Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater

•Natural high-F– groundwater mainly occurs in confined aquifers in the Guide basin.•Along the flow path, F– is gradually enriched in groundwater in confined aquifer.•High-F– groundwater is characterized by low Ca2+ and high Na+, pH, HCO3–•Precipitation of Ca2+ enhances dissolution of F–-bearing mine...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 598; p. 126372
Main Authors Wang, Zhen, Guo, Huaming, Xing, Shiping, Liu, Haiyan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Natural high-F– groundwater mainly occurs in confined aquifers in the Guide basin.•Along the flow path, F– is gradually enriched in groundwater in confined aquifer.•High-F– groundwater is characterized by low Ca2+ and high Na+, pH, HCO3–•Precipitation of Ca2+ enhances dissolution of F–-bearing minerals and release of F–•Geothermal waters favor F– enrichment in confined groundwater. High fluoride (F–) concentrations in groundwater affected by geothermal activity have been reported worldwide, but the genesis mechanism is not adequately understood. In this study, 92 groundwater samples and 63 sediment samples were collected from the China’s Guide basin for chemical analyses and laboratory tests. Results indicate that groundwater F– concentrations continuously increase along a flow path, being consistent with trends of Na+ and HCO3– concentrations, Na/Ca molar ratio, and pH values, while Ca2+ concentrations show a decreasing trend. Water-soluble F– contents in sediments increase as the depth increases. Higher-F– groundwater samples generally have lower δD and δ18O values than those of lower F– samples. The major hydrogeochemical processes controlling the formation of high-F– groundwater include precipitation of Ca2+ or cation exchange between Ca2+ and Na+ or both, which enhance dissolutions of F–-containing minerals and facilitate the release of F– into groundwater. Slightly alkaline environments and increased HCO3– and CO32– concentrations favor desorption of F– from solid surfaces into groundwater. Closed hydrogeological conditions and long-term water–rock interactions in confined aquifers accumulate F– in groundwater. Exposed geothermal springs around the Guide basin also contribute to the formation of high-F– groundwaters directly by the input of geothermal water and indirectly by heat transfer into aquifers at a regional scale, which is a problem deserving further investigation.
AbstractList High fluoride (F–) concentrations in groundwater affected by geothermal activity have been reported worldwide, but the genesis mechanism is not adequately understood. In this study, 92 groundwater samples and 63 sediment samples were collected from the China’s Guide basin for chemical analyses and laboratory tests. Results indicate that groundwater F– concentrations continuously increase along a flow path, being consistent with trends of Na⁺ and HCO₃– concentrations, Na/Ca molar ratio, and pH values, while Ca²⁺ concentrations show a decreasing trend. Water-soluble F– contents in sediments increase as the depth increases. Higher-F– groundwater samples generally have lower δD and δ¹⁸O values than those of lower F– samples. The major hydrogeochemical processes controlling the formation of high-F– groundwater include precipitation of Ca²⁺ or cation exchange between Ca²⁺ and Na⁺ or both, which enhance dissolutions of F–-containing minerals and facilitate the release of F– into groundwater. Slightly alkaline environments and increased HCO₃– and CO₃²– concentrations favor desorption of F– from solid surfaces into groundwater. Closed hydrogeological conditions and long-term water–rock interactions in confined aquifers accumulate F– in groundwater. Exposed geothermal springs around the Guide basin also contribute to the formation of high-F– groundwaters directly by the input of geothermal water and indirectly by heat transfer into aquifers at a regional scale, which is a problem deserving further investigation.
•Natural high-F– groundwater mainly occurs in confined aquifers in the Guide basin.•Along the flow path, F– is gradually enriched in groundwater in confined aquifer.•High-F– groundwater is characterized by low Ca2+ and high Na+, pH, HCO3–•Precipitation of Ca2+ enhances dissolution of F–-bearing minerals and release of F–•Geothermal waters favor F– enrichment in confined groundwater. High fluoride (F–) concentrations in groundwater affected by geothermal activity have been reported worldwide, but the genesis mechanism is not adequately understood. In this study, 92 groundwater samples and 63 sediment samples were collected from the China’s Guide basin for chemical analyses and laboratory tests. Results indicate that groundwater F– concentrations continuously increase along a flow path, being consistent with trends of Na+ and HCO3– concentrations, Na/Ca molar ratio, and pH values, while Ca2+ concentrations show a decreasing trend. Water-soluble F– contents in sediments increase as the depth increases. Higher-F– groundwater samples generally have lower δD and δ18O values than those of lower F– samples. The major hydrogeochemical processes controlling the formation of high-F– groundwater include precipitation of Ca2+ or cation exchange between Ca2+ and Na+ or both, which enhance dissolutions of F–-containing minerals and facilitate the release of F– into groundwater. Slightly alkaline environments and increased HCO3– and CO32– concentrations favor desorption of F– from solid surfaces into groundwater. Closed hydrogeological conditions and long-term water–rock interactions in confined aquifers accumulate F– in groundwater. Exposed geothermal springs around the Guide basin also contribute to the formation of high-F– groundwaters directly by the input of geothermal water and indirectly by heat transfer into aquifers at a regional scale, which is a problem deserving further investigation.
ArticleNumber 126372
Author Guo, Huaming
Liu, Haiyan
Xing, Shiping
Wang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi 330032, China
– sequence: 2
  givenname: Huaming
  surname: Guo
  fullname: Guo, Huaming
  email: hmguo@cugb.edu.cn
  organization: School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 3
  givenname: Shiping
  surname: Xing
  fullname: Xing, Shiping
  organization: School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 4
  givenname: Haiyan
  surname: Liu
  fullname: Liu, Haiyan
  organization: School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, Jiangxi 330032, China
BookMark eNqFkEFLAzEQhYMo2FZ_grBHL1uT7G6ywYNIUSsUvKjXkCaz3SzbTU1Spf_e1PbkpUNgeMN7D_KN0fngBkDohuApwYTdddOu3Rnv-inFlEwJZQWnZ2hEai5yyjE_RyOMKc0JE-UlGofQ4TRFUY7Q53yfXIHTLaytVn2mBpMlHVvw6yS1G2KqDpkbsnTLGpfO0Sblmqy1qzZr-q3z1kC28m47mB8VwV-hi0b1Aa6Pe4I-np_eZ_N88fbyOntc5KpgVcxLXNOlKjWlmCjOllUpoNFaVZXWIBQHzVmJFSQPJ6ZmRqQnOCY1FNRwXUzQ7aF3493XFkKUaxs09L0awG2DpFVFBGWCiWS9P1i1dyF4aKS28e8n0SvbS4Llnqbs5JGm3NOUB5opXf1Lb7xdK787mXs45CBR-LbgZdAWBg3GetBRGmdPNPwCPwiWFQ
CitedBy_id crossref_primary_10_1016_j_apgeochem_2024_106176
crossref_primary_10_1007_s10653_022_01379_6
crossref_primary_10_1007_s10653_024_02308_5
crossref_primary_10_1016_j_envres_2023_117920
crossref_primary_10_1007_s12665_025_12127_1
crossref_primary_10_1016_j_jhydrol_2025_133154
crossref_primary_10_1016_j_jclepro_2022_131567
crossref_primary_10_1016_j_apgeochem_2022_105403
crossref_primary_10_1016_j_envpol_2022_120208
crossref_primary_10_1016_j_gexplo_2024_107389
crossref_primary_10_3389_feart_2022_865322
crossref_primary_10_1016_j_scitotenv_2022_158134
crossref_primary_10_1016_j_scitotenv_2023_166699
crossref_primary_10_1002_nag_3897
crossref_primary_10_1007_s10653_023_01628_2
crossref_primary_10_1016_j_gexplo_2024_107640
crossref_primary_10_1016_j_jhazmat_2023_132443
crossref_primary_10_1016_j_jhazmat_2024_133510
crossref_primary_10_1016_j_jhazmat_2024_136468
crossref_primary_10_1016_j_envres_2022_113588
crossref_primary_10_1016_j_apgeochem_2022_105485
crossref_primary_10_3390_ijerph20031832
crossref_primary_10_4236_jep_2022_1311052
crossref_primary_10_1007_s40899_024_01148_6
crossref_primary_10_1007_s12665_025_12156_w
crossref_primary_10_1590_0102_311xes215723
crossref_primary_10_1016_j_jseaes_2025_106574
crossref_primary_10_3390_w13223236
crossref_primary_10_1007_s10653_024_02316_5
crossref_primary_10_1007_s11270_023_06172_4
crossref_primary_10_1016_j_envres_2024_119675
crossref_primary_10_1007_s11356_023_25958_x
crossref_primary_10_1016_j_scitotenv_2023_167716
crossref_primary_10_1038_s43017_024_00519_z
crossref_primary_10_1016_j_jseaes_2023_105929
crossref_primary_10_1007_s12403_021_00455_z
crossref_primary_10_1007_s12403_023_00553_0
crossref_primary_10_1016_j_apgeochem_2024_105934
crossref_primary_10_1016_j_gexplo_2023_107356
crossref_primary_10_1016_j_jhydrol_2024_131782
crossref_primary_10_1007_s12403_024_00625_9
crossref_primary_10_3390_w15101968
crossref_primary_10_1016_j_scitotenv_2022_159415
crossref_primary_10_3390_w13213065
crossref_primary_10_1016_j_apgeochem_2024_106106
crossref_primary_10_1016_j_geothermics_2025_103270
crossref_primary_10_1007_s12403_024_00660_6
crossref_primary_10_1016_j_jhydrol_2023_129529
Cites_doi 10.1016/j.jhazmat.2015.07.080
10.1039/C4RA11018H
10.1023/B:EGAH.0000004579.54947.e7
10.1016/j.jhazmat.2009.06.018
10.1039/C4EM00584H
10.1016/j.jhazmat.2012.08.005
10.1016/j.geothermics.2005.06.004
10.1016/j.gca.2011.05.028
10.1016/j.jhydrol.2019.124211
10.1016/j.envpol.2019.05.118
10.1016/j.jhazmat.2003.09.007
10.1016/0016-7037(77)90224-1
10.1007/s00254-008-1290-4
10.1007/s10661-012-2900-x
10.1016/j.jafrearsci.2009.12.005
10.1007/s00254-005-0167-z
10.1007/s00254-002-0672-2
10.1007/s12665-016-5991-9
10.1016/j.jhydrol.2019.04.033
10.1016/j.apgeochem.2004.07.002
10.1080/10934529.2011.598788
10.1007/s12665-012-1739-3
10.1007/s10040-006-0107-3
10.1016/j.gexplo.2006.07.001
10.1016/j.watres.2013.05.049
10.1016/j.gexplo.2013.10.012
10.1016/j.apgeochem.2012.01.016
10.1016/j.apgeochem.2011.01.012
10.1016/j.scitotenv.2007.06.038
10.1016/j.chemosphere.2004.10.002
10.1016/j.gexplo.2012.09.003
10.1016/j.apgeochem.2008.12.015
10.1016/j.apgeochem.2008.11.009
10.1016/0016-7037(64)90132-2
10.1007/s12665-018-7678-x
10.1007/s12583-015-0600-5
10.1016/j.proenv.2015.04.029
10.1111/j.1365-246X.2005.02802.x
10.1016/j.scitotenv.2014.11.045
10.1007/s00254-007-0914-4
10.1016/j.scitotenv.2018.05.255
10.1016/j.jconhyd.2008.08.006
10.3390/met10080988
10.1016/j.jhydrol.2016.12.036
10.1126/science.133.3465.1702
10.1080/10643380600678112
10.1016/j.gexplo.2005.08.002
10.1016/j.chemosphere.2016.08.075
10.1007/s12665-012-2037-9
10.1021/es071958y
10.1007/s00254-007-0692-z
10.1016/j.gca.2005.10.018
10.1016/j.watres.2013.08.035
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2021.126372
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2021_126372
S0022169421004194
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a365t-4082ba4c2201a76b549efcca55cce9a7ec7640aeba471d86d96d997018e32d7c3
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Thu Jul 10 20:54:29 EDT 2025
Tue Jul 01 01:53:29 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Fri Feb 23 02:42:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Confined aquifer
Groundwater
Fluorine
Guide basin
Hydrogeochemical process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-4082ba4c2201a76b549efcca55cce9a7ec7640aeba471d86d96d997018e32d7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551926969
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551926969
crossref_citationtrail_10_1016_j_jhydrol_2021_126372
crossref_primary_10_1016_j_jhydrol_2021_126372
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Luo, Luo, Li, Zhang, Wang (b0075) 2019; 252
Sreedevi, Ahmed, Made, Ledoux, Gandolfi (b0250) 2006; 50
Rodriguez, Morales, Armienta, Villanueva, Segovia (b0215) 2015; 25
Chowdhury, Adak, Mukherjee, Dhak, Khatun, Dhak (b0040) 2019; 574
Yan, Voo, Lisa, Fang, Josep (b0310) 2005; 163
Jeong, Anantharaman, Hyun, Son, Hayes (b0110) 2013; 47
Matthijs, Breukelen, Stuyfzand (b0160) 2013; 47
Gomez, Blarasin, Martinez (b0080) 2009; 57
Huang, Tan, Wang, Wen (b0100) 2015; 35
Shah, Danishwar (b0230) 2003; 25
Qiao, Guo, He, Shi, Xing, Gao (b0195) 2021; 10
Ayenew (b0020) 2008; 54
Jacks, Bhattacharya, Chaudhary, Singh (b0105) 2005; 20
Souza, Jr, Adriano, Carvalho, Forte, Oliveira, Silva, Sampaio (b0245) 2013; 185
Vikas, Kushwaha, Ahmad, Prasannakumar, Reghunath (b0270) 2013; 68
Parkhurst, Appelo (b9000) 2013; vol. 6
Kim, Jeong (b0120) 2005; 58
Song, Meng, Fang, Shuang, Gao (b0240) 2008; 5
Wang, Shvartsev, Su (b0280) 2009; 24
Maity, Liu, Nath, Bundschuh, Chen (b0155) 2011; 46
Shi, Guo, Zhang, Ye, Li, Ma (b0235) 2010; 37
Chae, Yun, Bernhard, Kim, Kim, Kwon, Kim, Koh (b0035) 2007; 385
Ministry of Health of China (b0175) 2010
Xu D.Y., Liu Z.G., Lv S.F., 1976. Three rivers area artesian water prospecting report. The Second Hydrogeological Survey Teams in Qinghai Province (in Chinese). http://geodata.ngac.cn/Data/FileList.aspx?MetaId=F5F68B3518181B60E0430100007F0760&Mdidnt=x00055269.
Ellis, Mahon (b0065) 1964; 28
Wang, Guo, Xiu, Wang, Shen (b0285) 2018; 640–641
Batlle, Banks, Batelaan, Kipfer, Brennwald, Cook (b0030) 2017; 546
Jesußek, Grandel, Dahmke (b0115) 2013; 69
Liu, Guo, Zhang, Wang (b0150) 2013; 26
Nordstrom, Jenne (b0180) 1977; 41
Tirumalesh, Shivanna, Jalihal (b0265) 2007; 15
Su, Wang, Xie, Zhu (b0260) 2015; 17
Virginia, Fabiana, Marcelo (b0275) 2018; 77
Li, Gao, Wang (b0140) 2015; 508
Rafique, Naseem, Usmani, Bashir, Khan, Bhanger (b0205) 2009; 171
McNab, Singleton, Moran, Esser (b0165) 2009; 24
Rango, Bianchini, Beccaluva (b0210) 2010; 57
Wei, Cao, Huang, Song (b0290) 2015; 5
Li, Gao, Liu, Wang (b0135) 2019; 579
Ayoob, Gupta (b0025) 2006; 36
Alarcón-Herrera, Bundschuh, Nath, Nicolli, Gutierrez, Reyes-Gomez, Sracek (b0010) 2013; 262
Pi, Wang, Xie, Su, Ma, Li, Liu (b0190) 2015; 300
Gao, Wang, Li (b0070) 2007; 53
Li, Shi, Zhang, Zhang, Shang (b0145) 2012; 550–553
Lang X.J., 2016. The thermal structure and geothermal genesis mechanism in Guide basin. A Dissertation submitted to Chinese Academy of Geological Science for Doctoral Degree, Beijing (in Chinese with English abstract).
Aksoy, Simsek, Gunduz (b0005) 2009; 103
Kumar, Das, Goswami, Sarma, Bhattacharya, Ramanathan (b0125) 2016; 164
Pham, Rose, Feitz, Waite (b0185) 2006; 70
Amini, Mueller, Abbaspour (b0015) 2008; 42
Currell, Cartwright, Raveggi, Han (b0050) 2011; 26
Saxena, Ahmed (b0225) 2003; 43
Su, Wang, Xie, Li (b0255) 2013; 135
Craig (b0045) 1961; 133
Guo, Wang, Ma, Ma (b0095) 2007; 93
Qin, Jeffrey, Pang (b0200) 2005; 34
Sar, Samuelsson, Engström, Ökvist (b0220) 2020; 10
Wen, Zhang, Zhang, Wang, Han, Zheng (b0295) 2013; 135
Guo, Wang (b0090) 2005; 87
Deng, Nordstrom, Mccleskey (b0055) 2011; 75
Zhang, Guo, Liu, Luo, Yin, Zhang, Zhu, Guo, Li, Zhou (b0315) 2016; 75
Guo, Zhang, Xing, Jia (b0085) 2012; 27
WHO. Guidelines for drinking water quality. Second edition, Vol 2, health criteria and other supporting information. Geneva: WHO; 1996.
Dogdu, Bayari (b0060) 2002; 25
Meenakshi, Kavita, Malik (b0170) 2004; 106
Yan (10.1016/j.jhydrol.2021.126372_b0310) 2005; 163
Qin (10.1016/j.jhydrol.2021.126372_b0200) 2005; 34
Rango (10.1016/j.jhydrol.2021.126372_b0210) 2010; 57
Dogdu (10.1016/j.jhydrol.2021.126372_b0060) 2002; 25
Rodriguez (10.1016/j.jhydrol.2021.126372_b0215) 2015; 25
Sreedevi (10.1016/j.jhydrol.2021.126372_b0250) 2006; 50
Virginia (10.1016/j.jhydrol.2021.126372_b0275) 2018; 77
Jacks (10.1016/j.jhydrol.2021.126372_b0105) 2005; 20
Huang (10.1016/j.jhydrol.2021.126372_b0100) 2015; 35
Wang (10.1016/j.jhydrol.2021.126372_b0280) 2009; 24
Li (10.1016/j.jhydrol.2021.126372_b0145) 2012; 550–553
Deng (10.1016/j.jhydrol.2021.126372_b0055) 2011; 75
Zhang (10.1016/j.jhydrol.2021.126372_b0315) 2016; 75
Li (10.1016/j.jhydrol.2021.126372_b0140) 2015; 508
Jeong (10.1016/j.jhydrol.2021.126372_b0110) 2013; 47
Parkhurst (10.1016/j.jhydrol.2021.126372_b9000) 2013; vol. 6
Vikas (10.1016/j.jhydrol.2021.126372_b0270) 2013; 68
Amini (10.1016/j.jhydrol.2021.126372_b0015) 2008; 42
Batlle (10.1016/j.jhydrol.2021.126372_b0030) 2017; 546
Jesußek (10.1016/j.jhydrol.2021.126372_b0115) 2013; 69
Wei (10.1016/j.jhydrol.2021.126372_b0290) 2015; 5
Gao (10.1016/j.jhydrol.2021.126372_b0075) 2019; 252
Su (10.1016/j.jhydrol.2021.126372_b0260) 2015; 17
10.1016/j.jhydrol.2021.126372_b0130
Song (10.1016/j.jhydrol.2021.126372_b0240) 2008; 5
Tirumalesh (10.1016/j.jhydrol.2021.126372_b0265) 2007; 15
Li (10.1016/j.jhydrol.2021.126372_b0135) 2019; 579
Su (10.1016/j.jhydrol.2021.126372_b0255) 2013; 135
Saxena (10.1016/j.jhydrol.2021.126372_b0225) 2003; 43
Sar (10.1016/j.jhydrol.2021.126372_b0220) 2020; 10
Liu (10.1016/j.jhydrol.2021.126372_b0150) 2013; 26
Shi (10.1016/j.jhydrol.2021.126372_b0235) 2010; 37
Qiao (10.1016/j.jhydrol.2021.126372_b0195) 2021; 10
Chowdhury (10.1016/j.jhydrol.2021.126372_b0040) 2019; 574
Gomez (10.1016/j.jhydrol.2021.126372_b0080) 2009; 57
Nordstrom (10.1016/j.jhydrol.2021.126372_b0180) 1977; 41
Souza (10.1016/j.jhydrol.2021.126372_b0245) 2013; 185
10.1016/j.jhydrol.2021.126372_b0300
Ellis (10.1016/j.jhydrol.2021.126372_b0065) 1964; 28
Matthijs (10.1016/j.jhydrol.2021.126372_b0160) 2013; 47
McNab (10.1016/j.jhydrol.2021.126372_b0165) 2009; 24
Ayenew (10.1016/j.jhydrol.2021.126372_b0020) 2008; 54
10.1016/j.jhydrol.2021.126372_b0305
Ministry of Health of China (10.1016/j.jhydrol.2021.126372_b0175) 2010
Kumar (10.1016/j.jhydrol.2021.126372_b0125) 2016; 164
Guo (10.1016/j.jhydrol.2021.126372_b0085) 2012; 27
Kim (10.1016/j.jhydrol.2021.126372_b0120) 2005; 58
Pham (10.1016/j.jhydrol.2021.126372_b0185) 2006; 70
Craig (10.1016/j.jhydrol.2021.126372_b0045) 1961; 133
Currell (10.1016/j.jhydrol.2021.126372_b0050) 2011; 26
Rafique (10.1016/j.jhydrol.2021.126372_b0205) 2009; 171
Ayoob (10.1016/j.jhydrol.2021.126372_b0025) 2006; 36
Guo (10.1016/j.jhydrol.2021.126372_b0090) 2005; 87
Meenakshi (10.1016/j.jhydrol.2021.126372_b0170) 2004; 106
Gao (10.1016/j.jhydrol.2021.126372_b0070) 2007; 53
Chae (10.1016/j.jhydrol.2021.126372_b0035) 2007; 385
Wang (10.1016/j.jhydrol.2021.126372_b0285) 2018; 640–641
Aksoy (10.1016/j.jhydrol.2021.126372_b0005) 2009; 103
Guo (10.1016/j.jhydrol.2021.126372_b0095) 2007; 93
Wen (10.1016/j.jhydrol.2021.126372_b0295) 2013; 135
Shah (10.1016/j.jhydrol.2021.126372_b0230) 2003; 25
Maity (10.1016/j.jhydrol.2021.126372_b0155) 2011; 46
Alarcón-Herrera (10.1016/j.jhydrol.2021.126372_b0010) 2013; 262
Pi (10.1016/j.jhydrol.2021.126372_b0190) 2015; 300
References_xml – volume: 77
  start-page: 495
  year: 2018
  end-page: 504
  ident: b0275
  article-title: On the mechanism controlling fluoride concentration in groundwaters of the south of the Province of Buenos Aires, Argentina: adsorption or solubility?
  publication-title: Environmental Earth Sciences
– volume: 15
  start-page: 589
  year: 2007
  end-page: 598
  ident: b0265
  article-title: Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka
  publication-title: India. Hydrogeology Journal
– volume: 54
  start-page: 1313
  year: 2008
  end-page: 1324
  ident: b0020
  article-title: The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopiann rift and adjacent highlands
  publication-title: Environ. Geol.
– volume: 17
  start-page: 791
  year: 2015
  end-page: 801
  ident: b0260
  article-title: An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin
  publication-title: Northern China. Environmental Science-Processes & Impacts
– volume: 42
  start-page: 3662
  year: 2008
  end-page: 3668
  ident: b0015
  article-title: Statistical modeling of global geogenic fluoride contamination in groundwaters
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 36
  year: 2010
  end-page: 41
  ident: b0235
  article-title: The distribution and geochemistry of geothermal groundwater bearing fluorine and arsenic in the guide basin
  publication-title: Hydrogeology & Engineering Geology
– volume: 75
  start-page: 1186
  year: 2016
  end-page: 1203
  ident: b0315
  article-title: Hydrogeochemical processes occurring in the hydrothermal systems of the Gonghe-Guide basin, northwestern China: critical insights from a principal components analysis (PCA)
  publication-title: Environmental Earth Sciences
– volume: 163
  start-page: 944
  year: 2005
  end-page: 948
  ident: b0310
  article-title: Shallow bias in Neogene palaeomagnetic directions from the Guide Basin, NE Tibet, caused by inclination error
  publication-title: Geophysical Journal Royal Astronomical Society, Geophysical Journal International
– volume: 133
  start-page: 1702
  year: 1961
  end-page: 1703
  ident: b0045
  article-title: Isotopic variations with meteoric water
  publication-title: Science
– volume: 550–553
  start-page: 2515
  year: 2012
  end-page: 2520
  ident: b0145
  article-title: Study on Formation Mechanism of High-Fluoride Groundwater in Guide
  publication-title: Advanced Materials Research
– volume: 27
  start-page: 2187
  year: 2012
  end-page: 2196
  ident: b0085
  article-title: Spatial variation in arsenic and fluoride concentration of shallow groundwater from the town of Shahai in the Hetao basin
  publication-title: Inner Mongolia. Applied Geochemistry
– volume: 10
  year: 2021
  ident: b0195
  article-title: Identification of processes mobilizing organic molecules and arsenic in geothermal confined groundwater from Pliocene aquifers
  publication-title: Water Res.
– volume: 93
  start-page: 1
  year: 2007
  end-page: 12
  ident: b0095
  article-title: Geochemical processes controlling the elevated fluoride concentration in groundwaters of the Taiyuan Basin, Northern China
  publication-title: J. Geochem. Explor.
– volume: 53
  start-page: 795
  year: 2007
  end-page: 803
  ident: b0070
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China
  publication-title: Environ. Geol.
– volume: 25
  start-page: 214
  year: 2015
  end-page: 219
  ident: b0215
  article-title: Geothermal systems of low temperature in mexican highlands: alternative uses and associated risks
  publication-title: Procedia Environ. Sci.
– volume: 508
  start-page: 155
  year: 2015
  end-page: 165
  ident: b0140
  article-title: Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China
  publication-title: Sci. Total Environ.
– volume: vol. 6
  start-page: 1
  year: 2013
  end-page: 497
  ident: b9000
  article-title: Description of Input and Examples for PHREEQC Version 3-a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; US Geological Survey Techniques and Methods
– volume: 135
  start-page: 79
  year: 2013
  end-page: 92
  ident: b0255
  article-title: Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China
  publication-title: J. Geochem. Explor.
– volume: 5
  start-page: 13256
  year: 2015
  end-page: 13260
  ident: b0290
  article-title: A new ion exchange adsorption mechanism between carbonate groups and fluoride ions of basic aluminum carbonate nanospheres
  publication-title: RSC Adv.
– volume: 10
  start-page: 988
  year: 2020
  end-page: 999
  ident: b0220
  article-title: Experimental Study on the Dissolution Behavior of Calcium Fluoride
  publication-title: Metals
– volume: 70
  start-page: 640
  year: 2006
  end-page: 650
  ident: b0185
  article-title: Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0–9.5 and 25°C
  publication-title: Geochim. Cosmochim. Acta
– volume: 43
  start-page: 731
  year: 2003
  end-page: 736
  ident: b0225
  article-title: Inferring the chemical parameters for the dissolution of fluoride in groundwater
  publication-title: Environ. Geol.
– volume: 26
  start-page: 540
  year: 2011
  end-page: 552
  ident: b0050
  article-title: Controls on elevated fluoride and arsenic concentration in groundwater from the Yuncheng Basin
  publication-title: China. Applied Geochemistry
– volume: 546
  start-page: 150
  year: 2017
  end-page: 165
  ident: b0030
  article-title: Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers
  publication-title: J. Hydrol.
– volume: 25
  start-page: 21
  year: 2002
  end-page: 33
  ident: b0060
  article-title: Geothermal origin pollution in Akarcay basin (Afyon): water and sediment pollution in 1
  publication-title: Akarcay River. Geosciences
– volume: 25
  start-page: 475
  year: 2003
  end-page: 481
  ident: b0230
  article-title: Potential fluoride contamination in the drinking water of Naranji area, northwest frontier province
  publication-title: Pakistan. Environmental Geochemistry and Health
– volume: 41
  start-page: 175
  year: 1977
  end-page: 188
  ident: b0180
  article-title: Fluorite solubility equilibria in selected geothermal waters
  publication-title: Geochim. Cosmochim. Acta
– volume: 106
  start-page: 85
  year: 2004
  end-page: 97
  ident: b0170
  article-title: Groundwater quality in some villages of Haryana, India: focus on fluoride and fluorosis
  publication-title: J. Hazard. Mater.
– volume: 69
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0115
  article-title: Impacts of subsurface heat storage on aquifer hydrogeochemistry
  publication-title: Environmental Earth Sciences
– volume: 103
  start-page: 13
  year: 2009
  end-page: 28
  ident: b0005
  article-title: Groundwater contamination mechanism in a geothermal field: A case study of Balcova
  publication-title: Turkey. Journal of Contaminant Hydrology
– volume: 164
  start-page: 657
  year: 2016
  end-page: 667
  ident: b0125
  article-title: Coupling fractionation and batch desorption to understand arsenic and fluoride cocontamination in the aquifer system
  publication-title: Chemosphere
– volume: 46
  start-page: 1207
  year: 2011
  end-page: 1217
  ident: b0155
  article-title: Biogeochemical characteristics of Kuan-Tzu-Ling, ChungLun and Bao-Lai hot springs in southern Taiwan
  publication-title: Journal of Environmental Science & Health Part A
– volume: 28
  start-page: 1323
  year: 1964
  end-page: 1357
  ident: b0065
  article-title: Natural hydrothermal systems and experimental hot-water/rock interactions
  publication-title: Geochim. Cosmochim. Acta
– reference: WHO. Guidelines for drinking water quality. Second edition, Vol 2, health criteria and other supporting information. Geneva: WHO; 1996.
– volume: 262
  start-page: 960
  year: 2013
  end-page: 969
  ident: b0010
  article-title: Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation
  publication-title: J. Hazard. Mater.
– volume: 57
  start-page: 479
  year: 2010
  end-page: 491
  ident: b0210
  article-title: Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic
  publication-title: J. Afr. Earth Sc.
– volume: 26
  start-page: 140
  year: 2013
  end-page: 148
  ident: b0150
  article-title: Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China
  publication-title: J. Earth Sci.
– volume: 47
  start-page: 5088
  year: 2013
  end-page: 5100
  ident: b0160
  article-title: Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production
  publication-title: Water Res.
– year: 2010
  ident: b0175
  article-title: China Health Statistical Yearbook
– volume: 300
  start-page: 652
  year: 2015
  end-page: 661
  ident: b0190
  article-title: Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China
  publication-title: J. Hazard. Mater.
– volume: 57
  start-page: 143
  year: 2009
  end-page: 155
  ident: b0080
  article-title: Arsenic and fluoride in a loess aquifer in the central area of Argentina
  publication-title: Environ. Geol.
– volume: 58
  start-page: 1399
  year: 2005
  end-page: 1408
  ident: b0120
  article-title: Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula
  publication-title: Chemosphere
– volume: 5
  start-page: 1237
  year: 2008
  end-page: 1251
  ident: b0240
  article-title: Neogene sedimentary evolution of the Guide Basin and its implications on uplift of the NE Tibetan Plateau
  publication-title: China. Himalayan Journal of Sciences
– volume: 579
  start-page: 1
  year: 2019
  end-page: 57
  ident: b0135
  article-title: Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ
  publication-title: J. Hydrol.
– volume: 50
  start-page: 1
  year: 2006
  end-page: 11
  ident: b0250
  article-title: Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India
  publication-title: Environ. Geol.
– volume: 252
  start-page: 580
  year: 2019
  end-page: 590
  ident: b0075
  article-title: Indigenous microbes induced fluoride release from aquifer sediments
  publication-title: Environ. Pollut.
– volume: 135
  start-page: 1
  year: 2013
  end-page: 21
  ident: b0295
  article-title: Arsenic, fluoride and iodine in groundwater of China
  publication-title: J. Geochem. Explor.
– reference: Lang X.J., 2016. The thermal structure and geothermal genesis mechanism in Guide basin. A Dissertation submitted to Chinese Academy of Geological Science for Doctoral Degree, Beijing (in Chinese with English abstract).
– volume: 20
  start-page: 221
  year: 2005
  end-page: 228
  ident: b0105
  article-title: Controls on the genesis of some highfluoride groundwaters in India
  publication-title: Appl. Geochem.
– volume: 75
  start-page: 4476
  year: 2011
  end-page: 4489
  ident: b0055
  article-title: Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation
  publication-title: Geochmica et Cosmochimica Acta
– reference: Xu D.Y., Liu Z.G., Lv S.F., 1976. Three rivers area artesian water prospecting report. The Second Hydrogeological Survey Teams in Qinghai Province (in Chinese). http://geodata.ngac.cn/Data/FileList.aspx?MetaId=F5F68B3518181B60E0430100007F0760&Mdidnt=x00055269.
– volume: 35
  start-page: 33
  year: 2015
  end-page: 39
  ident: b0100
  article-title: Hydrogen and oxygen isotopic analysis of perennial meteoric water in Northwest China
  publication-title: Journal of China Hydrology
– volume: 47
  start-page: 6639
  year: 2013
  end-page: 6649
  ident: b0110
  article-title: pH impact on reductive dechlorination of cis-dichloroethylene by Fe precipitates: an X-ray absorption spectroscopy study
  publication-title: Water Res.
– volume: 34
  start-page: 471
  year: 2005
  end-page: 494
  ident: b0200
  article-title: Hydrogeochemistry and groundwater circulation in the Xi'an geothermal field
  publication-title: China. Geothermics
– volume: 640–641
  start-page: 194
  year: 2018
  end-page: 206
  ident: b0285
  article-title: High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms
  publication-title: Sci. Total Environ.
– volume: 185
  start-page: 4735
  year: 2013
  end-page: 4743
  ident: b0245
  article-title: Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil
  publication-title: Environ. Monit. Assess.
– volume: 36
  start-page: 433
  year: 2006
  end-page: 487
  ident: b0025
  article-title: Fluoride in drinking water: a review on the status and stress effects
  publication-title: Critical Review in Environmental Science and Technology
– volume: 24
  start-page: 129
  year: 2009
  end-page: 197
  ident: b0165
  article-title: Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley
  publication-title: California. Applied Geochemistry
– volume: 574
  start-page: 333
  year: 2019
  end-page: 359
  ident: b0040
  article-title: A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure
  publication-title: J. Hydrol.
– volume: 171
  start-page: 424
  year: 2009
  end-page: 430
  ident: b0205
  article-title: Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area
  publication-title: Sindh. Pakistan. Journal of Hazardous Materials
– volume: 68
  start-page: 289
  year: 2013
  end-page: 305
  ident: b0270
  article-title: Genesis and geochemistry of high fluorine-bearing groundwater from a semi-arid terrain of NW India
  publication-title: Environmental Earth Sciences
– volume: 87
  start-page: 109
  year: 2005
  end-page: 120
  ident: b0090
  article-title: Geochemical characteristics of shallow groundwater in Datong Basin, northwestern China
  publication-title: J. Geochem. Explor.
– volume: 385
  start-page: 272
  year: 2007
  end-page: 283
  ident: b0035
  article-title: Fluorine geochemistry in bedrock groundwater of South Korea
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 641
  year: 2009
  end-page: 649
  ident: b0280
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
– volume: 300
  start-page: 652
  issue: 30
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126372_b0190
  article-title: Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.07.080
– volume: 5
  start-page: 13256
  issue: 17
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126372_b0290
  article-title: A new ion exchange adsorption mechanism between carbonate groups and fluoride ions of basic aluminum carbonate nanospheres
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11018H
– volume: 25
  start-page: 475
  issue: 4
  year: 2003
  ident: 10.1016/j.jhydrol.2021.126372_b0230
  article-title: Potential fluoride contamination in the drinking water of Naranji area, northwest frontier province
  publication-title: Pakistan. Environmental Geochemistry and Health
  doi: 10.1023/B:EGAH.0000004579.54947.e7
– volume: 171
  start-page: 424
  issue: 1–3
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126372_b0205
  article-title: Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area
  publication-title: Sindh. Pakistan. Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2009.06.018
– volume: 17
  start-page: 791
  issue: 4
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126372_b0260
  article-title: An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin
  publication-title: Northern China. Environmental Science-Processes & Impacts
  doi: 10.1039/C4EM00584H
– volume: 262
  start-page: 960
  issue: 15
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0010
  article-title: Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.08.005
– volume: 34
  start-page: 471
  issue: 4
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126372_b0200
  article-title: Hydrogeochemistry and groundwater circulation in the Xi'an geothermal field
  publication-title: China. Geothermics
  doi: 10.1016/j.geothermics.2005.06.004
– volume: 75
  start-page: 4476
  issue: 16
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126372_b0055
  article-title: Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation
  publication-title: Geochmica et Cosmochimica Acta
  doi: 10.1016/j.gca.2011.05.028
– volume: 579
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126372_b0135
  article-title: Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7Li isotopes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124211
– ident: 10.1016/j.jhydrol.2021.126372_b0305
– volume: 252
  start-page: 580
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126372_b0075
  article-title: Indigenous microbes induced fluoride release from aquifer sediments
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.05.118
– volume: 106
  start-page: 85
  issue: 1
  year: 2004
  ident: 10.1016/j.jhydrol.2021.126372_b0170
  article-title: Groundwater quality in some villages of Haryana, India: focus on fluoride and fluorosis
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2003.09.007
– volume: 41
  start-page: 175
  issue: 2
  year: 1977
  ident: 10.1016/j.jhydrol.2021.126372_b0180
  article-title: Fluorite solubility equilibria in selected geothermal waters
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(77)90224-1
– volume: 57
  start-page: 143
  issue: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126372_b0080
  article-title: Arsenic and fluoride in a loess aquifer in the central area of Argentina
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-008-1290-4
– volume: 185
  start-page: 4735
  issue: 6
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0245
  article-title: Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-012-2900-x
– volume: 57
  start-page: 479
  issue: 5
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126372_b0210
  article-title: Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic
  publication-title: J. Afr. Earth Sc.
  doi: 10.1016/j.jafrearsci.2009.12.005
– volume: 50
  start-page: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2021.126372_b0250
  article-title: Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-005-0167-z
– volume: 550–553
  start-page: 2515
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126372_b0145
  article-title: Study on Formation Mechanism of High-Fluoride Groundwater in Guide
  publication-title: Advanced Materials Research
– volume: 43
  start-page: 731
  issue: 6
  year: 2003
  ident: 10.1016/j.jhydrol.2021.126372_b0225
  article-title: Inferring the chemical parameters for the dissolution of fluoride in groundwater
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-002-0672-2
– volume: 37
  start-page: 36
  issue: 2
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126372_b0235
  article-title: The distribution and geochemistry of geothermal groundwater bearing fluorine and arsenic in the guide basin
  publication-title: Hydrogeology & Engineering Geology
– volume: 75
  start-page: 1186
  issue: 16
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126372_b0315
  article-title: Hydrogeochemical processes occurring in the hydrothermal systems of the Gonghe-Guide basin, northwestern China: critical insights from a principal components analysis (PCA)
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-5991-9
– volume: 574
  start-page: 333
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126372_b0040
  article-title: A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.04.033
– volume: 20
  start-page: 221
  issue: 2
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126372_b0105
  article-title: Controls on the genesis of some highfluoride groundwaters in India
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2004.07.002
– volume: 46
  start-page: 1207
  issue: 11
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126372_b0155
  article-title: Biogeochemical characteristics of Kuan-Tzu-Ling, ChungLun and Bao-Lai hot springs in southern Taiwan
  publication-title: Journal of Environmental Science & Health Part A
  doi: 10.1080/10934529.2011.598788
– volume: 68
  start-page: 289
  issue: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0270
  article-title: Genesis and geochemistry of high fluorine-bearing groundwater from a semi-arid terrain of NW India
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-012-1739-3
– ident: 10.1016/j.jhydrol.2021.126372_b0130
– volume: 15
  start-page: 589
  issue: 3
  year: 2007
  ident: 10.1016/j.jhydrol.2021.126372_b0265
  article-title: Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka
  publication-title: India. Hydrogeology Journal
  doi: 10.1007/s10040-006-0107-3
– volume: 93
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2021.126372_b0095
  article-title: Geochemical processes controlling the elevated fluoride concentration in groundwaters of the Taiyuan Basin, Northern China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2006.07.001
– volume: 47
  start-page: 5088
  issue: 14
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0160
  article-title: Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.05.049
– volume: 135
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0295
  article-title: Arsenic, fluoride and iodine in groundwater of China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2013.10.012
– volume: 35
  start-page: 33
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126372_b0100
  article-title: Hydrogen and oxygen isotopic analysis of perennial meteoric water in Northwest China
  publication-title: Journal of China Hydrology
– volume: 27
  start-page: 2187
  issue: 11
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126372_b0085
  article-title: Spatial variation in arsenic and fluoride concentration of shallow groundwater from the town of Shahai in the Hetao basin
  publication-title: Inner Mongolia. Applied Geochemistry
  doi: 10.1016/j.apgeochem.2012.01.016
– volume: 26
  start-page: 540
  issue: 4
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126372_b0050
  article-title: Controls on elevated fluoride and arsenic concentration in groundwater from the Yuncheng Basin
  publication-title: China. Applied Geochemistry
  doi: 10.1016/j.apgeochem.2011.01.012
– volume: 25
  start-page: 21
  year: 2002
  ident: 10.1016/j.jhydrol.2021.126372_b0060
  article-title: Geothermal origin pollution in Akarcay basin (Afyon): water and sediment pollution in 1
  publication-title: Akarcay River. Geosciences
– ident: 10.1016/j.jhydrol.2021.126372_b0300
– volume: 385
  start-page: 272
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2021.126372_b0035
  article-title: Fluorine geochemistry in bedrock groundwater of South Korea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.06.038
– volume: 5
  start-page: 1237
  issue: 7
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126372_b0240
  article-title: Neogene sedimentary evolution of the Guide Basin and its implications on uplift of the NE Tibetan Plateau
  publication-title: China. Himalayan Journal of Sciences
– volume: 58
  start-page: 1399
  issue: 10
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126372_b0120
  article-title: Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.10.002
– volume: 135
  start-page: 79
  issue: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0255
  article-title: Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.09.003
– volume: 24
  start-page: 641
  issue: 4
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126372_b0280
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.12.015
– volume: 24
  start-page: 129
  issue: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126372_b0165
  article-title: Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley
  publication-title: California. Applied Geochemistry
  doi: 10.1016/j.apgeochem.2008.11.009
– volume: 28
  start-page: 1323
  issue: 8
  year: 1964
  ident: 10.1016/j.jhydrol.2021.126372_b0065
  article-title: Natural hydrothermal systems and experimental hot-water/rock interactions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(64)90132-2
– volume: 77
  start-page: 495
  issue: 13
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126372_b0275
  article-title: On the mechanism controlling fluoride concentration in groundwaters of the south of the Province of Buenos Aires, Argentina: adsorption or solubility?
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-018-7678-x
– volume: 26
  start-page: 140
  issue: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0150
  article-title: Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-015-0600-5
– volume: 25
  start-page: 214
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126372_b0215
  article-title: Geothermal systems of low temperature in mexican highlands: alternative uses and associated risks
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2015.04.029
– volume: 163
  start-page: 944
  issue: 3
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126372_b0310
  article-title: Shallow bias in Neogene palaeomagnetic directions from the Guide Basin, NE Tibet, caused by inclination error
  publication-title: Geophysical Journal Royal Astronomical Society, Geophysical Journal International
  doi: 10.1111/j.1365-246X.2005.02802.x
– volume: 508
  start-page: 155
  issue: 10
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126372_b0140
  article-title: Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.11.045
– volume: 54
  start-page: 1313
  issue: 6
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126372_b0020
  article-title: The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopiann rift and adjacent highlands
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0914-4
– volume: 640–641
  start-page: 194
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126372_b0285
  article-title: High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.255
– volume: vol. 6
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b9000
– volume: 103
  start-page: 13
  issue: 1–2
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126372_b0005
  article-title: Groundwater contamination mechanism in a geothermal field: A case study of Balcova
  publication-title: Turkey. Journal of Contaminant Hydrology
  doi: 10.1016/j.jconhyd.2008.08.006
– volume: 10
  start-page: 988
  issue: 8
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126372_b0220
  article-title: Experimental Study on the Dissolution Behavior of Calcium Fluoride
  publication-title: Metals
  doi: 10.3390/met10080988
– volume: 546
  start-page: 150
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126372_b0030
  article-title: Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.12.036
– volume: 133
  start-page: 1702
  issue: 1461
  year: 1961
  ident: 10.1016/j.jhydrol.2021.126372_b0045
  article-title: Isotopic variations with meteoric water
  publication-title: Science
  doi: 10.1126/science.133.3465.1702
– volume: 36
  start-page: 433
  issue: 6
  year: 2006
  ident: 10.1016/j.jhydrol.2021.126372_b0025
  article-title: Fluoride in drinking water: a review on the status and stress effects
  publication-title: Critical Review in Environmental Science and Technology
  doi: 10.1080/10643380600678112
– volume: 87
  start-page: 109
  issue: 3
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126372_b0090
  article-title: Geochemical characteristics of shallow groundwater in Datong Basin, northwestern China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2005.08.002
– volume: 164
  start-page: 657
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126372_b0125
  article-title: Coupling fractionation and batch desorption to understand arsenic and fluoride cocontamination in the aquifer system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.08.075
– volume: 69
  start-page: 1
  issue: 6
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0115
  article-title: Impacts of subsurface heat storage on aquifer hydrogeochemistry
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-012-2037-9
– volume: 10
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126372_b0195
  article-title: Identification of processes mobilizing organic molecules and arsenic in geothermal confined groundwater from Pliocene aquifers
  publication-title: Water Res.
– volume: 42
  start-page: 3662
  issue: 10
  year: 2008
  ident: 10.1016/j.jhydrol.2021.126372_b0015
  article-title: Statistical modeling of global geogenic fluoride contamination in groundwaters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071958y
– volume: 53
  start-page: 795
  issue: 4
  year: 2007
  ident: 10.1016/j.jhydrol.2021.126372_b0070
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0692-z
– volume: 70
  start-page: 640
  issue: 3
  year: 2006
  ident: 10.1016/j.jhydrol.2021.126372_b0185
  article-title: Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0–9.5 and 25°C
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2005.10.018
– year: 2010
  ident: 10.1016/j.jhydrol.2021.126372_b0175
– volume: 47
  start-page: 6639
  issue: 17
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126372_b0110
  article-title: pH impact on reductive dechlorination of cis-dichloroethylene by Fe precipitates: an X-ray absorption spectroscopy study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.08.035
SSID ssj0000334
Score 2.5463927
Snippet •Natural high-F– groundwater mainly occurs in confined aquifers in the Guide basin.•Along the flow path, F– is gradually enriched in groundwater in confined...
High fluoride (F–) concentrations in groundwater affected by geothermal activity have been reported worldwide, but the genesis mechanism is not adequately...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126372
SubjectTerms basins
calcium
cation exchange
China
Confined aquifer
desorption
fluorides
Fluorine
Groundwater
Guide basin
heat transfer
Hydrogeochemical process
hydrogeochemistry
sediments
water solubility
Title Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater
URI https://dx.doi.org/10.1016/j.jhydrol.2021.126372
https://www.proquest.com/docview/2551926969
Volume 598
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMIge9CI-8U0Er93dpmnSHEWUVcGTireQNlPdRVtZdxEvfrszbaooiCD0MiHTlpnJZIZ5MXbkSjAgdRoZABVJBWWUa59EhcmL1OsyS6HJ8r1Swxt5cZfezbGTrhaG0iqD7m91eqOtw0o_ULP_PBpRja8QsTJSUNMz9MWpgl1qkvLe-1eaxyBJZNcxnHZ_VfH0x73xw5uf1BSBEHEvFirR4rf76Yembq6fsxW2HOxGftz-2iqbg2qNLYYR5g9v6-x2SB-5B5qA1bQA4K7yHGGy8J4QDEnpL7yuOK7xz7JFXpecuhbz8nFWT0YeOJV6VP4VzdDJBrs5O70-GUZhaELkEpVOIxognTtZCLzZnVY5-n9QIpvStCjAOA2FVnLgAPfo2GfKG3yMHsQZJMLrItlk81VdwRbjzgjhSuMyl8VNfFA6BWmMRzwXEjXBNpMdqWwROorTYItH26WOjW2gsCUK25bC26z3ifbcttT4CyHr-GC_yYZFtf8X6mHHN4vnhoIhroJ69mLRlULjVhlldv7_-l22RFCbvrvH5qeTGeyjkTLNDxopPGALx-eXw6sPUzDonQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONALammr8ih1pXLM7sZx7PjQQ1WKlkc5AeLmOvGk7IomaB9Ce-mf6h_sOHFARUJISEi52Imd5Bt7HvI8AD7bEjUKlUYaUUZCYhnlyiVRofMidarMUmy8fE_k8EwcXqQXS_C3i4XxbpWB97c8veHWoacf0Oxfj0Y-xpfzWGrBfdIzssWDZ-URLm7Ibpt-OdgjIu9yvv_99NswCqUFIpvIdBb5Msu5FQUn-WeVzMlKwpJ-Jk2LArVVWCgpBhbpGRW7TDpNl1aDOMOEO1UkNO8LWBHELnzZhN6fO7-SQZKILkW5_7y7sKH-uDe-XLhJ7Y88eNyLuUwUf0gg3hMNjbzbfwVrQVFlX1ssXsMSVuuwGmqmXy7ewPnQv-QX-pJbTc4BZivHqO1Vyt_UDF7wU1ZXjPrYbZwkq0vm0ySz8mpeT0YOmY8tqdwN6b2Tt3D2LFC-g-WqrvA9MKs5t6W2mc3i5kBSWIlpTDwl54JYzwaIDipThBTmvpLGlel81cYmIGw8wqZFeAN6t8Ou2xwejw3IOjqY_xajITnz2NBPHd0MbVR_-mIrrOdTQ7YbadNSS7359Ok_wurw9MexOT44OdqCl_5O6zu8DcuzyRw_kIY0y3eaFcng53NvgX9jSyTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogeochemical+and+geothermal+controls+on+the+formation+of+high+fluoride+groundwater&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wang%2C+Zhen&rft.au=Guo%2C+Huaming&rft.au=Xing%2C+Shiping&rft.au=Liu%2C+Haiyan&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=598&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126372&rft.externalDocID=S0022169421004194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon