge (LGD) is the vital conveyor for the loadings of resource elements in the brine lakes. Da Qaidam Lake, located in the Qaidam basin of the Qinghai–Tibet Plateau (QTP), is one of the largest brine lakes for boron and lithium resources in China. Lithium and boron in the lake are considered to be dominantly sourced from deep hydrothermal groundwater and shallow groundwater, but the partitioning of deep and shallow components to the lake and the derived lithium and boron loadings remain unknown, LGD derived boron and lithium provide the primary source of the salt lake. vitally regulates the formation, evolution and mineralization of Li and B resources in the brine lake. This study performs systematical investigations of radium isotopes (226Ra, 228Ra, 224Ra and 223Ra), lithium, boron, and other hydrogeochemical parameters in different water endmembers around the brine lake. The results indicate that radium isotopes are significantly enriched in the hydrothermal groundwater and will be removed by co-precipitation with barite precipitates in the lake water. The multi-tracer models coupled radium bass balance, conservative tracer buildup and water budget were deployed to precisely constrain radium co-precipitation rates, and to quantify the deep and shallow LGD (total LGD = LGDD + LGDS) and the derived lithium and boron loadings. Radium co-precipitation coefficient is obtained to be 4.7–6.1 y−1. LGDD and total LGD are estimated to be 8.8 × 106 and 3.3 × 107 m3 y−1, respectively, which account for 11.9% and 57.2% of the total water input. LGDD and total LGD derived lithium/boron loadings constitute up to 70.2/60.1%, and 79.0/77.7% of the total loadings, respectively, indicating the significance of disproportionate LGDD in delivering resource elements into the brine lake. This study presents the first attempt to partition the deep hydrothermal and shallow LGD to a mega the QTP brine lake by multi-tracer models and the findings contribute to the understanding of lithium and boron budgets in the brine lakes of the QTP and worldwide. |
---|---|
AbstractList | Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the mineralization processes under intensive evaporation. Lacustrine groundwater discharge (LGD) is the vital conveyor for the loadings of resource elements in the brine lakes. Da Qaidam Lake, located in the Qaidam basin of the Qinghai–Tibet Plateau (QTP), is one of the largest brine lakes for boron and lithium resources in China. Lithium and boron in the lake are considered to be dominantly sourced from deep hydrothermal groundwater and shallow groundwater, but the partitioning of deep and shallow components to the lake and the derived lithium and boron loadings remain unknown, LGD derived boron and lithium provide the primary source of the salt lake. vitally regulates the formation, evolution and mineralization of Li and B resources in the brine lake. This study performs systematical investigations of radium isotopes (²²⁶Ra, ²²⁸Ra, ²²⁴Ra and ²²³Ra), lithium, boron, and other hydrogeochemical parameters in different water endmembers around the brine lake. The results indicate that radium isotopes are significantly enriched in the hydrothermal groundwater and will be removed by co-precipitation with barite precipitates in the lake water. The multi-tracer models coupled radium bass balance, conservative tracer buildup and water budget were deployed to precisely constrain radium co-precipitation rates, and to quantify the deep and shallow LGD (total LGD = LGDD + LGDS) and the derived lithium and boron loadings. Radium co-precipitation coefficient is obtained to be 4.7–6.1 y⁻¹. LGDD and total LGD are estimated to be 8.8 × 10⁶ and 3.3 × 10⁷ m³ y⁻¹, respectively, which account for 11.9% and 57.2% of the total water input. LGDD and total LGD derived lithium/boron loadings constitute up to 70.2/60.1%, and 79.0/77.7% of the total loadings, respectively, indicating the significance of disproportionate LGDD in delivering resource elements into the brine lake. This study presents the first attempt to partition the deep hydrothermal and shallow LGD to a mega the QTP brine lake by multi-tracer models and the findings contribute to the understanding of lithium and boron budgets in the brine lakes of the QTP and worldwide. •Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers disproportionate Li and B loadings to the brine lake.•Ra-226 is dominated by co-precipitation in the lake, with a coefficient of 4.72 to 6.07 y−1. Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the mineralization processes under intensive evaporation. Lacustrine groundwater discharge (LGD) is the vital conveyor for the loadings of resource elements in the brine lakes. Da Qaidam Lake, located in the Qaidam basin of the Qinghai–Tibet Plateau (QTP), is one of the largest brine lakes for boron and lithium resources in China. Lithium and boron in the lake are considered to be dominantly sourced from deep hydrothermal groundwater and shallow groundwater, but the partitioning of deep and shallow components to the lake and the derived lithium and boron loadings remain unknown, LGD derived boron and lithium provide the primary source of the salt lake. vitally regulates the formation, evolution and mineralization of Li and B resources in the brine lake. This study performs systematical investigations of radium isotopes (226Ra, 228Ra, 224Ra and 223Ra), lithium, boron, and other hydrogeochemical parameters in different water endmembers around the brine lake. The results indicate that radium isotopes are significantly enriched in the hydrothermal groundwater and will be removed by co-precipitation with barite precipitates in the lake water. The multi-tracer models coupled radium bass balance, conservative tracer buildup and water budget were deployed to precisely constrain radium co-precipitation rates, and to quantify the deep and shallow LGD (total LGD = LGDD + LGDS) and the derived lithium and boron loadings. Radium co-precipitation coefficient is obtained to be 4.7–6.1 y−1. LGDD and total LGD are estimated to be 8.8 × 106 and 3.3 × 107 m3 y−1, respectively, which account for 11.9% and 57.2% of the total water input. LGDD and total LGD derived lithium/boron loadings constitute up to 70.2/60.1%, and 79.0/77.7% of the total loadings, respectively, indicating the significance of disproportionate LGDD in delivering resource elements into the brine lake. This study presents the first attempt to partition the deep hydrothermal and shallow LGD to a mega the QTP brine lake by multi-tracer models and the findings contribute to the understanding of lithium and boron budgets in the brine lakes of the QTP and worldwide. |
ArticleNumber | 126313 |
Author | Liu, Wanping Kong, Fancui Sha, Zhanjiang Ling, Zhiyong Luo, Xin Wang, Jianping He, Bingyi Yang, Yingkui Ma, Yujun |
Author_xml | – sequence: 1 givenname: Fancui surname: Kong fullname: Kong, Fancui email: kfc@isl.ac.cn organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China – sequence: 2 givenname: Yingkui surname: Yang fullname: Yang, Yingkui organization: Qinghai University, Xining 810016, China – sequence: 3 givenname: Xin surname: Luo fullname: Luo, Xin email: xinluo@hku.hk organization: Department of Earth Sciences, The University of Hong Kong, PR China – sequence: 4 givenname: Zhanjiang surname: Sha fullname: Sha, Zhanjiang organization: Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China – sequence: 5 givenname: Jianping surname: Wang fullname: Wang, Jianping email: jianpingwang@isl.ac.cn organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China – sequence: 6 givenname: Yujun surname: Ma fullname: Ma, Yujun organization: Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China – sequence: 7 givenname: Zhiyong surname: Ling fullname: Ling, Zhiyong organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China – sequence: 8 givenname: Bingyi surname: He fullname: He, Bingyi organization: Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China – sequence: 9 givenname: Wanping surname: Liu fullname: Liu, Wanping organization: Qinghai Salt Lake Industry Co., Ltd., Golmud 816000, China |
BookMark | eNqFkc1uUzEQhS1UJNLCIyB5yeYG_90_sUCoQEGqBEjZW3PtSeLgawfbl6oPwvvWabpi09mMND7fGXnOJbkIMSAhbzlbc8a794f1YX9vU_RrwQRfc9FJLl-QFR_6sRE96y_IijEhGt6N6hW5zPnAakmpVuTfZ8QjfcTLHtMMnkKwNO_B-3hHdykuwd5BwUSnmAJS78reLfOjqk5ioD6CdWGXaYkU6Iw7oFNyJyn8RuoC_VVf9-Doxk1Y6E9f3WChE2S0tPLz4otrSgJTl8zRos-vycst-IxvnvoV2Xz9srn-1tz-uPl-_em2Adm1pVGjVVLCZEY-qm3X9kKYjnfcMj5ZgYMEOfRsGrhp-y1O3dgOOKkOQKFCbuQVeXe2Pab4Z8Fc9OyyQe8hYFyyFq1QgvdqUFXanqUmxZwTbvUxuRnSveZMn1LQB_2Ugj6loM8pVO7Df5xxBYqLoX7Y-Wfpj2e63gT_Okw6G4fBoHUJTdE2umccHgB0KKt7 |
CitedBy_id | crossref_primary_10_1007_s00343_023_2258_7 crossref_primary_10_1016_j_jhydrol_2024_130883 crossref_primary_10_1016_j_scitotenv_2024_177672 crossref_primary_10_1007_s10498_024_09425_8 crossref_primary_10_1007_s10498_024_09427_6 crossref_primary_10_1016_j_jhydrol_2024_130731 crossref_primary_10_1016_j_scitotenv_2023_161612 crossref_primary_10_1016_j_scitotenv_2023_169629 crossref_primary_10_1111_gwat_13461 crossref_primary_10_4236_ars_2025_141004 crossref_primary_10_1360_SSTe_2024_0015 crossref_primary_10_1016_j_jglr_2022_07_007 crossref_primary_10_1016_j_gloplacha_2024_104654 crossref_primary_10_3390_w16223286 crossref_primary_10_3389_feart_2023_1118118 crossref_primary_10_1016_j_jenvrad_2025_107680 crossref_primary_10_1002_hyp_14942 crossref_primary_10_1007_s11430_024_1413_0 |
Cites_doi | 10.1016/j.rse.2013.07.005 10.1029/JC078i036p08880 10.1002/hyp.10384 10.1029/1999JC000289 10.1016/j.jhydrol.2014.02.040 10.1016/j.gca.2012.10.046 10.1016/j.jhydrol.2017.01.017 10.1023/B:BIOG.0000006065.77764.a0 10.1016/j.csr.2008.09.002 10.1016/j.marchem.2003.10.001 10.1016/j.earscirev.2019.102938 10.1016/j.jhydrol.2015.12.051 10.1016/0016-7037(95)00356-8 10.1016/0016-7037(89)90294-9 10.1016/j.gca.2013.09.041 10.1016/j.earscirev.2013.11.010 10.1016/j.chemgeo.2014.04.026 10.1016/j.gca.2003.10.014 10.1002/wrcr.20372 10.1016/j.gca.2011.06.042 10.1016/j.jhydrol.2013.08.021 10.1016/j.gca.2011.07.013 10.1016/j.marchem.2007.06.015 10.1002/2016GC006502 10.1016/0016-7037(85)90264-9 10.1016/0167-5087(84)90683-5 10.1016/j.jhydrol.2019.01.066 10.1016/0016-7037(92)90225-8 10.1016/j.oregeorev.2019.103277 10.1016/j.chemgeo.2019.01.020 10.1016/j.jhydrol.2020.124782 10.1016/j.marchem.2006.06.015 10.2343/geochemj.2.0273 10.1016/j.jglr.2020.03.006 10.1016/j.gca.2013.08.005 10.1016/j.chemgeo.2015.06.014 10.1016/j.jhydrol.2017.09.001 10.1016/j.gca.2004.03.031 10.1016/j.marpolbul.2014.03.005 10.1016/j.gca.2020.06.004 10.1016/j.marchem.2014.07.002 10.1016/j.epsl.2014.03.010 10.1016/j.epsl.2005.06.011 10.1016/j.jhydrol.2017.03.049 10.1016/j.epsl.2017.01.043 10.1029/95JC03139 10.1016/j.jhydrol.2013.01.043 10.1016/S0016-7037(00)00363-X 10.1016/j.gca.2012.03.022 10.1016/j.gca.2018.04.019 10.1016/j.watres.2018.07.004 10.1029/JC090iC04p06995 10.1016/S0016-7037(98)00126-4 10.1016/j.marchem.2007.11.006 10.1002/hyp.10403 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2021.126313 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2021_126313 S0022169421003607 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a365t-49d433abc9194f65722c6161d01bd2e83a3870b81c57feb6958eb46aa4e4e1c3 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Thu Jul 10 18:48:45 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Tue Jul 01 01:53:29 EDT 2025 Fri Feb 23 02:42:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lacustrine groundwater discharge (LGD) Hydrothermal groundwater Da Qaidam Lake Radium isotopes Co-precipitation Lithium and boron resource |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-49d433abc9194f65722c6161d01bd2e83a3870b81c57feb6958eb46aa4e4e1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2524217484 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2524217484 crossref_primary_10_1016_j_jhydrol_2021_126313 crossref_citationtrail_10_1016_j_jhydrol_2021_126313 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kong, Sha, Luo, Du, Jiao, Moore, Yang, Su (b0090) 2019; 510 Lewandowski, Meinikmann, Ruhtz, Pöschke, Kirillin (b0115) 2013; 138 Moore (b0180) 1984; 223 Rosenberg, Sade, Ganor (b0245) 2018; 233 Moore, Krest (b0205) 2004; 86 Garcia-Solsona, Garcia-Orellana, Masqué, Dulaiova (b0030) 2008; 109 Rosenberg, Sadeh, Metz, Pina, Ganor (b0250) 2014; 125 Moore, Arnold (b0200) 1996; 1978–2012 Burnett, Wattayakorn, Supcharoen, Sioudom, Kum, Chanyotha, Kritsananuwat (b0015) 2017; 549 Liu, Xiao, Peng, An, He (b0130) 2000; 64 Luo, Jiao, Moore, Lee (b0140) 2014; 82 Kiro, Yechieli, Voss, Starinsky, Weinstein (b0080) 2012; 88 Langmuir, Riese (b0100) 1985; 49 Wei, Jiang, Tan, Zhang, Li, Yang (b0300) 2014; 380 Luo, Jiao, Moore, Cherry, Wang, Liu (b0145) 2018; 144 Rosenberg, Metz, Oren, Volkman, Ganor (b0230) 2011; 75 Breier, Edmonds (b0010) 2007; 103 Kong, Yang, Ma, Lin, Wang, Sha (b0095) 2021; 33 Moore, Reid (b0210) 1973; 78 Wang (b0285) 1998 Xiao, Y., Sun, D., Wang, Y., Qi, H. and Jin, L. (1992) Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. Cosmochim. Acta (United States) 56. Teng, McDonough, Rudnick, Dalpe, Tomascak, Chappell, Gao (b0265) 2004; 68 Meinikmann, Lewandowski, Nützmann (b0170) 2013; 502 Lewandowski, Meinikmann, Nützmann, Rosenberry (b0110) 2015; 29 Luo, Jiao, Wang, Liu, Lian, Yang (b0150) 2017; 546 Peterson, Burnett, Taniguchi, Chen, Santos, Misra (b0225) 2008; 28 Wang, H., Wang, W., Zhao, B., Zhao, A., Li, H., 2016. Report on hydrogeology of water supply in baligou water source Qinghai province. Qinghai hydrogeologcai engineering geologicai exploration institute, p. 83. Key, Stallard, Moore, Sarmiento (b0050) 1985; 90 Kiro, Goldstein, Garcia-Veigas, Levy, Kushnir, Stein, Lazar (b0060) 2017; 464 Song, Niu, Su, Zhang, Zhang (b0260) 2014; 129 Luo, Jiao, Wang, Liu (b0160) 2016; 534 Mercedes-Martín, Ayora, Tritlla, Sánchez-Román (b0175) 2019; 198 Moore (b0195) 2008; 109 Uuml, Zheng, Chen, Zhang, Liu, Wu, Yu (b0270) 2013; 47 Zhu (b0340) 2004; 68 Zheng, Liu (b0330) 2010; 84 Li (b0120) 1994; 2 Knights, Parks, Sawyer, David, Browning, Danner, Wallace (b0085) 2017; 554 Rosenberg, Metz, Ganor (b0240) 2013; 103 Huh, Chan, Zhang, Edmond (b0045) 1998; 62 Liao, Wang, Yi, Shi, Cheng, Kong, Mu, Guo, Cheng, Dong, Liu (b0125) 2020; 585 Zheng, Xiang, Wei, Zheng (b0335) 1989 Kiro, Weinstein, Starinsky, Yechieli (b0065) 2013; 122 Wang, Du (b0290) 2016; 17 Luo, Kuang, Jiao, Liang, Mao, Zhang, Li (b0165) 2018 Wang, Du, Ji, Wen, Liu, Zhang (b0295) 2014; 167 Xue (b0315) 2001; 18 Luo, Jiao (b0135) 2019; 571 Moore (b0185) 2000; 1978–2012 Luo, Jiao, Wang, Liu, Lian, Yang (b0155) 2017; 546 Chen, Chafetz, Lapen (b0020) 2020; 283 Kiro, Weinstein, Starinsky, Yechieli (b0075) 2015; 411 Gnanapragasam, Lewis (b0035) 1995; 59 Anderson, Naftz, Day-Lewis, Henderson, Rosenberry, Stolp, Jewell (b0005) 2014; 512 Rosenberry, Lewandowski, Meinikmann, Nützmann (b0255) 2015; 29 Rosenberg, Metz, Ganor (b0235) 2011; 75 Dimova, Burnett, Chanton, Corbett (b0025) 2013; 486 He, Luo, Yang, Kong, Li, Deng, Zhang, Yang (b0040) 2020; 117 Moore (b0190) 2003; 66 Langston, Hayashi, Roy (b0105) 2013; 49 Kiro, Weinstein, Starinsky, Yechieli (b0070) 2014; 394 Wallace, Ji, Robinson (b0275) 2020; 46 Peterson, Burnett, Taniguchi, Chen, Santos, Ishitobi (b0220) 2008; 1978–2012 Yang (b0320) 1983 Zhang (b0325) 1987 Kim, Ryu, Yang, Yun (b0055) 2005; 237 Xiao, Y., Qi, H., Wang, Y., Jin, L., 1994. Lithum isotopic composition of brine, sediments and source water in Da Qaidam lake, Qinghai, China. Geochimica 23. Nordstrom, Ball, Donahoe, Whittemore (b0215) 1989; 53 Rosenberg (10.1016/j.jhydrol.2021.126313_b0240) 2013; 103 Zheng (10.1016/j.jhydrol.2021.126313_b0335) 1989 Moore (10.1016/j.jhydrol.2021.126313_b0205) 2004; 86 Uuml (10.1016/j.jhydrol.2021.126313_b0270) 2013; 47 Moore (10.1016/j.jhydrol.2021.126313_b0195) 2008; 109 Kiro (10.1016/j.jhydrol.2021.126313_b0070) 2014; 394 Liao (10.1016/j.jhydrol.2021.126313_b0125) 2020; 585 Garcia-Solsona (10.1016/j.jhydrol.2021.126313_b0030) 2008; 109 Liu (10.1016/j.jhydrol.2021.126313_b0130) 2000; 64 Moore (10.1016/j.jhydrol.2021.126313_b0180) 1984; 223 Peterson (10.1016/j.jhydrol.2021.126313_b0225) 2008; 28 Moore (10.1016/j.jhydrol.2021.126313_b0210) 1973; 78 Luo (10.1016/j.jhydrol.2021.126313_b0135) 2019; 571 Li (10.1016/j.jhydrol.2021.126313_b0120) 1994; 2 Lewandowski (10.1016/j.jhydrol.2021.126313_b0115) 2013; 138 Zhu (10.1016/j.jhydrol.2021.126313_b0340) 2004; 68 Dimova (10.1016/j.jhydrol.2021.126313_b0025) 2013; 486 Wallace (10.1016/j.jhydrol.2021.126313_b0275) 2020; 46 Rosenberg (10.1016/j.jhydrol.2021.126313_b0250) 2014; 125 Zheng (10.1016/j.jhydrol.2021.126313_b0330) 2010; 84 He (10.1016/j.jhydrol.2021.126313_b0040) 2020; 117 Kiro (10.1016/j.jhydrol.2021.126313_b0060) 2017; 464 Wang (10.1016/j.jhydrol.2021.126313_b0290) 2016; 17 Rosenberg (10.1016/j.jhydrol.2021.126313_b0245) 2018; 233 10.1016/j.jhydrol.2021.126313_b0280 Rosenberg (10.1016/j.jhydrol.2021.126313_b0230) 2011; 75 Teng (10.1016/j.jhydrol.2021.126313_b0265) 2004; 68 Breier (10.1016/j.jhydrol.2021.126313_b0010) 2007; 103 Langmuir (10.1016/j.jhydrol.2021.126313_b0100) 1985; 49 Key (10.1016/j.jhydrol.2021.126313_b0050) 1985; 90 Kiro (10.1016/j.jhydrol.2021.126313_b0075) 2015; 411 Luo (10.1016/j.jhydrol.2021.126313_b0145) 2018; 144 Mercedes-Martín (10.1016/j.jhydrol.2021.126313_b0175) 2019; 198 Moore (10.1016/j.jhydrol.2021.126313_b0200) 1996; 1978–2012 Luo (10.1016/j.jhydrol.2021.126313_b0155) 2017; 546 Nordstrom (10.1016/j.jhydrol.2021.126313_b0215) 1989; 53 10.1016/j.jhydrol.2021.126313_b0310 Yang (10.1016/j.jhydrol.2021.126313_b0320) 1983 Luo (10.1016/j.jhydrol.2021.126313_b0160) 2016; 534 Kong (10.1016/j.jhydrol.2021.126313_b0095) 2021; 33 Kong (10.1016/j.jhydrol.2021.126313_b0090) 2019; 510 Huh (10.1016/j.jhydrol.2021.126313_b0045) 1998; 62 Gnanapragasam (10.1016/j.jhydrol.2021.126313_b0035) 1995; 59 Wang (10.1016/j.jhydrol.2021.126313_b0285) 1998 Lewandowski (10.1016/j.jhydrol.2021.126313_b0110) 2015; 29 Luo (10.1016/j.jhydrol.2021.126313_b0150) 2017; 546 Moore (10.1016/j.jhydrol.2021.126313_b0190) 2003; 66 Anderson (10.1016/j.jhydrol.2021.126313_b0005) 2014; 512 Knights (10.1016/j.jhydrol.2021.126313_b0085) 2017; 554 Peterson (10.1016/j.jhydrol.2021.126313_b0220) 2008; 1978–2012 Song (10.1016/j.jhydrol.2021.126313_b0260) 2014; 129 Rosenberg (10.1016/j.jhydrol.2021.126313_b0235) 2011; 75 Rosenberry (10.1016/j.jhydrol.2021.126313_b0255) 2015; 29 Meinikmann (10.1016/j.jhydrol.2021.126313_b0170) 2013; 502 Zhang (10.1016/j.jhydrol.2021.126313_b0325) 1987 Kiro (10.1016/j.jhydrol.2021.126313_b0065) 2013; 122 Wang (10.1016/j.jhydrol.2021.126313_b0295) 2014; 167 Langston (10.1016/j.jhydrol.2021.126313_b0105) 2013; 49 Luo (10.1016/j.jhydrol.2021.126313_b0165) 2018 Xue (10.1016/j.jhydrol.2021.126313_b0315) 2001; 18 Chen (10.1016/j.jhydrol.2021.126313_b0020) 2020; 283 Luo (10.1016/j.jhydrol.2021.126313_b0140) 2014; 82 Wei (10.1016/j.jhydrol.2021.126313_b0300) 2014; 380 Moore (10.1016/j.jhydrol.2021.126313_b0185) 2000; 1978–2012 Burnett (10.1016/j.jhydrol.2021.126313_b0015) 2017; 549 Kim (10.1016/j.jhydrol.2021.126313_b0055) 2005; 237 Kiro (10.1016/j.jhydrol.2021.126313_b0080) 2012; 88 10.1016/j.jhydrol.2021.126313_b0305 |
References_xml | – year: 1998 ident: b0285 article-title: The Lake of China – volume: 394 start-page: 146 year: 2014 end-page: 158 ident: b0070 article-title: The extent of seawater circulation in the aquifer and its role in elemental mass balances: a lesson from the Dead Sea publication-title: Earth Planet. Sci. Lett. – volume: 122 start-page: 17 year: 2013 end-page: 35 ident: b0065 article-title: Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer publication-title: Geochim. Cosmochim. Acta – volume: 33 start-page: 1 year: 2021 end-page: 10 ident: b0095 article-title: The distribution and Sources of radium isotopes in Da Qaidam salt lake publication-title: J. Lake Sci. – volume: 2 start-page: 18 year: 1994 end-page: 24 ident: b0120 article-title: Distributive regularity of Boron and Lithium in Da Qaidam Salt Lake publication-title: J. Salt Lake Sci. – volume: 82 start-page: 144 year: 2014 end-page: 154 ident: b0140 article-title: Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production publication-title: Mar. Pollut. Bull. – volume: 534 start-page: 87 year: 2016 end-page: 103 ident: b0160 article-title: Temporal publication-title: J. Hydrol. – volume: 68 start-page: 3327 year: 2004 end-page: 3337 ident: b0340 article-title: Coprecipitation in the barite isostructural family: 1. Binary mixing properties publication-title: Geochim. Cosmochim. Acta – volume: 125 start-page: 290 year: 2014 end-page: 307 ident: b0250 article-title: Nucleation and growth kinetics of RaxBa 1− xSO 4 solid solution in NaCl aqueous solutions publication-title: Geochim. Cosmochim. Acta – volume: 84 start-page: 1585 year: 2010 end-page: 1600 ident: b0330 article-title: Hydrochemistry and minerals assemblages of Salt Lakes in the Qinghai-Tibet Plateau, China publication-title: Acta Geol. Sin. – volume: 411 start-page: 155 year: 2015 end-page: 171 ident: b0075 article-title: Application of radon and radium isotopes to groundwater flow dynamics: an example from the Dead Sea publication-title: Chem. Geol. – volume: 486 start-page: 112 year: 2013 end-page: 122 ident: b0025 article-title: Application of radon-222 to investigate groundwater discharge into small shallow lakes publication-title: J. Hydrol. – reference: Xiao, Y., Qi, H., Wang, Y., Jin, L., 1994. Lithum isotopic composition of brine, sediments and source water in Da Qaidam lake, Qinghai, China. Geochimica 23. – start-page: 1 year: 2018 end-page: 54 ident: b0165 article-title: Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a Proglacial Lake in Qinghai-Tibet Plateau: using 222Rn and stable isotopes publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 46 start-page: 476 year: 2020 end-page: 485 ident: b0275 article-title: Hydrogeological controls on heterogeneous groundwater discharge to a large glacial lake publication-title: J. Great Lakes Res. – volume: 138 start-page: 119 year: 2013 end-page: 125 ident: b0115 article-title: Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation publication-title: Remote Sens. Environ. – volume: 103 start-page: 131 year: 2007 end-page: 145 ident: b0010 article-title: High publication-title: Mar. Chem. – volume: 49 start-page: 1593 year: 1985 end-page: 1601 ident: b0100 article-title: The thermodynamic properties of radium publication-title: Geochim. Cosmochim. Acta – volume: 502 start-page: 202 year: 2013 end-page: 211 ident: b0170 article-title: Lacustrine groundwater discharge: combined determination of volumes and spatial patterns publication-title: J. Hydrol. – volume: 554 start-page: 331 year: 2017 end-page: 341 ident: b0085 article-title: Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States publication-title: J. Hydrol. – volume: 18 start-page: 44 year: 2001 end-page: 46 ident: b0315 article-title: Characteristics of River Silt in the Qaidam Basin, China publication-title: Arid Zone Res. – volume: 88 start-page: 237 year: 2012 end-page: 254 ident: b0080 article-title: Modeling radium distribution in coastal aquifers during sea level changes: the Dead Sea case publication-title: Geochim. Cosmochim. Acta – volume: 167 start-page: 113 year: 2014 end-page: 122 ident: b0295 article-title: An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay—a typical multi-species culture ecosystem in China publication-title: Mar. Chem. – volume: 283 start-page: 184 year: 2020 end-page: 200 ident: b0020 article-title: Silicon isotope variations in hydrothermal systems at Yellowstone National Park, Wyoming, U.S.A publication-title: Geochim. Cosmochim. Acta – volume: 109 start-page: 198 year: 2008 end-page: 219 ident: b0030 article-title: Uncertainties associated with publication-title: Mar. Chem. – volume: 62 start-page: 2039 year: 1998 end-page: 2051 ident: b0045 article-title: Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget publication-title: Geochim. Cosmochim. Acta – volume: 198 start-page: 102938 year: 2019 ident: b0175 article-title: The hydrochemical evolution of alkaline volcanic lakes: a model to understand the South Atlantic Pre-salt mineral assemblages publication-title: Earth Sci. Rev. – volume: 549 start-page: 79 year: 2017 end-page: 91 ident: b0015 article-title: Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia publication-title: J. Hydrol. – year: 1989 ident: b0335 article-title: Saline Lakes on the Qinghai Xizang(Tibet) – volume: 86 start-page: 105 year: 2004 end-page: 119 ident: b0205 article-title: Distribution of publication-title: Mar. Chem. – volume: 17 start-page: 4366 year: 2016 end-page: 4382 ident: b0290 article-title: Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China publication-title: Geochem. Geophys. Geosyst. – volume: 29 start-page: 2895 year: 2015 end-page: 2921 ident: b0255 article-title: Groundwater-the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology publication-title: Hydrol. Process. – volume: 571 start-page: 528 year: 2019 end-page: 544 ident: b0135 article-title: Unraveling controlling factors of concentration discharge relationships in a fractured aquifer dominant spring-shed: evidence from mean transit time and radium reactive transport model publication-title: J. Hydrol. – volume: 103 start-page: 121 year: 2013 end-page: 137 ident: b0240 article-title: Radium removal in a large scale evaporitic system publication-title: Geochim. Cosmochim. Acta – volume: 68 start-page: 4167 year: 2004 end-page: 4178 ident: b0265 article-title: Lithium isotopic composition and concentration of the upper continental crust publication-title: Geochim. Cosmochim. Acta – volume: 233 start-page: 50 year: 2018 end-page: 65 ident: b0245 article-title: The precipitation of gypsum, celestine, and barite and coprecipitation of radium during seawater evaporation publication-title: Geochim. Cosmochim. Acta – volume: 144 start-page: 603 year: 2018 end-page: 615 ident: b0145 article-title: Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary publication-title: Water Res. – start-page: 38 year: 1983 end-page: 63 ident: b0320 article-title: Geological of the Da Qaidam and XiaoQaidam salt lake Boron ore in Qaidam basin, qinghai province publication-title: Qinghai Geol. – volume: 129 start-page: 59 year: 2014 end-page: 84 ident: b0260 article-title: Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China publication-title: Earth Sci. Rev. – volume: 380 start-page: 74 year: 2014 end-page: 83 ident: b0300 article-title: Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: boron budget and sources publication-title: Chem. Geol. – volume: 29 start-page: 2922 year: 2015 end-page: 2955 ident: b0110 article-title: Groundwater–the disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients publication-title: Hydrol. Process. – volume: 90 start-page: 6995 year: 1985 end-page: 7004 ident: b0050 article-title: Distribution and flux of publication-title: J. Geophys. Res. – volume: 59 start-page: 5103 year: 1995 end-page: 5111 ident: b0035 article-title: Elastic strain energy and the distribution coefficient of radium in solid solutions with calcium salts publication-title: Geochim. Cosmochim. Acta – volume: 510 start-page: 31 year: 2019 end-page: 46 ident: b0090 article-title: Evaluation of lacustrine groundwater discharge and associated nutrients, trace elements and DIC loadings into Qinghai Lake in Qinghai-Tibetan Plateau, using radium isotopes and hydrological methods publication-title: Chem. Geol. – volume: 28 start-page: 2700 year: 2008 end-page: 2707 ident: b0225 article-title: Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers publication-title: Cont. Shelf Res. – volume: 53 start-page: 1727 year: 1989 end-page: 1740 ident: b0215 article-title: Groundwater chemistry and water-rock interactions at Stripa publication-title: Geochim. Cosmochim. Acta – reference: Wang, H., Wang, W., Zhao, B., Zhao, A., Li, H., 2016. Report on hydrogeology of water supply in baligou water source Qinghai province. Qinghai hydrogeologcai engineering geologicai exploration institute, p. 83. – volume: 223 start-page: 407 year: 1984 end-page: 411 ident: b0180 article-title: Radium isotope measurements using germanium detectors publication-title: Nucl. Instrum. Methods Phys. Res. – volume: 49 start-page: 5411 year: 2013 end-page: 5426 ident: b0105 article-title: Quantifying groundwater-surface water interactions in a proglacial moraine using heat and solute tracers publication-title: Water Resour. Res. – volume: 47 start-page: 513 year: 2013 end-page: 523 ident: b0270 article-title: Origin of boron in the Damxung Co Salt Lake (central Tibet): evidence from boron geochemistry and isotopes publication-title: Geochem J – volume: 512 start-page: 177 year: 2014 end-page: 194 ident: b0005 article-title: Quantity and quality of groundwater discharge in a hypersaline lake environment publication-title: J. Hydrol. – reference: Xiao, Y., Sun, D., Wang, Y., Qi, H. and Jin, L. (1992) Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim. Cosmochim. Acta (United States) 56. – volume: 237 start-page: 156 year: 2005 end-page: 166 ident: b0055 article-title: Submarine groundwater discharge (SGD) into the Yellow Sea revealed by publication-title: Earth Planet. Sci. Lett. – volume: 1978–2012 start-page: 22117 year: 2000 end-page: 22122 ident: b0185 article-title: Ages of continental shelf waters determined from 223Ra and 224Ra publication-title: J. Geophys. Res. Oceans – volume: 117 start-page: 103277 year: 2020 ident: b0040 article-title: Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes publication-title: Ore Geol. Rev. – volume: 66 start-page: 75 year: 2003 end-page: 93 ident: b0190 article-title: Sources and fluxes of submarine groundwater discharge delineated by radium isotopes publication-title: Biogeochemistry – volume: 546 start-page: 189 year: 2017 end-page: 203 ident: b0155 article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable 18O/2H and radium isotopes publication-title: J. Hydrol. – volume: 75 start-page: 5389 year: 2011 end-page: 5402 ident: b0235 article-title: Co-precipitation of radium in high ionic strength systems: 1. Thermodynamic properties of the Na–Ra–Cl–SO 4–H 2 O system–estimating Pitzer parameters for RaCl 2 publication-title: Geochim. Cosmochim. Acta – volume: 109 start-page: 188 year: 2008 end-page: 197 ident: b0195 article-title: Fifteen years experience in measuring publication-title: Mar. Chem. – volume: 1978–2012 start-page: 1321 year: 1996 end-page: 1329 ident: b0200 article-title: Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter publication-title: J. Geophys. Res. Oceans – volume: 585 start-page: 124782 year: 2020 ident: b0125 article-title: Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China publication-title: J. Hydrol. – volume: 75 start-page: 5403 year: 2011 end-page: 5422 ident: b0230 article-title: Co-precipitation of radium in high ionic strength systems: 2. Kinetic and ionic strength effects publication-title: Geochim. Cosmochim. Acta – volume: 464 start-page: 211 year: 2017 end-page: 226 ident: b0060 article-title: Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean publication-title: Earth Planet. Sci. Lett. – volume: 64 start-page: 2177 year: 2000 end-page: 2183 ident: b0130 article-title: Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin publication-title: Geochim. Cosmochim. Acta – volume: 546 start-page: 189 year: 2017 end-page: 203 ident: b0150 article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable18O/2H and radium isotopes publication-title: J. Hydrol. – volume: 78 start-page: 8880 year: 1973 end-page: 8886 ident: b0210 article-title: Extraction of radium from natural waters using manganese-impregnated acrylic fibers publication-title: J. Geophys. Res. – year: 1987 ident: b0325 article-title: The Salt Lake of Qaidam Basin – volume: 1978–2012 start-page: 113 year: 2008 ident: b0220 article-title: Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China publication-title: J. Geophys. Res.:Oceans – volume: 138 start-page: 119 year: 2013 ident: 10.1016/j.jhydrol.2021.126313_b0115 article-title: Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.005 – volume: 78 start-page: 8880 year: 1973 ident: 10.1016/j.jhydrol.2021.126313_b0210 article-title: Extraction of radium from natural waters using manganese-impregnated acrylic fibers publication-title: J. Geophys. Res. doi: 10.1029/JC078i036p08880 – volume: 84 start-page: 1585 year: 2010 ident: 10.1016/j.jhydrol.2021.126313_b0330 article-title: Hydrochemistry and minerals assemblages of Salt Lakes in the Qinghai-Tibet Plateau, China publication-title: Acta Geol. Sin. – volume: 2 start-page: 18 year: 1994 ident: 10.1016/j.jhydrol.2021.126313_b0120 article-title: Distributive regularity of Boron and Lithium in Da Qaidam Salt Lake publication-title: J. Salt Lake Sci. – volume: 29 start-page: 2922 year: 2015 ident: 10.1016/j.jhydrol.2021.126313_b0110 article-title: Groundwater–the disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients publication-title: Hydrol. Process. doi: 10.1002/hyp.10384 – volume: 1978–2012 start-page: 22117 issue: 105 year: 2000 ident: 10.1016/j.jhydrol.2021.126313_b0185 article-title: Ages of continental shelf waters determined from 223Ra and 224Ra publication-title: J. Geophys. Res. Oceans doi: 10.1029/1999JC000289 – volume: 33 start-page: 1 year: 2021 ident: 10.1016/j.jhydrol.2021.126313_b0095 article-title: The distribution and Sources of radium isotopes in Da Qaidam salt lake publication-title: J. Lake Sci. – year: 1987 ident: 10.1016/j.jhydrol.2021.126313_b0325 – volume: 512 start-page: 177 year: 2014 ident: 10.1016/j.jhydrol.2021.126313_b0005 article-title: Quantity and quality of groundwater discharge in a hypersaline lake environment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.02.040 – volume: 103 start-page: 121 year: 2013 ident: 10.1016/j.jhydrol.2021.126313_b0240 article-title: Radium removal in a large scale evaporitic system publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.10.046 – volume: 546 start-page: 189 year: 2017 ident: 10.1016/j.jhydrol.2021.126313_b0155 article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable 18O/2H and radium isotopes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.01.017 – volume: 546 start-page: 189 year: 2017 ident: 10.1016/j.jhydrol.2021.126313_b0150 article-title: Groundwater discharge and hydrologic partition of the lakes in desert environment: insights from stable18O/2H and radium isotopes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.01.017 – volume: 66 start-page: 75 year: 2003 ident: 10.1016/j.jhydrol.2021.126313_b0190 article-title: Sources and fluxes of submarine groundwater discharge delineated by radium isotopes publication-title: Biogeochemistry doi: 10.1023/B:BIOG.0000006065.77764.a0 – volume: 28 start-page: 2700 year: 2008 ident: 10.1016/j.jhydrol.2021.126313_b0225 article-title: Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2008.09.002 – volume: 86 start-page: 105 year: 2004 ident: 10.1016/j.jhydrol.2021.126313_b0205 article-title: Distribution of 223Ra and224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico publication-title: Mar. Chem. doi: 10.1016/j.marchem.2003.10.001 – volume: 198 start-page: 102938 year: 2019 ident: 10.1016/j.jhydrol.2021.126313_b0175 article-title: The hydrochemical evolution of alkaline volcanic lakes: a model to understand the South Atlantic Pre-salt mineral assemblages publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.102938 – ident: 10.1016/j.jhydrol.2021.126313_b0305 – volume: 18 start-page: 44 year: 2001 ident: 10.1016/j.jhydrol.2021.126313_b0315 article-title: Characteristics of River Silt in the Qaidam Basin, China publication-title: Arid Zone Res. – volume: 534 start-page: 87 year: 2016 ident: 10.1016/j.jhydrol.2021.126313_b0160 article-title: Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: implication of water balance in the Badain Jaran Desert, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.12.051 – volume: 59 start-page: 5103 year: 1995 ident: 10.1016/j.jhydrol.2021.126313_b0035 article-title: Elastic strain energy and the distribution coefficient of radium in solid solutions with calcium salts publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00356-8 – start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2021.126313_b0165 article-title: Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a Proglacial Lake in Qinghai-Tibet Plateau: using 222Rn and stable isotopes publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 53 start-page: 1727 year: 1989 ident: 10.1016/j.jhydrol.2021.126313_b0215 article-title: Groundwater chemistry and water-rock interactions at Stripa publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(89)90294-9 – volume: 125 start-page: 290 year: 2014 ident: 10.1016/j.jhydrol.2021.126313_b0250 article-title: Nucleation and growth kinetics of RaxBa 1− xSO 4 solid solution in NaCl aqueous solutions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.09.041 – volume: 129 start-page: 59 year: 2014 ident: 10.1016/j.jhydrol.2021.126313_b0260 article-title: Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2013.11.010 – volume: 380 start-page: 74 year: 2014 ident: 10.1016/j.jhydrol.2021.126313_b0300 article-title: Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: boron budget and sources publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2014.04.026 – volume: 68 start-page: 3327 year: 2004 ident: 10.1016/j.jhydrol.2021.126313_b0340 article-title: Coprecipitation in the barite isostructural family: 1. Binary mixing properties publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2003.10.014 – volume: 49 start-page: 5411 year: 2013 ident: 10.1016/j.jhydrol.2021.126313_b0105 article-title: Quantifying groundwater-surface water interactions in a proglacial moraine using heat and solute tracers publication-title: Water Resour. Res. doi: 10.1002/wrcr.20372 – volume: 75 start-page: 5389 year: 2011 ident: 10.1016/j.jhydrol.2021.126313_b0235 article-title: Co-precipitation of radium in high ionic strength systems: 1. Thermodynamic properties of the Na–Ra–Cl–SO 4–H 2 O system–estimating Pitzer parameters for RaCl 2 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.06.042 – volume: 502 start-page: 202 year: 2013 ident: 10.1016/j.jhydrol.2021.126313_b0170 article-title: Lacustrine groundwater discharge: combined determination of volumes and spatial patterns publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.08.021 – volume: 1978–2012 start-page: 113 year: 2008 ident: 10.1016/j.jhydrol.2021.126313_b0220 article-title: Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China publication-title: J. Geophys. Res.:Oceans – volume: 75 start-page: 5403 year: 2011 ident: 10.1016/j.jhydrol.2021.126313_b0230 article-title: Co-precipitation of radium in high ionic strength systems: 2. Kinetic and ionic strength effects publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.07.013 – volume: 109 start-page: 188 year: 2008 ident: 10.1016/j.jhydrol.2021.126313_b0195 article-title: Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting publication-title: Mar. Chem. doi: 10.1016/j.marchem.2007.06.015 – volume: 17 start-page: 4366 year: 2016 ident: 10.1016/j.jhydrol.2021.126313_b0290 article-title: Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2016GC006502 – volume: 49 start-page: 1593 year: 1985 ident: 10.1016/j.jhydrol.2021.126313_b0100 article-title: The thermodynamic properties of radium publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(85)90264-9 – volume: 223 start-page: 407 year: 1984 ident: 10.1016/j.jhydrol.2021.126313_b0180 article-title: Radium isotope measurements using germanium detectors publication-title: Nucl. Instrum. Methods Phys. Res. doi: 10.1016/0167-5087(84)90683-5 – volume: 571 start-page: 528 year: 2019 ident: 10.1016/j.jhydrol.2021.126313_b0135 article-title: Unraveling controlling factors of concentration discharge relationships in a fractured aquifer dominant spring-shed: evidence from mean transit time and radium reactive transport model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.01.066 – ident: 10.1016/j.jhydrol.2021.126313_b0310 doi: 10.1016/0016-7037(92)90225-8 – volume: 117 start-page: 103277 year: 2020 ident: 10.1016/j.jhydrol.2021.126313_b0040 article-title: Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.103277 – volume: 510 start-page: 31 year: 2019 ident: 10.1016/j.jhydrol.2021.126313_b0090 article-title: Evaluation of lacustrine groundwater discharge and associated nutrients, trace elements and DIC loadings into Qinghai Lake in Qinghai-Tibetan Plateau, using radium isotopes and hydrological methods publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2019.01.020 – volume: 585 start-page: 124782 year: 2020 ident: 10.1016/j.jhydrol.2021.126313_b0125 article-title: Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124782 – volume: 103 start-page: 131 year: 2007 ident: 10.1016/j.jhydrol.2021.126313_b0010 article-title: High 226Ra and 228Ra activities in Nueces Bay, Texas indicate large submarine saline discharges publication-title: Mar. Chem. doi: 10.1016/j.marchem.2006.06.015 – volume: 47 start-page: 513 year: 2013 ident: 10.1016/j.jhydrol.2021.126313_b0270 article-title: Origin of boron in the Damxung Co Salt Lake (central Tibet): evidence from boron geochemistry and isotopes publication-title: Geochem J doi: 10.2343/geochemj.2.0273 – volume: 46 start-page: 476 year: 2020 ident: 10.1016/j.jhydrol.2021.126313_b0275 article-title: Hydrogeological controls on heterogeneous groundwater discharge to a large glacial lake publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2020.03.006 – volume: 122 start-page: 17 year: 2013 ident: 10.1016/j.jhydrol.2021.126313_b0065 article-title: Groundwater ages and reaction rates during seawater circulation in the Dead Sea aquifer publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.08.005 – volume: 411 start-page: 155 year: 2015 ident: 10.1016/j.jhydrol.2021.126313_b0075 article-title: Application of radon and radium isotopes to groundwater flow dynamics: an example from the Dead Sea publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2015.06.014 – start-page: 38 year: 1983 ident: 10.1016/j.jhydrol.2021.126313_b0320 article-title: Geological of the Da Qaidam and XiaoQaidam salt lake Boron ore in Qaidam basin, qinghai province publication-title: Qinghai Geol. – volume: 554 start-page: 331 year: 2017 ident: 10.1016/j.jhydrol.2021.126313_b0085 article-title: Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.09.001 – year: 1989 ident: 10.1016/j.jhydrol.2021.126313_b0335 – volume: 68 start-page: 4167 year: 2004 ident: 10.1016/j.jhydrol.2021.126313_b0265 article-title: Lithium isotopic composition and concentration of the upper continental crust publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.03.031 – volume: 82 start-page: 144 year: 2014 ident: 10.1016/j.jhydrol.2021.126313_b0140 article-title: Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2014.03.005 – volume: 283 start-page: 184 year: 2020 ident: 10.1016/j.jhydrol.2021.126313_b0020 article-title: Silicon isotope variations in hydrothermal systems at Yellowstone National Park, Wyoming, U.S.A publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2020.06.004 – volume: 167 start-page: 113 year: 2014 ident: 10.1016/j.jhydrol.2021.126313_b0295 article-title: An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay—a typical multi-species culture ecosystem in China publication-title: Mar. Chem. doi: 10.1016/j.marchem.2014.07.002 – volume: 394 start-page: 146 year: 2014 ident: 10.1016/j.jhydrol.2021.126313_b0070 article-title: The extent of seawater circulation in the aquifer and its role in elemental mass balances: a lesson from the Dead Sea publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.03.010 – volume: 237 start-page: 156 year: 2005 ident: 10.1016/j.jhydrol.2021.126313_b0055 article-title: Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: implications for global silicate fluxes publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2005.06.011 – volume: 549 start-page: 79 year: 2017 ident: 10.1016/j.jhydrol.2021.126313_b0015 article-title: Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.03.049 – volume: 464 start-page: 211 year: 2017 ident: 10.1016/j.jhydrol.2021.126313_b0060 article-title: Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2017.01.043 – volume: 1978–2012 start-page: 1321 issue: 101 year: 1996 ident: 10.1016/j.jhydrol.2021.126313_b0200 article-title: Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter publication-title: J. Geophys. Res. Oceans doi: 10.1029/95JC03139 – volume: 486 start-page: 112 year: 2013 ident: 10.1016/j.jhydrol.2021.126313_b0025 article-title: Application of radon-222 to investigate groundwater discharge into small shallow lakes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.01.043 – volume: 64 start-page: 2177 year: 2000 ident: 10.1016/j.jhydrol.2021.126313_b0130 article-title: Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00363-X – volume: 88 start-page: 237 year: 2012 ident: 10.1016/j.jhydrol.2021.126313_b0080 article-title: Modeling radium distribution in coastal aquifers during sea level changes: the Dead Sea case publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.03.022 – volume: 233 start-page: 50 year: 2018 ident: 10.1016/j.jhydrol.2021.126313_b0245 article-title: The precipitation of gypsum, celestine, and barite and coprecipitation of radium during seawater evaporation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2018.04.019 – ident: 10.1016/j.jhydrol.2021.126313_b0280 – volume: 144 start-page: 603 year: 2018 ident: 10.1016/j.jhydrol.2021.126313_b0145 article-title: Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary publication-title: Water Res. doi: 10.1016/j.watres.2018.07.004 – volume: 90 start-page: 6995 year: 1985 ident: 10.1016/j.jhydrol.2021.126313_b0050 article-title: Distribution and flux of 226Ra and 228Ra in the Amazon River estuary publication-title: J. Geophys. Res. doi: 10.1029/JC090iC04p06995 – volume: 62 start-page: 2039 year: 1998 ident: 10.1016/j.jhydrol.2021.126313_b0045 article-title: Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(98)00126-4 – volume: 109 start-page: 198 year: 2008 ident: 10.1016/j.jhydrol.2021.126313_b0030 article-title: Uncertainties associated with233Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC) publication-title: Mar. Chem. doi: 10.1016/j.marchem.2007.11.006 – year: 1998 ident: 10.1016/j.jhydrol.2021.126313_b0285 – volume: 29 start-page: 2895 year: 2015 ident: 10.1016/j.jhydrol.2021.126313_b0255 article-title: Groundwater-the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology publication-title: Hydrol. Process. doi: 10.1002/hyp.10403 |
SSID | ssj0000334 |
Score | 2.4517741 |
Snippet | •Multi-tracer models are applicable to constrain the solute mass balance & water budget in the mega-brine lakes.•Hydrothermal groundwater discharge delivers... Brine lakes are good natural laboratories to investigate groundwater influences on the hydrologic and chemical evolutions in arid environments, and the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126313 |
SubjectTerms | barite basins bass boron China Co-precipitation coprecipitation Da Qaidam Lake evaporation evolution groundwater hydrogeochemistry Hydrothermal groundwater Lacustrine groundwater discharge (LGD) lithium Lithium and boron resource mineralization radium Radium isotopes salt lakes water budget |
Title | Deep hydrothermal and shallow groundwater borne lithium and boron loadings to a mega brine lake in Qinghai Tibet Plateau based on multi-tracer models |
URI | https://dx.doi.org/10.1016/j.jhydrol.2021.126313 https://www.proquest.com/docview/2524217484 |
Volume | 598 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8QAviE8xGNMh8Zq2_krqx2kwFRATSEXaW2Q7F5rSJlWbatrL_gv-X3xOwgQSmsRjkjs78tl3Z9397hh7W1LVt9KKxGmrE-W4TMLNNktQKGcQrdElAYU_X6Szb-rjpb48YGcDFobSKnvd3-n0qK37N-N-NcebqiKMrxA8NSpcWoIajohypTLa5aOb2zSPiZRqqBhO1LconvFytFxcF9uGIhCCj7hIJZf_sk9_aepofs4fsYe93win3a89ZgdYP2H3-xbmi-un7Oc7xA3EmcinWwdiWxewo2YpzRUQeqMuroJnuYUg9hoh-N-Lar-OVI7qGMCqiQn1O2gbsLDG7xYcgQNhZX8gVDV8DV8XtoJ55bCFL6swmt0DGcICAn9MTkzarfVhkthiZ_eMzc_fz89mSd9zIbEy1W2iTKGktM4bblSZ6kwInwavsJhwVwicSivDCXdT7nVWokuNnqJTqbUKFXIvn7PDuqnxBYPUT9AU3gdKoWzhTWmMRx0W2RnlM37E1LDQue_rkVNbjFU-JJ4t814-Ockn7-RzxEa_2TZdQY67GKaDFPM_dlYejMZdrG8Gqefh1FEoxdbY7He50BRKpzqsL_9_-FfsAT11yb_H7LDd7vF1cHFadxL38Am7d_rh0-ziF5FH_nM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclfehexj5Zt267wV6dVF9O9Fi6lXRtwwYZ9E1I8nlxltghcSj9Q_r_TufYKxuMwl4tnWR00t0J3e93jH3MifUtdyLx2ulEeS6TeLMdJiiUN4jO6JyAwleTdPxdfbnW13vstMPCUFpla_t3Nr2x1u2XQbuag1VREMZXCJ4aFS8t0QwTonyf2Kl0j-2fnF-MJ_cGWUrVkYaTwD2QZzDvz2e32bqiRwjB-1ykkst_uai_jHXjgc6esMdt6Agnu797yvawfMYO2irms9vn7O4T4gqamSisW8bOrsxgQ_VSqhsgAEeZ3cTgcg1R8yVCDMFnxXbZ9PJEZQCLqsmp30BdgYMl_nDgCR8IC_cToSjhW2yduQKmhccavi7iaG4L5AsziPJNfmJSr12IkzRVdjYv2PTs8_R0nLRlFxInU10nymRKSueD4UblqR4KEdIYGGbH3GcCR9LJeMj9iAc9zNGnRo_Qq9Q5hQp5kC9Zr6xKfMUgDcdoshBiT6FcFkxuTEAdF9kbFYb8kKluoW1oKcmpMsbCdrlnc9vqx5J-7E4_h6z_W2y14-R4SGDUadH-sbls9BsPiX7otG7jwaPXFFditd1Yoek1nahYX___8O_ZwXh6dWkvzycXb9gjatnlAh-xXr3e4tsY8dT-XbujfwE-EgEz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+hydrothermal+and+shallow+groundwater+borne+lithium+and+boron+loadings+to+a+mega+brine+lake+in+Qinghai+Tibet+Plateau+based+on+multi-tracer+models&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Kong%2C+Fancui&rft.au=Yang%2C+Yingkui&rft.au=Luo%2C+Xin&rft.au=Sha%2C+Zhanjiang&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=598&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126313&rft.externalDocID=S0022169421003607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |