Kinetic Isotope Effects for Alkaline Phosphatase Reactions: Implications for the Role of Active-Site Metal Ions in Catalysis
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester h...
Saved in:
Published in | Journal of the American Chemical Society Vol. 129; no. 31; pp. 9789 - 9798 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.08.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 |
DOI | 10.1021/ja072196+ |
Cover
Loading…
Abstract | Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis. |
---|---|
AbstractList | Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by
Escherichia coli
alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active site Zn
2+
ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn
2+
site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis. Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis. Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis. |
Author | Grzyska, Piotr K Mitchell, Rebecca Herschlag, Daniel Catrina, Irina Zalatan, Jesse G O'Brien, Patrick J Hengge, Alvan C |
Author_xml | – sequence: 1 givenname: Jesse G surname: Zalatan fullname: Zalatan, Jesse G – sequence: 2 givenname: Irina surname: Catrina fullname: Catrina, Irina – sequence: 3 givenname: Rebecca surname: Mitchell fullname: Mitchell, Rebecca – sequence: 4 givenname: Piotr K surname: Grzyska fullname: Grzyska, Piotr K – sequence: 5 givenname: Patrick J surname: O'Brien fullname: O'Brien, Patrick J – sequence: 6 givenname: Daniel surname: Herschlag fullname: Herschlag, Daniel – sequence: 7 givenname: Alvan C surname: Hengge fullname: Hengge, Alvan C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17630738$$D View this record in MEDLINE/PubMed |
BookMark | eNpl0c1uEzEQB3ALFdG0cOAFkA-oQkIL_ti1dzkgRVELUQtUJHC1HO-YOHXW27VT0RNceU2epG7TFhAny56f_yPN7KGdLnSA0FNKXlHC6OuVJpLRRrx8gEa0YqSoKBM7aEQIYYWsBd9FezGu8rVkNX2EdqkUnEhej9CPY9dBcgZPY0ihB3xoLZgUsQ0DHvsz7XMdny5D7Jc66Qj4M2iTXOjim98_f-HpuvfO6JuHmz9pmUnwgIPF4wwvoJi5BPgDJO3x9Jq5Dk9ylr-MLj5GD632EZ7cnvvoy9HhfPK-OPn0bjoZnxSaizIVjNa8LqtKktY0TJZtyReMVg1rrCirFuSCG0uAsFpSu9DAodZEsKopLWmFZXwfvd3m9pvFGloDXRq0V_3g1nq4VEE79W-lc0v1LVwoTiWltcwBB7cBQzjfQExq7aIB73UHYROVqGl2ZZPhs7873be4m3kGL7bADCHGAewfQtT1PtXdPjMtttTFBN_vnR7OlJBcVmp-OlPlZCaPPs6_qnn2z7dem6hWYTN0eab_x14BISeuRQ |
Cites_doi | 10.1021/ja00506a027 10.1021/j150517a003 10.1021/bi00085a003 10.1021/bi00436a008 10.1016/j.saa.2006.03.015 10.1021/bi00038a021 10.1126/science.1082710 10.1074/jbc.274.13.8351 10.1021/ja00803a027 10.1021/ja01614a018 10.1021/ja01614a047 10.1021/ja071527f 10.1021/ar50049a002 10.1021/ja00338a026 10.1126/science.180.4082.149 10.1021/cr050287o 10.1021/bi972646i 10.1107/S0567739476001551 10.1007/s00775-004-0593-5 10.1063/1.1700749 10.1038/nsb0897-618 10.1021/bi000899x 10.1016/0003-2697(79)90115-5 10.1021/ja00978a044 10.1146/annurev.biochem.72.121801.161617 10.1021/ja0480421 10.1021/ja036571j 10.1016/S0021-9258(19)36851-6 10.1146/annurev.bb.21.060192.002301 10.1021/ja051603j 10.1021/ja069111+ 10.1016/j.chembiol.2007.01.011 10.1016/S0167-4838(01)00191-1 10.1146/annurev.bi.49.070180.004305 10.1021/ja9839769 10.1063/1.438679 10.1139/v92-367 10.1021/ja0340026 10.1021/ja056528r 10.1021/bi049188f 10.1006/jmbi.1997.1586 10.1073/pnas.93.16.8160 10.1021/ja00187a084 10.1021/bi00422a008 10.1021/ar000143q 10.1021/ja003400v 10.1021/bi00200a018 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/ja072196+ |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9798 |
ExternalDocumentID | PMC3171187 17630738 10_1021_ja072196 ark_67375_TPS_4CS7FNTV_T d152853859 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM47297 – fundername: NIGMS NIH HHS grantid: GM64798 – fundername: NIGMS NIH HHS grantid: R29 GM047297 – fundername: NIGMS NIH HHS grantid: R01 GM064798 – fundername: NIGMS NIH HHS grantid: R01 GM047297 |
GroupedDBID | - .K2 02 186 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX AFMIJ AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F20 F5P GNL IH9 IHE JG JG~ K2 K78 LG6 OHT P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UNC UPT UQL VF5 VG9 VQA W1F WH7 X XFK YZZ ZCG ZE2 ZHY --- -DZ -ET -~X .DC 6TJ AAHBH AAYOK ABJNI ABQRX ACBEA ACGFO ADHLV ADOJD AGXLV AHGAQ BSCLL CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL AEYZD AGQPQ AHDLI ANPPW CITATION YR5 AAYWT CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a364t-2183845570dc9274d43b215929f645de7b3cf0e02871fbae3e8a062594f0d6f23 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Thu Aug 21 18:28:15 EDT 2025 Thu Aug 07 15:18:55 EDT 2025 Mon Jul 21 05:51:52 EDT 2025 Tue Jul 01 02:59:07 EDT 2025 Wed Oct 30 09:48:19 EDT 2024 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a364t-2183845570dc9274d43b215929f645de7b3cf0e02871fbae3e8a062594f0d6f23 |
Notes | ark:/67375/TPS-4CS7FNTV-T istex:309CFB412EF044090C161BBDD71A0A6A0BA6F943 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Department of Chemistry and Biochemistry, Utah State University Department of Biochemistry, Stanford University Present Address: Department of Biological Sciences, Hunter College Present Address: Department of Biological Chemistry, University of Michigan Present Address: Department of Microbiology and Molecular Genetics, Michigan State University Department of Chemistry, Stanford University |
PMID | 17630738 |
PQID | 68111849 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171187 proquest_miscellaneous_68111849 pubmed_primary_17630738 crossref_primary_10_1021_ja072196 istex_primary_ark_67375_TPS_4CS7FNTV_T acs_journals_10_1021_ja072196 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-08-08 |
PublicationDateYYYYMMDD | 2007-08-08 |
PublicationDate_xml | – month: 08 year: 2007 text: 2007-08-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2007 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Koleva V. G. (ja0721961b00062/ja0721961b00062_1) 2007; 66 O'Brien P. J. (ja0721961b00022/ja0721961b00022_1) 2001; 40 O'Leary M. H. (ja0721961b00051/ja0721961b00051_1) 1979; 101 Parente J. E. (ja0721961b00042/ja0721961b00042_1) 1984; 106 Gorenstein D. G. (ja0721961b00054/ja0721961b00054_1) 1977; 99 Lienhard G. E. (ja0721961b00005/ja0721961b00005_1) 1973; 180 Weiss P. M. (ja0721961b00048/ja0721961b00048_1) 1989; 111 Kumamoto J. (ja0721961b00039/ja0721961b00039_1) 1955; 77 Stangret J. (ja0721961b00060/ja0721961b00060_1) 1992; 70 Bunton C. A. (ja0721961b00041/ja0721961b00041_1) 1967; 32 Butcher W. W. (ja0721961b00038/ja0721961b00038_1) 1955; 77 Martin B. L. (ja0721961b00066/ja0721961b00066_1) 1999; 38 Jones J. P. (ja0721961b00063/ja0721961b00063_1) 1991; 30 Anderson M. A. (ja0721961b00036/ja0721961b00036_1) 2001; 123 Nikolic-Hughes I. (ja0721961b00013/ja0721961b00013_1) 2004; 126 Zalatan J. G. (ja0721961b00044/ja0721961b00044_1) 2006; 128 O'Brien P. J. (ja0721961b00010/ja0721961b00010_1) 1999; 121 Lad C. (ja0721961b00001/ja0721961b00001_1) 2003; 100 Gerratana B. (ja0721961b00037/ja0721961b00037_1) 2000; 122 Hengge A. C. (ja0721961b00016/ja0721961b00016_1) 2002; 35 Hengge A. C. (ja0721961b00065/ja0721961b00065_1) 1997; 36 Hollfelder F. (ja0721961b00011/ja0721961b00011_1) 1995; 34 Nikolic-Hughes I. (ja0721961b00043/ja0721961b00043_1) 2005; 127 Frey P. A. (ja0721961b00083/ja0721961b00083_1) 1985; 228 Hondal R. J. (ja0721961b00075/ja0721961b00075_1) 1998; 37 Chaidaroglou A. (ja0721961b00018/ja0721961b00018_1) 1988; 27 Kim E. E. (ja0721961b00007/ja0721961b00007_1) 1991; 218 Feder H. M. (ja0721961b00056/ja0721961b00056_1) 1952; 20 Sawyer C. B. (ja0721961b00050/ja0721961b00050_1) 1973; 95 Hengge A. C. (ja0721961b00030/ja0721961b00030_1) 2005; 40 Simopoulos T. T. (ja0721961b00046/ja0721961b00046_1) 1994; 33 Caldwell S. R. (ja0721961b00026/ja0721961b00026_1) 1991; 30 Thatcher G. R. J. (ja0721961b00029/ja0721961b00029_1) 1989; 25 Hengge A. C. (ja0721961b00019/ja0721961b00019_1) 1994; 116 Catrina I. E. (ja0721961b00020/ja0721961b00020_1) 2003; 125 Nelson B. N. (ja0721961b00059/ja0721961b00059_1) 1979; 71 Jencks W. P. (ja0721961b00034/ja0721961b00034_1) 1976 Taube H. (ja0721961b00057/ja0721961b00057_1) 1954; 58 Pauling L. (ja0721961b00003/ja0721961b00003_1) 1946; 24 Grzyska P. K. (ja0721961b00021/ja0721961b00021_1) 2003; 125 Brautigam C. A. (ja0721961b00070/ja0721961b00070_1) 1998; 277 Murphy J. E. (ja0721961b00080/ja0721961b00080_1) 1997; 4 Polanyi M. Z. (ja0721961b00002/ja0721961b00002_1) 1921; 27 Cleland W. W. (ja0721961b00031/ja0721961b00031_1) 2006; 106 Holtz K. M. (ja0721961b00008/ja0721961b00008_1) 1999; 274 Labow B. I. (ja0721961b00045/ja0721961b00045_1) 1993; 32 Thompson J. E. (ja0721961b00073/ja0721961b00073_1) 1994; 116 ja0721961b00014/ja0721961b00014_1 Ostanin K. (ja0721961b00076/ja0721961b00076_1) 1993; 268 de la Fuente M. (ja0721961b00061/ja0721961b00061_1) 2004; 9 Kirby A. J. (ja0721961b00028/ja0721961b00028_1) 1967; 89 Bigeleisen J. (ja0721961b00025/ja0721961b00025_1) 1958; 1 Bahnson B. J. (ja0721961b00053/ja0721961b00053_1) 1989; 28 Blanchard J. S. (ja0721961b00052/ja0721961b00052_1) 1980; 19 O'Brien P. J. (ja0721961b00012/ja0721961b00012_1) 2002; 41 Lahiri S. D. (ja0721961b00015/ja0721961b00015_1) 2003; 299 Kirby A. J. (ja0721961b00027/ja0721961b00027_1) 1965; 87 Lanzetta P. A. (ja0721961b00024/ja0721961b00024_1) 1979; 100 Catrina I. (ja0721961b00047/ja0721961b00047_1) 2007; 129 Coleman J. E. (ja0721961b00009/ja0721961b00009_1) 1992; 21 Whiteson K. L. (ja0721961b00077/ja0721961b00077_1) 2007; 14 Kraut D. A. (ja0721961b00017/ja0721961b00017_1) 2003; 72 Richard J. P. (ja0721961b00072/ja0721961b00072_1) 1996; 35 Holtz K. M. (ja0721961b00032/ja0721961b00032_1) 2000; 39 Hoff R. H. (ja0721961b00064/ja0721961b00064_1) 1999; 121 Hondal R. J. (ja0721961b00074/ja0721961b00074_1) 1997; 119 Shannon R. D. (ja0721961b00069/ja0721961b00069_1) 1976; 32 Maegley K. A. (ja0721961b00079/ja0721961b00079_1) 1996; 93 Knowles J. R. (ja0721961b00078/ja0721961b00078_1) 1980; 49 Grzyska P. K. (ja0721961b00081/ja0721961b00081_1) 2007; 129 Gill S. C. (ja0721961b00023/ja0721961b00023_1) 1989; 182 Bunton C. A. (ja0721961b00040/ja0721961b00040_1) 1958; 3574 Cassano A. G. (ja0721961b00058/ja0721961b00058_1) 2004; 43 Hengge A. C. (ja0721961b00049/ja0721961b00049_1) 1994; 116 Wolfenden R. (ja0721961b00004/ja0721961b00004_1) 1972; 5 Jencks W. P. (ja0721961b00006/ja0721961b00006_1) 1987 Sowa G. A. (ja0721961b00035/ja0721961b00035_1) 1997; 119 Czyryca P. G. (ja0721961b00082/ja0721961b00082_1) 2001; 1547 Hengge A. C. (ja0721961b00067/ja0721961b00067_1) 1998 |
References_xml | – volume: 24 start-page: 1377 year: 1946 ident: ja0721961b00003/ja0721961b00003_1 publication-title: Chem. Eng. News – volume: 101 start-page: 3306 year: 1979 ident: ja0721961b00051/ja0721961b00051_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00506a027 – volume: 58 start-page: 528 year: 1954 ident: ja0721961b00057/ja0721961b00057_1 publication-title: J. Phys. Chem. doi: 10.1021/j150517a003 – volume: 36 start-page: 10191 year: 1997 ident: ja0721961b00065/ja0721961b00065_1 publication-title: Biochemistry – volume: 32 start-page: 8741 year: 1993 ident: ja0721961b00045/ja0721961b00045_1 publication-title: Biochemistry doi: 10.1021/bi00085a003 – volume: 28 start-page: 4181 year: 1989 ident: ja0721961b00053/ja0721961b00053_1 publication-title: Biochemistry doi: 10.1021/bi00436a008 – volume: 66 start-page: 418 year: 2007 ident: ja0721961b00062/ja0721961b00062_1 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2006.03.015 – volume: 34 start-page: 12264 year: 1995 ident: ja0721961b00011/ja0721961b00011_1 publication-title: Biochemistry doi: 10.1021/bi00038a021 – volume: 299 start-page: 2071 year: 2003 ident: ja0721961b00015/ja0721961b00015_1 publication-title: Science doi: 10.1126/science.1082710 – volume: 19 start-page: 4513 year: 1980 ident: ja0721961b00052/ja0721961b00052_1 publication-title: Biochemistry – volume: 38 start-page: 3392 year: 1999 ident: ja0721961b00066/ja0721961b00066_1 publication-title: Biochemistry – volume-title: Catalysis in Chemistry and Enzymology year: 1987 ident: ja0721961b00006/ja0721961b00006_1 – volume: 274 start-page: 8354 year: 1999 ident: ja0721961b00008/ja0721961b00008_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.13.8351 – volume: 95 start-page: 7381 year: 1973 ident: ja0721961b00050/ja0721961b00050_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00803a027 – volume: 77 start-page: 2424 year: 1955 ident: ja0721961b00038/ja0721961b00038_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01614a018 – volume: 77 start-page: 2518 year: 1955 ident: ja0721961b00039/ja0721961b00039_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01614a047 – volume: 1 start-page: 76 year: 1958 ident: ja0721961b00025/ja0721961b00025_1 publication-title: Adv. Chem. Phys. – volume: 129 start-page: 5298 year: 2007 ident: ja0721961b00081/ja0721961b00081_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071527f – volume: 5 start-page: 18 year: 1972 ident: ja0721961b00004/ja0721961b00004_1 publication-title: Acc. Chem. Res. doi: 10.1021/ar50049a002 – volume: 106 start-page: 8161 year: 1984 ident: ja0721961b00042/ja0721961b00042_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00338a026 – volume: 41 start-page: 3225 year: 2002 ident: ja0721961b00012/ja0721961b00012_1 publication-title: Biochemistry – volume: 180 start-page: 154 year: 1973 ident: ja0721961b00005/ja0721961b00005_1 publication-title: Science doi: 10.1126/science.180.4082.149 – volume: 106 start-page: 3278 year: 2006 ident: ja0721961b00031/ja0721961b00031_1 publication-title: Chem. Rev. doi: 10.1021/cr050287o – volume: 37 start-page: 4580 year: 1998 ident: ja0721961b00075/ja0721961b00075_1 publication-title: Biochemistry doi: 10.1021/bi972646i – volume: 35 start-page: 12386 year: 1996 ident: ja0721961b00072/ja0721961b00072_1 publication-title: Biochemistry – volume: 218 start-page: 464 year: 1991 ident: ja0721961b00007/ja0721961b00007_1 publication-title: J. Mol. Biol. – volume: 119 start-page: 5478 year: 1997 ident: ja0721961b00074/ja0721961b00074_1 publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 5610 year: 2003 ident: ja0721961b00001/ja0721961b00001_1 publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 542 volume-title: Comprehensive Biological Catalysis year: 1998 ident: ja0721961b00067/ja0721961b00067_1 – volume: 116 start-page: 5468 year: 1994 ident: ja0721961b00073/ja0721961b00073_1 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 767 year: 1976 ident: ja0721961b00069/ja0721961b00069_1 publication-title: Acta Crystallogr. doi: 10.1107/S0567739476001551 – volume: 9 start-page: 986 year: 2004 ident: ja0721961b00061/ja0721961b00061_1 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-004-0593-5 – volume-title: Handbook of Biochemistry and Molecular Biology year: 1976 ident: ja0721961b00034/ja0721961b00034_1 – volume: 20 start-page: 1336 year: 1952 ident: ja0721961b00056/ja0721961b00056_1 publication-title: J. Chem. Phys. doi: 10.1063/1.1700749 – volume: 4 start-page: 622 year: 1997 ident: ja0721961b00080/ja0721961b00080_1 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0897-618 – volume: 30 start-page: 3639 year: 1991 ident: ja0721961b00063/ja0721961b00063_1 publication-title: Biochemistry – volume: 39 start-page: 9458 year: 2000 ident: ja0721961b00032/ja0721961b00032_1 publication-title: Biochemistry doi: 10.1021/bi000899x – volume: 100 start-page: 97 year: 1979 ident: ja0721961b00024/ja0721961b00024_1 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(79)90115-5 – volume: 89 start-page: 423 year: 1967 ident: ja0721961b00028/ja0721961b00028_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00978a044 – volume: 119 start-page: 2320 year: 1997 ident: ja0721961b00035/ja0721961b00035_1 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 571 year: 2003 ident: ja0721961b00017/ja0721961b00017_1 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.72.121801.161617 – volume: 126 start-page: 11819 year: 2004 ident: ja0721961b00013/ja0721961b00013_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0480421 – volume: 125 start-page: 13111 year: 2003 ident: ja0721961b00021/ja0721961b00021_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036571j – volume: 268 start-page: 20784 year: 1993 ident: ja0721961b00076/ja0721961b00076_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36851-6 – volume: 21 start-page: 483 year: 1992 ident: ja0721961b00009/ja0721961b00009_1 publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.bb.21.060192.002301 – volume: 127 start-page: 9315 year: 2005 ident: ja0721961b00043/ja0721961b00043_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051603j – volume: 129 start-page: 5765 year: 2007 ident: ja0721961b00047/ja0721961b00047_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja069111+ – volume: 14 start-page: 129 year: 2007 ident: ja0721961b00077/ja0721961b00077_1 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2007.01.011 – volume: 40 start-page: 108 year: 2005 ident: ja0721961b00030/ja0721961b00030_1 publication-title: Adv. Phys. Org. Chem. – volume: 27 start-page: 142 year: 1921 ident: ja0721961b00002/ja0721961b00002_1 publication-title: Elektrochem. Z. – volume: 182 start-page: 326 year: 1989 ident: ja0721961b00023/ja0721961b00023_1 publication-title: Anal. Biochem. – volume: 30 start-page: 7450 year: 1991 ident: ja0721961b00026/ja0721961b00026_1 publication-title: Biochemistry – volume: 1547 start-page: 253 year: 2001 ident: ja0721961b00082/ja0721961b00082_1 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(01)00191-1 – volume: 49 start-page: 919 year: 1980 ident: ja0721961b00078/ja0721961b00078_1 publication-title: Ann. Rev. Biochem. doi: 10.1146/annurev.bi.49.070180.004305 – volume: 99 start-page: 2267 year: 1977 ident: ja0721961b00054/ja0721961b00054_1 publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 3216 year: 1965 ident: ja0721961b00027/ja0721961b00027_1 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 11023 year: 1999 ident: ja0721961b00010/ja0721961b00010_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9839769 – volume: 116 start-page: 11263 year: 1994 ident: ja0721961b00049/ja0721961b00049_1 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 5049 year: 1994 ident: ja0721961b00019/ja0721961b00019_1 publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 2747 year: 1979 ident: ja0721961b00059/ja0721961b00059_1 publication-title: J. Chem. Phys. doi: 10.1063/1.438679 – volume: 70 start-page: 2883 year: 1992 ident: ja0721961b00060/ja0721961b00060_1 publication-title: Can. J. Chem. doi: 10.1139/v92-367 – volume: 3574 start-page: 3587 year: 1958 ident: ja0721961b00040/ja0721961b00040_1 publication-title: J. Chem. Soc. – volume: 125 start-page: 7552 year: 2003 ident: ja0721961b00020/ja0721961b00020_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0340026 – volume: 40 start-page: 5699 year: 2001 ident: ja0721961b00022/ja0721961b00022_1 publication-title: Biochemistry – volume: 128 start-page: 1303 year: 2006 ident: ja0721961b00044/ja0721961b00044_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056528r – volume: 43 start-page: 10559 year: 2004 ident: ja0721961b00058/ja0721961b00058_1 publication-title: Biochemistry doi: 10.1021/bi049188f – volume: 277 start-page: 377 year: 1998 ident: ja0721961b00070/ja0721961b00070_1 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1586 – volume: 93 start-page: 8166 year: 1996 ident: ja0721961b00079/ja0721961b00079_1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.16.8160 – volume: 123 start-page: 9253 year: 2001 ident: ja0721961b00036/ja0721961b00036_1 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 1929 year: 1989 ident: ja0721961b00048/ja0721961b00048_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00187a084 – volume: 27 start-page: 8343 year: 1988 ident: ja0721961b00018/ja0721961b00018_1 publication-title: Biochemistry doi: 10.1021/bi00422a008 – volume: 32 start-page: 2811 year: 1967 ident: ja0721961b00041/ja0721961b00041_1 publication-title: J. Org. Chem. – volume: 121 start-page: 6390 year: 1999 ident: ja0721961b00064/ja0721961b00064_1 publication-title: J. Am. Chem. Soc. – ident: ja0721961b00014/ja0721961b00014_1 – volume: 228 start-page: 545 year: 1985 ident: ja0721961b00083/ja0721961b00083_1 publication-title: Science – volume: 35 start-page: 112 year: 2002 ident: ja0721961b00016/ja0721961b00016_1 publication-title: Acc. Chem. Res. doi: 10.1021/ar000143q – volume: 122 start-page: 12621 year: 2000 ident: ja0721961b00037/ja0721961b00037_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003400v – volume: 33 start-page: 10380 year: 1994 ident: ja0721961b00046/ja0721961b00046_1 publication-title: Biochemistry doi: 10.1021/bi00200a018 – volume: 25 start-page: 265 year: 1989 ident: ja0721961b00029/ja0721961b00029_1 publication-title: Adv. Phys. Org. Chem. |
SSID | ssj0004281 |
Score | 2.1590269 |
Snippet | Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution... |
SourceID | pubmedcentral proquest pubmed crossref istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9789 |
SubjectTerms | Alkaline Phosphatase - chemistry Alkaline Phosphatase - genetics Alkaline Phosphatase - metabolism Arginine - genetics Arginine - metabolism Binding Sites Catalysis Esters - chemistry Hydrolysis Ions - chemistry Isotopes - chemistry Kinetics Metals - chemistry Metals - metabolism Models, Molecular Mutation - genetics Phosphates - chemistry Phosphates - metabolism Protein Structure, Tertiary |
Title | Kinetic Isotope Effects for Alkaline Phosphatase Reactions: Implications for the Role of Active-Site Metal Ions in Catalysis |
URI | http://dx.doi.org/10.1021/ja072196 https://api.istex.fr/ark:/67375/TPS-4CS7FNTV-T/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17630738 https://www.proquest.com/docview/68111849 https://pubmed.ncbi.nlm.nih.gov/PMC3171187 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6N7YG9bPwaZDAwCPEypUoTJ3Z4iyKqFbRpWju0t8hJbLXqlFRLKk28wCv_Jn8Jd0mztTDGs8-y7LvzfWefPwO8F45y-kahp0l0N25kaqu-n9qZ8VylhfLd5kD_-CQ4OuefL_yLDXj3jxt8l_iBiMIrDB7AlhtIQfz4UTy6ffvoyn4HcYUMvI49aKXnIUWerFqLPFu0iNd3wco_qyNXws1gF-Lu0U5bZTLrLeq0l337m8Pxnpk8gp0l2mRRax6PYUMXT-Bh3H3y9hS-f0GUiY1sWJV1OdesZTOuGGJZFl3OFKFQdjopq_lE1Rjx2Jlun0JUH3_9-MmGKwXpTR_Ek-ysvNSsNCxq9lJ7hKiWHWtE-WxIYtOCxXRoRFwoz-B88GkcH9nLPxls5QW8tglRSU68XXkWYkabcy9F1IAgywTcz7VIvcw42qFEzKRKe1oqh3Isbpw8MK63B5tFWegXwEQoee6EOuQZ0RD6ytPYSwqRiT7PTWbBAWotWfpUlTTX5S6mK8tltOBtp89k3lJz3CHzoVH0jYC6mlEpm_CT8eko4fFIDE7GX5OxBW86S0hQBXRrogpdLqokkBgOJA8teN7axe1guDfjDiktEGsWcyNA1N3rLcV00lB4I2qjf973_zPFl7DdniUTi_gr2KyvFvoAQVCdvm684DfirgEw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF61cKCXQt-mULZS1Utl5Nhr75pbZDVKCokQMRU3a23vKijIjrAjVb201_7N_hJm1jZJEFJ73ll7HzM73-zjG0I-cUc6PS3B0gSYG9MitWXPT-1Me65UXPqu2dAfT4LhJft25V-1NDn4FgYaUcGXKnOIv2IXQJogZPIKgy9PyTaAEBd58vvRdPUG0hW9DupyEXgdi9B6VfRAWbXhgbZxMH88Bi8f3pJcczuD3SZ_kWmwuW0yP17W6XH28wGX4__1aI88b9En7Tfq8oI8UcVLshN1Sd9ekV-ngDqhkI6qsi4XijbsxhUFbEv7N3OJqJSez8pqMZM1eEB6oZqnEdXJ399_6GjtgrqpA_iSXpQ3ipaa9s3aak8B5dKxAtRPRyh2XdAIN5GQG-U1uRx8jaOh3eZosKUXsNpGhCUY8njlWQgRbs68FFAEgC4dMD9XPPUy7SgHAzOdSuUpIR2MuZh28kC73huyVZSFekcoDwXLnVCFLENaQl96CmoJzjPeY7nOLHIIw5i0NlYl5vjchfClHUeLfOzmNVk0VB2PyHw2E34vIG_neLWN-0l8Pk1YNOWDSfw9iS1y1GlEAlOApyiyUOWySgIB7kGw0CJvG_1Y_QzWalgxhUX4hubcCyCV92ZJcT0zlN6A4jDv-_4_unhEdobx-Cw5G01O35NnzT4zMowfkK36dqkOASDV6QdjGXdWzAnp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJgEv43MswJiREC8oU5o4scNbFahWxkq1dmhvkZPY6tQpqZZUQrzAK_8mfwl3-ejaaRI8-5z44873O5_9M8Bb4SinZxRamkRz40Ymtur5iZ0az1VaKN-tN_RPRsHRGf987p-3gSLdhcFGlPilsk7ik1UvMtMyDBBVELF5hcH7u7BN6Triyu9Hk-t7kK7sdXBXyMDrmITWq5IXSssNL7RNA_r9Noh586TkmusZPISvq0bXJ07mh8sqOUx_3OBz_P9ePYKdFoWyfqM2j-GOzp_A_ah7_O0p_DxG9ImFbFgWVbHQrGE5LhliXNa_nCtCp2w8K8rFTFXoCdmpbq5IlB_-_PrNhmsH1es6iDPZaXGpWWFYv15j7QmiXXaiEf2zIYld5CyizSTiSHkGZ4NP0-jIbt9qsJUX8MompCU58XllaYiRbsa9BNEEgi8TcD_TIvFS42iHAjSTKO1pqRyKvbhxssC43i5s5UWu94CJUPLMCXXIU6In9JWnsZYUIhU9npnUgn0cyri1tTKu0-guhjHtOFrwppvbeNFQdtwi866e9JWAuprTETfhx9PxJObRRAxG02_x1IKDTitinALKpqhcF8syDiS6CclDC543OnL9M1yzceWUFogN7VkJEKX3Zkl-MaupvRHN0fvvL_7RxQO4N_44iL8MR8cv4UGz3UxE469gq7pa6n3ESVXyujaOv_D4DGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+isotope+effects+for+alkaline+phosphatase+reactions%3A+implications+for+the+role+of+active-site+metal+ions+in+catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zalatan%2C+Jesse+G&rft.au=Catrina%2C+Irina&rft.au=Mitchell%2C+Rebecca&rft.au=Grzyska%2C+Piotr+K&rft.date=2007-08-08&rft.issn=0002-7863&rft.volume=129&rft.issue=31&rft.spage=9789&rft_id=info:doi/10.1021%2Fja072196%2B&rft_id=info%3Apmid%2F17630738&rft.externalDocID=17630738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |