Construction of a Range-Separated Dual-Hybrid Direct Random Phase Approximation
Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and ba...
Saved in:
Published in | Journal of chemical theory and computation Vol. 15; no. 12; pp. 6678 - 6687 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and barrier heights compared to the parent approaches and provides a good description of noncovalent interactions without any dispersion correction. We also combine the new scheme with spin-component scaling (SCS-dRPA75rs), which enables the accurate calculation of energy differences for processes involving electron pair breaking, such as atomization. The new method scaling as the fourth power of the system size shows a balanced performance on a broad test set involving radicals, transition metal atoms, and heavy atoms, which makes it competitive with the best double-hybrid functionals based on the second-order perturbation theory. According to the results for the homogeneous electron gas, our dRPA75rs method expectedly gives errors for metallic systems similar to the dRPA approach with an additional error cancellation in the case of partial spin polarization. |
---|---|
AbstractList | Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and barrier heights compared to the parent approaches and provides a good description of noncovalent interactions without any dispersion correction. We also combine the new scheme with spin-component scaling (SCS-dRPA75rs), which enables the accurate calculation of energy differences for processes involving electron pair breaking, such as atomization. The new method scaling as the fourth power of the system size shows a balanced performance on a broad test set involving radicals, transition metal atoms, and heavy atoms, which makes it competitive with the best double-hybrid functionals based on the second-order perturbation theory. According to the results for the homogeneous electron gas, our dRPA75rs method expectedly gives errors for metallic systems similar to the dRPA approach with an additional error cancellation in the case of partial spin polarization. |
Author | Kállay, Mihály Mezei, Pál D |
AuthorAffiliation | Department of Chemistry Budapest University of Technology and Economics Department of Physical Chemistry and Materials Science |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Budapest University of Technology and Economics – name: Department of Physical Chemistry and Materials Science |
Author_xml | – sequence: 1 givenname: Pál D orcidid: 0000-0002-7052-9677 surname: Mezei fullname: Mezei, Pál D email: paldaniel.mezei@unibas.ch organization: Department of Chemistry – sequence: 2 givenname: Mihály orcidid: 0000-0003-1080-6625 surname: Kállay fullname: Kállay, Mihály organization: Budapest University of Technology and Economics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31693355$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kElPwzAQhS1URBe4c0KRuHAgxUvs2seqLEWqVMRyjhxnAqnSuNiJRP89Dm05IHGad_jem5k3RL3a1oDQOcFjgim50caPV6YxY5VhLBU5QgPCExUrQUXvVxPZR0PvVxgzllB2gvqMCMUY5wO0nNnaN641TWnryBaRjp51_Q7xC2y00w3k0W2rq3i-zVwZdOnANB2S23X09KE9RNPNxtmvcq27iFN0XOjKw9l-jtDb_d3rbB4vlg-Ps-ki1kwkTUwplxxnoIwhnAreiUIlRBSyAMkhZwlhXCqeiEwUJGcyz5OJZIUCAVgAG6GrXW7Y_dmCb9J16Q1Ula7Btj6ljFCJ6QSTgF7-QVe2dXW4LlCUTxLKCQ4U3lHGWe8dFOnGhZ_cNiU47cpOQ9lpV3a6LztYLvbBbbaG_NdwaDcA1zvgx3pY-m_eNzThi0c |
CitedBy_id | crossref_primary_10_1021_acs_jctc_3c00979 crossref_primary_10_1063_1_5142048 crossref_primary_10_1021_acs_jctc_1c00422 crossref_primary_10_1063_5_0144493 crossref_primary_10_3390_molecules25215174 crossref_primary_10_1021_acs_jctc_2c00131 crossref_primary_10_1021_acs_jctc_9b01294 crossref_primary_10_1021_acs_jctc_0c01135 crossref_primary_10_1021_acs_jctc_1c01100 crossref_primary_10_1063_5_0082327 |
Cites_doi | 10.1063/1.472933 10.1002/jcc.23391 10.1039/c1cp22592h 10.1016/S0166-1280(00)00528-5 10.1063/1.1569242 10.1063/1.3382344 10.1103/PhysRevB.81.115126 10.1063/1.4890314 10.1103/PhysRevA.85.012517 10.1063/1.5025226 10.1021/jp049253v 10.1016/j.cpc.2012.05.007 10.1039/C6CP00688D 10.1016/j.chemphys.2006.05.020 10.1063/1.4940734 10.1063/1.3604569 10.1103/PhysRevLett.110.146403 10.1063/1.3250347 10.1039/b508541a 10.1063/1.1809602 10.1103/PhysRevLett.106.153003 10.1063/1.456153 10.1063/1.481910 10.1063/1.3176514 10.1063/1.1445115 10.1063/1.3299247 10.1073/pnas.0901093106 10.1021/jp801805p 10.1021/jp710179r 10.1063/1.3317437 10.1063/1.1564060 10.1103/PhysRevA.72.012510 10.1007/BF01114537 10.1039/C5CP06600J 10.1021/jp050536c 10.1103/PhysRevB.45.13244 10.1007/s10853-012-6570-4 10.1063/1.2148954 10.1103/PhysRevLett.77.3865 10.1021/ct9003299 10.1103/PhysRevB.73.155111 10.1002/wcms.1274 10.1063/1.1811608 10.1103/PhysRevLett.106.093001 10.1103/PhysRevLett.103.056401 10.1021/acs.jctc.6b01140 10.1021/acs.jctc.6b00900 10.1063/1.4905005 10.1021/acs.jpclett.9b00946 10.1039/b509242f 10.1007/s11224-015-0666-9 10.1021/acs.jctc.6b00323 10.1021/ct900489g 10.1007/s00214-011-1084-8 10.1002/jcc.20702 10.1021/ct5008263 10.1007/s11224-016-0783-0 10.1063/1.4921542 10.1016/j.cplett.2005.08.060 10.1016/j.cplett.2012.04.045 10.1103/PhysRevA.85.042507 10.1063/1.3090814 10.1002/open.201300012 10.1021/acs.jctc.5b00420 10.1021/jp1070852 10.1063/1.3626551 10.1063/1.3244209 10.1103/PhysRevLett.112.203001 10.1021/acs.jctc.5b01066 10.1021/ja805843n 10.1063/1.4827254 10.1021/ct100466k 10.1002/jcc.23312 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Dec 10, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society Dec 10, 2019 |
DBID | NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1021/acs.jctc.9b00891 |
DatabaseName | PubMed CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-9626 |
EndPage | 6687 |
ExternalDocumentID | 10_1021_acs_jctc_9b00891 31693355 f12810262 |
Genre | Journal Article |
GroupedDBID | 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 J9A JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F 4.4 5VS ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-a364t-225850be9cc15265e9ccf9416f8fe85ed3413589546b6f1d38dd4783f9e6e06e3 |
IEDL.DBID | ACS |
ISSN | 1549-9618 |
IngestDate | Fri Aug 16 08:05:58 EDT 2024 Thu Oct 10 17:20:38 EDT 2024 Fri Aug 23 03:42:09 EDT 2024 Sat Sep 28 08:32:14 EDT 2024 Thu Aug 27 13:43:33 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a364t-225850be9cc15265e9ccf9416f8fe85ed3413589546b6f1d38dd4783f9e6e06e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7052-9677 0000-0003-1080-6625 |
PMID | 31693355 |
PQID | 2325742510 |
PQPubID | 2048741 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2312802701 proquest_journals_2325742510 crossref_primary_10_1021_acs_jctc_9b00891 pubmed_primary_31693355 acs_journals_10_1021_acs_jctc_9b00891 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-10 |
PublicationDateYYYYMMDD | 2019-12-10 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref68/cit68 doi: 10.1063/1.472933 – ident: ref37/cit37 doi: 10.1002/jcc.23391 – ident: ref36/cit36 doi: 10.1039/c1cp22592h – ident: ref57/cit57 doi: 10.1016/S0166-1280(00)00528-5 – ident: ref33/cit33 doi: 10.1063/1.1569242 – ident: ref52/cit52 doi: 10.1063/1.3382344 – ident: ref3/cit3 doi: 10.1103/PhysRevB.81.115126 – ident: ref12/cit12 doi: 10.1063/1.4890314 – ident: ref17/cit17 doi: 10.1103/PhysRevA.85.012517 – ident: ref28/cit28 doi: 10.1063/1.5025226 – ident: ref24/cit24 doi: 10.1021/jp049253v – ident: ref63/cit63 doi: 10.1016/j.cpc.2012.05.007 – ident: ref39/cit39 doi: 10.1039/C6CP00688D – ident: ref56/cit56 doi: 10.1016/j.chemphys.2006.05.020 – ident: ref14/cit14 doi: 10.1063/1.4940734 – ident: ref11/cit11 doi: 10.1063/1.3604569 – ident: ref8/cit8 doi: 10.1103/PhysRevLett.110.146403 – ident: ref15/cit15 doi: 10.1063/1.3250347 – ident: ref65/cit65 doi: 10.1039/b508541a – ident: ref34/cit34 doi: 10.1063/1.1809602 – ident: ref25/cit25 doi: 10.1103/PhysRevLett.106.153003 – ident: ref64/cit64 doi: 10.1063/1.456153 – ident: ref62/cit62 – ident: ref58/cit58 doi: 10.1063/1.481910 – ident: ref30/cit30 doi: 10.1063/1.3176514 – ident: ref66/cit66 doi: 10.1063/1.1445115 – ident: ref5/cit5 doi: 10.1063/1.3299247 – ident: ref22/cit22 doi: 10.1073/pnas.0901093106 – ident: ref47/cit47 doi: 10.1021/jp801805p – ident: ref18/cit18 doi: 10.1021/jp710179r – ident: ref32/cit32 doi: 10.1063/1.3317437 – ident: ref54/cit54 doi: 10.1063/1.1564060 – ident: ref26/cit26 doi: 10.1103/PhysRevA.72.012510 – ident: ref72/cit72 doi: 10.1007/BF01114537 – ident: ref21/cit21 doi: 10.1039/C5CP06600J – ident: ref49/cit49 doi: 10.1021/jp050536c – ident: ref73/cit73 doi: 10.1103/PhysRevB.45.13244 – ident: ref4/cit4 doi: 10.1007/s10853-012-6570-4 – ident: ref10/cit10 doi: 10.1063/1.2148954 – ident: ref53/cit53 doi: 10.1103/PhysRevLett.77.3865 – ident: ref50/cit50 doi: 10.1021/ct9003299 – ident: ref74/cit74 doi: 10.1103/PhysRevB.73.155111 – ident: ref23/cit23 doi: 10.1002/wcms.1274 – ident: ref70/cit70 doi: 10.1063/1.1811608 – ident: ref7/cit7 doi: 10.1103/PhysRevLett.106.093001 – ident: ref2/cit2 doi: 10.1103/PhysRevLett.103.056401 – ident: ref38/cit38 doi: 10.1021/acs.jctc.6b01140 – ident: ref45/cit45 doi: 10.1021/acs.jctc.6b00900 – ident: ref60/cit60 doi: 10.1063/1.4905005 – ident: ref44/cit44 doi: 10.1021/acs.jpclett.9b00946 – ident: ref55/cit55 doi: 10.1039/b509242f – ident: ref40/cit40 doi: 10.1007/s11224-015-0666-9 – ident: ref43/cit43 doi: 10.1021/acs.jctc.6b00323 – ident: ref71/cit71 doi: 10.1021/ct900489g – ident: ref1/cit1 doi: 10.1007/s00214-011-1084-8 – ident: ref67/cit67 doi: 10.1002/jcc.20702 – ident: ref69/cit69 doi: 10.1021/ct5008263 – ident: ref41/cit41 doi: 10.1007/s11224-016-0783-0 – ident: ref59/cit59 doi: 10.1063/1.4921542 – ident: ref46/cit46 doi: 10.1016/j.cplett.2005.08.060 – ident: ref13/cit13 doi: 10.1016/j.cplett.2012.04.045 – ident: ref9/cit9 doi: 10.1103/PhysRevA.85.042507 – ident: ref29/cit29 doi: 10.1063/1.3090814 – ident: ref51/cit51 doi: 10.1002/open.201300012 – ident: ref19/cit19 doi: 10.1021/acs.jctc.5b00420 – ident: ref35/cit35 doi: 10.1021/jp1070852 – ident: ref31/cit31 doi: 10.1063/1.3626551 – ident: ref27/cit27 doi: 10.1063/1.3244209 – ident: ref6/cit6 doi: 10.1103/PhysRevLett.112.203001 – ident: ref42/cit42 doi: 10.1021/acs.jctc.5b01066 – ident: ref48/cit48 doi: 10.1021/ja805843n – ident: ref16/cit16 doi: 10.1063/1.4827254 – ident: ref20/cit20 doi: 10.1021/ct100466k – ident: ref61/cit61 doi: 10.1002/jcc.23312 |
SSID | ssj0033423 |
Score | 2.3903272 |
Snippet | Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6678 |
SubjectTerms | Approximation Atomizing Electron gas Mathematical analysis Perturbation theory Polarization (spin alignment) Transition metals |
Title | Construction of a Range-Separated Dual-Hybrid Direct Random Phase Approximation |
URI | http://dx.doi.org/10.1021/acs.jctc.9b00891 https://www.ncbi.nlm.nih.gov/pubmed/31693355 https://www.proquest.com/docview/2325742510 https://search.proquest.com/docview/2312802701 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcQe4AXGLBBWYeMxB72kC6JY9d5rDqqCokP0SHxFsX2WXy2SG0ltr9-d04CYgPUtyhxLsmd7d-dLvc7xg6kBu1wJURpQiU50vjIIAxFvutLD6CkC-z8xydqeJEdXcrLZ5qcfzP4afKjtNPOjZ3ZDrH3aSpU_5B245zaNPT6o2bXFcRkF7hRM2KcTHSdknxNAgGRnb4Eoje8y4Ayg_WqXdE0kBPSzyW3nfnMdOyf_6kbF_iAj2ytdjZ5r5odG2wJxptspd_0eNtip9Svs2GQ5RPPS35O1QbRCAInODj-c17eRcPfVNjFq_2RhrjJPT-7QgTkPSIlf7yuKiA_sYvB4a_-MKpbLESlUNkswtWsZWwgtzYhonw68Dk6aV570BIcgZzUucyUUT5xQjuXdbXwOSiIFYjPbHk8GcMO497iHQpQnhGZyU0pMuUwAJaps06AbbFvqImiXiLTImS_06QIJ1E9Ra2eFvve2KV4qBg33hnbbgz3LBh9RIkBP242Lbb_dBkVS6mQcgyTOY1BXMaIPEYR25XBnx4miJ8G3bDdBV_4C1tFLyo0lUjiNltGq8FX9FRmZi9M0b_Mf-Ii |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCaK7tBeulcfWbtNA9ZDD87syFLkY5CtyPpGH0BvhiVR2DMpkARo9-tHynaKDVux3QxZpmVSEj-B5keAt8qg8bQSkl7GKTnKhsSSG0pCP1QBUSsf2fmPT_ToKj-4VtdLkLW5MDSIKUmaxiD-PbtA9o7bvriZ6zKJn-F89Ueqn_a5aMFgeNFuvpIJ7SJFas7Ek5lpIpN_ksD-yE1_9Ud_AZnR2ew_hvPFMOM_Jl-785ntuh-_MTj-13c8gbUGeopBPVeewhKOn8HKsK349hxOuXpnyycrJkFU4pxzD5ILjAzh6MX7efUtGd1xmpeod0vu4iffxdkn8odiwBTlt5_rfMh1uNr_cDkcJU3BhaSSOp8ltLaNSi0WzmVMm88XoSDIFkxAo9Czy1OmULm2OmReGu_zvpGhQI2pRrkBy-PJGLdABEdPaCR5Vua2sJXMtafjsOp55yW6DuySJspmwUzLGAvvZWVsJPWUjXo6sNeap7yp-Tce6LvT2u9eMCFGRcd_2no68GZxmxTLgZFqjJM59yEvTefzlERs1nZfvEwyWw2Bshf_OODXsDK6PD4qjz6eHG7DKuGrWG4iS3dgmSyILwnDzOyrOGt_AqHw6os |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NmwS8wPgubGAkeOAhJa5j13msOqryNSbG0N6i2D5rH9BOaisN_nrunKQIBAjeIse5XO58vrMu9zuAp9qiDWQJ2UBySY52MXPkhrI4jHVENDokdP53-2Z6VLw-1scboLtaGGJiQZQWKYnPVn0RYoswIF_w-Jlf-j4D-VmuWd_SQzngxgWj8WG3ASsGtUswqQWDT0rbZid_R4F9kl_87JP-EGgmhzO5AZ_WrKb_TM77q6Xr-2-_oDj-97dsw_U2BBWjZs3chA2c3YKr467z2214z108O1xZMY-iFh-4BiE7xIQUjkHsrerP2fQrl3uJZtfkKWH-RRyckF8UI4Yqvzxt6iLvwNHk5cfxNGsbL2S1MsUyIxu3OndYei8ZPp8vYkmhW7QRrcbArk_bUhfGmSiDsiEUQ6tiiQZzg-oubM7mM7wPInp6wiDRc6pwpatVYQIdi_Ug-KDQ9-AZSaJqDWdRpZz4QFZpkMRTteLpwfNORdVFg8Pxl7k7nQ5_EKbIUQ9pg5J5D56sb5NgOUFSz3C-4jnkremcnhOJe43u1y9TjFpDwdmDf2T4MVw52JtUb1_tv3kI1yjMSl0nZL4Dm6RA3KVQZukepYX7HT2y7QU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+Range-Separated+Dual-Hybrid+Direct+Random+Phase+Approximation&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Mezei%2C+P%C3%A1l+D&rft.au=K%C3%A1llay%2C+Mih%C3%A1ly&rft.date=2019-12-10&rft.eissn=1549-9626&rft.volume=15&rft.issue=12&rft.spage=6678&rft_id=info:doi/10.1021%2Facs.jctc.9b00891&rft_id=info%3Apmid%2F31693355&rft.externalDocID=31693355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |