Simplified physically based models for free-surface flow in karst systems

•Simplified models that reproduce karst spring hydrographs for free-surface flow conditions.•Karst aquifer characterization using effective discharge expressions.•Application on actual karst aquifer systems. Most karst aquifers are characterized as a dual-flow system comprised of a highly conductive...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 578; p. 124040
Main Authors Zoghbi, Christiane, Basha, Habib
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2019.124040

Cover

Loading…
Abstract •Simplified models that reproduce karst spring hydrographs for free-surface flow conditions.•Karst aquifer characterization using effective discharge expressions.•Application on actual karst aquifer systems. Most karst aquifers are characterized as a dual-flow system comprised of a highly conductive conduit network embedded in a low porosity matrix. The conduits are hydraulically connected to the matrix and behave either as a drain or a source depending on the recharge conditions. Simplified physically based models are herein employed to simulate the spring outflow for such aquifer systems. The processes consist of a free-surface flow in the conduit that is interacting laterally with a laminar groundwater flow in the surrounding matrix. The conduit is subject to a concentrated recharge at its upstream end while the groundwater aquifer is subject to a diffuse recharge over its contributing surface area. The flow system is described by a coupled system of partial differential equations: the conduit flow is approximated by the kinematic wave equation and the groundwater flow by the linearized Boussinesq equation. The governing equations are solved using the Laplace transform method after an appropriate linearization of the nonlinear coefficient. The derived spring discharge models are a function of three dimensionless parameters: the time lag parameter ξ, the lumped conduit parameter λ, and the aquifer parameter η. The simulation results highlight the contrast between pressure-driven and gravity-driven flows and the importance of the conduit-matrix interaction on the response of the karst system. Application of the models on real karst aquifers demonstrates their effectiveness in simulating the observed spring hydrograph using lumped physical parameters of the karst system.
AbstractList Most karst aquifers are characterized as a dual-flow system comprised of a highly conductive conduit network embedded in a low porosity matrix. The conduits are hydraulically connected to the matrix and behave either as a drain or a source depending on the recharge conditions. Simplified physically based models are herein employed to simulate the spring outflow for such aquifer systems. The processes consist of a free-surface flow in the conduit that is interacting laterally with a laminar groundwater flow in the surrounding matrix. The conduit is subject to a concentrated recharge at its upstream end while the groundwater aquifer is subject to a diffuse recharge over its contributing surface area. The flow system is described by a coupled system of partial differential equations: the conduit flow is approximated by the kinematic wave equation and the groundwater flow by the linearized Boussinesq equation. The governing equations are solved using the Laplace transform method after an appropriate linearization of the nonlinear coefficient. The derived spring discharge models are a function of three dimensionless parameters: the time lag parameter ξ, the lumped conduit parameter λ, and the aquifer parameter η. The simulation results highlight the contrast between pressure-driven and gravity-driven flows and the importance of the conduit-matrix interaction on the response of the karst system. Application of the models on real karst aquifers demonstrates their effectiveness in simulating the observed spring hydrograph using lumped physical parameters of the karst system.
•Simplified models that reproduce karst spring hydrographs for free-surface flow conditions.•Karst aquifer characterization using effective discharge expressions.•Application on actual karst aquifer systems. Most karst aquifers are characterized as a dual-flow system comprised of a highly conductive conduit network embedded in a low porosity matrix. The conduits are hydraulically connected to the matrix and behave either as a drain or a source depending on the recharge conditions. Simplified physically based models are herein employed to simulate the spring outflow for such aquifer systems. The processes consist of a free-surface flow in the conduit that is interacting laterally with a laminar groundwater flow in the surrounding matrix. The conduit is subject to a concentrated recharge at its upstream end while the groundwater aquifer is subject to a diffuse recharge over its contributing surface area. The flow system is described by a coupled system of partial differential equations: the conduit flow is approximated by the kinematic wave equation and the groundwater flow by the linearized Boussinesq equation. The governing equations are solved using the Laplace transform method after an appropriate linearization of the nonlinear coefficient. The derived spring discharge models are a function of three dimensionless parameters: the time lag parameter ξ, the lumped conduit parameter λ, and the aquifer parameter η. The simulation results highlight the contrast between pressure-driven and gravity-driven flows and the importance of the conduit-matrix interaction on the response of the karst system. Application of the models on real karst aquifers demonstrates their effectiveness in simulating the observed spring hydrograph using lumped physical parameters of the karst system.
ArticleNumber 124040
Author Basha, Habib
Zoghbi, Christiane
Author_xml – sequence: 1
  givenname: Christiane
  orcidid: 0000-0003-3994-6314
  surname: Zoghbi
  fullname: Zoghbi, Christiane
– sequence: 2
  givenname: Habib
  orcidid: 0000-0001-7676-1429
  surname: Basha
  fullname: Basha, Habib
  email: habib@aub.edu.lb
BookMark eNqFkE1LxDAQhoMouK7-BKFHL10nST82eBARv0DwoJ5Dmk7YrGmzZrpK_71d1pMX5zIwvM8L85ywwz72yNg5hwUHXl2uF-vV2KYYFgK4WnBRQAEHbMaXtcpFDfUhmwEIkfNKFcfshGgN00hZzNjTq-82wTuPbbZZjeStCWHMGkPToYstBspcTJlLiDltkzMWMxfid-b77MMkGjIaacCOTtmRM4Hw7HfP2fv93dvtY_788vB0e_OcG1mVQy6ELFvVFNYoUQFYKwyY2gprubTQVFwpLitelwDLpVSVMk4uG1U70zRWcSfn7GLfu0nxc4s06M6TxRBMj3FLevoeSi5UqaZouY_aFIkSOr1JvjNp1Bz0Tp1e6191eqdO79VN3NUfzvrBDD72QzI-_Etf7-nJHX55TJqsx95i6xPaQbfR_9PwA-pwj9s
CitedBy_id crossref_primary_10_3390_su16031326
crossref_primary_10_1016_j_jhydrol_2022_129002
crossref_primary_10_1016_j_scitotenv_2020_144353
crossref_primary_10_1002_hyp_15305
crossref_primary_10_1029_2020WR027384
crossref_primary_10_1007_s12665_021_09636_0
crossref_primary_10_3390_w11122494
Cites_doi 10.1029/WR026i011p02769
10.1016/S0022-1694(02)00033-1
10.1029/2011WR010446
10.1016/j.advwatres.2013.01.010
10.1016/j.jhydrol.2012.06.043
10.1016/j.jhydrol.2006.11.015
10.1080/03091921003610152
10.1016/S0013-7952(01)00120-X
10.1029/2018WR023331
10.1016/j.jhydrol.2010.03.005
10.1016/j.jhydrol.2006.02.017
10.1016/0021-8928(60)90107-6
10.5038/1827-806X.37.1.2
10.1145/321921.321931
10.1016/j.jhydrol.2014.04.005
10.1016/0022-1694(70)90255-6
10.1016/j.advwatres.2013.08.009
10.1029/2007WR006601
10.1111/j.1745-6584.2006.00175.x
10.1137/0903022
10.1016/j.jhydrol.2015.05.006
10.1029/2002GL016808
10.1016/j.jhydrol.2012.04.044
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2019.124040
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2019_124040
S002216941930767X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a365t-2235d9b4ca92600cc2a0a7c2cc13c0b619913617500883969af38b97fabbc91f3
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 03:15:47 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 01:53:15 EDT 2025
Fri Feb 23 02:47:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydraulic processes
Kernel functions
Transfer functions
Conduit-matrix interaction
Karst hydrology
Inverse modeling
Analytical models
Spring hydrograph
Convolution integral
Free-surface flow
Karst water resources
Dual-hydraulic model
Laplace transform method
Mathematical modeling
Karst conduit
Aquifer characterization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-2235d9b4ca92600cc2a0a7c2cc13c0b619913617500883969af38b97fabbc91f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3994-6314
0000-0001-7676-1429
PQID 2400512959
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400512959
crossref_primary_10_1016_j_jhydrol_2019_124040
crossref_citationtrail_10_1016_j_jhydrol_2019_124040
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Charlier, Bertrand, Mudry (b0040) 2012; 460–461
Ames (b0005) 1965
Nash, Sutcliffe (b0115) 1970; 10
Reimann, Geyer, Shoemaker, Liedl, Sauter (b0135) 2011; 47
de Hoog, Knight, Stokes (b0070) 1982; 3
Hunt (b0095) 1990; 26
Schenck Brown, Julie Eileen, Atrazine Contamination and Suspended Sediment Transport within Logsdon River, Mammoth Cave, Kentucky“ (2008). Masters Theses & Specialist Projects. Paper 38.
Jain (b0100) 2001
Peterson, Wicks (b0120) 2006; 329
Basha, Zoghbi (b0020) 2018; 54
Chen, Goldscheider (b0045) 2014; 514
Chang, Wu, Liu (b0035) 2015; 527
Cornaton, Perrochet (b0055) 2002; 262
Hartmann, Barberá, Lange, Andreo, Weiler (b0080) 2013; 54
Criss, Winston (b0060) 2003; 30
Birk, Liedl, Sauter (b0025) 2006; 44
Hollenbeck, K.J., 1998. INVLAP.M: A Matlab function for numerical inversion of Laplace transforms by De Hoog Algorithm
Luhmann, Covington, Alexander, Chai, Schwartz, Groten (b0110) 2012; 448–449
.
Bailly-Comte, Martin, Jourde, Screaton, Pistre, Langston (b0010) 2010; 386
Campbell, Sullivan (b0030) 2002; 65
Chow, Maidment, Mays (b0050) 1988
Barenblatt, Zheltov, Kochina (b0015) 1960; 24
Prelovsek, Turk, Gabrovsek (b0125) 2008; 37
Shoemaker, Cunningham, Kuniansky, Dixon (b0145) 2008; 44
Crump (b0065) 1976; 23
Raeisi, Groves, Meiman (b0130) 2007; 337
de Rooij, Perrochet, Graham (b0075) 2013; 61
Loper, Eltayeb (b0105) 2010; 104
Hoffman (b0085) 2001
Loper (10.1016/j.jhydrol.2019.124040_b0105) 2010; 104
Chang (10.1016/j.jhydrol.2019.124040_b0035) 2015; 527
Jain (10.1016/j.jhydrol.2019.124040_b0100) 2001
Crump (10.1016/j.jhydrol.2019.124040_b0065) 1976; 23
Cornaton (10.1016/j.jhydrol.2019.124040_b0055) 2002; 262
Hoffman (10.1016/j.jhydrol.2019.124040_b0085) 2001
Nash (10.1016/j.jhydrol.2019.124040_b0115) 1970; 10
Chen (10.1016/j.jhydrol.2019.124040_b0045) 2014; 514
Peterson (10.1016/j.jhydrol.2019.124040_b0120) 2006; 329
10.1016/j.jhydrol.2019.124040_b0140
Ames (10.1016/j.jhydrol.2019.124040_b0005) 1965
Prelovsek (10.1016/j.jhydrol.2019.124040_b0125) 2008; 37
Shoemaker (10.1016/j.jhydrol.2019.124040_b0145) 2008; 44
Reimann (10.1016/j.jhydrol.2019.124040_b0135) 2011; 47
Luhmann (10.1016/j.jhydrol.2019.124040_b0110) 2012; 448–449
Bailly-Comte (10.1016/j.jhydrol.2019.124040_b0010) 2010; 386
Raeisi (10.1016/j.jhydrol.2019.124040_b0130) 2007; 337
Chow (10.1016/j.jhydrol.2019.124040_b0050) 1988
Criss (10.1016/j.jhydrol.2019.124040_b0060) 2003; 30
Birk (10.1016/j.jhydrol.2019.124040_b0025) 2006; 44
Campbell (10.1016/j.jhydrol.2019.124040_b0030) 2002; 65
Barenblatt (10.1016/j.jhydrol.2019.124040_b0015) 1960; 24
Hartmann (10.1016/j.jhydrol.2019.124040_b0080) 2013; 54
Charlier (10.1016/j.jhydrol.2019.124040_b0040) 2012; 460–461
Basha (10.1016/j.jhydrol.2019.124040_b0020) 2018; 54
de Hoog (10.1016/j.jhydrol.2019.124040_b0070) 1982; 3
Hunt (10.1016/j.jhydrol.2019.124040_b0095) 1990; 26
de Rooij (10.1016/j.jhydrol.2019.124040_b0075) 2013; 61
10.1016/j.jhydrol.2019.124040_b0090
References_xml – year: 1965
  ident: b0005
  article-title: Nonlinear Partial Differential Equations in Engineering
– year: 2001
  ident: b0100
  article-title: Open-Channel Flow
– volume: 24
  start-page: 1286
  year: 1960
  end-page: 1303
  ident: b0015
  article-title: Basic concepts in the theory of seepage of homogeneous liquids in fissured rock
  publication-title: J. Appl. Math. Mech.
– volume: 65
  start-page: 133
  year: 2002
  end-page: 139
  ident: b0030
  article-title: Simulating time-varying cave flow and water levels using the storm water management model
  publication-title: Eng. Geol.
– reference: Schenck Brown, Julie Eileen, Atrazine Contamination and Suspended Sediment Transport within Logsdon River, Mammoth Cave, Kentucky“ (2008). Masters Theses & Specialist Projects. Paper 38.
– year: 1988
  ident: b0050
  article-title: Applied Hydrology
– volume: 329
  start-page: 294
  year: 2006
  end-page: 305
  ident: b0120
  article-title: Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM)
  publication-title: J. Hydrol.
– volume: 37
  start-page: 11
  year: 2008
  end-page: 26
  ident: b0125
  article-title: Hydrodynamic aspect of caves
  publication-title: Int. J. Speleol.
– volume: 448–449
  start-page: 201
  year: 2012
  end-page: 211
  ident: b0110
  article-title: Comparing conservative and non-conservative tracers in karst and using them to estimate flow path geometry
  publication-title: J. Hydrol.
– volume: 262
  start-page: 165
  year: 2002
  end-page: 176
  ident: b0055
  article-title: Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application tokarstic spring hydrograph modelling
  publication-title: J. Hydrol.
– volume: 386
  start-page: 55
  year: 2010
  end-page: 66
  ident: b0010
  article-title: Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams
  publication-title: J. Hydrol.
– volume: 3
  start-page: 357
  year: 1982
  end-page: 366
  ident: b0070
  article-title: An improved method for numerical inversion of laplace transforms
  publication-title: Soc. Ind. Appl. Math.SIAM J. Sci. Stat. Comput.
– volume: 23
  start-page: 89
  year: 1976
  end-page: 96
  ident: b0065
  article-title: Numerical inversion of laplace transforms using a Fourier series approximation
  publication-title: J. ACM (JACM)
– volume: 514
  start-page: 41
  year: 2014
  end-page: 52
  ident: b0045
  article-title: Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen-Gottesacker, Alps
  publication-title: J. Hydrol.
– volume: 460–461
  start-page: 52
  year: 2012
  end-page: 64
  ident: b0040
  article-title: Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system
  publication-title: J. Hydrol.
– reference: Hollenbeck, K.J., 1998. INVLAP.M: A Matlab function for numerical inversion of Laplace transforms by De Hoog Algorithm,
– volume: 47
  year: 2011
  ident: b0135
  article-title: Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers
  publication-title: Water Resour. Res.
– volume: 61
  start-page: 29
  year: 2013
  end-page: 41
  ident: b0075
  article-title: From rainfall to spring discharge: coupling conduit flow, subsurface matrix flow and surface flow in karst systems using a discrete-continuum model
  publication-title: Adv. Water Resour.
– volume: 44
  start-page: 832
  year: 2006
  end-page: 836
  ident: b0025
  article-title: Karst spring responses examined by process-based modeling
  publication-title: Ground Water
– volume: 26
  start-page: 2769
  year: 1990
  end-page: 2775
  ident: b0095
  article-title: An approximation for the bank storage effect’
  publication-title: Water Resour. Res.
– volume: 44
  year: 2008
  ident: b0145
  article-title: Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers
  publication-title: Water Resour. Res.
– volume: 337
  start-page: 1
  year: 2007
  end-page: 10
  ident: b0130
  article-title: Effects of partial and full pipe flow on hydrochemographs of Logsdon river, Mammoth Cave Kentucky USA
  publication-title: J. Hydrol.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0115
  article-title: River flow forecasting through conceptual models, part I - A discussion of principles
  publication-title: J. Hydrol.
– volume: 527
  start-page: 517
  year: 2015
  end-page: 530
  ident: b0035
  article-title: Effects of the conduit network on the spring hydrograph of the karst aquifer
  publication-title: J. Hydrol.
– reference: .
– volume: 54
  start-page: 149
  year: 2013
  end-page: 160
  ident: b0080
  article-title: Progress in the hydrologic simulation of time variant recharge areas of karst systems – exemplified at a karst spring in Southern Spain
  publication-title: Adv. Water Resour.
– volume: 54
  year: 2018
  ident: b0020
  article-title: Simplified physically based models for pressurized flow in karst systems
  publication-title: Water Resour. Res.
– volume: 104
  start-page: 309
  year: 2010
  end-page: 322
  ident: b0105
  article-title: A linear model of conduit waves in karstic aquifers
  publication-title: Geophys. Astrophys. Fluid Dyn.
– volume: 30
  start-page: n/a-n/a
  year: 2003
  ident: b0060
  article-title: Hydrograph for small basins following intense storms
  publication-title: Geophys. Res. Lett.
– year: 2001
  ident: b0085
  article-title: Numerical Methods for Engineers and Scientists
– volume: 26
  start-page: 2769
  issue: 11
  year: 1990
  ident: 10.1016/j.jhydrol.2019.124040_b0095
  article-title: An approximation for the bank storage effect’
  publication-title: Water Resour. Res.
  doi: 10.1029/WR026i011p02769
– volume: 262
  start-page: 165
  issue: 1–4
  year: 2002
  ident: 10.1016/j.jhydrol.2019.124040_b0055
  article-title: Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application tokarstic spring hydrograph modelling
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00033-1
– year: 2001
  ident: 10.1016/j.jhydrol.2019.124040_b0100
– volume: 47
  issue: 11
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124040_b0135
  article-title: Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010446
– volume: 54
  start-page: 149
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124040_b0080
  article-title: Progress in the hydrologic simulation of time variant recharge areas of karst systems – exemplified at a karst spring in Southern Spain
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.01.010
– volume: 460–461
  start-page: 52
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124040_b0040
  article-title: Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.06.043
– year: 1988
  ident: 10.1016/j.jhydrol.2019.124040_b0050
– volume: 337
  start-page: 1
  issue: 1–2
  year: 2007
  ident: 10.1016/j.jhydrol.2019.124040_b0130
  article-title: Effects of partial and full pipe flow on hydrochemographs of Logsdon river, Mammoth Cave Kentucky USA
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.11.015
– volume: 104
  start-page: 309
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124040_b0105
  article-title: A linear model of conduit waves in karstic aquifers
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091921003610152
– volume: 65
  start-page: 133
  issue: 2–3
  year: 2002
  ident: 10.1016/j.jhydrol.2019.124040_b0030
  article-title: Simulating time-varying cave flow and water levels using the storm water management model
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00120-X
– volume: 54
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124040_b0020
  article-title: Simplified physically based models for pressurized flow in karst systems
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023331
– volume: 386
  start-page: 55
  issue: 1–4
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124040_b0010
  article-title: Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.03.005
– volume: 329
  start-page: 294
  issue: 1–2
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124040_b0120
  article-title: Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.02.017
– volume: 24
  start-page: 1286
  issue: 5
  year: 1960
  ident: 10.1016/j.jhydrol.2019.124040_b0015
  article-title: Basic concepts in the theory of seepage of homogeneous liquids in fissured rock
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(60)90107-6
– volume: 37
  start-page: 11
  issue: 1
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124040_b0125
  article-title: Hydrodynamic aspect of caves
  publication-title: Int. J. Speleol.
  doi: 10.5038/1827-806X.37.1.2
– volume: 23
  start-page: 89
  issue: 1
  year: 1976
  ident: 10.1016/j.jhydrol.2019.124040_b0065
  article-title: Numerical inversion of laplace transforms using a Fourier series approximation
  publication-title: J. ACM (JACM)
  doi: 10.1145/321921.321931
– volume: 514
  start-page: 41
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124040_b0045
  article-title: Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen-Gottesacker, Alps
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.04.005
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  ident: 10.1016/j.jhydrol.2019.124040_b0115
  article-title: River flow forecasting through conceptual models, part I - A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 61
  start-page: 29
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124040_b0075
  article-title: From rainfall to spring discharge: coupling conduit flow, subsurface matrix flow and surface flow in karst systems using a discrete-continuum model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.08.009
– year: 2001
  ident: 10.1016/j.jhydrol.2019.124040_b0085
– volume: 44
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124040_b0145
  article-title: Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006601
– volume: 44
  start-page: 832
  issue: 6
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124040_b0025
  article-title: Karst spring responses examined by process-based modeling
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2006.00175.x
– volume: 3
  start-page: 357
  issue: 3
  year: 1982
  ident: 10.1016/j.jhydrol.2019.124040_b0070
  article-title: An improved method for numerical inversion of laplace transforms
  publication-title: Soc. Ind. Appl. Math.SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0903022
– volume: 527
  start-page: 517
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124040_b0035
  article-title: Effects of the conduit network on the spring hydrograph of the karst aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.05.006
– volume: 30
  start-page: n/a-n/a
  issue: 6
  year: 2003
  ident: 10.1016/j.jhydrol.2019.124040_b0060
  article-title: Hydrograph for small basins following intense storms
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL016808
– volume: 448–449
  start-page: 201
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124040_b0110
  article-title: Comparing conservative and non-conservative tracers in karst and using them to estimate flow path geometry
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.04.044
– ident: 10.1016/j.jhydrol.2019.124040_b0090
– ident: 10.1016/j.jhydrol.2019.124040_b0140
– year: 1965
  ident: 10.1016/j.jhydrol.2019.124040_b0005
SSID ssj0000334
Score 2.3476794
Snippet •Simplified models that reproduce karst spring hydrographs for free-surface flow conditions.•Karst aquifer characterization using effective discharge...
Most karst aquifers are characterized as a dual-flow system comprised of a highly conductive conduit network embedded in a low porosity matrix. The conduits...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124040
SubjectTerms Analytical models
Aquifer characterization
aquifers
Conduit-matrix interaction
Convolution integral
differential equation
Dual-hydraulic model
Free-surface flow
groundwater
groundwater flow
groundwater recharge
Hydraulic processes
hydrograph
Inverse modeling
Karst conduit
Karst hydrology
Karst water resources
karsts
Kernel functions
Laplace transform method
Mathematical modeling
porosity
Spring hydrograph
springs (water)
surface area
Transfer functions
Title Simplified physically based models for free-surface flow in karst systems
URI https://dx.doi.org/10.1016/j.jhydrol.2019.124040
https://www.proquest.com/docview/2400512959
Volume 578
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EHtpL6ZPah2yh12iS3STuUaSiLfXSCt6WfQW1EsUHxUt_e3eSTaWlIPSYkAnh28nMN7vzQOghIYH0dWA82UqER6kWntSRjXkstY-M0jrOty5eBnFvSJ9G0aiCOmUtDKRVOttf2PTcWrs7TYdmczGZQI1vGAZQh8msnsbJCCrYaQJa3vjcpXn4hNCyYzg8vaviaU4b0_FWL-dwAhGwhvV0PuyB_O2fflnq3P10T9Cx4424XXzaKaqY7AwduhHm4-056r9OIDk8tZQSLxz4sy0GL6VxPu9mhS1BxenSGG-1WaZCGZzO5h94kuF3G96ucdHVeXWBht3Ht07Pc3MSPEHiaO1ZDx9pJqkSDNrNKxUKXyQqVCogypcxZDcRy1Qi6-8tH4qZSElLsiQVUioWpOQSVbN5Zq4QpqnlJ4IoIXRCYxIyY3yqVSyEjXwCHdYQLdHhyjURh1kWM15mi025A5UDqLwAtYYa32KLoovGPoFWCT3_oQ7cWvp9ovflUnH7q8D5h8jMfLPikC4L_CZi1_9__Q06gquiHPEWVdfLjbmzvGQt67ni1dFBu__cG3wBfrniyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPehFfOLbFbymTbKbpHuUorQ-elGht2VfwdaSlj6Q_nt3mo2iCILXhAnhy2Tm292ZbwCuMhqp0EQ2UK1MBowZGSiTuDWPo_aJ1cakq62Lx17aeWF3_aRfg3bVC4NllT72lzF9Fa39laZHszkZDLDHN44j7MPkzk_TrL8G66hOldRh_bp73-l9BWRKWSUajgZfjTzNYWP4ujTTMR5CRLzhkl2I2yC_p6gfwXqVgW63YctTR3Jdvt0O1GyxCxt-ivnrcg-6TwOsD88dqyQTj_9oSTBRGbIaeTMjjqOSfGptMFtMc6ktyUfjdzIoyJtb4c5JKew824eX25vndifwoxICSdNkHrgknxiumJYcFee1jmUoMx1rHVEdqhQLnKgjK4lL-Y4SpVzmtKV4lkulNI9yegD1YlzYQyAsdxRFUi2lyVhKY25tyIxOpXSLn8jER8AqdIT2OuI4zmIkqoKxofCgCgRVlKAeQePTbFIKafxl0KqgF988Qrhg_5fpZfWphPtb8AhEFna8mAmsmEWKk_Dj_z_-AjY6z48P4qHbuz-BTbxTdieeQn0-XdgzR1Pm6ty74QdMOuV6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplified+physically+based+models+for+free-surface+flow+in+karst+systems&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zoghbi%2C+Christiane&rft.au=%E1%B8%A4ab%C4%ABb+B%C4%81sh%C4%81%2C+al-Mu%E1%B9%ADr%C4%81n&rft.date=2019-11-01&rft.issn=0022-1694&rft.volume=578+p.124040-&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon