Fast Quasi-Centroid Molecular Dynamics for Water and Ice
We describe how the fast quasi-centroid molecular dynamics (f-QCMD) method can be applied to condensed-phase systems by approximating the quasi-centroid potential of mean force as a sum of inter- and intramolecular corrections to the classical interaction potential. The corrections are found by usin...
Saved in:
Published in | The journal of physical chemistry. B Vol. 127; no. 42; pp. 9172 - 9180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We describe how the fast quasi-centroid molecular dynamics (f-QCMD) method can be applied to condensed-phase systems by approximating the quasi-centroid potential of mean force as a sum of inter- and intramolecular corrections to the classical interaction potential. The corrections are found by using a regularized iterative Boltzmann inversion procedure to recover the inter- and intramolecular quasi-centroid distribution functions obtained from a path integral molecular dynamics simulation. The resulting methodology is found to give good agreement with a previously published QCMD dipole absorption spectrum for liquid water and satisfactory agreement for ice. It also gives good agreement with spectra from a recent implementation of CMD that uses a precomputed elevated temperature potential of mean force. Modern centroid molecular dynamics methods, therefore, appear to be reaching a consensus regarding the impact of nuclear quantum effects on the vibrational spectra of water and ice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.3c05028 |