Bayesian Algorithm for Retrosynthesis

The identification of synthetic routes that end with the desired product is considered an inherently time-consuming process that is largely dependent on expert knowledge regarding a limited proportion of the entire reaction space. At present, emerging machine learning technologies are reformulating...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 60; no. 10; pp. 4474 - 4486
Main Authors Guo, Zhongliang, Wu, Stephen, Ohno, Mitsuru, Yoshida, Ryo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identification of synthetic routes that end with the desired product is considered an inherently time-consuming process that is largely dependent on expert knowledge regarding a limited proportion of the entire reaction space. At present, emerging machine learning technologies are reformulating the process of retrosynthetic planning. This study aimed to discover synthetic routes backwardly from a given desired molecule to commercially available compounds. The problem is reduced to a combinatorial optimization task with the solution space subject to the combinatorial complexity of all possible pairs of purchasable reactants. We address this issue within the framework of Bayesian inference and computation. The workflow consists of the training of a deep neural network, which is used to forwardly predict a product of the given reactants with a high level of accuracy, followed by inversion of the forward model into the backward one via Bayes’ law of conditional probability. Using the backward model, a diverse set of highly probable reaction sequences ending with a given synthetic target is exhaustively explored using a Monte Carlo search algorithm. With a forward model prediction accuracy of approximately 87%, the Bayesian retrosynthesis algorithm successfully rediscovered 81.8 and 33.3% of known synthetic routes of one-step and two-step reactions, respectively, with top-10 accuracy. Remarkably, the Monte Carlo algorithm, which was specifically designed for the presence of multiple diverse routes, often revealed a ranked list of hundreds of reaction routes to the same synthetic target. We also investigated the potential applicability of such diverse candidates based on expert knowledge of synthetic organic chemistry.
AbstractList The identification of synthetic routes that end with the desired product is considered an inherently time-consuming process that is largely dependent on expert knowledge regarding a limited proportion of the entire reaction space. At present, emerging machine learning technologies are reformulating the process of retrosynthetic planning. This study aimed to discover synthetic routes backwardly from a given desired molecule to commercially available compounds. The problem is reduced to a combinatorial optimization task with the solution space subject to the combinatorial complexity of all possible pairs of purchasable reactants. We address this issue within the framework of Bayesian inference and computation. The workflow consists of the training of a deep neural network, which is used to forwardly predict a product of the given reactants with a high level of accuracy, followed by inversion of the forward model into the backward one via Bayes' law of conditional probability. Using the backward model, a diverse set of highly probable reaction sequences ending with a given synthetic target is exhaustively explored using a Monte Carlo search algorithm. With a forward model prediction accuracy of approximately 87%, the Bayesian retrosynthesis algorithm successfully rediscovered 81.8 and 33.3% of known synthetic routes of one-step and two-step reactions, respectively, with top-10 accuracy. Remarkably, the Monte Carlo algorithm, which was specifically designed for the presence of multiple diverse routes, often revealed a ranked list of hundreds of reaction routes to the same synthetic target. We also investigated the potential applicability of such diverse candidates based on expert knowledge of synthetic organic chemistry.The identification of synthetic routes that end with the desired product is considered an inherently time-consuming process that is largely dependent on expert knowledge regarding a limited proportion of the entire reaction space. At present, emerging machine learning technologies are reformulating the process of retrosynthetic planning. This study aimed to discover synthetic routes backwardly from a given desired molecule to commercially available compounds. The problem is reduced to a combinatorial optimization task with the solution space subject to the combinatorial complexity of all possible pairs of purchasable reactants. We address this issue within the framework of Bayesian inference and computation. The workflow consists of the training of a deep neural network, which is used to forwardly predict a product of the given reactants with a high level of accuracy, followed by inversion of the forward model into the backward one via Bayes' law of conditional probability. Using the backward model, a diverse set of highly probable reaction sequences ending with a given synthetic target is exhaustively explored using a Monte Carlo search algorithm. With a forward model prediction accuracy of approximately 87%, the Bayesian retrosynthesis algorithm successfully rediscovered 81.8 and 33.3% of known synthetic routes of one-step and two-step reactions, respectively, with top-10 accuracy. Remarkably, the Monte Carlo algorithm, which was specifically designed for the presence of multiple diverse routes, often revealed a ranked list of hundreds of reaction routes to the same synthetic target. We also investigated the potential applicability of such diverse candidates based on expert knowledge of synthetic organic chemistry.
The identification of synthetic routes that end with the desired product is considered an inherently time-consuming process that is largely dependent on expert knowledge regarding a limited proportion of the entire reaction space. At present, emerging machine learning technologies are reformulating the process of retrosynthetic planning. This study aimed to discover synthetic routes backwardly from a given desired molecule to commercially available compounds. The problem is reduced to a combinatorial optimization task with the solution space subject to the combinatorial complexity of all possible pairs of purchasable reactants. We address this issue within the framework of Bayesian inference and computation. The workflow consists of the training of a deep neural network, which is used to forwardly predict a product of the given reactants with a high level of accuracy, followed by inversion of the forward model into the backward one via Bayes’ law of conditional probability. Using the backward model, a diverse set of highly probable reaction sequences ending with a given synthetic target is exhaustively explored using a Monte Carlo search algorithm. With a forward model prediction accuracy of approximately 87%, the Bayesian retrosynthesis algorithm successfully rediscovered 81.8 and 33.3% of known synthetic routes of one-step and two-step reactions, respectively, with top-10 accuracy. Remarkably, the Monte Carlo algorithm, which was specifically designed for the presence of multiple diverse routes, often revealed a ranked list of hundreds of reaction routes to the same synthetic target. We also investigated the potential applicability of such diverse candidates based on expert knowledge of synthetic organic chemistry.
Author Ohno, Mitsuru
Yoshida, Ryo
Guo, Zhongliang
Wu, Stephen
AuthorAffiliation The Institute of Statistical Mathematics
The Graduate University for Advanced Studies, SOKENDAI
AuthorAffiliation_xml – name: The Institute of Statistical Mathematics
– name: The Graduate University for Advanced Studies, SOKENDAI
Author_xml – sequence: 1
  givenname: Zhongliang
  orcidid: 0000-0003-1484-7926
  surname: Guo
  fullname: Guo, Zhongliang
  organization: The Institute of Statistical Mathematics
– sequence: 2
  givenname: Stephen
  orcidid: 0000-0002-7847-8106
  surname: Wu
  fullname: Wu, Stephen
  organization: The Graduate University for Advanced Studies, SOKENDAI
– sequence: 3
  givenname: Mitsuru
  surname: Ohno
  fullname: Ohno, Mitsuru
– sequence: 4
  givenname: Ryo
  orcidid: 0000-0001-8092-0162
  surname: Yoshida
  fullname: Yoshida, Ryo
  email: yoshidar@ism.ac.jp
  organization: The Graduate University for Advanced Studies, SOKENDAI
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32975943$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEURoNUbKvuXUlBBBdOzfPWWdbiCwqCKLgLcZLYlHnUJLPovze1nU1BVwnc8918OUPUq5vaIHRG8JhgSm5UEcbLwlVjXGDMKD5AAyJ4nuWAP3rdXeTQR8MQlglhOdAj1Gc0n4icswG6vFNrE5yqR9Pyq_EuLqqRbfzo1UTfhHUdF2kaTtChVWUwp7vzGL0_3L_NnrL5y-PzbDrPFAMeM00ZGGIFt9xixTjDk1RBKBCaGpyeF1oLoQ29BUssZsqmFtpCATlozTQ7RlfbvSvffLcmRFm5UJiyVLVp2iAp5wDAsSAJvdhDl03r69QuUUCAcEZZos53VPtZGS1X3lXKr2UnIAGwBYr03eCNlYWLKrqmjl65UhIsN6ZlMi03puXOdArivWC3-5_I9TbyO-na_on_ANIajxw
CitedBy_id crossref_primary_10_1016_j_coche_2024_101034
crossref_primary_10_1021_acssynbio_4c00091
crossref_primary_10_1039_D2RE00005A
crossref_primary_10_1039_D2RE00285J
crossref_primary_10_1186_s13321_020_00482_z
crossref_primary_10_1016_j_ymben_2023_09_012
crossref_primary_10_1246_cl_200802
crossref_primary_10_3389_fbinf_2022_1065703
crossref_primary_10_1016_j_future_2021_09_028
crossref_primary_10_1039_D2LC00938B
crossref_primary_10_1021_jacsau_3c00607
crossref_primary_10_1038_s41467_024_52048_4
crossref_primary_10_1021_acs_jcim_3c00329
crossref_primary_10_1016_j_ymben_2022_01_011
crossref_primary_10_1021_acs_accounts_0c00736
crossref_primary_10_1021_acs_jcim_2c00626
crossref_primary_10_1021_acs_jcim_1c01065
crossref_primary_10_1080_27660400_2023_2204994
crossref_primary_10_3390_s23218661
crossref_primary_10_1002_wcms_1604
crossref_primary_10_1039_D2SC02763A
crossref_primary_10_1002_wcms_1694
crossref_primary_10_1016_j_coche_2021_100749
Cites_doi 10.1021/acs.jcim.6b00564
10.1021/acscentsci.9b00576
10.1126/science.166.3902.178
10.1021/ci400418c
10.1021/ci050369d
10.1038/nature25978
10.1021/acs.jcim.5b00628
10.1007/978-1-4757-3437-9_14
10.1126/science.197.4308.1041
10.1021/acs.jcim.9b01141
10.1039/C8SC04228D
10.1021/ci00024a003
10.1023/A:1008745509593
10.1021/acscentsci.7b00303
10.1111/j.1467-9868.2006.00553.x
10.1021/cr00039a007
10.1007/s10822-016-0008-z
10.1021/acs.jcim.6b00173
10.1039/QJ8520400229
10.1023/A:1008108423895
10.1021/acscentsci.7b00064
10.1021/bk-1977-0061.ch001
10.1039/C9SC03666K
10.1021/acs.jcim.9b00949
10.1021/ci800392z
10.1021/acscentsci.7b00355
10.1002/chem.201605499
10.1021/ci00057a005
10.7551/mitpress/8291.001.0001
10.1021/ci100050t
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright American Chemical Society Oct 26, 2020
Copyright_xml – notice: 2020 American Chemical Society
– notice: Copyright American Chemical Society Oct 26, 2020
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jcim.0c00320
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 4486
ExternalDocumentID 32975943
10_1021_acs_jcim_0c00320
c734711039
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACIWK
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a364t-d236e1f54f4f0a343071545a65d2e00035dd55de286f1f03af759df6c696dd3d3
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Fri Jul 11 02:15:20 EDT 2025
Mon Jun 30 11:00:55 EDT 2025
Thu Jan 02 22:57:12 EST 2025
Tue Jul 01 03:04:43 EDT 2025
Thu Apr 24 23:00:33 EDT 2025
Wed Nov 11 03:10:54 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a364t-d236e1f54f4f0a343071545a65d2e00035dd55de286f1f03af759df6c696dd3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7847-8106
0000-0003-1484-7926
0000-0001-8092-0162
PMID 32975943
PQID 2461614323
PQPubID 28739
PageCount 13
ParticipantIDs proquest_miscellaneous_2446664051
proquest_journals_2461614323
pubmed_primary_32975943
crossref_citationtrail_10_1021_acs_jcim_0c00320
crossref_primary_10_1021_acs_jcim_0c00320
acs_journals_10_1021_acs_jcim_0c00320
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201026
2020-10-26
PublicationDateYYYYMMDD 2020-10-26
PublicationDate_xml – month: 10
  year: 2020
  text: 20201026
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref39/cit39
ref8/cit8
ref5/cit5
Jin W. (ref14/cit14) 2017
ref31/cit31
ref2/cit2
van der Maaten L. (ref36/cit36) 2008; 9
Dai H. (ref15/cit15) 2019
ref34/cit34
ref37/cit37
ref40/cit40
ref20/cit20
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
Schapire R. E. (ref28/cit28) 2012
Tanimoto T. T. (ref17/cit17) 1958
ref21/cit21
ref12/cit12
ref22/cit22
ref13/cit13
ref33/cit33
Ke G. (ref29/cit29) 2017
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1021/acs.jcim.6b00564
– ident: ref10/cit10
  doi: 10.1021/acscentsci.9b00576
– start-page: 8872
  year: 2019
  ident: ref15/cit15
  publication-title: Adv. Neural Inf. Process Syst.
– ident: ref1/cit1
  doi: 10.1126/science.166.3902.178
– ident: ref23/cit23
  doi: 10.1021/ci400418c
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref36/cit36
  publication-title: J. Mach. Learn. Res.
– ident: ref26/cit26
  doi: 10.1021/ci050369d
– ident: ref12/cit12
  doi: 10.1038/nature25978
– ident: ref24/cit24
  doi: 10.1021/acs.jcim.5b00628
– ident: ref27/cit27
  doi: 10.1007/978-1-4757-3437-9_14
– ident: ref37/cit37
– start-page: 3147
  year: 2017
  ident: ref29/cit29
  publication-title: Adv. Neural Inf. Process Syst.
– ident: ref3/cit3
  doi: 10.1126/science.197.4308.1041
– ident: ref35/cit35
  doi: 10.1021/acs.jcim.9b01141
– ident: ref16/cit16
  doi: 10.1039/C8SC04228D
– ident: ref22/cit22
  doi: 10.1021/ci00024a003
– ident: ref4/cit4
  doi: 10.1023/A:1008745509593
– ident: ref6/cit6
  doi: 10.1021/acscentsci.7b00303
– ident: ref20/cit20
  doi: 10.1111/j.1467-9868.2006.00553.x
– ident: ref33/cit33
– ident: ref19/cit19
– ident: ref40/cit40
  doi: 10.1021/cr00039a007
– volume-title: An Elementary Mathematical Theory of Classification and Prediction
  year: 1958
  ident: ref17/cit17
– ident: ref21/cit21
  doi: 10.1007/s10822-016-0008-z
– ident: ref34/cit34
– start-page: 2608
  year: 2017
  ident: ref14/cit14
  publication-title: Adv. Neural Inf. Process Syst.
– ident: ref30/cit30
  doi: 10.1021/acs.jcim.6b00173
– ident: ref39/cit39
  doi: 10.1039/QJ8520400229
– ident: ref25/cit25
  doi: 10.1023/A:1008108423895
– ident: ref13/cit13
  doi: 10.1021/acscentsci.7b00064
– ident: ref2/cit2
  doi: 10.1021/bk-1977-0061.ch001
– ident: ref8/cit8
  doi: 10.1039/C9SC03666K
– ident: ref7/cit7
  doi: 10.1021/acs.jcim.9b00949
– ident: ref31/cit31
  doi: 10.1021/ci800392z
– ident: ref9/cit9
  doi: 10.1021/acscentsci.7b00355
– ident: ref5/cit5
  doi: 10.1002/chem.201605499
– ident: ref11/cit11
  doi: 10.1021/ci00057a005
– volume-title: Boosting: Foundations and algorithms
  year: 2012
  ident: ref28/cit28
  doi: 10.7551/mitpress/8291.001.0001
– ident: ref18/cit18
  doi: 10.1021/ci100050t
– ident: ref38/cit38
SSID ssj0033962
Score 2.462448
Snippet The identification of synthetic routes that end with the desired product is considered an inherently time-consuming process that is largely dependent on expert...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4474
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bayesian analysis
Combinatorial analysis
Conditional probability
Machine learning
Machine Learning and Deep Learning
Model accuracy
Optimization
Organic chemistry
Search algorithms
Solution space
Statistical inference
Workflow
Title Bayesian Algorithm for Retrosynthesis
URI http://dx.doi.org/10.1021/acs.jcim.0c00320
https://www.ncbi.nlm.nih.gov/pubmed/32975943
https://www.proquest.com/docview/2461614323
https://www.proquest.com/docview/2446664051
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwfhQKChIdGNLWjzh4LBVVhQQDUKlb5NgOFNoUNelQfj3nNGnFq2LJkNiJz77LfZeLv0PogjND_DAKwdIwBChYchdAvXGJIlj70sfS2O-Qd_e802W3Pa-3oMn5nsEnuC5VUntV_WGtoRq22vcqWiMcbNjCoNZj8dalVGTFQy3jmCs8UaQkf7uDdUQq-eqI_kCXmZdpb83KFSUZOaH9ueStNknDmvr4Sd34DwG20WYONp3mTDt20IqJd9F6q6jxtoeq13Jq7DZKpzl4Ho376cvQARTrPJgUBj2NAR0m_WQfdds3T62OmxdOcCXlLHU1odzgyGMRixqSMrBji5Qk9zQxWfJQa8_ThlzxCEcNKiPfEzriiguuNdX0AJXiUWyOkAPhmWJSKOnLkDGfw0EQLuz-OGgXemVUBfmCXPGTIMtpExxkJ0HoIBe6jOrFbAcqZx-3RTAGS3pcznu8z5g3lrStFAu4GIplygPwQQkto_P5ZZhgmxKRsRlNbBsG8RuAVlxGh7OFnz-M2k3HgtHjf4p4gjaIDcbBsRFeQaV0PDGngFjS8CxT1U8LreJ2
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHODCvpQ1SHDgkLZe4uBjqUBlPbBI3CLHdqAsKSLpAb6ecZoUgQDBJQdn7Mx4ybzJZGYAtgW3NIyTGE8aQQOFKOEjqLc-1ZSYUIVEWfcd8uxcdK758U1wMwKkioVBJjIcKSuc-B_ZBUjDtd3r7lO9qZuu6PcojCMWoW5Tt9qX1cuXMVnUEHWJx3wZyMoz-d0ITh_p7LM--gFkFsrmcBouhmwW_5g81Pt5XNdvXzI4_kuOGZgqoafXGuyVWRix6RxMtKuKb_Ows69erQuq9FqPt72Xbn735CGm9S5sjry_pogVs262ANeHB1ftjl-WUfAVEzz3DWXCkiTgCU-ainE81Q43KREYagtXojFBYCzdEwlJmkwlYSBNIrSQwhhm2CKMpb3ULoOHxprmSmoVqpjzUOBFUiFdtBzSxUENdlC-qDwGWVR4uCmJikYUOiqFrkGjmvRIl7nIXUmMx1967A57PA_ycPxCu1at4wcrLm8eQhFGWQ22hrdxgp2DRKW213c0HK05hLCkBkuD9R8-jLkQZMnZyh9F3ISJztXZaXR6dH6yCpPUmemo8qhYg7H8pW_XEcvk8Uaxe98B94bq1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8gJuqLiJ8nKDWRBx963H6WfTwOL6hAjIrhrdnuh55Cj9DeA_z1zPTaIxol-tKH7W47s53p_KbTmQF4rWXgWREL1DSGDgqzOkVQH1LuOPOZzZgN9B3y4FDvHcn3x-p4CVSXC4NEVHilqgnik1af-dhWGGBbNP7DTU77Azegxt-34DZF7Uiwh6PP3QtYCNP0EaXiY6lRpotO_ukKZJNc9atN-gvQbAzOeAW-Lkht_jP52Z_VRd9d_lbF8b95eQD3WwiaDOcyswpLoXwId0dd57dHsLljLwIlVybDk2_T80n9_TRBbJt8CjXSf1EiZqwm1WM4Gr_9MtpL23YKqRVa1qnnQgcWlYwyDqyQqN2En6xWnocmpOi9Uj7wbR1ZHAgbM2V81E4b7b3w4gksl9MyPIMEnTYnrXE2s4WUmcaD4dpQ1hzOK1QPNpG_vFWHKm8i3ZzlzSAynbdM92Cr2_jctTXJqTXGyQ0r3ixWnM3rcdwwd717ltekUP08hCSCix68WpzGDaZAiS3DdEZzJHp1CGVZD57OZWBxM0GpyEaK5__I4gbc-bg7zvffHX5Yg3ucvHW0fFyvw3J9PgsvENLUxctGgK8AwKntWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Algorithm+for+Retrosynthesis&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Guo%2C+Zhongliang&rft.au=Wu%2C+Stephen&rft.au=Ohno%2C+Mitsuru&rft.au=Yoshida%2C+Ryo&rft.date=2020-10-26&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=60&rft.issue=10&rft.spage=4474&rft.epage=4486&rft_id=info:doi/10.1021%2Facs.jcim.0c00320&rft.externalDocID=c734711039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon