Adaptive Partitioning QM/MM for Molecular Dynamics Simulations: 6. Proton Transport through a Biological Channel

Adaptive quantum-mechanics/molecular-mechanics (QM/MM) dynamics simulations feature on-the-fly reclassification of atoms as QM or MM continuously and smoothly as trajectories are propagated. This allows one to use small, mobile QM subsystems, the contents of which are dynamically updated as needed....

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 15; no. 2; pp. 892 - 905
Main Authors Duster, Adam W, Garza, Christina M, Aydintug, Baris O, Negussie, Mikias B, Lin, Hai
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adaptive quantum-mechanics/molecular-mechanics (QM/MM) dynamics simulations feature on-the-fly reclassification of atoms as QM or MM continuously and smoothly as trajectories are propagated. This allows one to use small, mobile QM subsystems, the contents of which are dynamically updated as needed. In this work, we report the first adaptive QM/MM simulations of H+ transfer through a biological channel, in particular, the protein EcCLC, a chloride channel (CLC) Cl–/H+ antiporter derived from E. coli. To this end, the H+ indicator previously formulated for approximating the location of an excess H+ in bulk water was extended to include Cl– ions and carboxyl groups as H+ donors/acceptors. Furthermore, when setting up buffer groups, a new “sushi-roll” scheme was employed to group multiple water molecules, ions, and titratable residues along the one-dimensional channel for adaptive partitions. Our simulations reveal that the H+ relay path, which consists of water molecules in the pore, a bound Cl– ion at the central binding site (Cl– cen) of the protein, and the external gating residue E148, exhibits certain mobility within the channel. A two-stage journey of H+ migration was observed: the H+ moves toward Cl– cen and is then shared between Cl– cen and nearby water molecules in the first stage and departs from Cl– cen via nearly concerted transfer to protonate E148 in the second stage. Most of the simulated trajectories show the bound Cl– ion in the channel to be transiently protonated, a possibility that was previously suggested by experiments and computations. Comparisons with conventional QM/MM simulations revealed that both adaptive and conventional treatments yield similar qualitative pictures. This work demonstrates the feasibility of adaptive QM/MM in the simulations of H+ migration through biological channels.
AbstractList Adaptive quantum-mechanics/molecular-mechanics (QM/MM) dynamics simulations feature on-the-fly reclassification of atoms as QM or MM continuously and smoothly as trajectories are propagated. This allows one to use small, mobile QM subsystems, the contents of which are dynamically updated as needed. In this work, we report the first adaptive QM/MM simulations of H+ transfer through a biological channel, in particular, the protein EcCLC, a chloride channel (CLC) Cl–/H+ antiporter derived from E. coli. To this end, the H+ indicator previously formulated for approximating the location of an excess H+ in bulk water was extended to include Cl– ions and carboxyl groups as H+ donors/acceptors. Furthermore, when setting up buffer groups, a new "sushi-roll" scheme was employed to group multiple water molecules, ions, and titratable residues along the one-dimensional channel for adaptive partitions. Our simulations reveal that the H+ relay path, which consists of water molecules in the pore, a bound Cl– ion at the central binding site (Cl–cen) of the protein, and the external gating residue E148, exhibits certain mobility within the channel. A two-stage journey of H+ migration was observed: the H+ moves toward Cl–cen and is then shared between Cl–cen and nearby water molecules in the first stage and departs from Cl–cen via nearly concerted transfer to protonate E148 in the second stage. Most of the simulated trajectories show the bound Cl– ion in the channel to be transiently protonated, a possibility that was previously suggested by experiments and computations. Comparisons with conventional QM/MM simulations revealed that both adaptive and conventional treatments yield similar qualitative pictures. This work demonstrates the feasibility of adaptive QM/MM in the simulations of H+ migration through biological channels.
Adaptive quantum-mechanics/molecular-mechanics (QM/MM) dynamics simulations feature on-the-fly reclassification of atoms as QM or MM continuously and smoothly as trajectories are propagated. This allows one to use small, mobile QM subsystems, the contents of which are dynamically updated as needed. In this work, we report the first adaptive QM/MM simulations of H transfer through a biological channel, in particular, the protein EcCLC, a chloride channel (CLC) Cl /H antiporter derived from E. coli. To this end, the H indicator previously formulated for approximating the location of an excess H in bulk water was extended to include Cl ions and carboxyl groups as H donors/acceptors. Furthermore, when setting up buffer groups, a new "sushi-roll" scheme was employed to group multiple water molecules, ions, and titratable residues along the one-dimensional channel for adaptive partitions. Our simulations reveal that the H relay path, which consists of water molecules in the pore, a bound Cl ion at the central binding site (Cl ) of the protein, and the external gating residue E148, exhibits certain mobility within the channel. A two-stage journey of H migration was observed: the H moves toward Cl and is then shared between Cl and nearby water molecules in the first stage and departs from Cl via nearly concerted transfer to protonate E148 in the second stage. Most of the simulated trajectories show the bound Cl ion in the channel to be transiently protonated, a possibility that was previously suggested by experiments and computations. Comparisons with conventional QM/MM simulations revealed that both adaptive and conventional treatments yield similar qualitative pictures. This work demonstrates the feasibility of adaptive QM/MM in the simulations of H migration through biological channels.
Author Duster, Adam W
Garza, Christina M
Aydintug, Baris O
Lin, Hai
Negussie, Mikias B
AuthorAffiliation Chemistry Department, CB 194
AuthorAffiliation_xml – name: Chemistry Department, CB 194
Author_xml – sequence: 1
  givenname: Adam W
  surname: Duster
  fullname: Duster, Adam W
– sequence: 2
  givenname: Christina M
  surname: Garza
  fullname: Garza, Christina M
– sequence: 3
  givenname: Baris O
  surname: Aydintug
  fullname: Aydintug, Baris O
– sequence: 4
  givenname: Mikias B
  surname: Negussie
  fullname: Negussie, Mikias B
– sequence: 5
  givenname: Hai
  orcidid: 0000-0002-3525-9122
  surname: Lin
  fullname: Lin, Hai
  email: hai.lin@ucdenver.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30642175$$D View this record in MEDLINE/PubMed
BookMark eNp1kclP3DAYxS0EYu2dU2Wplx6YwUvixL3RYZUYASqcLW-Z8SixU9upxH9Phhk4VOLkT9bvvW95R2DXB28BOMVoihHB51Kn6UpnPa0VwpjUO-AQlwWfcEbY7meN6wNwlNIKIUoLQvfBAUWsILgqD0F_YWSf3T8LH2XMLrvgnV_Ap_n5fA6bEOE8tFYPrYzw8tXLzukE_7hu_Fij6RdkU_gYQw4ePkfpUx9ihnkZw7BYQgl_u9CGhdOyhbOl9N62J2CvkW2y37bvMXi5vnqe3U7uH27uZhf3E0lZkSeMN6XVBVKGGiaxoQwViFFiSqqIrZhS1DTKNpxZqktbSyopr2ts6sZYpSp6DH5ufPsY_g42ZdG5pG3bSm_DkMS4PqdlxSs8oj_-Q1dhiH6cThCCOK8ZrdaGaEPpGFKKthF9dJ2MrwIjsU5DjGmIdRpim8Yo-b41HlRnzafg4_wjcLYB3qUfTb_0ewOrqZhh
CitedBy_id crossref_primary_10_1016_j_cplett_2020_138123
crossref_primary_10_1021_acs_jctc_1c00541
crossref_primary_10_7554_eLife_53479
crossref_primary_10_1039_D0CP03034A
crossref_primary_10_1021_acs_jctc_1c00556
crossref_primary_10_1016_j_tibs_2019_09_001
crossref_primary_10_1021_acs_jcim_0c00389
crossref_primary_10_1021_acs_jpcb_4c00079
crossref_primary_10_1039_D1CP03992J
crossref_primary_10_1021_jacs_9b13588
crossref_primary_10_1021_acs_jctc_9b00649
crossref_primary_10_1039_D0CP02855J
crossref_primary_10_1016_j_sbi_2021_07_004
crossref_primary_10_1021_acs_jctc_4c00164
crossref_primary_10_1021_acs_jctc_9b00641
crossref_primary_10_1016_j_cplett_2021_139121
crossref_primary_10_1021_acs_jctc_2c01097
crossref_primary_10_1021_acs_jctc_9b00180
crossref_primary_10_1021_acs_jpca_3c05600
crossref_primary_10_1021_acs_jctc_9b00182
crossref_primary_10_1021_acsphyschemau_3c00080
crossref_primary_10_1021_acs_jctc_0c00932
crossref_primary_10_1021_acs_jpcb_3c02064
Cites_doi 10.1038/nsmb.1704
10.1103/PhysRevB.37.785
10.1021/acs.jpcb.6b01150
10.1007/978-3-319-21626-3_2
10.1038/nature03720
10.1016/j.cplett.2010.12.031
10.1007/978-3-319-21626-3_3
10.1016/0301-0104(96)00152-8
10.1016/j.bbamem.2010.02.022
10.1016/j.bpj.2017.07.025
10.1146/annurev.physchem.59.032607.093618
10.1080/10409230701829110
10.1021/jp052328q
10.1085/jgp.200509417
10.1007/128_2006_084
10.1063/1.445869
10.1021/ct5005593
10.1021/acs.jctc.7b01206
10.1016/0022-2852(72)90224-X
10.1016/j.bpj.2009.04.038
10.1016/j.sbi.2006.06.002
10.1021/jp0673617
10.1021/jp200749s
10.1063/1.1677527
10.1016/S0006-3495(04)74160-0
10.1021/ct501019y
10.1038/nsmb.2277
10.1016/j.bpj.2009.11.035
10.1038/nature02314
10.1021/jp0446332
10.1021/ar200140h
10.1074/jbc.M110.163246
10.1002/wcms.85
10.1107/S0567739476001551
10.1085/jgp.200810112
10.1063/1.464913
10.1021/acs.jctc.7b00099
10.1021/acs.jctc.5b01109
10.1021/jp063993h
10.1021/jacs.6b06683
10.1073/pnas.1615471113
10.1021/ct300062k
10.1002/wcms.27
10.1016/j.chemphys.2010.02.014
10.1063/1.1674902
10.1021/jp5095118
10.1021/jp056361o
10.1007/s00214-006-0143-z
10.1098/rstb.2008.0138
10.1016/S0006-3495(04)74159-4
10.1021/jp300430f
10.1088/0305-4470/39/19/S18
10.1080/08927022.2014.911870
10.1002/jcc.21432
10.1002/jcc.24513
10.1063/1.1497157
10.1021/ct300400x
10.1038/415287a
10.1039/c004111d
10.1002/jcc.20289
10.1002/jcc.540110605
10.1016/j.bpj.2010.01.043
10.1007/BF01012300
10.1063/1.467468
10.2174/156802610790232297
10.1002/prot.20208
10.1021/ct400224n
10.1529/biophysj.104.042465
10.1080/00268979600100761
10.1016/S0006-3495(04)74158-2
10.1021/jp9536514
10.1016/S0009-2614(02)00210-5
10.1021/acs.jctc.6b00205
10.1038/nsmb.2814
10.1016/0022-2852(73)90179-3
10.1113/JP270043
10.1146/annurev.biophys.29.1.411
10.1080/09687680701413874
10.3390/molecules23092170
10.1021/ct100738h
10.1085/jgp.200709756
10.1021/ar970218z
10.1063/1.470648
10.1002/jcc.540040303
10.1002/prot.21441
10.1002/wcms.1310
10.1016/j.sbi.2008.07.003
10.1016/j.bpj.2011.10.021
10.1021/jp070104x
10.1021/jacs.5b12062
10.1021/ct500553x
10.1021/ja065451j
10.3389/fchem.2018.00062
10.1080/00268976.2013.776709
10.1016/j.jmb.2006.06.034
10.1002/jcc.540070604
10.1085/jgp.200709760
10.1073/pnas.1317890111
10.1016/j.jmb.2006.07.006
10.1021/ct2005209
10.1039/c2cs15297e
10.1039/c3cp44417a
10.1016/j.bbagen.2014.07.008
10.1016/j.cplett.2011.12.053
10.1002/jcc.25146
10.1038/354301a0
10.1021/jp409306x
10.1021/acs.jpcb.7b06657
10.1016/j.bpj.2012.01.056
10.1021/ar9901117
10.1073/pnas.1205764109
10.1085/jgp.200709759
10.1002/wcms.1255
10.1038/emboj.2009.259
10.1002/wcms.1343
10.1002/cphc.200600128
10.1021/ct900148e
10.1002/anie.201205408
10.1021/jp907965b
10.1063/1.447079
10.1016/j.jmb.2004.04.023
10.1016/j.str.2003.11.017
10.1038/nature03860
10.1529/biophysj.104.053447
10.1113/JP270575
10.1038/nature09556
10.1021/jacs.7b11463
10.1073/pnas.1401997111
10.1016/j.jmb.2006.07.081
10.1126/science.1082708
10.1103/PhysRevA.31.1695
10.1146/annurev.physchem.53.091301.150114
10.1021/ct4005596
10.1021/ar300278j
10.1063/1.5000799
10.1103/PhysRevA.38.3098
10.1002/qua.25336
10.1021/acs.jctc.5b00142
10.1016/0022-2836(76)90311-9
10.1085/jgp.201611682
10.1016/j.bpj.2016.02.014
10.1038/nature20812
10.1002/cphc.201402105
10.7554/eLife.11189
10.1073/pnas.0804503105
10.1063/1.2916718
10.1002/9780470125847.ch3
10.1063/1.444267
10.1021/jacs.7b12191
10.1371/journal.pbio.1001441
10.1016/0009-2614(95)00905-J
10.1016/0009-2614(84)80098-6
ContentType Journal Article
Copyright Copyright American Chemical Society Feb 12, 2019
Copyright_xml – notice: Copyright American Chemical Society Feb 12, 2019
DBID NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.8b01128
DatabaseName PubMed
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 905
ExternalDocumentID 10_1021_acs_jctc_8b01128
30642175
d082333566
Genre Journal Article
GroupedDBID 53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
5VS
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a364t-69f5ec40bd3d6a1d36040632d53b2e76bb3dfbef96e3c5e8a3a39881d8fdebb73
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Fri Aug 16 08:28:13 EDT 2024
Fri Sep 13 01:58:58 EDT 2024
Fri Aug 23 03:42:08 EDT 2024
Sat Sep 28 08:40:35 EDT 2024
Thu Aug 27 13:43:29 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a364t-69f5ec40bd3d6a1d36040632d53b2e76bb3dfbef96e3c5e8a3a39881d8fdebb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3525-9122
PMID 30642175
PQID 2209986377
PQPubID 2048741
PageCount 14
ParticipantIDs proquest_miscellaneous_2179357971
proquest_journals_2209986377
crossref_primary_10_1021_acs_jctc_8b01128
pubmed_primary_30642175
acs_journals_10_1021_acs_jctc_8b01128
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-02-12
PublicationDateYYYYMMDD 2019-02-12
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
Ferrer S. (ref42/cit42) 2011; 85
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
Pezeshki S. (ref16/cit16) 2015
ref19/cit19
ref93/cit93
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
Wu R. (ref49/cit49) 2012; 24
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref159/cit159
Jiang T. (ref14/cit14) 2015
ref92/cit92
ref155/cit155
ref156/cit156
ref157/cit157
ref158/cit158
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref46/cit46
Duster A. (ref18/cit18) 2016
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
Sherwood P. (ref34/cit34) 2000; 3
ref131/cit131
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref89/cit89
  doi: 10.1038/nsmb.1704
– ident: ref148/cit148
  doi: 10.1103/PhysRevB.37.785
– volume: 85
  start-page: 81
  volume-title: Advances in Protein Chemistry and Structural Biology, Vol 85: Computational Chemistry Methods in Structural Biology
  year: 2011
  ident: ref42/cit42
  contributor:
    fullname: Ferrer S.
– ident: ref122/cit122
  doi: 10.1021/acs.jpcb.6b01150
– start-page: 51
  volume-title: Quantum Modeling of Complex Molecular Systems
  year: 2015
  ident: ref14/cit14
  doi: 10.1007/978-3-319-21626-3_2
  contributor:
    fullname: Jiang T.
– ident: ref77/cit77
  doi: 10.1038/nature03720
– ident: ref116/cit116
  doi: 10.1016/j.cplett.2010.12.031
– start-page: 93
  volume-title: Quantum Modeling of Complex Molecular Systems
  year: 2015
  ident: ref16/cit16
  doi: 10.1007/978-3-319-21626-3_3
  contributor:
    fullname: Pezeshki S.
– ident: ref155/cit155
– ident: ref1/cit1
  doi: 10.1016/0301-0104(96)00152-8
– ident: ref75/cit75
  doi: 10.1016/j.bbamem.2010.02.022
– ident: ref126/cit126
  doi: 10.1016/j.bpj.2017.07.025
– ident: ref39/cit39
  doi: 10.1146/annurev.physchem.59.032607.093618
– ident: ref71/cit71
  doi: 10.1080/10409230701829110
– ident: ref59/cit59
  doi: 10.1021/jp052328q
– ident: ref81/cit81
  doi: 10.1085/jgp.200509417
– ident: ref38/cit38
  doi: 10.1007/128_2006_084
– ident: ref140/cit140
  doi: 10.1063/1.445869
– ident: ref12/cit12
  doi: 10.1021/ct5005593
– ident: ref24/cit24
  doi: 10.1021/acs.jctc.7b01206
– ident: ref158/cit158
  doi: 10.1016/0022-2852(72)90224-X
– ident: ref109/cit109
  doi: 10.1016/j.bpj.2009.04.038
– ident: ref74/cit74
  doi: 10.1016/j.sbi.2006.06.002
– ident: ref3/cit3
  doi: 10.1021/jp0673617
– ident: ref114/cit114
  doi: 10.1021/jp200749s
– ident: ref150/cit150
  doi: 10.1063/1.1677527
– ident: ref98/cit98
  doi: 10.1016/S0006-3495(04)74160-0
– ident: ref15/cit15
  doi: 10.1021/ct501019y
– ident: ref80/cit80
  doi: 10.1038/nsmb.2277
– ident: ref113/cit113
  doi: 10.1016/j.bpj.2009.11.035
– ident: ref68/cit68
  doi: 10.1038/nature02314
– ident: ref139/cit139
  doi: 10.1021/jp0446332
– ident: ref56/cit56
  doi: 10.1021/ar200140h
– ident: ref115/cit115
  doi: 10.1074/jbc.M110.163246
– ident: ref46/cit46
  doi: 10.1002/wcms.85
– ident: ref157/cit157
  doi: 10.1107/S0567739476001551
– ident: ref87/cit87
  doi: 10.1085/jgp.200810112
– volume: 3
  start-page: 285
  volume-title: Modern Methods and Algorithms of Quantum Chemistry
  year: 2000
  ident: ref34/cit34
  contributor:
    fullname: Sherwood P.
– ident: ref147/cit147
  doi: 10.1063/1.464913
– start-page: 342
  volume-title: Computational Approaches for Studying Enzyme Mechanism
  year: 2016
  ident: ref18/cit18
  contributor:
    fullname: Duster A.
– ident: ref22/cit22
  doi: 10.1021/acs.jctc.7b00099
– ident: ref124/cit124
  doi: 10.1021/acs.jctc.5b01109
– ident: ref105/cit105
  doi: 10.1021/jp063993h
– ident: ref125/cit125
  doi: 10.1021/jacs.6b06683
– ident: ref60/cit60
  doi: 10.1073/pnas.1615471113
– ident: ref135/cit135
  doi: 10.1021/ct300062k
– ident: ref44/cit44
  doi: 10.1002/wcms.27
– ident: ref136/cit136
  doi: 10.1016/j.chemphys.2010.02.014
– ident: ref149/cit149
  doi: 10.1063/1.1674902
– ident: ref63/cit63
  doi: 10.1021/jp5095118
– ident: ref36/cit36
  doi: 10.1021/jp056361o
– ident: ref37/cit37
  doi: 10.1007/s00214-006-0143-z
– ident: ref70/cit70
  doi: 10.1098/rstb.2008.0138
– ident: ref97/cit97
  doi: 10.1016/S0006-3495(04)74159-4
– ident: ref119/cit119
  doi: 10.1021/jp300430f
– ident: ref137/cit137
  doi: 10.1088/0305-4470/39/19/S18
– ident: ref10/cit10
  doi: 10.1080/08927022.2014.911870
– ident: ref111/cit111
  doi: 10.1002/jcc.21432
– ident: ref20/cit20
  doi: 10.1002/jcc.24513
– ident: ref62/cit62
  doi: 10.1063/1.1497157
– ident: ref145/cit145
  doi: 10.1021/ct300400x
– ident: ref82/cit82
  doi: 10.1038/415287a
– ident: ref5/cit5
  doi: 10.1039/c004111d
– ident: ref141/cit141
  doi: 10.1002/jcc.20289
– ident: ref30/cit30
  doi: 10.1002/jcc.540110605
– ident: ref112/cit112
  doi: 10.1016/j.bpj.2010.01.043
– ident: ref129/cit129
  doi: 10.1007/BF01012300
– ident: ref142/cit142
  doi: 10.1063/1.467468
– ident: ref43/cit43
  doi: 10.2174/156802610790232297
– ident: ref100/cit100
  doi: 10.1002/prot.20208
– ident: ref134/cit134
  doi: 10.1021/ct400224n
– ident: ref102/cit102
  doi: 10.1529/biophysj.104.042465
– ident: ref138/cit138
  doi: 10.1080/00268979600100761
– ident: ref99/cit99
  doi: 10.1016/S0006-3495(04)74158-2
– ident: ref133/cit133
  doi: 10.1021/jp9536514
– ident: ref2/cit2
  doi: 10.1016/S0009-2614(02)00210-5
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.6b00205
– ident: ref92/cit92
  doi: 10.1038/nsmb.2814
– ident: ref159/cit159
  doi: 10.1016/0022-2852(73)90179-3
– ident: ref76/cit76
  doi: 10.1113/JP270043
– ident: ref66/cit66
  doi: 10.1146/annurev.biophys.29.1.411
– ident: ref69/cit69
  doi: 10.1080/09687680701413874
– ident: ref27/cit27
  doi: 10.3390/molecules23092170
– ident: ref45/cit45
  doi: 10.1021/ct100738h
– ident: ref85/cit85
  doi: 10.1085/jgp.200709756
– ident: ref32/cit32
  doi: 10.1021/ar970218z
– ident: ref143/cit143
  doi: 10.1063/1.470648
– ident: ref152/cit152
  doi: 10.1002/jcc.540040303
– ident: ref108/cit108
  doi: 10.1002/prot.21441
– ident: ref21/cit21
  doi: 10.1002/wcms.1310
– ident: ref40/cit40
  doi: 10.1016/j.sbi.2008.07.003
– ident: ref117/cit117
  doi: 10.1016/j.bpj.2011.10.021
– ident: ref55/cit55
  doi: 10.1021/jp070104x
– ident: ref123/cit123
  doi: 10.1021/jacs.5b12062
– ident: ref9/cit9
  doi: 10.1021/ct500553x
– ident: ref58/cit58
  doi: 10.1021/ja065451j
– ident: ref128/cit128
  doi: 10.3389/fchem.2018.00062
– ident: ref121/cit121
  doi: 10.1080/00268976.2013.776709
– ident: ref104/cit104
  doi: 10.1016/j.jmb.2006.06.034
– ident: ref29/cit29
  doi: 10.1002/jcc.540070604
– ident: ref106/cit106
  doi: 10.1085/jgp.200709760
– ident: ref93/cit93
  doi: 10.1073/pnas.1317890111
– ident: ref84/cit84
  doi: 10.1016/j.jmb.2006.07.006
– ident: ref6/cit6
  doi: 10.1021/ct2005209
– ident: ref47/cit47
  doi: 10.1039/c2cs15297e
– ident: ref50/cit50
  doi: 10.1039/c3cp44417a
– ident: ref52/cit52
  doi: 10.1016/j.bbagen.2014.07.008
– ident: ref7/cit7
  doi: 10.1016/j.cplett.2011.12.053
– ident: ref26/cit26
  doi: 10.1002/jcc.25146
– ident: ref73/cit73
  doi: 10.1038/354301a0
– ident: ref120/cit120
  doi: 10.1021/jp409306x
– ident: ref57/cit57
  doi: 10.1021/acs.jpcb.7b06657
– ident: ref118/cit118
  doi: 10.1016/j.bpj.2012.01.056
– ident: ref33/cit33
  doi: 10.1021/ar9901117
– ident: ref79/cit79
  doi: 10.1073/pnas.1205764109
– ident: ref107/cit107
  doi: 10.1085/jgp.200709759
– ident: ref19/cit19
  doi: 10.1002/wcms.1255
– ident: ref88/cit88
  doi: 10.1038/emboj.2009.259
– ident: ref131/cit131
  doi: 10.1002/wcms.1343
– ident: ref54/cit54
  doi: 10.1002/cphc.200600128
– ident: ref4/cit4
  doi: 10.1021/ct900148e
– ident: ref51/cit51
  doi: 10.1002/anie.201205408
– ident: ref110/cit110
  doi: 10.1021/jp907965b
– ident: ref153/cit153
  doi: 10.1063/1.447079
– ident: ref101/cit101
  doi: 10.1016/j.jmb.2004.04.023
– ident: ref65/cit65
  doi: 10.1016/j.str.2003.11.017
– ident: ref78/cit78
  doi: 10.1038/nature03860
– volume: 24
  start-page: 1175
  year: 2012
  ident: ref49/cit49
  publication-title: Prog. Chem.
  contributor:
    fullname: Wu R.
– ident: ref103/cit103
  doi: 10.1529/biophysj.104.053447
– ident: ref156/cit156
– ident: ref72/cit72
  doi: 10.1113/JP270575
– ident: ref90/cit90
  doi: 10.1038/nature09556
– ident: ref127/cit127
  doi: 10.1021/jacs.7b11463
– ident: ref64/cit64
  doi: 10.1073/pnas.1401997111
– ident: ref83/cit83
  doi: 10.1016/j.jmb.2006.07.081
– ident: ref67/cit67
  doi: 10.1126/science.1082708
– ident: ref154/cit154
  doi: 10.1103/PhysRevA.31.1695
– ident: ref35/cit35
  doi: 10.1146/annurev.physchem.53.091301.150114
– ident: ref8/cit8
  doi: 10.1021/ct4005596
– ident: ref48/cit48
  doi: 10.1021/ar300278j
– ident: ref25/cit25
  doi: 10.1063/1.5000799
– ident: ref146/cit146
  doi: 10.1103/PhysRevA.38.3098
– ident: ref23/cit23
  doi: 10.1002/qua.25336
– ident: ref13/cit13
  doi: 10.1021/acs.jctc.5b00142
– ident: ref28/cit28
  doi: 10.1016/0022-2836(76)90311-9
– ident: ref96/cit96
  doi: 10.1085/jgp.201611682
– ident: ref61/cit61
  doi: 10.1016/j.bpj.2016.02.014
– ident: ref95/cit95
  doi: 10.1038/nature20812
– ident: ref11/cit11
  doi: 10.1002/cphc.201402105
– ident: ref94/cit94
  doi: 10.7554/eLife.11189
– ident: ref86/cit86
  doi: 10.1073/pnas.0804503105
– ident: ref130/cit130
  doi: 10.1063/1.2916718
– ident: ref31/cit31
  doi: 10.1002/9780470125847.ch3
– ident: ref151/cit151
  doi: 10.1063/1.444267
– ident: ref132/cit132
  doi: 10.1021/jacs.7b12191
– ident: ref41/cit41
– ident: ref91/cit91
  doi: 10.1371/journal.pbio.1001441
– ident: ref53/cit53
  doi: 10.1016/0009-2614(95)00905-J
– ident: ref144/cit144
  doi: 10.1016/0009-2614(84)80098-6
SSID ssj0033423
Score 2.4278061
Snippet Adaptive quantum-mechanics/molecular-mechanics (QM/MM) dynamics simulations feature on-the-fly reclassification of atoms as QM or MM continuously and smoothly...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 892
SubjectTerms Binding sites
Chloride ions
Computer simulation
E coli
Ion channels
Mechanics (physics)
Migration
Molecular dynamics
Pictures
Proteins
Simulation
Subsystems
Trajectories
Water chemistry
Title Adaptive Partitioning QM/MM for Molecular Dynamics Simulations: 6. Proton Transport through a Biological Channel
URI http://dx.doi.org/10.1021/acs.jctc.8b01128
https://www.ncbi.nlm.nih.gov/pubmed/30642175
https://www.proquest.com/docview/2209986377/abstract/
https://search.proquest.com/docview/2179357971
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtswFCQS59Bc2qZL6jQNGKA99CAlIsVFvRluAiOAAheugdwEPi5AlsqGJV_69SG12OiKXCWCkh6H5ECPbwahjwxSOKeKR85KiFJidaQIQKQZcVR7hmyacrH8mk_m6dUNu9nK5PyewSfJmdJVfKdrHUvwWCRyF-2RcIAw0KDxrF91aVCya7RR06A4mcguJfm3HsJGpKtfN6J_sMtml7l80doVVY04YThcch-va4j1zz-lG5_wAS_R845s4lGLjgO0Y8tX6Nm493h7jZYjo5ZhwcPTAKHu5yz-lp_lOfZ0Fue9ey7-2lrXV3h2-6Oz_Kq-YB7j6Wrh-SPeqKTjzvoHK9waXQYY4FDFUNqHN2h-efF9PIk6D4ZIUZ7WEc8cszo9B0MNV4mh3M96TolhFIgVHIAaB9Zl3FLNrFRU0Ux6EiydsQCCvkWDclHadwin1GnhPB2RyqTCaQgtCLDEg8PRjA_RJx-qoptDVdGkx0lSNBd9_IoufkP0uR-4YtlKcvyn7XE_stuOSSgXlpwKMUSnm9s-8iFXokq7WPs2YeFiIhPJEB22iNg8rK0OFuzoiS_8Hu17mpVFjY3MMRrUq7X94KlMDScNhh8BCbDv0A
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8oaFAkaCA4dsGzt-hFu1UC3QVIW2Um-RnxIUsqsme-HXM3aSrUCA4OpYjjOejL94Mt8H8IKbwuwxLbLglckK6m2mqTGZ5TQwiwjZpXKx6kjMz4r35_x8A_KxFgYn0eJIbUriX7EL5Lux7Yvt7FQZdEmqrsF1LvFzPKKh2ckYfFkktEsUqUUknszVkJn83QhxP7Ltz_vRH0Bm2mwObsKn9TTTPyYX01Vnpvb7LwyO__Uct2B7gJ5kv_eV27DhmzuwNRsV3-7Cct_pZQx_5Dg61HBUSz5Wu1VFENySatTSJW96IfuWnHz-NgiAta-JmJLjywWiSbLmTCeDEBDRpJe9jE5BYk1D47_eg7ODt6ezeTYoMmSaiaLLRBm4t8WeccwJnTsmMAYIRh1nhnopjGEuGB9K4ZnlXmmmWakQEqvgvDGS3YfNZtH4h0AKFqwMCE6UdoUM1sQe1PAcXSWwUkzgJZqqHt6otk7JcprXqRHtVw_2m8Crcf3qZU_Q8Ze-O-MCXw1MY_GwEkzKCTxfX0bLx8yJbvxihX1iGOOylPkEHvSOsb5ZXyss-aN_nPAz2JqfVof14bujD4_hBgKwMksCMzuw2V2u_BMEOZ15mtz6B0Tr-Ds
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVgIuUN5LWzASHDhk29jxI9yqbVflkWpRKeot8lOiheyqyV749bUdZxGoIHp1LMcZfx5_ynjmA3hNVaH2iGSZs0JlBbY6k1ipTFPsiPYM2cR0seqYHZ0WH87o2RrQIRfGT6L1I7UxiB929cK4VGEg3w3t57rTY6E8LLG4BRs06HcHRjQ5GRwwCUXtYpnUIhSfzEWKTl43QjiTdPv7mfQXohkPnOl9-LqaarxncjFedmqsf_5RxfHG37IJ9xIFRfs9Zh7Amm0ewp3JoPz2CBb7Ri6CG0SzAKz0yxZ9rnarCnmSi6pBUxcd9IL2LTr59iMJgbXvEBuj2eXcs0q0qp2OkiAQkqiXvwzgQCG3obHfH8Pp9PDL5ChLygyZJKzoMlY6anWxpwwxTOaGMO8LGMGGEoUtZ0oR45R1JbNEUyskkaQUnhoLZ6xSnDyB9Wbe2GeACuI0d56kCGkK7rQKPbCiuYeMIyUbwRtvqjrtrLaOQXOc17HR269O9hvB22EN60VfqOMffbeHRf41MA5JxIIRzkfwavXYWz5EUGRj50vfJ7gzykuej-BpD47Vy_qcYU6f_-eEX8Lt2cG0_vT--OMW3PU8rMyizsw2rHeXS7vjuU6nXkRkXwE0UPq1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Partitioning+QM%2FMM+for+Molecular+Dynamics+Simulations%3A+6.+Proton+Transport+through+a+Biological+Channel&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Duster%2C+Adam+W&rft.au=Garza%2C+Christina+M&rft.au=Aydintug%2C+Baris+O&rft.au=Negussie%2C+Mikias+B&rft.date=2019-02-12&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=15&rft.issue=2&rft.spage=892&rft.epage=905&rft_id=info:doi/10.1021%2Facs.jctc.8b01128&rft.externalDocID=d082333566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon