Construction of a Range-Separated Dual-Hybrid Direct Random Phase Approximation

Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and ba...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 15; no. 12; pp. 6678 - 6687
Main Authors Mezei, Pál D, Kállay, Mihály
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and barrier heights compared to the parent approaches and provides a good description of noncovalent interactions without any dispersion correction. We also combine the new scheme with spin-component scaling (SCS-dRPA75rs), which enables the accurate calculation of energy differences for processes involving electron pair breaking, such as atomization. The new method scaling as the fourth power of the system size shows a balanced performance on a broad test set involving radicals, transition metal atoms, and heavy atoms, which makes it competitive with the best double-hybrid functionals based on the second-order perturbation theory. According to the results for the homogeneous electron gas, our dRPA75rs method expectedly gives errors for metallic systems similar to the dRPA approach with an additional error cancellation in the case of partial spin polarization.
AbstractList Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and barrier heights compared to the parent approaches and provides a good description of noncovalent interactions without any dispersion correction. We also combine the new scheme with spin-component scaling (SCS-dRPA75rs), which enables the accurate calculation of energy differences for processes involving electron pair breaking, such as atomization. The new method scaling as the fourth power of the system size shows a balanced performance on a broad test set involving radicals, transition metal atoms, and heavy atoms, which makes it competitive with the best double-hybrid functionals based on the second-order perturbation theory. According to the results for the homogeneous electron gas, our dRPA75rs method expectedly gives errors for metallic systems similar to the dRPA approach with an additional error cancellation in the case of partial spin polarization.
Author Kállay, Mihály
Mezei, Pál D
AuthorAffiliation Department of Chemistry
Budapest University of Technology and Economics
Department of Physical Chemistry and Materials Science
AuthorAffiliation_xml – name: Department of Chemistry
– name: Budapest University of Technology and Economics
– name: Department of Physical Chemistry and Materials Science
Author_xml – sequence: 1
  givenname: Pál D
  orcidid: 0000-0002-7052-9677
  surname: Mezei
  fullname: Mezei, Pál D
  email: paldaniel.mezei@unibas.ch
  organization: Department of Chemistry
– sequence: 2
  givenname: Mihály
  orcidid: 0000-0003-1080-6625
  surname: Kállay
  fullname: Kállay, Mihály
  organization: Budapest University of Technology and Economics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31693355$$D View this record in MEDLINE/PubMed
BookMark eNp1kElPwzAQhS1URBe4c0KRuHAgxUvs2seqLEWqVMRyjhxnAqnSuNiJRP89Dm05IHGad_jem5k3RL3a1oDQOcFjgim50caPV6YxY5VhLBU5QgPCExUrQUXvVxPZR0PvVxgzllB2gvqMCMUY5wO0nNnaN641TWnryBaRjp51_Q7xC2y00w3k0W2rq3i-zVwZdOnANB2S23X09KE9RNPNxtmvcq27iFN0XOjKw9l-jtDb_d3rbB4vlg-Ps-ki1kwkTUwplxxnoIwhnAreiUIlRBSyAMkhZwlhXCqeiEwUJGcyz5OJZIUCAVgAG6GrXW7Y_dmCb9J16Q1Ula7Btj6ljFCJ6QSTgF7-QVe2dXW4LlCUTxLKCQ4U3lHGWe8dFOnGhZ_cNiU47cpOQ9lpV3a6LztYLvbBbbaG_NdwaDcA1zvgx3pY-m_eNzThi0c
CitedBy_id crossref_primary_10_1021_acs_jctc_3c00979
crossref_primary_10_1063_1_5142048
crossref_primary_10_1021_acs_jctc_1c00422
crossref_primary_10_1063_5_0144493
crossref_primary_10_3390_molecules25215174
crossref_primary_10_1021_acs_jctc_2c00131
crossref_primary_10_1021_acs_jctc_9b01294
crossref_primary_10_1021_acs_jctc_0c01135
crossref_primary_10_1021_acs_jctc_1c01100
crossref_primary_10_1063_5_0082327
Cites_doi 10.1063/1.472933
10.1002/jcc.23391
10.1039/c1cp22592h
10.1016/S0166-1280(00)00528-5
10.1063/1.1569242
10.1063/1.3382344
10.1103/PhysRevB.81.115126
10.1063/1.4890314
10.1103/PhysRevA.85.012517
10.1063/1.5025226
10.1021/jp049253v
10.1016/j.cpc.2012.05.007
10.1039/C6CP00688D
10.1016/j.chemphys.2006.05.020
10.1063/1.4940734
10.1063/1.3604569
10.1103/PhysRevLett.110.146403
10.1063/1.3250347
10.1039/b508541a
10.1063/1.1809602
10.1103/PhysRevLett.106.153003
10.1063/1.456153
10.1063/1.481910
10.1063/1.3176514
10.1063/1.1445115
10.1063/1.3299247
10.1073/pnas.0901093106
10.1021/jp801805p
10.1021/jp710179r
10.1063/1.3317437
10.1063/1.1564060
10.1103/PhysRevA.72.012510
10.1007/BF01114537
10.1039/C5CP06600J
10.1021/jp050536c
10.1103/PhysRevB.45.13244
10.1007/s10853-012-6570-4
10.1063/1.2148954
10.1103/PhysRevLett.77.3865
10.1021/ct9003299
10.1103/PhysRevB.73.155111
10.1002/wcms.1274
10.1063/1.1811608
10.1103/PhysRevLett.106.093001
10.1103/PhysRevLett.103.056401
10.1021/acs.jctc.6b01140
10.1021/acs.jctc.6b00900
10.1063/1.4905005
10.1021/acs.jpclett.9b00946
10.1039/b509242f
10.1007/s11224-015-0666-9
10.1021/acs.jctc.6b00323
10.1021/ct900489g
10.1007/s00214-011-1084-8
10.1002/jcc.20702
10.1021/ct5008263
10.1007/s11224-016-0783-0
10.1063/1.4921542
10.1016/j.cplett.2005.08.060
10.1016/j.cplett.2012.04.045
10.1103/PhysRevA.85.042507
10.1063/1.3090814
10.1002/open.201300012
10.1021/acs.jctc.5b00420
10.1021/jp1070852
10.1063/1.3626551
10.1063/1.3244209
10.1103/PhysRevLett.112.203001
10.1021/acs.jctc.5b01066
10.1021/ja805843n
10.1063/1.4827254
10.1021/ct100466k
10.1002/jcc.23312
ContentType Journal Article
Copyright Copyright American Chemical Society Dec 10, 2019
Copyright_xml – notice: Copyright American Chemical Society Dec 10, 2019
DBID NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.9b00891
DatabaseName PubMed
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 6687
ExternalDocumentID 10_1021_acs_jctc_9b00891
31693355
f12810262
Genre Journal Article
GroupedDBID 53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
5VS
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a364t-225850be9cc15265e9ccf9416f8fe85ed3413589546b6f1d38dd4783f9e6e06e3
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Fri Aug 16 08:05:58 EDT 2024
Thu Oct 10 17:20:38 EDT 2024
Fri Aug 23 03:42:09 EDT 2024
Sat Sep 28 08:32:14 EDT 2024
Thu Aug 27 13:43:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a364t-225850be9cc15265e9ccf9416f8fe85ed3413589546b6f1d38dd4783f9e6e06e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7052-9677
0000-0003-1080-6625
PMID 31693355
PQID 2325742510
PQPubID 2048741
PageCount 10
ParticipantIDs proquest_miscellaneous_2312802701
proquest_journals_2325742510
crossref_primary_10_1021_acs_jctc_9b00891
pubmed_primary_31693355
acs_journals_10_1021_acs_jctc_9b00891
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-12-10
PublicationDateYYYYMMDD 2019-12-10
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref68/cit68
  doi: 10.1063/1.472933
– ident: ref37/cit37
  doi: 10.1002/jcc.23391
– ident: ref36/cit36
  doi: 10.1039/c1cp22592h
– ident: ref57/cit57
  doi: 10.1016/S0166-1280(00)00528-5
– ident: ref33/cit33
  doi: 10.1063/1.1569242
– ident: ref52/cit52
  doi: 10.1063/1.3382344
– ident: ref3/cit3
  doi: 10.1103/PhysRevB.81.115126
– ident: ref12/cit12
  doi: 10.1063/1.4890314
– ident: ref17/cit17
  doi: 10.1103/PhysRevA.85.012517
– ident: ref28/cit28
  doi: 10.1063/1.5025226
– ident: ref24/cit24
  doi: 10.1021/jp049253v
– ident: ref63/cit63
  doi: 10.1016/j.cpc.2012.05.007
– ident: ref39/cit39
  doi: 10.1039/C6CP00688D
– ident: ref56/cit56
  doi: 10.1016/j.chemphys.2006.05.020
– ident: ref14/cit14
  doi: 10.1063/1.4940734
– ident: ref11/cit11
  doi: 10.1063/1.3604569
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.110.146403
– ident: ref15/cit15
  doi: 10.1063/1.3250347
– ident: ref65/cit65
  doi: 10.1039/b508541a
– ident: ref34/cit34
  doi: 10.1063/1.1809602
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.106.153003
– ident: ref64/cit64
  doi: 10.1063/1.456153
– ident: ref62/cit62
– ident: ref58/cit58
  doi: 10.1063/1.481910
– ident: ref30/cit30
  doi: 10.1063/1.3176514
– ident: ref66/cit66
  doi: 10.1063/1.1445115
– ident: ref5/cit5
  doi: 10.1063/1.3299247
– ident: ref22/cit22
  doi: 10.1073/pnas.0901093106
– ident: ref47/cit47
  doi: 10.1021/jp801805p
– ident: ref18/cit18
  doi: 10.1021/jp710179r
– ident: ref32/cit32
  doi: 10.1063/1.3317437
– ident: ref54/cit54
  doi: 10.1063/1.1564060
– ident: ref26/cit26
  doi: 10.1103/PhysRevA.72.012510
– ident: ref72/cit72
  doi: 10.1007/BF01114537
– ident: ref21/cit21
  doi: 10.1039/C5CP06600J
– ident: ref49/cit49
  doi: 10.1021/jp050536c
– ident: ref73/cit73
  doi: 10.1103/PhysRevB.45.13244
– ident: ref4/cit4
  doi: 10.1007/s10853-012-6570-4
– ident: ref10/cit10
  doi: 10.1063/1.2148954
– ident: ref53/cit53
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref50/cit50
  doi: 10.1021/ct9003299
– ident: ref74/cit74
  doi: 10.1103/PhysRevB.73.155111
– ident: ref23/cit23
  doi: 10.1002/wcms.1274
– ident: ref70/cit70
  doi: 10.1063/1.1811608
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.106.093001
– ident: ref2/cit2
  doi: 10.1103/PhysRevLett.103.056401
– ident: ref38/cit38
  doi: 10.1021/acs.jctc.6b01140
– ident: ref45/cit45
  doi: 10.1021/acs.jctc.6b00900
– ident: ref60/cit60
  doi: 10.1063/1.4905005
– ident: ref44/cit44
  doi: 10.1021/acs.jpclett.9b00946
– ident: ref55/cit55
  doi: 10.1039/b509242f
– ident: ref40/cit40
  doi: 10.1007/s11224-015-0666-9
– ident: ref43/cit43
  doi: 10.1021/acs.jctc.6b00323
– ident: ref71/cit71
  doi: 10.1021/ct900489g
– ident: ref1/cit1
  doi: 10.1007/s00214-011-1084-8
– ident: ref67/cit67
  doi: 10.1002/jcc.20702
– ident: ref69/cit69
  doi: 10.1021/ct5008263
– ident: ref41/cit41
  doi: 10.1007/s11224-016-0783-0
– ident: ref59/cit59
  doi: 10.1063/1.4921542
– ident: ref46/cit46
  doi: 10.1016/j.cplett.2005.08.060
– ident: ref13/cit13
  doi: 10.1016/j.cplett.2012.04.045
– ident: ref9/cit9
  doi: 10.1103/PhysRevA.85.042507
– ident: ref29/cit29
  doi: 10.1063/1.3090814
– ident: ref51/cit51
  doi: 10.1002/open.201300012
– ident: ref19/cit19
  doi: 10.1021/acs.jctc.5b00420
– ident: ref35/cit35
  doi: 10.1021/jp1070852
– ident: ref31/cit31
  doi: 10.1063/1.3626551
– ident: ref27/cit27
  doi: 10.1063/1.3244209
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.112.203001
– ident: ref42/cit42
  doi: 10.1021/acs.jctc.5b01066
– ident: ref48/cit48
  doi: 10.1021/ja805843n
– ident: ref16/cit16
  doi: 10.1063/1.4827254
– ident: ref20/cit20
  doi: 10.1021/ct100466k
– ident: ref61/cit61
  doi: 10.1002/jcc.23312
SSID ssj0033423
Score 2.3903272
Snippet Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6678
SubjectTerms Approximation
Atomizing
Electron gas
Mathematical analysis
Perturbation theory
Polarization (spin alignment)
Transition metals
Title Construction of a Range-Separated Dual-Hybrid Direct Random Phase Approximation
URI http://dx.doi.org/10.1021/acs.jctc.9b00891
https://www.ncbi.nlm.nih.gov/pubmed/31693355
https://www.proquest.com/docview/2325742510
https://search.proquest.com/docview/2312802701
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcQe4AXGLBBWYeMxB72kC6JY9d5rDqqCokP0SHxFsX2WXy2SG0ltr9-d04CYgPUtyhxLsmd7d-dLvc7xg6kBu1wJURpQiU50vjIIAxFvutLD6CkC-z8xydqeJEdXcrLZ5qcfzP4afKjtNPOjZ3ZDrH3aSpU_5B245zaNPT6o2bXFcRkF7hRM2KcTHSdknxNAgGRnb4Eoje8y4Ayg_WqXdE0kBPSzyW3nfnMdOyf_6kbF_iAj2ytdjZ5r5odG2wJxptspd_0eNtip9Svs2GQ5RPPS35O1QbRCAInODj-c17eRcPfVNjFq_2RhrjJPT-7QgTkPSIlf7yuKiA_sYvB4a_-MKpbLESlUNkswtWsZWwgtzYhonw68Dk6aV570BIcgZzUucyUUT5xQjuXdbXwOSiIFYjPbHk8GcMO497iHQpQnhGZyU0pMuUwAJaps06AbbFvqImiXiLTImS_06QIJ1E9Ra2eFvve2KV4qBg33hnbbgz3LBh9RIkBP242Lbb_dBkVS6mQcgyTOY1BXMaIPEYR25XBnx4miJ8G3bDdBV_4C1tFLyo0lUjiNltGq8FX9FRmZi9M0b_Mf-Ii
link.rule.ids 315,783,787,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCaK7tBeulcfWbtNA9ZDD87syFLkY5CtyPpGH0BvhiVR2DMpkARo9-tHynaKDVux3QxZpmVSEj-B5keAt8qg8bQSkl7GKTnKhsSSG0pCP1QBUSsf2fmPT_ToKj-4VtdLkLW5MDSIKUmaxiD-PbtA9o7bvriZ6zKJn-F89Ueqn_a5aMFgeNFuvpIJ7SJFas7Ek5lpIpN_ksD-yE1_9Ud_AZnR2ew_hvPFMOM_Jl-785ntuh-_MTj-13c8gbUGeopBPVeewhKOn8HKsK349hxOuXpnyycrJkFU4pxzD5ILjAzh6MX7efUtGd1xmpeod0vu4iffxdkn8odiwBTlt5_rfMh1uNr_cDkcJU3BhaSSOp8ltLaNSi0WzmVMm88XoSDIFkxAo9Czy1OmULm2OmReGu_zvpGhQI2pRrkBy-PJGLdABEdPaCR5Vua2sJXMtafjsOp55yW6DuySJspmwUzLGAvvZWVsJPWUjXo6sNeap7yp-Tce6LvT2u9eMCFGRcd_2no68GZxmxTLgZFqjJM59yEvTefzlERs1nZfvEwyWw2Bshf_OODXsDK6PD4qjz6eHG7DKuGrWG4iS3dgmSyILwnDzOyrOGt_AqHw6os
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NmwS8wPgubGAkeOAhJa5j13msOqryNSbG0N6i2D5rH9BOaisN_nrunKQIBAjeIse5XO58vrMu9zuAp9qiDWQJ2UBySY52MXPkhrI4jHVENDokdP53-2Z6VLw-1scboLtaGGJiQZQWKYnPVn0RYoswIF_w-Jlf-j4D-VmuWd_SQzngxgWj8WG3ASsGtUswqQWDT0rbZid_R4F9kl_87JP-EGgmhzO5AZ_WrKb_TM77q6Xr-2-_oDj-97dsw_U2BBWjZs3chA2c3YKr467z2214z108O1xZMY-iFh-4BiE7xIQUjkHsrerP2fQrl3uJZtfkKWH-RRyckF8UI4Yqvzxt6iLvwNHk5cfxNGsbL2S1MsUyIxu3OndYei8ZPp8vYkmhW7QRrcbArk_bUhfGmSiDsiEUQ6tiiQZzg-oubM7mM7wPInp6wiDRc6pwpatVYQIdi_Ug-KDQ9-AZSaJqDWdRpZz4QFZpkMRTteLpwfNORdVFg8Pxl7k7nQ5_EKbIUQ9pg5J5D56sb5NgOUFSz3C-4jnkremcnhOJe43u1y9TjFpDwdmDf2T4MVw52JtUb1_tv3kI1yjMSl0nZL4Dm6RA3KVQZukepYX7HT2y7QU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+Range-Separated+Dual-Hybrid+Direct+Random+Phase+Approximation&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Mezei%2C+P%C3%A1l+D&rft.au=K%C3%A1llay%2C+Mih%C3%A1ly&rft.date=2019-12-10&rft.eissn=1549-9626&rft.volume=15&rft.issue=12&rft.spage=6678&rft_id=info:doi/10.1021%2Facs.jctc.9b00891&rft_id=info%3Apmid%2F31693355&rft.externalDocID=31693355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon