Kinetic Isotope Effects for Alkaline Phosphatase Reactions:  Implications for the Role of Active-Site Metal Ions in Catalysis

Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester h...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 129; no. 31; pp. 9789 - 9798
Main Authors Zalatan, Jesse G, Catrina, Irina, Mitchell, Rebecca, Grzyska, Piotr K, O'Brien, Patrick J, Herschlag, Daniel, Hengge, Alvan C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.08.2007
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
DOI10.1021/ja072196+

Cover

Loading…
Abstract Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.
AbstractList Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active site Zn 2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn 2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.
Author Grzyska, Piotr K
Mitchell, Rebecca
Herschlag, Daniel
Catrina, Irina
Zalatan, Jesse G
O'Brien, Patrick J
Hengge, Alvan C
Author_xml – sequence: 1
  givenname: Jesse G
  surname: Zalatan
  fullname: Zalatan, Jesse G
– sequence: 2
  givenname: Irina
  surname: Catrina
  fullname: Catrina, Irina
– sequence: 3
  givenname: Rebecca
  surname: Mitchell
  fullname: Mitchell, Rebecca
– sequence: 4
  givenname: Piotr K
  surname: Grzyska
  fullname: Grzyska, Piotr K
– sequence: 5
  givenname: Patrick J
  surname: O'Brien
  fullname: O'Brien, Patrick J
– sequence: 6
  givenname: Daniel
  surname: Herschlag
  fullname: Herschlag, Daniel
– sequence: 7
  givenname: Alvan C
  surname: Hengge
  fullname: Hengge, Alvan C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17630738$$D View this record in MEDLINE/PubMed
BookMark eNpl0c1uEzEQB3ALFdG0cOAFkA-oQkIL_ti1dzkgRVELUQtUJHC1HO-YOHXW27VT0RNceU2epG7TFhAny56f_yPN7KGdLnSA0FNKXlHC6OuVJpLRRrx8gEa0YqSoKBM7aEQIYYWsBd9FezGu8rVkNX2EdqkUnEhej9CPY9dBcgZPY0ihB3xoLZgUsQ0DHvsz7XMdny5D7Jc66Qj4M2iTXOjim98_f-HpuvfO6JuHmz9pmUnwgIPF4wwvoJi5BPgDJO3x9Jq5Dk9ylr-MLj5GD632EZ7cnvvoy9HhfPK-OPn0bjoZnxSaizIVjNa8LqtKktY0TJZtyReMVg1rrCirFuSCG0uAsFpSu9DAodZEsKopLWmFZXwfvd3m9pvFGloDXRq0V_3g1nq4VEE79W-lc0v1LVwoTiWltcwBB7cBQzjfQExq7aIB73UHYROVqGl2ZZPhs7873be4m3kGL7bADCHGAewfQtT1PtXdPjMtttTFBN_vnR7OlJBcVmp-OlPlZCaPPs6_qnn2z7dem6hWYTN0eab_x14BISeuRQ
Cites_doi 10.1021/ja00506a027
10.1021/j150517a003
10.1021/bi00085a003
10.1021/bi00436a008
10.1016/j.saa.2006.03.015
10.1021/bi00038a021
10.1126/science.1082710
10.1074/jbc.274.13.8351
10.1021/ja00803a027
10.1021/ja01614a018
10.1021/ja01614a047
10.1021/ja071527f
10.1021/ar50049a002
10.1021/ja00338a026
10.1126/science.180.4082.149
10.1021/cr050287o
10.1021/bi972646i
10.1107/S0567739476001551
10.1007/s00775-004-0593-5
10.1063/1.1700749
10.1038/nsb0897-618
10.1021/bi000899x
10.1016/0003-2697(79)90115-5
10.1021/ja00978a044
10.1146/annurev.biochem.72.121801.161617
10.1021/ja0480421
10.1021/ja036571j
10.1016/S0021-9258(19)36851-6
10.1146/annurev.bb.21.060192.002301
10.1021/ja051603j
10.1021/ja069111+
10.1016/j.chembiol.2007.01.011
10.1016/S0167-4838(01)00191-1
10.1146/annurev.bi.49.070180.004305
10.1021/ja9839769
10.1063/1.438679
10.1139/v92-367
10.1021/ja0340026
10.1021/ja056528r
10.1021/bi049188f
10.1006/jmbi.1997.1586
10.1073/pnas.93.16.8160
10.1021/ja00187a084
10.1021/bi00422a008
10.1021/ar000143q
10.1021/ja003400v
10.1021/bi00200a018
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/ja072196+
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9798
ExternalDocumentID PMC3171187
17630738
10_1021_ja072196
ark_67375_TPS_4CS7FNTV_T
d152853859
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM47297
– fundername: NIGMS NIH HHS
  grantid: GM64798
– fundername: NIGMS NIH HHS
  grantid: R29 GM047297
– fundername: NIGMS NIH HHS
  grantid: R01 GM064798
– fundername: NIGMS NIH HHS
  grantid: R01 GM047297
GroupedDBID -
.K2
02
186
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
AFMIJ
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
OHT
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZE2
ZHY
---
-DZ
-ET
-~X
.DC
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
ADOJD
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
AHDLI
ANPPW
CITATION
YR5
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a364t-2183845570dc9274d43b215929f645de7b3cf0e02871fbae3e8a062594f0d6f23
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Thu Aug 21 18:28:15 EDT 2025
Thu Aug 07 15:18:55 EDT 2025
Mon Jul 21 05:51:52 EDT 2025
Tue Jul 01 02:59:07 EDT 2025
Wed Oct 30 09:48:19 EDT 2024
Thu Aug 27 13:42:06 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a364t-2183845570dc9274d43b215929f645de7b3cf0e02871fbae3e8a062594f0d6f23
Notes ark:/67375/TPS-4CS7FNTV-T
istex:309CFB412EF044090C161BBDD71A0A6A0BA6F943
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Department of Chemistry and Biochemistry, Utah State University
Department of Biochemistry, Stanford University
Present Address: Department of Biological Sciences, Hunter College
Present Address: Department of Biological Chemistry, University of Michigan
Present Address: Department of Microbiology and Molecular Genetics, Michigan State University
Department of Chemistry, Stanford University
PMID 17630738
PQID 68111849
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171187
proquest_miscellaneous_68111849
pubmed_primary_17630738
crossref_primary_10_1021_ja072196
istex_primary_ark_67375_TPS_4CS7FNTV_T
acs_journals_10_1021_ja072196
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-08-08
PublicationDateYYYYMMDD 2007-08-08
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-08
  day: 08
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2007
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Koleva V. G. (ja0721961b00062/ja0721961b00062_1) 2007; 66
O'Brien P. J. (ja0721961b00022/ja0721961b00022_1) 2001; 40
O'Leary M. H. (ja0721961b00051/ja0721961b00051_1) 1979; 101
Parente J. E. (ja0721961b00042/ja0721961b00042_1) 1984; 106
Gorenstein D. G. (ja0721961b00054/ja0721961b00054_1) 1977; 99
Lienhard G. E. (ja0721961b00005/ja0721961b00005_1) 1973; 180
Weiss P. M. (ja0721961b00048/ja0721961b00048_1) 1989; 111
Kumamoto J. (ja0721961b00039/ja0721961b00039_1) 1955; 77
Stangret J. (ja0721961b00060/ja0721961b00060_1) 1992; 70
Bunton C. A. (ja0721961b00041/ja0721961b00041_1) 1967; 32
Butcher W. W. (ja0721961b00038/ja0721961b00038_1) 1955; 77
Martin B. L. (ja0721961b00066/ja0721961b00066_1) 1999; 38
Jones J. P. (ja0721961b00063/ja0721961b00063_1) 1991; 30
Anderson M. A. (ja0721961b00036/ja0721961b00036_1) 2001; 123
Nikolic-Hughes I. (ja0721961b00013/ja0721961b00013_1) 2004; 126
Zalatan J. G. (ja0721961b00044/ja0721961b00044_1) 2006; 128
O'Brien P. J. (ja0721961b00010/ja0721961b00010_1) 1999; 121
Lad C. (ja0721961b00001/ja0721961b00001_1) 2003; 100
Gerratana B. (ja0721961b00037/ja0721961b00037_1) 2000; 122
Hengge A. C. (ja0721961b00016/ja0721961b00016_1) 2002; 35
Hengge A. C. (ja0721961b00065/ja0721961b00065_1) 1997; 36
Hollfelder F. (ja0721961b00011/ja0721961b00011_1) 1995; 34
Nikolic-Hughes I. (ja0721961b00043/ja0721961b00043_1) 2005; 127
Frey P. A. (ja0721961b00083/ja0721961b00083_1) 1985; 228
Hondal R. J. (ja0721961b00075/ja0721961b00075_1) 1998; 37
Chaidaroglou A. (ja0721961b00018/ja0721961b00018_1) 1988; 27
Kim E. E. (ja0721961b00007/ja0721961b00007_1) 1991; 218
Feder H. M. (ja0721961b00056/ja0721961b00056_1) 1952; 20
Sawyer C. B. (ja0721961b00050/ja0721961b00050_1) 1973; 95
Hengge A. C. (ja0721961b00030/ja0721961b00030_1) 2005; 40
Simopoulos T. T. (ja0721961b00046/ja0721961b00046_1) 1994; 33
Caldwell S. R. (ja0721961b00026/ja0721961b00026_1) 1991; 30
Thatcher G. R. J. (ja0721961b00029/ja0721961b00029_1) 1989; 25
Hengge A. C. (ja0721961b00019/ja0721961b00019_1) 1994; 116
Catrina I. E. (ja0721961b00020/ja0721961b00020_1) 2003; 125
Nelson B. N. (ja0721961b00059/ja0721961b00059_1) 1979; 71
Jencks W. P. (ja0721961b00034/ja0721961b00034_1) 1976
Taube H. (ja0721961b00057/ja0721961b00057_1) 1954; 58
Pauling L. (ja0721961b00003/ja0721961b00003_1) 1946; 24
Grzyska P. K. (ja0721961b00021/ja0721961b00021_1) 2003; 125
Brautigam C. A. (ja0721961b00070/ja0721961b00070_1) 1998; 277
Murphy J. E. (ja0721961b00080/ja0721961b00080_1) 1997; 4
Polanyi M. Z. (ja0721961b00002/ja0721961b00002_1) 1921; 27
Cleland W. W. (ja0721961b00031/ja0721961b00031_1) 2006; 106
Holtz K. M. (ja0721961b00008/ja0721961b00008_1) 1999; 274
Labow B. I. (ja0721961b00045/ja0721961b00045_1) 1993; 32
Thompson J. E. (ja0721961b00073/ja0721961b00073_1) 1994; 116
ja0721961b00014/ja0721961b00014_1
Ostanin K. (ja0721961b00076/ja0721961b00076_1) 1993; 268
de la Fuente M. (ja0721961b00061/ja0721961b00061_1) 2004; 9
Kirby A. J. (ja0721961b00028/ja0721961b00028_1) 1967; 89
Bigeleisen J. (ja0721961b00025/ja0721961b00025_1) 1958; 1
Bahnson B. J. (ja0721961b00053/ja0721961b00053_1) 1989; 28
Blanchard J. S. (ja0721961b00052/ja0721961b00052_1) 1980; 19
O'Brien P. J. (ja0721961b00012/ja0721961b00012_1) 2002; 41
Lahiri S. D. (ja0721961b00015/ja0721961b00015_1) 2003; 299
Kirby A. J. (ja0721961b00027/ja0721961b00027_1) 1965; 87
Lanzetta P. A. (ja0721961b00024/ja0721961b00024_1) 1979; 100
Catrina I. (ja0721961b00047/ja0721961b00047_1) 2007; 129
Coleman J. E. (ja0721961b00009/ja0721961b00009_1) 1992; 21
Whiteson K. L. (ja0721961b00077/ja0721961b00077_1) 2007; 14
Kraut D. A. (ja0721961b00017/ja0721961b00017_1) 2003; 72
Richard J. P. (ja0721961b00072/ja0721961b00072_1) 1996; 35
Holtz K. M. (ja0721961b00032/ja0721961b00032_1) 2000; 39
Hoff R. H. (ja0721961b00064/ja0721961b00064_1) 1999; 121
Hondal R. J. (ja0721961b00074/ja0721961b00074_1) 1997; 119
Shannon R. D. (ja0721961b00069/ja0721961b00069_1) 1976; 32
Maegley K. A. (ja0721961b00079/ja0721961b00079_1) 1996; 93
Knowles J. R. (ja0721961b00078/ja0721961b00078_1) 1980; 49
Grzyska P. K. (ja0721961b00081/ja0721961b00081_1) 2007; 129
Gill S. C. (ja0721961b00023/ja0721961b00023_1) 1989; 182
Bunton C. A. (ja0721961b00040/ja0721961b00040_1) 1958; 3574
Cassano A. G. (ja0721961b00058/ja0721961b00058_1) 2004; 43
Hengge A. C. (ja0721961b00049/ja0721961b00049_1) 1994; 116
Wolfenden R. (ja0721961b00004/ja0721961b00004_1) 1972; 5
Jencks W. P. (ja0721961b00006/ja0721961b00006_1) 1987
Sowa G. A. (ja0721961b00035/ja0721961b00035_1) 1997; 119
Czyryca P. G. (ja0721961b00082/ja0721961b00082_1) 2001; 1547
Hengge A. C. (ja0721961b00067/ja0721961b00067_1) 1998
References_xml – volume: 24
  start-page: 1377
  year: 1946
  ident: ja0721961b00003/ja0721961b00003_1
  publication-title: Chem. Eng. News
– volume: 101
  start-page: 3306
  year: 1979
  ident: ja0721961b00051/ja0721961b00051_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00506a027
– volume: 58
  start-page: 528
  year: 1954
  ident: ja0721961b00057/ja0721961b00057_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150517a003
– volume: 36
  start-page: 10191
  year: 1997
  ident: ja0721961b00065/ja0721961b00065_1
  publication-title: Biochemistry
– volume: 32
  start-page: 8741
  year: 1993
  ident: ja0721961b00045/ja0721961b00045_1
  publication-title: Biochemistry
  doi: 10.1021/bi00085a003
– volume: 28
  start-page: 4181
  year: 1989
  ident: ja0721961b00053/ja0721961b00053_1
  publication-title: Biochemistry
  doi: 10.1021/bi00436a008
– volume: 66
  start-page: 418
  year: 2007
  ident: ja0721961b00062/ja0721961b00062_1
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2006.03.015
– volume: 34
  start-page: 12264
  year: 1995
  ident: ja0721961b00011/ja0721961b00011_1
  publication-title: Biochemistry
  doi: 10.1021/bi00038a021
– volume: 299
  start-page: 2071
  year: 2003
  ident: ja0721961b00015/ja0721961b00015_1
  publication-title: Science
  doi: 10.1126/science.1082710
– volume: 19
  start-page: 4513
  year: 1980
  ident: ja0721961b00052/ja0721961b00052_1
  publication-title: Biochemistry
– volume: 38
  start-page: 3392
  year: 1999
  ident: ja0721961b00066/ja0721961b00066_1
  publication-title: Biochemistry
– volume-title: Catalysis in Chemistry and Enzymology
  year: 1987
  ident: ja0721961b00006/ja0721961b00006_1
– volume: 274
  start-page: 8354
  year: 1999
  ident: ja0721961b00008/ja0721961b00008_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.13.8351
– volume: 95
  start-page: 7381
  year: 1973
  ident: ja0721961b00050/ja0721961b00050_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00803a027
– volume: 77
  start-page: 2424
  year: 1955
  ident: ja0721961b00038/ja0721961b00038_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01614a018
– volume: 77
  start-page: 2518
  year: 1955
  ident: ja0721961b00039/ja0721961b00039_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01614a047
– volume: 1
  start-page: 76
  year: 1958
  ident: ja0721961b00025/ja0721961b00025_1
  publication-title: Adv. Chem. Phys.
– volume: 129
  start-page: 5298
  year: 2007
  ident: ja0721961b00081/ja0721961b00081_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071527f
– volume: 5
  start-page: 18
  year: 1972
  ident: ja0721961b00004/ja0721961b00004_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50049a002
– volume: 106
  start-page: 8161
  year: 1984
  ident: ja0721961b00042/ja0721961b00042_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00338a026
– volume: 41
  start-page: 3225
  year: 2002
  ident: ja0721961b00012/ja0721961b00012_1
  publication-title: Biochemistry
– volume: 180
  start-page: 154
  year: 1973
  ident: ja0721961b00005/ja0721961b00005_1
  publication-title: Science
  doi: 10.1126/science.180.4082.149
– volume: 106
  start-page: 3278
  year: 2006
  ident: ja0721961b00031/ja0721961b00031_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050287o
– volume: 37
  start-page: 4580
  year: 1998
  ident: ja0721961b00075/ja0721961b00075_1
  publication-title: Biochemistry
  doi: 10.1021/bi972646i
– volume: 35
  start-page: 12386
  year: 1996
  ident: ja0721961b00072/ja0721961b00072_1
  publication-title: Biochemistry
– volume: 218
  start-page: 464
  year: 1991
  ident: ja0721961b00007/ja0721961b00007_1
  publication-title: J. Mol. Biol.
– volume: 119
  start-page: 5478
  year: 1997
  ident: ja0721961b00074/ja0721961b00074_1
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 5610
  year: 2003
  ident: ja0721961b00001/ja0721961b00001_1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 542
  volume-title: Comprehensive Biological Catalysis
  year: 1998
  ident: ja0721961b00067/ja0721961b00067_1
– volume: 116
  start-page: 5468
  year: 1994
  ident: ja0721961b00073/ja0721961b00073_1
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 767
  year: 1976
  ident: ja0721961b00069/ja0721961b00069_1
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0567739476001551
– volume: 9
  start-page: 986
  year: 2004
  ident: ja0721961b00061/ja0721961b00061_1
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-004-0593-5
– volume-title: Handbook of Biochemistry and Molecular Biology
  year: 1976
  ident: ja0721961b00034/ja0721961b00034_1
– volume: 20
  start-page: 1336
  year: 1952
  ident: ja0721961b00056/ja0721961b00056_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700749
– volume: 4
  start-page: 622
  year: 1997
  ident: ja0721961b00080/ja0721961b00080_1
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0897-618
– volume: 30
  start-page: 3639
  year: 1991
  ident: ja0721961b00063/ja0721961b00063_1
  publication-title: Biochemistry
– volume: 39
  start-page: 9458
  year: 2000
  ident: ja0721961b00032/ja0721961b00032_1
  publication-title: Biochemistry
  doi: 10.1021/bi000899x
– volume: 100
  start-page: 97
  year: 1979
  ident: ja0721961b00024/ja0721961b00024_1
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(79)90115-5
– volume: 89
  start-page: 423
  year: 1967
  ident: ja0721961b00028/ja0721961b00028_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00978a044
– volume: 119
  start-page: 2320
  year: 1997
  ident: ja0721961b00035/ja0721961b00035_1
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 571
  year: 2003
  ident: ja0721961b00017/ja0721961b00017_1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.72.121801.161617
– volume: 126
  start-page: 11819
  year: 2004
  ident: ja0721961b00013/ja0721961b00013_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0480421
– volume: 125
  start-page: 13111
  year: 2003
  ident: ja0721961b00021/ja0721961b00021_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036571j
– volume: 268
  start-page: 20784
  year: 1993
  ident: ja0721961b00076/ja0721961b00076_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36851-6
– volume: 21
  start-page: 483
  year: 1992
  ident: ja0721961b00009/ja0721961b00009_1
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.bb.21.060192.002301
– volume: 127
  start-page: 9315
  year: 2005
  ident: ja0721961b00043/ja0721961b00043_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051603j
– volume: 129
  start-page: 5765
  year: 2007
  ident: ja0721961b00047/ja0721961b00047_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja069111+
– volume: 14
  start-page: 129
  year: 2007
  ident: ja0721961b00077/ja0721961b00077_1
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2007.01.011
– volume: 40
  start-page: 108
  year: 2005
  ident: ja0721961b00030/ja0721961b00030_1
  publication-title: Adv. Phys. Org. Chem.
– volume: 27
  start-page: 142
  year: 1921
  ident: ja0721961b00002/ja0721961b00002_1
  publication-title: Elektrochem. Z.
– volume: 182
  start-page: 326
  year: 1989
  ident: ja0721961b00023/ja0721961b00023_1
  publication-title: Anal. Biochem.
– volume: 30
  start-page: 7450
  year: 1991
  ident: ja0721961b00026/ja0721961b00026_1
  publication-title: Biochemistry
– volume: 1547
  start-page: 253
  year: 2001
  ident: ja0721961b00082/ja0721961b00082_1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(01)00191-1
– volume: 49
  start-page: 919
  year: 1980
  ident: ja0721961b00078/ja0721961b00078_1
  publication-title: Ann. Rev. Biochem.
  doi: 10.1146/annurev.bi.49.070180.004305
– volume: 99
  start-page: 2267
  year: 1977
  ident: ja0721961b00054/ja0721961b00054_1
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 3216
  year: 1965
  ident: ja0721961b00027/ja0721961b00027_1
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 11023
  year: 1999
  ident: ja0721961b00010/ja0721961b00010_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9839769
– volume: 116
  start-page: 11263
  year: 1994
  ident: ja0721961b00049/ja0721961b00049_1
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 5049
  year: 1994
  ident: ja0721961b00019/ja0721961b00019_1
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 2747
  year: 1979
  ident: ja0721961b00059/ja0721961b00059_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438679
– volume: 70
  start-page: 2883
  year: 1992
  ident: ja0721961b00060/ja0721961b00060_1
  publication-title: Can. J. Chem.
  doi: 10.1139/v92-367
– volume: 3574
  start-page: 3587
  year: 1958
  ident: ja0721961b00040/ja0721961b00040_1
  publication-title: J. Chem. Soc.
– volume: 125
  start-page: 7552
  year: 2003
  ident: ja0721961b00020/ja0721961b00020_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0340026
– volume: 40
  start-page: 5699
  year: 2001
  ident: ja0721961b00022/ja0721961b00022_1
  publication-title: Biochemistry
– volume: 128
  start-page: 1303
  year: 2006
  ident: ja0721961b00044/ja0721961b00044_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056528r
– volume: 43
  start-page: 10559
  year: 2004
  ident: ja0721961b00058/ja0721961b00058_1
  publication-title: Biochemistry
  doi: 10.1021/bi049188f
– volume: 277
  start-page: 377
  year: 1998
  ident: ja0721961b00070/ja0721961b00070_1
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1586
– volume: 93
  start-page: 8166
  year: 1996
  ident: ja0721961b00079/ja0721961b00079_1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.16.8160
– volume: 123
  start-page: 9253
  year: 2001
  ident: ja0721961b00036/ja0721961b00036_1
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 1929
  year: 1989
  ident: ja0721961b00048/ja0721961b00048_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00187a084
– volume: 27
  start-page: 8343
  year: 1988
  ident: ja0721961b00018/ja0721961b00018_1
  publication-title: Biochemistry
  doi: 10.1021/bi00422a008
– volume: 32
  start-page: 2811
  year: 1967
  ident: ja0721961b00041/ja0721961b00041_1
  publication-title: J. Org. Chem.
– volume: 121
  start-page: 6390
  year: 1999
  ident: ja0721961b00064/ja0721961b00064_1
  publication-title: J. Am. Chem. Soc.
– ident: ja0721961b00014/ja0721961b00014_1
– volume: 228
  start-page: 545
  year: 1985
  ident: ja0721961b00083/ja0721961b00083_1
  publication-title: Science
– volume: 35
  start-page: 112
  year: 2002
  ident: ja0721961b00016/ja0721961b00016_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar000143q
– volume: 122
  start-page: 12621
  year: 2000
  ident: ja0721961b00037/ja0721961b00037_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003400v
– volume: 33
  start-page: 10380
  year: 1994
  ident: ja0721961b00046/ja0721961b00046_1
  publication-title: Biochemistry
  doi: 10.1021/bi00200a018
– volume: 25
  start-page: 265
  year: 1989
  ident: ja0721961b00029/ja0721961b00029_1
  publication-title: Adv. Phys. Org. Chem.
SSID ssj0004281
Score 2.1590269
Snippet Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution...
SourceID pubmedcentral
proquest
pubmed
crossref
istex
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9789
SubjectTerms Alkaline Phosphatase - chemistry
Alkaline Phosphatase - genetics
Alkaline Phosphatase - metabolism
Arginine - genetics
Arginine - metabolism
Binding Sites
Catalysis
Esters - chemistry
Hydrolysis
Ions - chemistry
Isotopes - chemistry
Kinetics
Metals - chemistry
Metals - metabolism
Models, Molecular
Mutation - genetics
Phosphates - chemistry
Phosphates - metabolism
Protein Structure, Tertiary
Title Kinetic Isotope Effects for Alkaline Phosphatase Reactions:  Implications for the Role of Active-Site Metal Ions in Catalysis
URI http://dx.doi.org/10.1021/ja072196
https://api.istex.fr/ark:/67375/TPS-4CS7FNTV-T/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17630738
https://www.proquest.com/docview/68111849
https://pubmed.ncbi.nlm.nih.gov/PMC3171187
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6N7YG9bPwaZDAwCPEypUoTJ3Z4iyKqFbRpWju0t8hJbLXqlFRLKk28wCv_Jn8Jd0mztTDGs8-y7LvzfWefPwO8F45y-kahp0l0N25kaqu-n9qZ8VylhfLd5kD_-CQ4OuefL_yLDXj3jxt8l_iBiMIrDB7AlhtIQfz4UTy6ffvoyn4HcYUMvI49aKXnIUWerFqLPFu0iNd3wco_qyNXws1gF-Lu0U5bZTLrLeq0l337m8Pxnpk8gp0l2mRRax6PYUMXT-Bh3H3y9hS-f0GUiY1sWJV1OdesZTOuGGJZFl3OFKFQdjopq_lE1Rjx2Jlun0JUH3_9-MmGKwXpTR_Ek-ysvNSsNCxq9lJ7hKiWHWtE-WxIYtOCxXRoRFwoz-B88GkcH9nLPxls5QW8tglRSU68XXkWYkabcy9F1IAgywTcz7VIvcw42qFEzKRKe1oqh3Isbpw8MK63B5tFWegXwEQoee6EOuQZ0RD6ytPYSwqRiT7PTWbBAWotWfpUlTTX5S6mK8tltOBtp89k3lJz3CHzoVH0jYC6mlEpm_CT8eko4fFIDE7GX5OxBW86S0hQBXRrogpdLqokkBgOJA8teN7axe1guDfjDiktEGsWcyNA1N3rLcV00lB4I2qjf973_zPFl7DdniUTi_gr2KyvFvoAQVCdvm684DfirgEw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF61cKCXQt-mULZS1Utl5Nhr75pbZDVKCokQMRU3a23vKijIjrAjVb201_7N_hJm1jZJEFJ73ll7HzM73-zjG0I-cUc6PS3B0gSYG9MitWXPT-1Me65UXPqu2dAfT4LhJft25V-1NDn4FgYaUcGXKnOIv2IXQJogZPIKgy9PyTaAEBd58vvRdPUG0hW9DupyEXgdi9B6VfRAWbXhgbZxMH88Bi8f3pJcczuD3SZ_kWmwuW0yP17W6XH28wGX4__1aI88b9En7Tfq8oI8UcVLshN1Sd9ekV-ngDqhkI6qsi4XijbsxhUFbEv7N3OJqJSez8pqMZM1eEB6oZqnEdXJ399_6GjtgrqpA_iSXpQ3ipaa9s3aak8B5dKxAtRPRyh2XdAIN5GQG-U1uRx8jaOh3eZosKUXsNpGhCUY8njlWQgRbs68FFAEgC4dMD9XPPUy7SgHAzOdSuUpIR2MuZh28kC73huyVZSFekcoDwXLnVCFLENaQl96CmoJzjPeY7nOLHIIw5i0NlYl5vjchfClHUeLfOzmNVk0VB2PyHw2E34vIG_neLWN-0l8Pk1YNOWDSfw9iS1y1GlEAlOApyiyUOWySgIB7kGw0CJvG_1Y_QzWalgxhUX4hubcCyCV92ZJcT0zlN6A4jDv-_4_unhEdobx-Cw5G01O35NnzT4zMowfkK36dqkOASDV6QdjGXdWzAnp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJgEv43MswJiREC8oU5o4scNbFahWxkq1dmhvkZPY6tQpqZZUQrzAK_8mfwl3-ejaaRI8-5z44873O5_9M8Bb4SinZxRamkRz40Ymtur5iZ0az1VaKN-tN_RPRsHRGf987p-3gSLdhcFGlPilsk7ik1UvMtMyDBBVELF5hcH7u7BN6Triyu9Hk-t7kK7sdXBXyMDrmITWq5IXSssNL7RNA_r9Noh586TkmusZPISvq0bXJ07mh8sqOUx_3OBz_P9ePYKdFoWyfqM2j-GOzp_A_ah7_O0p_DxG9ImFbFgWVbHQrGE5LhliXNa_nCtCp2w8K8rFTFXoCdmpbq5IlB_-_PrNhmsH1es6iDPZaXGpWWFYv15j7QmiXXaiEf2zIYld5CyizSTiSHkGZ4NP0-jIbt9qsJUX8MompCU58XllaYiRbsa9BNEEgi8TcD_TIvFS42iHAjSTKO1pqRyKvbhxssC43i5s5UWu94CJUPLMCXXIU6In9JWnsZYUIhU9npnUgn0cyri1tTKu0-guhjHtOFrwppvbeNFQdtwi866e9JWAuprTETfhx9PxJObRRAxG02_x1IKDTitinALKpqhcF8syDiS6CclDC543OnL9M1yzceWUFogN7VkJEKX3Zkl-MaupvRHN0fvvL_7RxQO4N_44iL8MR8cv4UGz3UxE469gq7pa6n3ESVXyujaOv_D4DGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+isotope+effects+for+alkaline+phosphatase+reactions%3A+implications+for+the+role+of+active-site+metal+ions+in+catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zalatan%2C+Jesse+G&rft.au=Catrina%2C+Irina&rft.au=Mitchell%2C+Rebecca&rft.au=Grzyska%2C+Piotr+K&rft.date=2007-08-08&rft.issn=0002-7863&rft.volume=129&rft.issue=31&rft.spage=9789&rft_id=info:doi/10.1021%2Fja072196%2B&rft_id=info%3Apmid%2F17630738&rft.externalDocID=17630738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon