Accelerated glacier mass loss with atmospheric changes on Mt. Yulong, Southeastern Tibetan Plateau

•12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier retreat and deficit are attributed to regional warming. Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet o...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 603; p. 126931
Main Authors Yan, Xingguo, Ma, Jinzhu, Ma, Xiaoyi, Wang, Shijin, Chen, Peiyuan, He, Yuanqing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier retreat and deficit are attributed to regional warming. Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we evaluated the retreat status of Baishui River Glacier No. 1 (reference glacier of Yulong Snow Mountain) during the 1951–2020 period and explored its response to climate change. In particular, based on 12-years of continuous in-situ measurements, we presented the first comprehensive set of mass balance for the Baishui River Glacier No. 1 from 2008 to 2020. The result shows that the Baishui River Glacier No. 1 suffered sustained shrinkage in terms of both its area (which fell by 36 %) and reserves (with cumulative mass losses over 32.38 ± 3.62 m w.e.) over the past 70-years. The terminus rose from 4100 m asl in 1982 to 4395 m asl in 2017. The equilibrium line altitude has risen above the glacier’s summit since 2010, and the accumulation zone disappeared. Since the 1980s, the acceleration of glacier retreat has become established, and has been further strengthened after 2000, this corresponds to the process of climate warming. In-situ measurements showed that any glacial accumulation during the non-monsoon period (with a multiyear mean of 0.53 ± 0.08 m w.e.) fell far short of offsetting the ablation driven by both air temperature and liquid precipitation in the monsoon season (with a multiyear mean of 2.08 ± 0.20 m w.e.), meaning that the glacier could not attain a state of equilibrium, and quickly lost a significant mass (with multiyear mean losses of 1.54 ± 0.30 m w.e.). Given that, the current atmospheric conditions are unlikely to allow Baishui River Glacier No. 1 to suppress its loss trend.
AbstractList Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we evaluated the retreat status of Baishui River Glacier No. 1 (reference glacier of Yulong Snow Mountain) during the 1951–2020 period and explored its response to climate change. In particular, based on 12-years of continuous in-situ measurements, we presented the first comprehensive set of mass balance for the Baishui River Glacier No. 1 from 2008 to 2020. The result shows that the Baishui River Glacier No. 1 suffered sustained shrinkage in terms of both its area (which fell by 36 %) and reserves (with cumulative mass losses over 32.38 ± 3.62 m w.e.) over the past 70-years. The terminus rose from 4100 m asl in 1982 to 4395 m asl in 2017. The equilibrium line altitude has risen above the glacier’s summit since 2010, and the accumulation zone disappeared. Since the 1980s, the acceleration of glacier retreat has become established, and has been further strengthened after 2000, this corresponds to the process of climate warming. In-situ measurements showed that any glacial accumulation during the non-monsoon period (with a multiyear mean of 0.53 ± 0.08 m w.e.) fell far short of offsetting the ablation driven by both air temperature and liquid precipitation in the monsoon season (with a multiyear mean of 2.08 ± 0.20 m w.e.), meaning that the glacier could not attain a state of equilibrium, and quickly lost a significant mass (with multiyear mean losses of 1.54 ± 0.30 m w.e.). Given that, the current atmospheric conditions are unlikely to allow Baishui River Glacier No. 1 to suppress its loss trend.
•12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier retreat and deficit are attributed to regional warming. Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we evaluated the retreat status of Baishui River Glacier No. 1 (reference glacier of Yulong Snow Mountain) during the 1951–2020 period and explored its response to climate change. In particular, based on 12-years of continuous in-situ measurements, we presented the first comprehensive set of mass balance for the Baishui River Glacier No. 1 from 2008 to 2020. The result shows that the Baishui River Glacier No. 1 suffered sustained shrinkage in terms of both its area (which fell by 36 %) and reserves (with cumulative mass losses over 32.38 ± 3.62 m w.e.) over the past 70-years. The terminus rose from 4100 m asl in 1982 to 4395 m asl in 2017. The equilibrium line altitude has risen above the glacier’s summit since 2010, and the accumulation zone disappeared. Since the 1980s, the acceleration of glacier retreat has become established, and has been further strengthened after 2000, this corresponds to the process of climate warming. In-situ measurements showed that any glacial accumulation during the non-monsoon period (with a multiyear mean of 0.53 ± 0.08 m w.e.) fell far short of offsetting the ablation driven by both air temperature and liquid precipitation in the monsoon season (with a multiyear mean of 2.08 ± 0.20 m w.e.), meaning that the glacier could not attain a state of equilibrium, and quickly lost a significant mass (with multiyear mean losses of 1.54 ± 0.30 m w.e.). Given that, the current atmospheric conditions are unlikely to allow Baishui River Glacier No. 1 to suppress its loss trend.
ArticleNumber 126931
Author Ma, Jinzhu
He, Yuanqing
Wang, Shijin
Yan, Xingguo
Ma, Xiaoyi
Chen, Peiyuan
Author_xml – sequence: 1
  givenname: Xingguo
  surname: Yan
  fullname: Yan, Xingguo
  organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
– sequence: 2
  givenname: Jinzhu
  surname: Ma
  fullname: Ma, Jinzhu
  email: jzma@lzu.edu.cn
  organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
– sequence: 3
  givenname: Xiaoyi
  surname: Ma
  fullname: Ma, Xiaoyi
  organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
– sequence: 4
  givenname: Shijin
  surname: Wang
  fullname: Wang, Shijin
  email: wangshijin@lzb.ac.cn
  organization: Yulong Snow Mountain Glacier and Environment Observation and Research Station/State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 5
  givenname: Peiyuan
  surname: Chen
  fullname: Chen, Peiyuan
  organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
– sequence: 6
  givenname: Yuanqing
  surname: He
  fullname: He, Yuanqing
  organization: Yulong Snow Mountain Glacier and Environment Observation and Research Station/State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
BookMark eNqFkE9LAzEQxYNUsFY_gpCjB3dNNttsiwcpxX9QUVAPnkI2mXZT0qQmWaXf3kg9eXEOMzDMe8z7HaOB8w4QOqOkpITyy3W57nY6eFtWpKIlrfiU0QM0pJNmWlQNaQZoSEhVFZRP6yN0HOOa5GKsHqJ2phRYCDKBxisrlYGANzJGbH1uXyZ1WKaNj9sOglFYddKtIGLv8GMq8XtvvVtd4Bffpw5kTBAcfjUtJOnws82usj9Bh0tpI5z-zhF6u715nd8Xi6e7h_lsUUjGx6lgatnyCa0b3bT5fyVVVdeMM1ZxptkEWspBQl23qtGMEcqIZrxuW73MWyBTNkLne99t8B89xCQ2JuZwVjrwfRTZh3NCx2yST6_2pyrklAGWQpkkk_EuBWmsoET8kBVr8UtW_JAVe7JZPf6j3gazkWH3r-56r4NM4TODFjHjdgq0CaCS0N784_ANlL2ZNA
CitedBy_id crossref_primary_10_1007_s00024_022_03024_w
crossref_primary_10_1016_j_jhydrol_2022_128710
crossref_primary_10_3390_atmos15020231
crossref_primary_10_3389_feart_2023_1165390
crossref_primary_10_3389_feart_2023_1017207
crossref_primary_10_3390_su16167118
crossref_primary_10_3390_rs16030571
crossref_primary_10_1016_j_rcar_2024_12_004
crossref_primary_10_1017_aog_2023_48
crossref_primary_10_1080_15230430_2024_2356671
crossref_primary_10_3390_atmos16010110
Cites_doi 10.3189/2015JoG15J017
10.1002/2017GL076333
10.1038/s41558-020-0849-2
10.1017/jog.2021.22
10.5194/tc-7-569-2013
10.3389/feart.2019.00363
10.1007/s00382-016-3253-x
10.1007/s00382-015-2872-y
10.1038/nclimate2563
10.1109/TGRS.2020.3035561
10.5194/tc-15-1889-2021
10.1038/ngeo2999
10.1007/s10584-009-9733-9
10.3389/feart.2019.00096
10.5194/tc-11-2463-2017
10.1111/j.0435-3676.1999.00106.x
10.1002/2015RG000504
10.1029/2020AV000291
10.5194/tc-7-1227-2013
10.1029/2020JD033956
10.1002/2017GL074706
10.1016/j.jhydrol.2019.124010
10.1016/j.scitotenv.2020.144315
10.1007/s11434-010-4167-3
10.5194/tc-12-759-2018
10.1002/2016GL072094
10.1029/2019WR026423
10.1177/0309133311399494
10.1016/j.quaint.2015.03.055
10.1016/j.gloplacha.2010.04.003
10.1007/s10113-020-01624-7
10.5194/tc-12-103-2018
10.1038/s41467-019-12039-2
10.1016/j.rse.2014.04.025
10.3189/2015JoG15J056
10.1007/s12583-010-0012-5
10.1038/nclimate1580
10.1029/2019JD031751
10.1029/2017JD028120
10.1038/s41612-018-0030-z
10.1016/j.quascirev.2016.04.008
10.3189/002214309789471030
10.1038/srep29723
10.1016/j.jhydrol.2012.04.014
10.1007/s12583-010-0016-1
10.1191/0309133302pp326ra
10.5194/tc-10-133-2016
10.1016/j.quascirev.2009.08.005
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2021.126931
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2021_126931
S0022169421009811
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a365t-3cfb68147d7b931cac2443633263d38eb16eae44bc7d330130d364bbdfae4e093
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 00:35:38 EDT 2025
Tue Jul 01 01:53:33 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Fri Feb 23 02:45:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mass balance
Temperate glacier
Liquid precipitation
Glaciological method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-3cfb68147d7b931cac2443633263d38eb16eae44bc7d330130d364bbdfae4e093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636601538
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636601538
crossref_citationtrail_10_1016_j_jhydrol_2021_126931
crossref_primary_10_1016_j_jhydrol_2021_126931
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Solomina, Bradley, Jomelli, Geirsdottir, Kaufman, Koch, McKay, Masiokas, Miller, Nesje, Nicolussi, Owen, Putnam, Wanner, Wiles, Yang (b0175) 2016; 149
He, Pu, Li, Zhu, Wang, Zhang, Wang, Xin, Theakstone, Du (b0060) 2010; 21
Zhang (b0285) 2005
Pang, He, Zhang, Li, Theakstone (b0130) 2010; 21
World Glacier Monitoring Service (WGMS), 2019. Fluctuations of Glaciers Database https
Zhu, Yang, Yao, Tian, Thompson, Zhao (b0300) 2021; 126
Roe, Christian, Marzeion (b0155) 2021; 15
Huss, Bauder, Linsbauer, Gabbi, Kappenberger, Steinegger, Farinotti (b0090) 2021; 67
Braithwaite (b0015) 2002; 26
Beniston, Farinotti, Stoffel, Andreassen, Coppola, Eckert, Fantini, Giacona, Hauck, Huss, Huwald, Lehning, López-Moreno, Magnusson, Marty, Morán-Tejéda, Morin, Naaim, Provenzale, Rabatel, Six, Stötter, Strasser, Terzago, Vincent (b0005) 2018; 12
Zemp, Frey, Gärtner-Roer, Nussbaumer, Hoelzle, Paul, Haeberli, Denzinger, Ahlstrøm, Anderson, Bajracharya, Baroni, Braun, Cáceres, Casassa, Cobos, Dávila, Delgado Granados, Demuth, Espizua, Fischer, Fujita, Gadek, Ghazanfar, Ove Hagen, Holmlund, Karimi, Li, Pelto, Pitte, Popovnin, Portocarrero, Prinz, Sangewar, Severskiy, Sigurđsson, Soruco, Usubaliev, Vincent (b0280) 2015; 61
Hubbard, Christoffersen, Doyle, Chudley, Schoonman, Law, Bougamont (b0075) 2021; 2
Dyurgerov, Meier, Bahr (b0045) 2009; 55
Li, Su (b0110) 1996
Vincent, Ramanathan, Wagnon, Dobhal, Linda, Berthier, Sharma, Arnaud, Azam, Jose, Gardelle (b0205) 2013; 7
Kong, Na, Fink, Zhao, Xiao (b0105) 2009; 28
Wu, Liu, Jiang, Xu, Wei (b0240) 2018; 1–34
Pepin, Bradley, Diaz, Baraer, Caceres, Forsythe, Fowler, Greenwood, Hashmi, Liu, Miller, Ning, Ohmura, Palazzi, Rangwala, Schöner, Severskiy, Shahgedanova, Wang, Williamson, Yang (b0135) 2015; 5
Wu, Liu, Jiang, Xu, Wei, Guo (b0245) 2018; 12
.
Gao, Chen, Lettenmaier, Xu, Xiao, Li (b0055) 2018; 1
Shi, Liu, Ye, Liu, Wang (b0165) 2008
Kaser, Fountain, Jansson (b0100) 2003; 2003
Colgan, Rajaram, Abdalati, McCutchan, Mottram, Moussavi, Grigsby (b0030) 2016; 54
Yan, Ma, Ma, Chen, Wang, Wei, Zhu, Zhang (b0255) 2021; 760
Wigmore, Mark (b0225) 2017; 11
Prinz, Nicholson, Mölg, Gurgiser, Kaser (b0140) 2016; 10
Cao, Pan, Wen, Guan, Li (b0025) 2019; 578
Thibert, Dkengne Sielenou, Vionnet, Eckert, Vincent (b0190) 2018; 45
Yang, Guo, Yao, Zhu, Wang (b0260) 2016; 47
Immerzeel, Kraaijenbrink, Shea, Shrestha, Pellicciotti, Bierkens, De Jong (b0095) 2014; 150
Medwedeff, Roe (b0125) 2017; 48
Brun, Berthier, Wagnon, Kääb, Treichler (b0020) 2017; 10
Wang, Che, Pang, Du, Zhang (b0215) 2020; 20
Hirabayashi, Nakano, Zhang, Watanabe, Tanoue, Kanae (b0065) 2016; 6
Zhang, Pan, Cao, Wang, Cui, Cao (b0295) 2015; 371
Shean, Bhushan, Montesano, Rounce, Arendt, Osmanoglu (b0160) 2020; 7
Zhang, Hirabayashi, Liu (b0290) 2012; 444–445
Vincent, Fischer, Mayer, Bauder, Galos, Funk, Thibert, Six, Braun, Huss (b0210) 2017; 44
Shi, Risi, Pu, Lacour, Kong, Wang, He, Xia (b0170) 2020; 125
Swapna, Jyoti, Krishnan, Sandeep, Griffies (b0185) 2017; 44
Yao, Thompson, Yang, Yu, Gao, Guo, Yang, Duan, Zhao, Xu, Pu, Lu, Xiang, Kattel, Joswiak (b0265) 2012; 2
Wouters, Gardner, Moholdt (b0235) 2019; 7
Xie, Han, Liu, Liu (b0250) 1999; 81
Su, Shi (b0180) 2002; 97-98
Qin, Yang, Liang, Guo (b0150) 2009; 97
Zemp, Thibert, Huss, Stumm, Rolstad Denby, Nuth, Nussbaumer, Moholdt, Mercer, Mayer, Joerg, Jansson, Hynek, Fischer, Escher-Vetter, Elvehøy, Andreassen (b0275) 2013; 7
Tuckett, Ely, Sole, Livingstone, Davison, Melchior van Wessem, Howard (b0195) 2019; 10
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H.I., 2019. Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
Hugonnet, McNabb, Berthier, Menounos, Nuth, Girod, Farinotti, Huss, Dussaillant, Brun, Kääb (b0080) 2021; 592
Huintjes, Neckel, Hochschild, Schneider (b0085) 2015; 61
Pu, Wang, Kong, Shi, Kang, Huang, He, Wang, Lee, Cuntz (b0145) 2020; 56
Vargo, Anderson, Dadić, Horgan, Mackintosh, King, Lorrey (b0200) 2020; 10
Cuffey, Paterson (b0035) 2010
Fugger, Fyffe, Fatichi, Miles, McCarthy, Shaw, Ding, Yang, Wagnon, Immerzeel, Liu, Pellicciotti (b0050) 2021
You, Kang, Pepin, Flügel, Sanchez-Lorenzo, Yan, Zhang (b0270) 2010; 72
Wang, He, Pu, Jiang, Jing (b0220) 2010; 55
Li, Yao, Yang, Yu, Zhu (b0115) 2018; 123
Liu, Wang, He, Li, Wang, Wei, Che (b0120) 2020; 12
Diolaiuti, Maragno, D'Agata, Smiraglia, Bocchiola (b0040) 2011; 35
Bolch, Shea, Liu, Azam, Gao, Gruber, Immerzeel, Kulkarni, Li, Tahir, Zhang, Zhang (b0010) 2019
Pang (10.1016/j.jhydrol.2021.126931_b0130) 2010; 21
Roe (10.1016/j.jhydrol.2021.126931_b0155) 2021; 15
Wigmore (10.1016/j.jhydrol.2021.126931_b0225) 2017; 11
Wu (10.1016/j.jhydrol.2021.126931_b0245) 2018; 12
Medwedeff (10.1016/j.jhydrol.2021.126931_b0125) 2017; 48
Brun (10.1016/j.jhydrol.2021.126931_b0020) 2017; 10
Shi (10.1016/j.jhydrol.2021.126931_b0165) 2008
Cuffey (10.1016/j.jhydrol.2021.126931_b0035) 2010
Liu (10.1016/j.jhydrol.2021.126931_b0120) 2020; 12
10.1016/j.jhydrol.2021.126931_b0230
Bolch (10.1016/j.jhydrol.2021.126931_b0010) 2019
Fugger (10.1016/j.jhydrol.2021.126931_b0050) 2021
10.1016/j.jhydrol.2021.126931_b0070
Pu (10.1016/j.jhydrol.2021.126931_b0145) 2020; 56
Shean (10.1016/j.jhydrol.2021.126931_b0160) 2020; 7
Gao (10.1016/j.jhydrol.2021.126931_b0055) 2018; 1
Yang (10.1016/j.jhydrol.2021.126931_b0260) 2016; 47
You (10.1016/j.jhydrol.2021.126931_b0270) 2010; 72
Colgan (10.1016/j.jhydrol.2021.126931_b0030) 2016; 54
Li (10.1016/j.jhydrol.2021.126931_b0110) 1996
Braithwaite (10.1016/j.jhydrol.2021.126931_b0015) 2002; 26
Zhang (10.1016/j.jhydrol.2021.126931_b0290) 2012; 444–445
Tuckett (10.1016/j.jhydrol.2021.126931_b0195) 2019; 10
Hugonnet (10.1016/j.jhydrol.2021.126931_b0080) 2021; 592
Zemp (10.1016/j.jhydrol.2021.126931_b0280) 2015; 61
Prinz (10.1016/j.jhydrol.2021.126931_b0140) 2016; 10
Thibert (10.1016/j.jhydrol.2021.126931_b0190) 2018; 45
Vargo (10.1016/j.jhydrol.2021.126931_b0200) 2020; 10
Pepin (10.1016/j.jhydrol.2021.126931_b0135) 2015; 5
Hirabayashi (10.1016/j.jhydrol.2021.126931_b0065) 2016; 6
Zhang (10.1016/j.jhydrol.2021.126931_b0295) 2015; 371
Immerzeel (10.1016/j.jhydrol.2021.126931_b0095) 2014; 150
Xie (10.1016/j.jhydrol.2021.126931_b0250) 1999; 81
Solomina (10.1016/j.jhydrol.2021.126931_b0175) 2016; 149
Vincent (10.1016/j.jhydrol.2021.126931_b0205) 2013; 7
Kong (10.1016/j.jhydrol.2021.126931_b0105) 2009; 28
Wang (10.1016/j.jhydrol.2021.126931_b0215) 2020; 20
Swapna (10.1016/j.jhydrol.2021.126931_b0185) 2017; 44
Zhu (10.1016/j.jhydrol.2021.126931_b0300) 2021; 126
Huss (10.1016/j.jhydrol.2021.126931_b0090) 2021; 67
Wu (10.1016/j.jhydrol.2021.126931_b0240) 2018; 1–34
Yao (10.1016/j.jhydrol.2021.126931_b0265) 2012; 2
Wouters (10.1016/j.jhydrol.2021.126931_b0235) 2019; 7
Vincent (10.1016/j.jhydrol.2021.126931_b0210) 2017; 44
Shi (10.1016/j.jhydrol.2021.126931_b0170) 2020; 125
He (10.1016/j.jhydrol.2021.126931_b0060) 2010; 21
Huintjes (10.1016/j.jhydrol.2021.126931_b0085) 2015; 61
Zemp (10.1016/j.jhydrol.2021.126931_b0275) 2013; 7
Diolaiuti (10.1016/j.jhydrol.2021.126931_b0040) 2011; 35
Cao (10.1016/j.jhydrol.2021.126931_b0025) 2019; 578
Qin (10.1016/j.jhydrol.2021.126931_b0150) 2009; 97
Zhang (10.1016/j.jhydrol.2021.126931_b0285) 2005
Wang (10.1016/j.jhydrol.2021.126931_b0220) 2010; 55
Li (10.1016/j.jhydrol.2021.126931_b0115) 2018; 123
Hubbard (10.1016/j.jhydrol.2021.126931_b0075) 2021; 2
Yan (10.1016/j.jhydrol.2021.126931_b0255) 2021; 760
Beniston (10.1016/j.jhydrol.2021.126931_b0005) 2018; 12
Kaser (10.1016/j.jhydrol.2021.126931_b0100) 2003; 2003
Dyurgerov (10.1016/j.jhydrol.2021.126931_b0045) 2009; 55
Su (10.1016/j.jhydrol.2021.126931_b0180) 2002; 97-98
References_xml – year: 2010
  ident: b0035
  article-title: The Physics of Glaciers
– volume: 55
  start-page: 710
  year: 2009
  end-page: 716
  ident: b0045
  article-title: A new index of glacier area change: a tool for glacier monitoring
  publication-title: J. Glaciol.
– volume: 10
  start-page: 133
  year: 2016
  end-page: 148
  ident: b0140
  article-title: Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya
  publication-title: Cryosphere
– volume: 55
  start-page: 3810
  year: 2010
  end-page: 3817
  ident: b0220
  article-title: Variations in Equilibrium Line Altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years
  publication-title: Chinese Sci. Bull.
– volume: 54
  start-page: 119
  year: 2016
  end-page: 161
  ident: b0030
  article-title: Glacier crevasses: observations, models, and mass balance implications
  publication-title: Rev. Geophys.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 23
  ident: b0120
  article-title: Estimation of ice thickness and the features of subglacial media detected by ground penetrating radar at the baishui river glacier no. 1 in Mt. Yulong, China
  publication-title: Remote Sens.
– volume: 21
  start-page: 179
  year: 2010
  end-page: 188
  ident: b0130
  article-title: Observed glaciohydrological changes in China’s typical monsoonal temperate glacier region since 1980s
  publication-title: J. Earth Sci.
– volume: 7
  start-page: 569
  year: 2013
  end-page: 582
  ident: b0205
  article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss
  publication-title: Cryosph.
– reference: World Glacier Monitoring Service (WGMS), 2019. Fluctuations of Glaciers Database https://
– volume: 7
  start-page: 1227
  year: 2013
  end-page: 1245
  ident: b0275
  article-title: Reanalysing glacier mass balance measurement series
  publication-title: Cryosphere
– volume: 126
  year: 2021
  ident: b0300
  article-title: The influence of key climate variables on mass balance of Naimona’nyi Glacier on a North-Facing Slope in the Western Himalayas
  publication-title: J. Geophys. Res. Atmos.
– volume: 10
  year: 2019
  ident: b0195
  article-title: Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt
  publication-title: Nat. Commun.
– volume: 44
  start-page: 1376
  year: 2017
  end-page: 1383
  ident: b0210
  article-title: Common climatic signal from glaciers in the European Alps over the last 50 years
  publication-title: Geophys. Res. Lett.
– volume: 10
  start-page: 856
  year: 2020
  end-page: 861
  ident: b0200
  article-title: Anthropogenic warming forces extreme annual glacier mass loss
  publication-title: Nat. Clim. Chang.
– volume: 20
  year: 2020
  ident: b0215
  article-title: Accelerated changes of glaciers in the Yulong Snow Mountain, Southeast Qinghai-Tibetan Plateau
  publication-title: Reg. Environ. Chang.
– year: 2021
  ident: b0050
  article-title: Understanding monsoon controls on the energy and mass balance of Himalayan glacier (in review)
  publication-title: Cryosph
– volume: 45
  start-page: 817
  year: 2018
  end-page: 825
  ident: b0190
  article-title: Causes of glacier melt extremes in the alps since 1949
  publication-title: Geophys. Res. Lett.
– volume: 12
  start-page: 759
  year: 2018
  end-page: 794
  ident: b0005
  article-title: The European mountain cryosphere: a review of its current state, trends, and future challenges
  publication-title: Cryosphere
– volume: 125
  start-page: 1
  year: 2020
  end-page: 26
  ident: b0170
  article-title: Variability of isotope composition of precipitation in the Southeastern Tibetan Plateau from the synoptic to seasonal time scale
  publication-title: J. Geophys. Res. Atmos.
– volume: 10
  start-page: 668
  year: 2017
  end-page: 673
  ident: b0020
  article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016
  publication-title: Nat. Geosci.
– volume: 149
  start-page: 61
  year: 2016
  end-page: 90
  ident: b0175
  article-title: Glacier fluctuations during the past 2000 years
  publication-title: Quat. Sci. Rev.
– year: 2005
  ident: b0285
  article-title: Numerical Simulation and Sensitivity Analysis of Climate Change in China’s Representative Ocean Glaciers, Cold and Arid Regions
– volume: 2003
  start-page: 135
  year: 2003
  ident: b0100
  article-title: A manual for monitoring the mass balance of mountain glaciers by
  publication-title: IHPVI Tech. Doc. Hydrol.
– reference: Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H.I., 2019. Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
– volume: 760
  start-page: 144315
  year: 2021
  ident: b0255
  article-title: Hydrothermal combination and geometry control the spatial and temporal rhythm of glacier flow
  publication-title: Sci. Total Environ.
– volume: 44
  start-page: 10,560
  year: 2017
  end-page: 10,572
  ident: b0185
  article-title: Multidecadal weakening of Indian summer monsoon circulation induces an increasing northern Indian Ocean Sea Level
  publication-title: Geophys. Res. Lett.
– volume: 61
  start-page: 745
  year: 2015
  end-page: 762
  ident: b0280
  article-title: Historically unprecedented global glacier decline in the early 21st century
  publication-title: J. Glaciol.
– volume: 28
  start-page: 3224
  year: 2009
  end-page: 3235
  ident: b0105
  article-title: Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River
  publication-title: Quat. Sci. Rev.
– volume: 123
  start-page: 6390
  year: 2018
  end-page: 6409
  ident: b0115
  article-title: Glacier energy and mass balance in the Inland Tibetan Plateau: seasonal and interannual variability in relation to atmospheric changes
  publication-title: J. Geophys. Res. Atmos.
– volume: 12
  start-page: 103
  year: 2018
  end-page: 121
  ident: b0245
  article-title: Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories
  publication-title: Cryosphere
– volume: 7
  year: 2020
  ident: b0160
  article-title: A systematic, regional assessment of high mountain Asia glacier mass balance
  publication-title: Front. Earth Sci.
– volume: 1–34
  year: 2018
  ident: b0240
  article-title: Remote-sensing estimate of glacier mass balance over the central Nyainqentanglha Range during 1968 – ∼ 2013
  publication-title: Cryosph.
– volume: 35
  start-page: 161
  year: 2011
  end-page: 182
  ident: b0040
  article-title: Glacier retreat and climate change: documenting the last 50 years of alpine glacier history from area and geometry changes of dosdè piazzi glaciers (Lombardy Alps, Italy)
  publication-title: Prog. Phys. Geogr.
– volume: 371
  start-page: 49
  year: 2015
  end-page: 57
  ident: b0295
  article-title: Elevation changes measured during 1966–2010 on the monsoonal temperate glaciers’ ablation region, Gongga Mountains, China
  publication-title: Quat. Int.
– volume: 5
  start-page: 424
  year: 2015
  end-page: 430
  ident: b0135
  article-title: Elevation-dependent warming in mountain regions of the world
  publication-title: Nat. Clim. Chang.
– year: 2008
  ident: b0165
  article-title: Concise Glacier Inventory of China
– volume: 2
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0075
  article-title: Borehole-based characterization of deep mixed-mode crevasses at a Greenlandic outlet glacier
  publication-title: AGU Adv.
– volume: 15
  start-page: 1889
  year: 2021
  end-page: 1905
  ident: b0155
  article-title: On the attribution of industrial-era glacier mass loss to anthropogenic climate change
  publication-title: Cryosphere
– volume: 7
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0235
  article-title: Global glacier mass loss during the GRACE satellite mission (2002–2016)
  publication-title: Front. Earth Sci.
– volume: 97-98
  start-page: 123
  year: 2002
  end-page: 131
  ident: b0180
  article-title: Response of monsoonal temperate glaciers to global warming since the Little Ice Age
  publication-title: Quaternary
– volume: 97
  start-page: 321
  year: 2009
  end-page: 327
  ident: b0150
  article-title: The altitudinal dependence of recent rapid warming over the Tibetan Plateau
  publication-title: Clim. Change
– volume: 1
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0055
  article-title: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau
  publication-title: npj Clim. Atmos. Sci.
– volume: 56
  year: 2020
  ident: b0145
  article-title: Observing and Modeling the Isotopic Evolution of Snow Meltwater on the Southeastern Tibetan Plateau
  publication-title: Water Resour. Res.
– volume: 444–445
  start-page: 146
  year: 2012
  end-page: 160
  ident: b0290
  article-title: Catchment-scale reconstruction of glacier mass balance using observations and global climate data: case study of the Hailuogou catchment, south-eastern Tibetan Plateau
  publication-title: J. Hydrol.
– start-page: 209
  year: 2019
  end-page: 255
  ident: b0010
  article-title: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region
  publication-title: The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People
– volume: 6
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0065
  article-title: Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties
  publication-title: Sci. Rep.
– volume: 48
  start-page: 3085
  year: 2017
  end-page: 3097
  ident: b0125
  article-title: Trends and variability in the global dataset of glacier mass balance
  publication-title: Clim. Dyn.
– volume: 11
  start-page: 2463
  year: 2017
  end-page: 2480
  ident: b0225
  article-title: Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru
  publication-title: Cryosphere
– volume: 21
  start-page: 137
  year: 2010
  end-page: 147
  ident: b0060
  article-title: Climate change and its effect on annual runoff in Lijiang Basin-Mt. Yulong Region, China
  publication-title: J. Earth Sci.
– year: 1996
  ident: b0110
  article-title: Glaciers in Hengduanshan Range
– volume: 26
  start-page: 76
  year: 2002
  end-page: 95
  ident: b0015
  article-title: Glacier mass balance: The first 50 years of international monitoring
  publication-title: Prog. Phys. Geogr.
– volume: 81
  start-page: 791
  year: 1999
  end-page: 796
  ident: b0250
  article-title: Measurement and estimative models of glacier mass balance in China
  publication-title: Geogr. Ann. Ser. A Phys. Geogr.
– reference: .
– volume: 72
  start-page: 11
  year: 2010
  end-page: 24
  ident: b0270
  article-title: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset
  publication-title: Glob. Planet. Change
– volume: 47
  start-page: 805
  year: 2016
  end-page: 815
  ident: b0260
  article-title: Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations
  publication-title: Clim. Dyn.
– volume: 2
  start-page: 663
  year: 2012
  end-page: 667
  ident: b0265
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nat. Clim. Chang.
– volume: 150
  start-page: 93
  year: 2014
  end-page: 103
  ident: b0095
  article-title: High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles
  publication-title: Remote Sens. Environ.
– volume: 578
  start-page: 124010
  year: 2019
  ident: b0025
  article-title: Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote sensing data and modeling
  publication-title: J. Hydrol.
– volume: 61
  start-page: 1048
  year: 2015
  end-page: 1060
  ident: b0085
  article-title: Surface energy and MAss balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011
  publication-title: J. Glaciol.
– volume: 67
  start-page: 697
  year: 2021
  end-page: 713
  ident: b0090
  article-title: More than a century of direct glacier mass-balance observations on Claridenfirn, Switzerland
  publication-title: J. Glaciol.
– volume: 592
  start-page: 726
  year: 2021
  end-page: 731
  ident: b0080
  article-title: Accelerated global glacier mass loss in the early twenty-first century
  publication-title: Nat. (in Press.)
– volume: 1–34
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126931_b0240
  article-title: Remote-sensing estimate of glacier mass balance over the central Nyainqentanglha Range during 1968 – ∼ 2013
  publication-title: Cryosph.
– volume: 61
  start-page: 745
  issue: 228
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126931_b0280
  article-title: Historically unprecedented global glacier decline in the early 21st century
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG15J017
– volume: 45
  start-page: 817
  issue: 2
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126931_b0190
  article-title: Causes of glacier melt extremes in the alps since 1949
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL076333
– volume: 2003
  start-page: 135
  year: 2003
  ident: 10.1016/j.jhydrol.2021.126931_b0100
  article-title: A manual for monitoring the mass balance of mountain glaciers by
  publication-title: IHPVI Tech. Doc. Hydrol.
– volume: 10
  start-page: 856
  issue: 9
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126931_b0200
  article-title: Anthropogenic warming forces extreme annual glacier mass loss
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-020-0849-2
– volume: 67
  start-page: 697
  issue: 264
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126931_b0090
  article-title: More than a century of direct glacier mass-balance observations on Claridenfirn, Switzerland
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2021.22
– volume: 7
  start-page: 569
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126931_b0205
  article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss
  publication-title: Cryosph.
  doi: 10.5194/tc-7-569-2013
– year: 2021
  ident: 10.1016/j.jhydrol.2021.126931_b0050
  article-title: Understanding monsoon controls on the energy and mass balance of Himalayan glacier (in review)
  publication-title: Cryosph
– volume: 7
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126931_b0160
  article-title: A systematic, regional assessment of high mountain Asia glacier mass balance
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2019.00363
– volume: 48
  start-page: 3085
  issue: 9-10
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126931_b0125
  article-title: Trends and variability in the global dataset of glacier mass balance
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-016-3253-x
– volume: 97-98
  start-page: 123
  year: 2002
  ident: 10.1016/j.jhydrol.2021.126931_b0180
  article-title: Response of monsoonal temperate glaciers to global warming since the Little Ice Age
  publication-title: Quaternary
– year: 2010
  ident: 10.1016/j.jhydrol.2021.126931_b0035
– volume: 47
  start-page: 805
  issue: 3-4
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126931_b0260
  article-title: Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-015-2872-y
– volume: 5
  start-page: 424
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126931_b0135
  article-title: Elevation-dependent warming in mountain regions of the world
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2563
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126931_b0120
  article-title: Estimation of ice thickness and the features of subglacial media detected by ground penetrating radar at the baishui river glacier no. 1 in Mt. Yulong, China
  publication-title: Remote Sens.
  doi: 10.1109/TGRS.2020.3035561
– volume: 15
  start-page: 1889
  issue: 4
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126931_b0155
  article-title: On the attribution of industrial-era glacier mass loss to anthropogenic climate change
  publication-title: Cryosphere
  doi: 10.5194/tc-15-1889-2021
– volume: 10
  start-page: 668
  issue: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126931_b0020
  article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2999
– volume: 97
  start-page: 321
  issue: 1-2
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126931_b0150
  article-title: The altitudinal dependence of recent rapid warming over the Tibetan Plateau
  publication-title: Clim. Change
  doi: 10.1007/s10584-009-9733-9
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126931_b0235
  article-title: Global glacier mass loss during the GRACE satellite mission (2002–2016)
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2019.00096
– volume: 11
  start-page: 2463
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126931_b0225
  article-title: Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru
  publication-title: Cryosphere
  doi: 10.5194/tc-11-2463-2017
– volume: 81
  start-page: 791
  issue: 4
  year: 1999
  ident: 10.1016/j.jhydrol.2021.126931_b0250
  article-title: Measurement and estimative models of glacier mass balance in China
  publication-title: Geogr. Ann. Ser. A Phys. Geogr.
  doi: 10.1111/j.0435-3676.1999.00106.x
– volume: 54
  start-page: 119
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126931_b0030
  article-title: Glacier crevasses: observations, models, and mass balance implications
  publication-title: Rev. Geophys.
  doi: 10.1002/2015RG000504
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126931_b0075
  article-title: Borehole-based characterization of deep mixed-mode crevasses at a Greenlandic outlet glacier
  publication-title: AGU Adv.
  doi: 10.1029/2020AV000291
– volume: 7
  start-page: 1227
  issue: 4
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126931_b0275
  article-title: Reanalysing glacier mass balance measurement series
  publication-title: Cryosphere
  doi: 10.5194/tc-7-1227-2013
– volume: 126
  issue: 7
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126931_b0300
  article-title: The influence of key climate variables on mass balance of Naimona’nyi Glacier on a North-Facing Slope in the Western Himalayas
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2020JD033956
– volume: 44
  start-page: 10,560
  issue: 20
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126931_b0185
  article-title: Multidecadal weakening of Indian summer monsoon circulation induces an increasing northern Indian Ocean Sea Level
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074706
– volume: 578
  start-page: 124010
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126931_b0025
  article-title: Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote sensing data and modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124010
– volume: 760
  start-page: 144315
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126931_b0255
  article-title: Hydrothermal combination and geometry control the spatial and temporal rhythm of glacier flow
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144315
– year: 2005
  ident: 10.1016/j.jhydrol.2021.126931_b0285
– volume: 55
  start-page: 3810
  issue: 33
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126931_b0220
  article-title: Variations in Equilibrium Line Altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years
  publication-title: Chinese Sci. Bull.
  doi: 10.1007/s11434-010-4167-3
– volume: 12
  start-page: 759
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126931_b0005
  article-title: The European mountain cryosphere: a review of its current state, trends, and future challenges
  publication-title: Cryosphere
  doi: 10.5194/tc-12-759-2018
– volume: 44
  start-page: 1376
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126931_b0210
  article-title: Common climatic signal from glaciers in the European Alps over the last 50 years
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL072094
– volume: 56
  issue: 9
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126931_b0145
  article-title: Observing and Modeling the Isotopic Evolution of Snow Meltwater on the Southeastern Tibetan Plateau
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026423
– volume: 35
  start-page: 161
  issue: 2
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126931_b0040
  article-title: Glacier retreat and climate change: documenting the last 50 years of alpine glacier history from area and geometry changes of dosdè piazzi glaciers (Lombardy Alps, Italy)
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133311399494
– volume: 371
  start-page: 49
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126931_b0295
  article-title: Elevation changes measured during 1966–2010 on the monsoonal temperate glaciers’ ablation region, Gongga Mountains, China
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2015.03.055
– volume: 72
  start-page: 11
  issue: 1-2
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126931_b0270
  article-title: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2010.04.003
– year: 2008
  ident: 10.1016/j.jhydrol.2021.126931_b0165
– volume: 20
  issue: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126931_b0215
  article-title: Accelerated changes of glaciers in the Yulong Snow Mountain, Southeast Qinghai-Tibetan Plateau
  publication-title: Reg. Environ. Chang.
  doi: 10.1007/s10113-020-01624-7
– volume: 12
  start-page: 103
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126931_b0245
  article-title: Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories
  publication-title: Cryosphere
  doi: 10.5194/tc-12-103-2018
– ident: 10.1016/j.jhydrol.2021.126931_b0070
– year: 1996
  ident: 10.1016/j.jhydrol.2021.126931_b0110
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126931_b0195
  article-title: Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12039-2
– volume: 150
  start-page: 93
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126931_b0095
  article-title: High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.025
– volume: 61
  start-page: 1048
  issue: 230
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126931_b0085
  article-title: Surface energy and MAss balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG15J056
– volume: 21
  start-page: 137
  issue: 2
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126931_b0060
  article-title: Climate change and its effect on annual runoff in Lijiang Basin-Mt. Yulong Region, China
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-010-0012-5
– volume: 2
  start-page: 663
  issue: 9
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126931_b0265
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1580
– volume: 125
  start-page: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126931_b0170
  article-title: Variability of isotope composition of precipitation in the Southeastern Tibetan Plateau from the synoptic to seasonal time scale
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD031751
– volume: 123
  start-page: 6390
  issue: 12
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126931_b0115
  article-title: Glacier energy and mass balance in the Inland Tibetan Plateau: seasonal and interannual variability in relation to atmospheric changes
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2017JD028120
– volume: 1
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126931_b0055
  article-title: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau
  publication-title: npj Clim. Atmos. Sci.
  doi: 10.1038/s41612-018-0030-z
– volume: 149
  start-page: 61
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126931_b0175
  article-title: Glacier fluctuations during the past 2000 years
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2016.04.008
– volume: 55
  start-page: 710
  issue: 192
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126931_b0045
  article-title: A new index of glacier area change: a tool for glacier monitoring
  publication-title: J. Glaciol.
  doi: 10.3189/002214309789471030
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126931_b0065
  article-title: Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties
  publication-title: Sci. Rep.
  doi: 10.1038/srep29723
– volume: 444–445
  start-page: 146
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126931_b0290
  article-title: Catchment-scale reconstruction of glacier mass balance using observations and global climate data: case study of the Hailuogou catchment, south-eastern Tibetan Plateau
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.04.014
– volume: 592
  start-page: 726
  issue: 7856
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126931_b0080
  article-title: Accelerated global glacier mass loss in the early twenty-first century
  publication-title: Nat. (in Press.)
– volume: 21
  start-page: 179
  issue: 2
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126931_b0130
  article-title: Observed glaciohydrological changes in China’s typical monsoonal temperate glacier region since 1980s
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-010-0016-1
– ident: 10.1016/j.jhydrol.2021.126931_b0230
– volume: 26
  start-page: 76
  issue: 1
  year: 2002
  ident: 10.1016/j.jhydrol.2021.126931_b0015
  article-title: Glacier mass balance: The first 50 years of international monitoring
  publication-title: Prog. Phys. Geogr.
  doi: 10.1191/0309133302pp326ra
– start-page: 209
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126931_b0010
  article-title: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region
– volume: 10
  start-page: 133
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126931_b0140
  article-title: Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya
  publication-title: Cryosphere
  doi: 10.5194/tc-10-133-2016
– volume: 28
  start-page: 3224
  issue: 27-28
  year: 2009
  ident: 10.1016/j.jhydrol.2021.126931_b0105
  article-title: Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2009.08.005
SSID ssj0000334
Score 2.4379036
Snippet •12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier...
Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126931
SubjectTerms air temperature
altitude
China
climate
glaciers
Glaciological method
hydrology
Liquid precipitation
liquids
Mass balance
monsoon season
rivers
shrinkage
Temperate glacier
Title Accelerated glacier mass loss with atmospheric changes on Mt. Yulong, Southeastern Tibetan Plateau
URI https://dx.doi.org/10.1016/j.jhydrol.2021.126931
https://www.proquest.com/docview/2636601538
Volume 603
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wuETzabtukSXpcFmVVFA8Kegp5re6y28pu9-DF3-6kD0VBBI8NzbSZTGe-dF4InXInBIsMDyrHIR0yGwjFVaCF4SzliSZV076bWzZ4oFeP6eMS6re5MD6sstH9tU6vtHUz0m242X0djXyOb5LELKNwaIkyUeX3Usq9lIfvX2EeESG0rRju7_7K4umOw_HLm50V3gORxGGcsIzEv9mnH5q6Mj8XG2i9wY24V7_aJlpy-RZabVqYv7xtI90zBkyIr_xgMWBiWMsMTwEa4wk8B_v_rViV02Lu6wiMDK4zfue4yPFNGeKnxaTIn89w1VLP9_Nxsxzfj7QD8IjvJkBVLXbQw8X5fX8QNA0UAkVYWgbEDDUTMeWWa1iaUQaMOWEEIBuxRICaZk45SrXhlhDvw7SEUa3tEEZdlJFdtJwXudtDmIrIAZLJbJoqIMEywRU3TsDpUJjYmH1EW7ZJ01QX900uJrINIxvLhtvSc1vW3N5H4ee017q8xl8TRLsn8pucSDABf009afdQwjfkHSMqd8ViLoEdDA6moPsP_k_-EK35qzrU5Qgtl7OFOwbAUupOJZEdtNK7vB7cfgBxv-qP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iB72IK-5G8Gg7bZMm6VFEGZcRDyPoKWQbnWFsZaZz8OJv96WLoiCC17ZJm5fkvS99y4fQMXdCsMjwoHIc0gGzgVBcBVoYzlKeaFKR9vVuWfeeXj2kD3PorM2F8WGVje6vdXqlrZsrnUaandfh0Of4JknMMgqHligTPr93gcL29TQG4ftXnEdECG1LhvvHv9J4OqNw9PxmJ4V3QSRxGCcsI_FvBuqHqq7sz8UKWm6AIz6tv20Vzbl8DS02HObPb-tInxoDNsSXfrAYQDEMZoJfABvjMbwH-x-uWJUvxdQXEhgaXKf8TnGR414Z4sfZuMifTnDFqecJfdwkx_2hdoAe8d0YelWzDXR_cd4_6wYNg0KgCEvLgJiBZiKm3HINQzPKgDUnjABmI5YI0NPMKUepNtwS4p2YljCqtR3AVRdlZBPN50XuthCmInIAZTKbpgq6YJngihsn4HgoTGzMNqKt2KRpyot7louxbOPIRrKRtvTSlrW0t1H42ey1rq_xVwPRzon8tlAk2IC_mh61cyhhE3nPiMpdMZtKEAeDkymsnp3_d3-IFrv93o28uby93kVL_k4d97KH5svJzO0Dein1QbU6PwDZj-wd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+glacier+mass+loss+with+atmospheric+changes+on+Mt.+Yulong%2C+Southeastern+Tibetan+Plateau&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Yan%2C+Xingguo&rft.au=Ma%2C+Jinzhu&rft.au=Ma%2C+Xiaoyi&rft.au=Wang%2C+Shijin&rft.date=2021-12-01&rft.issn=0022-1694&rft.volume=603&rft.spage=126931&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2021_126931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon