Accelerated glacier mass loss with atmospheric changes on Mt. Yulong, Southeastern Tibetan Plateau
•12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier retreat and deficit are attributed to regional warming. Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet o...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 603; p. 126931 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier retreat and deficit are attributed to regional warming.
Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we evaluated the retreat status of Baishui River Glacier No. 1 (reference glacier of Yulong Snow Mountain) during the 1951–2020 period and explored its response to climate change. In particular, based on 12-years of continuous in-situ measurements, we presented the first comprehensive set of mass balance for the Baishui River Glacier No. 1 from 2008 to 2020. The result shows that the Baishui River Glacier No. 1 suffered sustained shrinkage in terms of both its area (which fell by 36 %) and reserves (with cumulative mass losses over 32.38 ± 3.62 m w.e.) over the past 70-years. The terminus rose from 4100 m asl in 1982 to 4395 m asl in 2017. The equilibrium line altitude has risen above the glacier’s summit since 2010, and the accumulation zone disappeared. Since the 1980s, the acceleration of glacier retreat has become established, and has been further strengthened after 2000, this corresponds to the process of climate warming. In-situ measurements showed that any glacial accumulation during the non-monsoon period (with a multiyear mean of 0.53 ± 0.08 m w.e.) fell far short of offsetting the ablation driven by both air temperature and liquid precipitation in the monsoon season (with a multiyear mean of 2.08 ± 0.20 m w.e.), meaning that the glacier could not attain a state of equilibrium, and quickly lost a significant mass (with multiyear mean losses of 1.54 ± 0.30 m w.e.). Given that, the current atmospheric conditions are unlikely to allow Baishui River Glacier No. 1 to suppress its loss trend. |
---|---|
AbstractList | Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we evaluated the retreat status of Baishui River Glacier No. 1 (reference glacier of Yulong Snow Mountain) during the 1951–2020 period and explored its response to climate change. In particular, based on 12-years of continuous in-situ measurements, we presented the first comprehensive set of mass balance for the Baishui River Glacier No. 1 from 2008 to 2020. The result shows that the Baishui River Glacier No. 1 suffered sustained shrinkage in terms of both its area (which fell by 36 %) and reserves (with cumulative mass losses over 32.38 ± 3.62 m w.e.) over the past 70-years. The terminus rose from 4100 m asl in 1982 to 4395 m asl in 2017. The equilibrium line altitude has risen above the glacier’s summit since 2010, and the accumulation zone disappeared. Since the 1980s, the acceleration of glacier retreat has become established, and has been further strengthened after 2000, this corresponds to the process of climate warming. In-situ measurements showed that any glacial accumulation during the non-monsoon period (with a multiyear mean of 0.53 ± 0.08 m w.e.) fell far short of offsetting the ablation driven by both air temperature and liquid precipitation in the monsoon season (with a multiyear mean of 2.08 ± 0.20 m w.e.), meaning that the glacier could not attain a state of equilibrium, and quickly lost a significant mass (with multiyear mean losses of 1.54 ± 0.30 m w.e.). Given that, the current atmospheric conditions are unlikely to allow Baishui River Glacier No. 1 to suppress its loss trend. •12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier retreat and deficit are attributed to regional warming. Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we evaluated the retreat status of Baishui River Glacier No. 1 (reference glacier of Yulong Snow Mountain) during the 1951–2020 period and explored its response to climate change. In particular, based on 12-years of continuous in-situ measurements, we presented the first comprehensive set of mass balance for the Baishui River Glacier No. 1 from 2008 to 2020. The result shows that the Baishui River Glacier No. 1 suffered sustained shrinkage in terms of both its area (which fell by 36 %) and reserves (with cumulative mass losses over 32.38 ± 3.62 m w.e.) over the past 70-years. The terminus rose from 4100 m asl in 1982 to 4395 m asl in 2017. The equilibrium line altitude has risen above the glacier’s summit since 2010, and the accumulation zone disappeared. Since the 1980s, the acceleration of glacier retreat has become established, and has been further strengthened after 2000, this corresponds to the process of climate warming. In-situ measurements showed that any glacial accumulation during the non-monsoon period (with a multiyear mean of 0.53 ± 0.08 m w.e.) fell far short of offsetting the ablation driven by both air temperature and liquid precipitation in the monsoon season (with a multiyear mean of 2.08 ± 0.20 m w.e.), meaning that the glacier could not attain a state of equilibrium, and quickly lost a significant mass (with multiyear mean losses of 1.54 ± 0.30 m w.e.). Given that, the current atmospheric conditions are unlikely to allow Baishui River Glacier No. 1 to suppress its loss trend. |
ArticleNumber | 126931 |
Author | Ma, Jinzhu He, Yuanqing Wang, Shijin Yan, Xingguo Ma, Xiaoyi Chen, Peiyuan |
Author_xml | – sequence: 1 givenname: Xingguo surname: Yan fullname: Yan, Xingguo organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China – sequence: 2 givenname: Jinzhu surname: Ma fullname: Ma, Jinzhu email: jzma@lzu.edu.cn organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China – sequence: 3 givenname: Xiaoyi surname: Ma fullname: Ma, Xiaoyi organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China – sequence: 4 givenname: Shijin surname: Wang fullname: Wang, Shijin email: wangshijin@lzb.ac.cn organization: Yulong Snow Mountain Glacier and Environment Observation and Research Station/State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 5 givenname: Peiyuan surname: Chen fullname: Chen, Peiyuan organization: MOE Key Laboratory of West China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China – sequence: 6 givenname: Yuanqing surname: He fullname: He, Yuanqing organization: Yulong Snow Mountain Glacier and Environment Observation and Research Station/State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China |
BookMark | eNqFkE9LAzEQxYNUsFY_gpCjB3dNNttsiwcpxX9QUVAPnkI2mXZT0qQmWaXf3kg9eXEOMzDMe8z7HaOB8w4QOqOkpITyy3W57nY6eFtWpKIlrfiU0QM0pJNmWlQNaQZoSEhVFZRP6yN0HOOa5GKsHqJ2phRYCDKBxisrlYGANzJGbH1uXyZ1WKaNj9sOglFYddKtIGLv8GMq8XtvvVtd4Bffpw5kTBAcfjUtJOnws82usj9Bh0tpI5z-zhF6u715nd8Xi6e7h_lsUUjGx6lgatnyCa0b3bT5fyVVVdeMM1ZxptkEWspBQl23qtGMEcqIZrxuW73MWyBTNkLne99t8B89xCQ2JuZwVjrwfRTZh3NCx2yST6_2pyrklAGWQpkkk_EuBWmsoET8kBVr8UtW_JAVe7JZPf6j3gazkWH3r-56r4NM4TODFjHjdgq0CaCS0N784_ANlL2ZNA |
CitedBy_id | crossref_primary_10_1007_s00024_022_03024_w crossref_primary_10_1016_j_jhydrol_2022_128710 crossref_primary_10_3390_atmos15020231 crossref_primary_10_3389_feart_2023_1165390 crossref_primary_10_3389_feart_2023_1017207 crossref_primary_10_3390_su16167118 crossref_primary_10_3390_rs16030571 crossref_primary_10_1016_j_rcar_2024_12_004 crossref_primary_10_1017_aog_2023_48 crossref_primary_10_1080_15230430_2024_2356671 crossref_primary_10_3390_atmos16010110 |
Cites_doi | 10.3189/2015JoG15J017 10.1002/2017GL076333 10.1038/s41558-020-0849-2 10.1017/jog.2021.22 10.5194/tc-7-569-2013 10.3389/feart.2019.00363 10.1007/s00382-016-3253-x 10.1007/s00382-015-2872-y 10.1038/nclimate2563 10.1109/TGRS.2020.3035561 10.5194/tc-15-1889-2021 10.1038/ngeo2999 10.1007/s10584-009-9733-9 10.3389/feart.2019.00096 10.5194/tc-11-2463-2017 10.1111/j.0435-3676.1999.00106.x 10.1002/2015RG000504 10.1029/2020AV000291 10.5194/tc-7-1227-2013 10.1029/2020JD033956 10.1002/2017GL074706 10.1016/j.jhydrol.2019.124010 10.1016/j.scitotenv.2020.144315 10.1007/s11434-010-4167-3 10.5194/tc-12-759-2018 10.1002/2016GL072094 10.1029/2019WR026423 10.1177/0309133311399494 10.1016/j.quaint.2015.03.055 10.1016/j.gloplacha.2010.04.003 10.1007/s10113-020-01624-7 10.5194/tc-12-103-2018 10.1038/s41467-019-12039-2 10.1016/j.rse.2014.04.025 10.3189/2015JoG15J056 10.1007/s12583-010-0012-5 10.1038/nclimate1580 10.1029/2019JD031751 10.1029/2017JD028120 10.1038/s41612-018-0030-z 10.1016/j.quascirev.2016.04.008 10.3189/002214309789471030 10.1038/srep29723 10.1016/j.jhydrol.2012.04.014 10.1007/s12583-010-0016-1 10.1191/0309133302pp326ra 10.5194/tc-10-133-2016 10.1016/j.quascirev.2009.08.005 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2021.126931 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2021_126931 S0022169421009811 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a365t-3cfb68147d7b931cac2443633263d38eb16eae44bc7d330130d364bbdfae4e093 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 00:35:38 EDT 2025 Tue Jul 01 01:53:33 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Fri Feb 23 02:45:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mass balance Temperate glacier Liquid precipitation Glaciological method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-3cfb68147d7b931cac2443633263d38eb16eae44bc7d330130d364bbdfae4e093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636601538 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636601538 crossref_citationtrail_10_1016_j_jhydrol_2021_126931 crossref_primary_10_1016_j_jhydrol_2021_126931 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Solomina, Bradley, Jomelli, Geirsdottir, Kaufman, Koch, McKay, Masiokas, Miller, Nesje, Nicolussi, Owen, Putnam, Wanner, Wiles, Yang (b0175) 2016; 149 He, Pu, Li, Zhu, Wang, Zhang, Wang, Xin, Theakstone, Du (b0060) 2010; 21 Zhang (b0285) 2005 Pang, He, Zhang, Li, Theakstone (b0130) 2010; 21 World Glacier Monitoring Service (WGMS), 2019. Fluctuations of Glaciers Database https Zhu, Yang, Yao, Tian, Thompson, Zhao (b0300) 2021; 126 Roe, Christian, Marzeion (b0155) 2021; 15 Huss, Bauder, Linsbauer, Gabbi, Kappenberger, Steinegger, Farinotti (b0090) 2021; 67 Braithwaite (b0015) 2002; 26 Beniston, Farinotti, Stoffel, Andreassen, Coppola, Eckert, Fantini, Giacona, Hauck, Huss, Huwald, Lehning, López-Moreno, Magnusson, Marty, Morán-Tejéda, Morin, Naaim, Provenzale, Rabatel, Six, Stötter, Strasser, Terzago, Vincent (b0005) 2018; 12 Zemp, Frey, Gärtner-Roer, Nussbaumer, Hoelzle, Paul, Haeberli, Denzinger, Ahlstrøm, Anderson, Bajracharya, Baroni, Braun, Cáceres, Casassa, Cobos, Dávila, Delgado Granados, Demuth, Espizua, Fischer, Fujita, Gadek, Ghazanfar, Ove Hagen, Holmlund, Karimi, Li, Pelto, Pitte, Popovnin, Portocarrero, Prinz, Sangewar, Severskiy, Sigurđsson, Soruco, Usubaliev, Vincent (b0280) 2015; 61 Hubbard, Christoffersen, Doyle, Chudley, Schoonman, Law, Bougamont (b0075) 2021; 2 Dyurgerov, Meier, Bahr (b0045) 2009; 55 Li, Su (b0110) 1996 Vincent, Ramanathan, Wagnon, Dobhal, Linda, Berthier, Sharma, Arnaud, Azam, Jose, Gardelle (b0205) 2013; 7 Kong, Na, Fink, Zhao, Xiao (b0105) 2009; 28 Wu, Liu, Jiang, Xu, Wei (b0240) 2018; 1–34 Pepin, Bradley, Diaz, Baraer, Caceres, Forsythe, Fowler, Greenwood, Hashmi, Liu, Miller, Ning, Ohmura, Palazzi, Rangwala, Schöner, Severskiy, Shahgedanova, Wang, Williamson, Yang (b0135) 2015; 5 Wu, Liu, Jiang, Xu, Wei, Guo (b0245) 2018; 12 . Gao, Chen, Lettenmaier, Xu, Xiao, Li (b0055) 2018; 1 Shi, Liu, Ye, Liu, Wang (b0165) 2008 Kaser, Fountain, Jansson (b0100) 2003; 2003 Colgan, Rajaram, Abdalati, McCutchan, Mottram, Moussavi, Grigsby (b0030) 2016; 54 Yan, Ma, Ma, Chen, Wang, Wei, Zhu, Zhang (b0255) 2021; 760 Wigmore, Mark (b0225) 2017; 11 Prinz, Nicholson, Mölg, Gurgiser, Kaser (b0140) 2016; 10 Cao, Pan, Wen, Guan, Li (b0025) 2019; 578 Thibert, Dkengne Sielenou, Vionnet, Eckert, Vincent (b0190) 2018; 45 Yang, Guo, Yao, Zhu, Wang (b0260) 2016; 47 Immerzeel, Kraaijenbrink, Shea, Shrestha, Pellicciotti, Bierkens, De Jong (b0095) 2014; 150 Medwedeff, Roe (b0125) 2017; 48 Brun, Berthier, Wagnon, Kääb, Treichler (b0020) 2017; 10 Wang, Che, Pang, Du, Zhang (b0215) 2020; 20 Hirabayashi, Nakano, Zhang, Watanabe, Tanoue, Kanae (b0065) 2016; 6 Zhang, Pan, Cao, Wang, Cui, Cao (b0295) 2015; 371 Shean, Bhushan, Montesano, Rounce, Arendt, Osmanoglu (b0160) 2020; 7 Zhang, Hirabayashi, Liu (b0290) 2012; 444–445 Vincent, Fischer, Mayer, Bauder, Galos, Funk, Thibert, Six, Braun, Huss (b0210) 2017; 44 Shi, Risi, Pu, Lacour, Kong, Wang, He, Xia (b0170) 2020; 125 Swapna, Jyoti, Krishnan, Sandeep, Griffies (b0185) 2017; 44 Yao, Thompson, Yang, Yu, Gao, Guo, Yang, Duan, Zhao, Xu, Pu, Lu, Xiang, Kattel, Joswiak (b0265) 2012; 2 Wouters, Gardner, Moholdt (b0235) 2019; 7 Xie, Han, Liu, Liu (b0250) 1999; 81 Su, Shi (b0180) 2002; 97-98 Qin, Yang, Liang, Guo (b0150) 2009; 97 Zemp, Thibert, Huss, Stumm, Rolstad Denby, Nuth, Nussbaumer, Moholdt, Mercer, Mayer, Joerg, Jansson, Hynek, Fischer, Escher-Vetter, Elvehøy, Andreassen (b0275) 2013; 7 Tuckett, Ely, Sole, Livingstone, Davison, Melchior van Wessem, Howard (b0195) 2019; 10 Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H.I., 2019. Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Hugonnet, McNabb, Berthier, Menounos, Nuth, Girod, Farinotti, Huss, Dussaillant, Brun, Kääb (b0080) 2021; 592 Huintjes, Neckel, Hochschild, Schneider (b0085) 2015; 61 Pu, Wang, Kong, Shi, Kang, Huang, He, Wang, Lee, Cuntz (b0145) 2020; 56 Vargo, Anderson, Dadić, Horgan, Mackintosh, King, Lorrey (b0200) 2020; 10 Cuffey, Paterson (b0035) 2010 Fugger, Fyffe, Fatichi, Miles, McCarthy, Shaw, Ding, Yang, Wagnon, Immerzeel, Liu, Pellicciotti (b0050) 2021 You, Kang, Pepin, Flügel, Sanchez-Lorenzo, Yan, Zhang (b0270) 2010; 72 Wang, He, Pu, Jiang, Jing (b0220) 2010; 55 Li, Yao, Yang, Yu, Zhu (b0115) 2018; 123 Liu, Wang, He, Li, Wang, Wei, Che (b0120) 2020; 12 Diolaiuti, Maragno, D'Agata, Smiraglia, Bocchiola (b0040) 2011; 35 Bolch, Shea, Liu, Azam, Gao, Gruber, Immerzeel, Kulkarni, Li, Tahir, Zhang, Zhang (b0010) 2019 Pang (10.1016/j.jhydrol.2021.126931_b0130) 2010; 21 Roe (10.1016/j.jhydrol.2021.126931_b0155) 2021; 15 Wigmore (10.1016/j.jhydrol.2021.126931_b0225) 2017; 11 Wu (10.1016/j.jhydrol.2021.126931_b0245) 2018; 12 Medwedeff (10.1016/j.jhydrol.2021.126931_b0125) 2017; 48 Brun (10.1016/j.jhydrol.2021.126931_b0020) 2017; 10 Shi (10.1016/j.jhydrol.2021.126931_b0165) 2008 Cuffey (10.1016/j.jhydrol.2021.126931_b0035) 2010 Liu (10.1016/j.jhydrol.2021.126931_b0120) 2020; 12 10.1016/j.jhydrol.2021.126931_b0230 Bolch (10.1016/j.jhydrol.2021.126931_b0010) 2019 Fugger (10.1016/j.jhydrol.2021.126931_b0050) 2021 10.1016/j.jhydrol.2021.126931_b0070 Pu (10.1016/j.jhydrol.2021.126931_b0145) 2020; 56 Shean (10.1016/j.jhydrol.2021.126931_b0160) 2020; 7 Gao (10.1016/j.jhydrol.2021.126931_b0055) 2018; 1 Yang (10.1016/j.jhydrol.2021.126931_b0260) 2016; 47 You (10.1016/j.jhydrol.2021.126931_b0270) 2010; 72 Colgan (10.1016/j.jhydrol.2021.126931_b0030) 2016; 54 Li (10.1016/j.jhydrol.2021.126931_b0110) 1996 Braithwaite (10.1016/j.jhydrol.2021.126931_b0015) 2002; 26 Zhang (10.1016/j.jhydrol.2021.126931_b0290) 2012; 444–445 Tuckett (10.1016/j.jhydrol.2021.126931_b0195) 2019; 10 Hugonnet (10.1016/j.jhydrol.2021.126931_b0080) 2021; 592 Zemp (10.1016/j.jhydrol.2021.126931_b0280) 2015; 61 Prinz (10.1016/j.jhydrol.2021.126931_b0140) 2016; 10 Thibert (10.1016/j.jhydrol.2021.126931_b0190) 2018; 45 Vargo (10.1016/j.jhydrol.2021.126931_b0200) 2020; 10 Pepin (10.1016/j.jhydrol.2021.126931_b0135) 2015; 5 Hirabayashi (10.1016/j.jhydrol.2021.126931_b0065) 2016; 6 Zhang (10.1016/j.jhydrol.2021.126931_b0295) 2015; 371 Immerzeel (10.1016/j.jhydrol.2021.126931_b0095) 2014; 150 Xie (10.1016/j.jhydrol.2021.126931_b0250) 1999; 81 Solomina (10.1016/j.jhydrol.2021.126931_b0175) 2016; 149 Vincent (10.1016/j.jhydrol.2021.126931_b0205) 2013; 7 Kong (10.1016/j.jhydrol.2021.126931_b0105) 2009; 28 Wang (10.1016/j.jhydrol.2021.126931_b0215) 2020; 20 Swapna (10.1016/j.jhydrol.2021.126931_b0185) 2017; 44 Zhu (10.1016/j.jhydrol.2021.126931_b0300) 2021; 126 Huss (10.1016/j.jhydrol.2021.126931_b0090) 2021; 67 Wu (10.1016/j.jhydrol.2021.126931_b0240) 2018; 1–34 Yao (10.1016/j.jhydrol.2021.126931_b0265) 2012; 2 Wouters (10.1016/j.jhydrol.2021.126931_b0235) 2019; 7 Vincent (10.1016/j.jhydrol.2021.126931_b0210) 2017; 44 Shi (10.1016/j.jhydrol.2021.126931_b0170) 2020; 125 He (10.1016/j.jhydrol.2021.126931_b0060) 2010; 21 Huintjes (10.1016/j.jhydrol.2021.126931_b0085) 2015; 61 Zemp (10.1016/j.jhydrol.2021.126931_b0275) 2013; 7 Diolaiuti (10.1016/j.jhydrol.2021.126931_b0040) 2011; 35 Cao (10.1016/j.jhydrol.2021.126931_b0025) 2019; 578 Qin (10.1016/j.jhydrol.2021.126931_b0150) 2009; 97 Zhang (10.1016/j.jhydrol.2021.126931_b0285) 2005 Wang (10.1016/j.jhydrol.2021.126931_b0220) 2010; 55 Li (10.1016/j.jhydrol.2021.126931_b0115) 2018; 123 Hubbard (10.1016/j.jhydrol.2021.126931_b0075) 2021; 2 Yan (10.1016/j.jhydrol.2021.126931_b0255) 2021; 760 Beniston (10.1016/j.jhydrol.2021.126931_b0005) 2018; 12 Kaser (10.1016/j.jhydrol.2021.126931_b0100) 2003; 2003 Dyurgerov (10.1016/j.jhydrol.2021.126931_b0045) 2009; 55 Su (10.1016/j.jhydrol.2021.126931_b0180) 2002; 97-98 |
References_xml | – year: 2010 ident: b0035 article-title: The Physics of Glaciers – volume: 55 start-page: 710 year: 2009 end-page: 716 ident: b0045 article-title: A new index of glacier area change: a tool for glacier monitoring publication-title: J. Glaciol. – volume: 10 start-page: 133 year: 2016 end-page: 148 ident: b0140 article-title: Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya publication-title: Cryosphere – volume: 55 start-page: 3810 year: 2010 end-page: 3817 ident: b0220 article-title: Variations in Equilibrium Line Altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years publication-title: Chinese Sci. Bull. – volume: 54 start-page: 119 year: 2016 end-page: 161 ident: b0030 article-title: Glacier crevasses: observations, models, and mass balance implications publication-title: Rev. Geophys. – volume: 12 start-page: 1 year: 2020 end-page: 23 ident: b0120 article-title: Estimation of ice thickness and the features of subglacial media detected by ground penetrating radar at the baishui river glacier no. 1 in Mt. Yulong, China publication-title: Remote Sens. – volume: 21 start-page: 179 year: 2010 end-page: 188 ident: b0130 article-title: Observed glaciohydrological changes in China’s typical monsoonal temperate glacier region since 1980s publication-title: J. Earth Sci. – volume: 7 start-page: 569 year: 2013 end-page: 582 ident: b0205 article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss publication-title: Cryosph. – reference: World Glacier Monitoring Service (WGMS), 2019. Fluctuations of Glaciers Database https:// – volume: 7 start-page: 1227 year: 2013 end-page: 1245 ident: b0275 article-title: Reanalysing glacier mass balance measurement series publication-title: Cryosphere – volume: 126 year: 2021 ident: b0300 article-title: The influence of key climate variables on mass balance of Naimona’nyi Glacier on a North-Facing Slope in the Western Himalayas publication-title: J. Geophys. Res. Atmos. – volume: 10 year: 2019 ident: b0195 article-title: Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt publication-title: Nat. Commun. – volume: 44 start-page: 1376 year: 2017 end-page: 1383 ident: b0210 article-title: Common climatic signal from glaciers in the European Alps over the last 50 years publication-title: Geophys. Res. Lett. – volume: 10 start-page: 856 year: 2020 end-page: 861 ident: b0200 article-title: Anthropogenic warming forces extreme annual glacier mass loss publication-title: Nat. Clim. Chang. – volume: 20 year: 2020 ident: b0215 article-title: Accelerated changes of glaciers in the Yulong Snow Mountain, Southeast Qinghai-Tibetan Plateau publication-title: Reg. Environ. Chang. – year: 2021 ident: b0050 article-title: Understanding monsoon controls on the energy and mass balance of Himalayan glacier (in review) publication-title: Cryosph – volume: 45 start-page: 817 year: 2018 end-page: 825 ident: b0190 article-title: Causes of glacier melt extremes in the alps since 1949 publication-title: Geophys. Res. Lett. – volume: 12 start-page: 759 year: 2018 end-page: 794 ident: b0005 article-title: The European mountain cryosphere: a review of its current state, trends, and future challenges publication-title: Cryosphere – volume: 125 start-page: 1 year: 2020 end-page: 26 ident: b0170 article-title: Variability of isotope composition of precipitation in the Southeastern Tibetan Plateau from the synoptic to seasonal time scale publication-title: J. Geophys. Res. Atmos. – volume: 10 start-page: 668 year: 2017 end-page: 673 ident: b0020 article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016 publication-title: Nat. Geosci. – volume: 149 start-page: 61 year: 2016 end-page: 90 ident: b0175 article-title: Glacier fluctuations during the past 2000 years publication-title: Quat. Sci. Rev. – year: 2005 ident: b0285 article-title: Numerical Simulation and Sensitivity Analysis of Climate Change in China’s Representative Ocean Glaciers, Cold and Arid Regions – volume: 2003 start-page: 135 year: 2003 ident: b0100 article-title: A manual for monitoring the mass balance of mountain glaciers by publication-title: IHPVI Tech. Doc. Hydrol. – reference: Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H.I., 2019. Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. – volume: 760 start-page: 144315 year: 2021 ident: b0255 article-title: Hydrothermal combination and geometry control the spatial and temporal rhythm of glacier flow publication-title: Sci. Total Environ. – volume: 44 start-page: 10,560 year: 2017 end-page: 10,572 ident: b0185 article-title: Multidecadal weakening of Indian summer monsoon circulation induces an increasing northern Indian Ocean Sea Level publication-title: Geophys. Res. Lett. – volume: 61 start-page: 745 year: 2015 end-page: 762 ident: b0280 article-title: Historically unprecedented global glacier decline in the early 21st century publication-title: J. Glaciol. – volume: 28 start-page: 3224 year: 2009 end-page: 3235 ident: b0105 article-title: Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River publication-title: Quat. Sci. Rev. – volume: 123 start-page: 6390 year: 2018 end-page: 6409 ident: b0115 article-title: Glacier energy and mass balance in the Inland Tibetan Plateau: seasonal and interannual variability in relation to atmospheric changes publication-title: J. Geophys. Res. Atmos. – volume: 12 start-page: 103 year: 2018 end-page: 121 ident: b0245 article-title: Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories publication-title: Cryosphere – volume: 7 year: 2020 ident: b0160 article-title: A systematic, regional assessment of high mountain Asia glacier mass balance publication-title: Front. Earth Sci. – volume: 1–34 year: 2018 ident: b0240 article-title: Remote-sensing estimate of glacier mass balance over the central Nyainqentanglha Range during 1968 – ∼ 2013 publication-title: Cryosph. – volume: 35 start-page: 161 year: 2011 end-page: 182 ident: b0040 article-title: Glacier retreat and climate change: documenting the last 50 years of alpine glacier history from area and geometry changes of dosdè piazzi glaciers (Lombardy Alps, Italy) publication-title: Prog. Phys. Geogr. – volume: 371 start-page: 49 year: 2015 end-page: 57 ident: b0295 article-title: Elevation changes measured during 1966–2010 on the monsoonal temperate glaciers’ ablation region, Gongga Mountains, China publication-title: Quat. Int. – volume: 5 start-page: 424 year: 2015 end-page: 430 ident: b0135 article-title: Elevation-dependent warming in mountain regions of the world publication-title: Nat. Clim. Chang. – year: 2008 ident: b0165 article-title: Concise Glacier Inventory of China – volume: 2 start-page: 1 year: 2021 end-page: 12 ident: b0075 article-title: Borehole-based characterization of deep mixed-mode crevasses at a Greenlandic outlet glacier publication-title: AGU Adv. – volume: 15 start-page: 1889 year: 2021 end-page: 1905 ident: b0155 article-title: On the attribution of industrial-era glacier mass loss to anthropogenic climate change publication-title: Cryosphere – volume: 7 start-page: 1 year: 2019 end-page: 11 ident: b0235 article-title: Global glacier mass loss during the GRACE satellite mission (2002–2016) publication-title: Front. Earth Sci. – volume: 97-98 start-page: 123 year: 2002 end-page: 131 ident: b0180 article-title: Response of monsoonal temperate glaciers to global warming since the Little Ice Age publication-title: Quaternary – volume: 97 start-page: 321 year: 2009 end-page: 327 ident: b0150 article-title: The altitudinal dependence of recent rapid warming over the Tibetan Plateau publication-title: Clim. Change – volume: 1 start-page: 1 year: 2018 end-page: 7 ident: b0055 article-title: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau publication-title: npj Clim. Atmos. Sci. – volume: 56 year: 2020 ident: b0145 article-title: Observing and Modeling the Isotopic Evolution of Snow Meltwater on the Southeastern Tibetan Plateau publication-title: Water Resour. Res. – volume: 444–445 start-page: 146 year: 2012 end-page: 160 ident: b0290 article-title: Catchment-scale reconstruction of glacier mass balance using observations and global climate data: case study of the Hailuogou catchment, south-eastern Tibetan Plateau publication-title: J. Hydrol. – start-page: 209 year: 2019 end-page: 255 ident: b0010 article-title: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region publication-title: The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People – volume: 6 start-page: 1 year: 2016 end-page: 7 ident: b0065 article-title: Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties publication-title: Sci. Rep. – volume: 48 start-page: 3085 year: 2017 end-page: 3097 ident: b0125 article-title: Trends and variability in the global dataset of glacier mass balance publication-title: Clim. Dyn. – volume: 11 start-page: 2463 year: 2017 end-page: 2480 ident: b0225 article-title: Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru publication-title: Cryosphere – volume: 21 start-page: 137 year: 2010 end-page: 147 ident: b0060 article-title: Climate change and its effect on annual runoff in Lijiang Basin-Mt. Yulong Region, China publication-title: J. Earth Sci. – year: 1996 ident: b0110 article-title: Glaciers in Hengduanshan Range – volume: 26 start-page: 76 year: 2002 end-page: 95 ident: b0015 article-title: Glacier mass balance: The first 50 years of international monitoring publication-title: Prog. Phys. Geogr. – volume: 81 start-page: 791 year: 1999 end-page: 796 ident: b0250 article-title: Measurement and estimative models of glacier mass balance in China publication-title: Geogr. Ann. Ser. A Phys. Geogr. – reference: . – volume: 72 start-page: 11 year: 2010 end-page: 24 ident: b0270 article-title: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset publication-title: Glob. Planet. Change – volume: 47 start-page: 805 year: 2016 end-page: 815 ident: b0260 article-title: Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations publication-title: Clim. Dyn. – volume: 2 start-page: 663 year: 2012 end-page: 667 ident: b0265 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nat. Clim. Chang. – volume: 150 start-page: 93 year: 2014 end-page: 103 ident: b0095 article-title: High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles publication-title: Remote Sens. Environ. – volume: 578 start-page: 124010 year: 2019 ident: b0025 article-title: Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote sensing data and modeling publication-title: J. Hydrol. – volume: 61 start-page: 1048 year: 2015 end-page: 1060 ident: b0085 article-title: Surface energy and MAss balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011 publication-title: J. Glaciol. – volume: 67 start-page: 697 year: 2021 end-page: 713 ident: b0090 article-title: More than a century of direct glacier mass-balance observations on Claridenfirn, Switzerland publication-title: J. Glaciol. – volume: 592 start-page: 726 year: 2021 end-page: 731 ident: b0080 article-title: Accelerated global glacier mass loss in the early twenty-first century publication-title: Nat. (in Press.) – volume: 1–34 year: 2018 ident: 10.1016/j.jhydrol.2021.126931_b0240 article-title: Remote-sensing estimate of glacier mass balance over the central Nyainqentanglha Range during 1968 – ∼ 2013 publication-title: Cryosph. – volume: 61 start-page: 745 issue: 228 year: 2015 ident: 10.1016/j.jhydrol.2021.126931_b0280 article-title: Historically unprecedented global glacier decline in the early 21st century publication-title: J. Glaciol. doi: 10.3189/2015JoG15J017 – volume: 45 start-page: 817 issue: 2 year: 2018 ident: 10.1016/j.jhydrol.2021.126931_b0190 article-title: Causes of glacier melt extremes in the alps since 1949 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL076333 – volume: 2003 start-page: 135 year: 2003 ident: 10.1016/j.jhydrol.2021.126931_b0100 article-title: A manual for monitoring the mass balance of mountain glaciers by publication-title: IHPVI Tech. Doc. Hydrol. – volume: 10 start-page: 856 issue: 9 year: 2020 ident: 10.1016/j.jhydrol.2021.126931_b0200 article-title: Anthropogenic warming forces extreme annual glacier mass loss publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-0849-2 – volume: 67 start-page: 697 issue: 264 year: 2021 ident: 10.1016/j.jhydrol.2021.126931_b0090 article-title: More than a century of direct glacier mass-balance observations on Claridenfirn, Switzerland publication-title: J. Glaciol. doi: 10.1017/jog.2021.22 – volume: 7 start-page: 569 year: 2013 ident: 10.1016/j.jhydrol.2021.126931_b0205 article-title: Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss publication-title: Cryosph. doi: 10.5194/tc-7-569-2013 – year: 2021 ident: 10.1016/j.jhydrol.2021.126931_b0050 article-title: Understanding monsoon controls on the energy and mass balance of Himalayan glacier (in review) publication-title: Cryosph – volume: 7 year: 2020 ident: 10.1016/j.jhydrol.2021.126931_b0160 article-title: A systematic, regional assessment of high mountain Asia glacier mass balance publication-title: Front. Earth Sci. doi: 10.3389/feart.2019.00363 – volume: 48 start-page: 3085 issue: 9-10 year: 2017 ident: 10.1016/j.jhydrol.2021.126931_b0125 article-title: Trends and variability in the global dataset of glacier mass balance publication-title: Clim. Dyn. doi: 10.1007/s00382-016-3253-x – volume: 97-98 start-page: 123 year: 2002 ident: 10.1016/j.jhydrol.2021.126931_b0180 article-title: Response of monsoonal temperate glaciers to global warming since the Little Ice Age publication-title: Quaternary – year: 2010 ident: 10.1016/j.jhydrol.2021.126931_b0035 – volume: 47 start-page: 805 issue: 3-4 year: 2016 ident: 10.1016/j.jhydrol.2021.126931_b0260 article-title: Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations publication-title: Clim. Dyn. doi: 10.1007/s00382-015-2872-y – volume: 5 start-page: 424 year: 2015 ident: 10.1016/j.jhydrol.2021.126931_b0135 article-title: Elevation-dependent warming in mountain regions of the world publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2563 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.jhydrol.2021.126931_b0120 article-title: Estimation of ice thickness and the features of subglacial media detected by ground penetrating radar at the baishui river glacier no. 1 in Mt. Yulong, China publication-title: Remote Sens. doi: 10.1109/TGRS.2020.3035561 – volume: 15 start-page: 1889 issue: 4 year: 2021 ident: 10.1016/j.jhydrol.2021.126931_b0155 article-title: On the attribution of industrial-era glacier mass loss to anthropogenic climate change publication-title: Cryosphere doi: 10.5194/tc-15-1889-2021 – volume: 10 start-page: 668 issue: 9 year: 2017 ident: 10.1016/j.jhydrol.2021.126931_b0020 article-title: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016 publication-title: Nat. Geosci. doi: 10.1038/ngeo2999 – volume: 97 start-page: 321 issue: 1-2 year: 2009 ident: 10.1016/j.jhydrol.2021.126931_b0150 article-title: The altitudinal dependence of recent rapid warming over the Tibetan Plateau publication-title: Clim. Change doi: 10.1007/s10584-009-9733-9 – volume: 7 start-page: 1 year: 2019 ident: 10.1016/j.jhydrol.2021.126931_b0235 article-title: Global glacier mass loss during the GRACE satellite mission (2002–2016) publication-title: Front. Earth Sci. doi: 10.3389/feart.2019.00096 – volume: 11 start-page: 2463 year: 2017 ident: 10.1016/j.jhydrol.2021.126931_b0225 article-title: Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru publication-title: Cryosphere doi: 10.5194/tc-11-2463-2017 – volume: 81 start-page: 791 issue: 4 year: 1999 ident: 10.1016/j.jhydrol.2021.126931_b0250 article-title: Measurement and estimative models of glacier mass balance in China publication-title: Geogr. Ann. Ser. A Phys. Geogr. doi: 10.1111/j.0435-3676.1999.00106.x – volume: 54 start-page: 119 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2021.126931_b0030 article-title: Glacier crevasses: observations, models, and mass balance implications publication-title: Rev. Geophys. doi: 10.1002/2015RG000504 – volume: 2 start-page: 1 year: 2021 ident: 10.1016/j.jhydrol.2021.126931_b0075 article-title: Borehole-based characterization of deep mixed-mode crevasses at a Greenlandic outlet glacier publication-title: AGU Adv. doi: 10.1029/2020AV000291 – volume: 7 start-page: 1227 issue: 4 year: 2013 ident: 10.1016/j.jhydrol.2021.126931_b0275 article-title: Reanalysing glacier mass balance measurement series publication-title: Cryosphere doi: 10.5194/tc-7-1227-2013 – volume: 126 issue: 7 year: 2021 ident: 10.1016/j.jhydrol.2021.126931_b0300 article-title: The influence of key climate variables on mass balance of Naimona’nyi Glacier on a North-Facing Slope in the Western Himalayas publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD033956 – volume: 44 start-page: 10,560 issue: 20 year: 2017 ident: 10.1016/j.jhydrol.2021.126931_b0185 article-title: Multidecadal weakening of Indian summer monsoon circulation induces an increasing northern Indian Ocean Sea Level publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074706 – volume: 578 start-page: 124010 year: 2019 ident: 10.1016/j.jhydrol.2021.126931_b0025 article-title: Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote sensing data and modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124010 – volume: 760 start-page: 144315 year: 2021 ident: 10.1016/j.jhydrol.2021.126931_b0255 article-title: Hydrothermal combination and geometry control the spatial and temporal rhythm of glacier flow publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144315 – year: 2005 ident: 10.1016/j.jhydrol.2021.126931_b0285 – volume: 55 start-page: 3810 issue: 33 year: 2010 ident: 10.1016/j.jhydrol.2021.126931_b0220 article-title: Variations in Equilibrium Line Altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years publication-title: Chinese Sci. Bull. doi: 10.1007/s11434-010-4167-3 – volume: 12 start-page: 759 year: 2018 ident: 10.1016/j.jhydrol.2021.126931_b0005 article-title: The European mountain cryosphere: a review of its current state, trends, and future challenges publication-title: Cryosphere doi: 10.5194/tc-12-759-2018 – volume: 44 start-page: 1376 year: 2017 ident: 10.1016/j.jhydrol.2021.126931_b0210 article-title: Common climatic signal from glaciers in the European Alps over the last 50 years publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL072094 – volume: 56 issue: 9 year: 2020 ident: 10.1016/j.jhydrol.2021.126931_b0145 article-title: Observing and Modeling the Isotopic Evolution of Snow Meltwater on the Southeastern Tibetan Plateau publication-title: Water Resour. Res. doi: 10.1029/2019WR026423 – volume: 35 start-page: 161 issue: 2 year: 2011 ident: 10.1016/j.jhydrol.2021.126931_b0040 article-title: Glacier retreat and climate change: documenting the last 50 years of alpine glacier history from area and geometry changes of dosdè piazzi glaciers (Lombardy Alps, Italy) publication-title: Prog. Phys. Geogr. doi: 10.1177/0309133311399494 – volume: 371 start-page: 49 year: 2015 ident: 10.1016/j.jhydrol.2021.126931_b0295 article-title: Elevation changes measured during 1966–2010 on the monsoonal temperate glaciers’ ablation region, Gongga Mountains, China publication-title: Quat. Int. doi: 10.1016/j.quaint.2015.03.055 – volume: 72 start-page: 11 issue: 1-2 year: 2010 ident: 10.1016/j.jhydrol.2021.126931_b0270 article-title: Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2010.04.003 – year: 2008 ident: 10.1016/j.jhydrol.2021.126931_b0165 – volume: 20 issue: 2 year: 2020 ident: 10.1016/j.jhydrol.2021.126931_b0215 article-title: Accelerated changes of glaciers in the Yulong Snow Mountain, Southeast Qinghai-Tibetan Plateau publication-title: Reg. Environ. Chang. doi: 10.1007/s10113-020-01624-7 – volume: 12 start-page: 103 year: 2018 ident: 10.1016/j.jhydrol.2021.126931_b0245 article-title: Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories publication-title: Cryosphere doi: 10.5194/tc-12-103-2018 – ident: 10.1016/j.jhydrol.2021.126931_b0070 – year: 1996 ident: 10.1016/j.jhydrol.2021.126931_b0110 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.jhydrol.2021.126931_b0195 article-title: Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt publication-title: Nat. Commun. doi: 10.1038/s41467-019-12039-2 – volume: 150 start-page: 93 year: 2014 ident: 10.1016/j.jhydrol.2021.126931_b0095 article-title: High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.025 – volume: 61 start-page: 1048 issue: 230 year: 2015 ident: 10.1016/j.jhydrol.2021.126931_b0085 article-title: Surface energy and MAss balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011 publication-title: J. Glaciol. doi: 10.3189/2015JoG15J056 – volume: 21 start-page: 137 issue: 2 year: 2010 ident: 10.1016/j.jhydrol.2021.126931_b0060 article-title: Climate change and its effect on annual runoff in Lijiang Basin-Mt. Yulong Region, China publication-title: J. Earth Sci. doi: 10.1007/s12583-010-0012-5 – volume: 2 start-page: 663 issue: 9 year: 2012 ident: 10.1016/j.jhydrol.2021.126931_b0265 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1580 – volume: 125 start-page: 1 year: 2020 ident: 10.1016/j.jhydrol.2021.126931_b0170 article-title: Variability of isotope composition of precipitation in the Southeastern Tibetan Plateau from the synoptic to seasonal time scale publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD031751 – volume: 123 start-page: 6390 issue: 12 year: 2018 ident: 10.1016/j.jhydrol.2021.126931_b0115 article-title: Glacier energy and mass balance in the Inland Tibetan Plateau: seasonal and interannual variability in relation to atmospheric changes publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2017JD028120 – volume: 1 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2021.126931_b0055 article-title: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau publication-title: npj Clim. Atmos. Sci. doi: 10.1038/s41612-018-0030-z – volume: 149 start-page: 61 year: 2016 ident: 10.1016/j.jhydrol.2021.126931_b0175 article-title: Glacier fluctuations during the past 2000 years publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2016.04.008 – volume: 55 start-page: 710 issue: 192 year: 2009 ident: 10.1016/j.jhydrol.2021.126931_b0045 article-title: A new index of glacier area change: a tool for glacier monitoring publication-title: J. Glaciol. doi: 10.3189/002214309789471030 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.jhydrol.2021.126931_b0065 article-title: Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties publication-title: Sci. Rep. doi: 10.1038/srep29723 – volume: 444–445 start-page: 146 year: 2012 ident: 10.1016/j.jhydrol.2021.126931_b0290 article-title: Catchment-scale reconstruction of glacier mass balance using observations and global climate data: case study of the Hailuogou catchment, south-eastern Tibetan Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.04.014 – volume: 592 start-page: 726 issue: 7856 year: 2021 ident: 10.1016/j.jhydrol.2021.126931_b0080 article-title: Accelerated global glacier mass loss in the early twenty-first century publication-title: Nat. (in Press.) – volume: 21 start-page: 179 issue: 2 year: 2010 ident: 10.1016/j.jhydrol.2021.126931_b0130 article-title: Observed glaciohydrological changes in China’s typical monsoonal temperate glacier region since 1980s publication-title: J. Earth Sci. doi: 10.1007/s12583-010-0016-1 – ident: 10.1016/j.jhydrol.2021.126931_b0230 – volume: 26 start-page: 76 issue: 1 year: 2002 ident: 10.1016/j.jhydrol.2021.126931_b0015 article-title: Glacier mass balance: The first 50 years of international monitoring publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133302pp326ra – start-page: 209 year: 2019 ident: 10.1016/j.jhydrol.2021.126931_b0010 article-title: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region – volume: 10 start-page: 133 year: 2016 ident: 10.1016/j.jhydrol.2021.126931_b0140 article-title: Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya publication-title: Cryosphere doi: 10.5194/tc-10-133-2016 – volume: 28 start-page: 3224 issue: 27-28 year: 2009 ident: 10.1016/j.jhydrol.2021.126931_b0105 article-title: Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2009.08.005 |
SSID | ssj0000334 |
Score | 2.4379036 |
Snippet | •12-years of continuous in-situ measurements of mass balance.•The glacial accumulation fell far short of offsetting the ablation.•The significant glacier... Glacier mass balance provides a sensitive barometer of climate-glacier interactions, yet only a few glaciers have been continuously well-documented. Here we... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126931 |
SubjectTerms | air temperature altitude China climate glaciers Glaciological method hydrology Liquid precipitation liquids Mass balance monsoon season rivers shrinkage Temperate glacier |
Title | Accelerated glacier mass loss with atmospheric changes on Mt. Yulong, Southeastern Tibetan Plateau |
URI | https://dx.doi.org/10.1016/j.jhydrol.2021.126931 https://www.proquest.com/docview/2636601538 |
Volume | 603 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wuETzabtukSXpcFmVVFA8Kegp5re6y28pu9-DF3-6kD0VBBI8NzbSZTGe-dF4InXInBIsMDyrHIR0yGwjFVaCF4SzliSZV076bWzZ4oFeP6eMS6re5MD6sstH9tU6vtHUz0m242X0djXyOb5LELKNwaIkyUeX3Usq9lIfvX2EeESG0rRju7_7K4umOw_HLm50V3gORxGGcsIzEv9mnH5q6Mj8XG2i9wY24V7_aJlpy-RZabVqYv7xtI90zBkyIr_xgMWBiWMsMTwEa4wk8B_v_rViV02Lu6wiMDK4zfue4yPFNGeKnxaTIn89w1VLP9_Nxsxzfj7QD8IjvJkBVLXbQw8X5fX8QNA0UAkVYWgbEDDUTMeWWa1iaUQaMOWEEIBuxRICaZk45SrXhlhDvw7SEUa3tEEZdlJFdtJwXudtDmIrIAZLJbJoqIMEywRU3TsDpUJjYmH1EW7ZJ01QX900uJrINIxvLhtvSc1vW3N5H4ee017q8xl8TRLsn8pucSDABf009afdQwjfkHSMqd8ViLoEdDA6moPsP_k_-EK35qzrU5Qgtl7OFOwbAUupOJZEdtNK7vB7cfgBxv-qP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iB72IK-5G8Gg7bZMm6VFEGZcRDyPoKWQbnWFsZaZz8OJv96WLoiCC17ZJm5fkvS99y4fQMXdCsMjwoHIc0gGzgVBcBVoYzlKeaFKR9vVuWfeeXj2kD3PorM2F8WGVje6vdXqlrZsrnUaandfh0Of4JknMMgqHligTPr93gcL29TQG4ftXnEdECG1LhvvHv9J4OqNw9PxmJ4V3QSRxGCcsI_FvBuqHqq7sz8UKWm6AIz6tv20Vzbl8DS02HObPb-tInxoDNsSXfrAYQDEMZoJfABvjMbwH-x-uWJUvxdQXEhgaXKf8TnGR414Z4sfZuMifTnDFqecJfdwkx_2hdoAe8d0YelWzDXR_cd4_6wYNg0KgCEvLgJiBZiKm3HINQzPKgDUnjABmI5YI0NPMKUepNtwS4p2YljCqtR3AVRdlZBPN50XuthCmInIAZTKbpgq6YJngihsn4HgoTGzMNqKt2KRpyot7louxbOPIRrKRtvTSlrW0t1H42ey1rq_xVwPRzon8tlAk2IC_mh61cyhhE3nPiMpdMZtKEAeDkymsnp3_d3-IFrv93o28uby93kVL_k4d97KH5svJzO0Dein1QbU6PwDZj-wd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+glacier+mass+loss+with+atmospheric+changes+on+Mt.+Yulong%2C+Southeastern+Tibetan+Plateau&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Yan%2C+Xingguo&rft.au=Ma%2C+Jinzhu&rft.au=Ma%2C+Xiaoyi&rft.au=Wang%2C+Shijin&rft.date=2021-12-01&rft.issn=0022-1694&rft.volume=603&rft.spage=126931&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2021_126931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |