Facile Construction of Novel 3‑Dimensional Graphene/Amorphous Porous Carbon Hybrids with Enhanced Lithium Storage Properties
Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step gro...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 40; pp. 35191 - 35199 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm–3) and high conductivity (45 S cm–1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g–1. |
---|---|
AbstractList | Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm–³) and high conductivity (45 S cm–¹), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO₃, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g–¹. Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core-shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm-3) and high conductivity (45 S cm-1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g-1.Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core-shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm-3) and high conductivity (45 S cm-1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g-1. Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm–3) and high conductivity (45 S cm–1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g–1. Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core-shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm ) and high conductivity (45 S cm ), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO , superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g . |
Author | Wen, Wen Jiang, Sheng Liu, Huaqiu Zhang, Xiaonan Yang, Shumin Tai, Lixuan Yi, Lin Li, Xiaolong Zhu, Daming |
AuthorAffiliation | Key Laboratory of Interfacial Physics and Technology Tsinghua University Shanghai Synchrotron Radiation Facility Department of Electronic Engineering School of Physics Huazhong University of Science and Technology University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Department of Electronic Engineering – name: Shanghai Synchrotron Radiation Facility – name: School of Physics – name: Huazhong University of Science and Technology – name: Tsinghua University – name: University of Chinese Academy of Sciences – name: Key Laboratory of Interfacial Physics and Technology |
Author_xml | – sequence: 1 givenname: Daming surname: Zhu fullname: Zhu, Daming organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Huaqiu surname: Liu fullname: Liu, Huaqiu organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Lixuan surname: Tai fullname: Tai, Lixuan organization: Tsinghua University – sequence: 4 givenname: Xiaonan orcidid: 0000-0003-4388-1250 surname: Zhang fullname: Zhang, Xiaonan organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Sheng surname: Jiang fullname: Jiang, Sheng organization: Shanghai Synchrotron Radiation Facility – sequence: 6 givenname: Shumin surname: Yang fullname: Yang, Shumin organization: Shanghai Synchrotron Radiation Facility – sequence: 7 givenname: Lin surname: Yi fullname: Yi, Lin organization: Huazhong University of Science and Technology – sequence: 8 givenname: Wen orcidid: 0000-0002-5139-9889 surname: Wen fullname: Wen, Wen email: wenwen@sinap.ac.cn organization: Key Laboratory of Interfacial Physics and Technology – sequence: 9 givenname: Xiaolong orcidid: 0000-0002-1674-9345 surname: Li fullname: Li, Xiaolong email: lixiaolong@sinap.ac.cn organization: Key Laboratory of Interfacial Physics and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28926220$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctq3DAUhkVJaC7ttsuiZQjMRJJtjbwM01wKQxNouzbH8lFHwZYcSW7IpvQV8op5kmqYaRaF0NW58P2Hw_8fkT3nHRLygbM5Z4KfgY4w2PmiZaoQ7A055HVZzpSoxN5LX5YH5CjGO8ZkZqq35ECoWkgh2CH5dQna9kiX3sUUJp2sd9Qb-sX_xJ4Wz7-fPtkBXcxr6OlVgHGNDs_OBx_GtZ8ivfVhU5YQ2qy8fmyD7SJ9sGlNL9wanMaOrvJkp4F-TT7AD6S3wY8YksX4juwb6CO-39Vj8v3y4tvyera6ufq8PF_NoJBFmhnRgYS6kqqVFTOdVMAKKAyr9cKgroziSnK2QCMrrksBGlqUWtUAZa0rWRyTk-3dMfj7CWNqBhs19j04zO83gjFWLfJt9l80m8pZne1WGf24Q6d2wK4Zgx0gPDZ_7c3AfAvo4GMMaF4QzppNfs02v2aXXxaU_wi0TbAJJQWw_euy060s75s7P4UcVnwN_gN9zrCb |
CitedBy_id | crossref_primary_10_1007_s12274_021_3506_9 crossref_primary_10_1016_j_cap_2020_11_004 crossref_primary_10_1016_j_carbon_2018_01_054 crossref_primary_10_1002_adma_202210734 crossref_primary_10_1016_j_diamond_2022_109193 crossref_primary_10_1021_acsnano_7b08714 crossref_primary_10_1016_j_jallcom_2021_161401 crossref_primary_10_1021_acsomega_8b02418 crossref_primary_10_1021_acsami_8b14643 crossref_primary_10_1016_j_cej_2018_06_057 crossref_primary_10_1021_acs_iecr_8b05857 |
Cites_doi | 10.1021/ja105296a 10.1107/S0021889801002242 10.1021/nn901587x 10.1002/adma.200800757 10.1021/nn202996r 10.1021/jp4105689 10.1039/C5NR05151G 10.1006/jssc.1996.0319 10.1016/j.nanoen.2012.10.001 10.1038/nmat1849 10.1002/anie.200903463 10.1126/science.1182383 10.1021/nl202036y 10.1039/c3ta12655b 10.1107/S1600576716008566 10.1021/nl800957b 10.1038/nmat3001 10.1002/adma.200501576 10.1021/nn501284q 10.1016/0008-6223(86)90239-3 10.1002/adma.200903645 10.1038/nature07719 10.13538/j.1001-8042/nst.26.020101 10.1021/la9048743 10.1149/1.1838816 10.1016/j.carbon.2015.07.047 10.1002/smll.201100990 10.1038/nature04969 10.1103/PhysRevB.61.14095 10.1002/adfm.201300464 10.1103/PhysRevLett.97.187401 10.1186/1556-276X-7-33 10.1007/BF02881419 10.1039/C5TA08109B 10.1002/ange.200704909 10.1063/1.1702064 10.1021/ja0530568 10.1126/science.1102896 10.1016/S0378-7753(00)00431-6 10.1063/1.2982585 10.1039/C4RA11378K 10.1021/cm504618r 10.1007/s12274-012-0221-6 10.1016/S0167-2738(99)00037-5 10.1039/C4RA00877D 10.1021/jp3065745 10.1126/science.1157996 10.1038/nnano.2008.96 10.1016/0039-6028(79)90330-3 10.1107/S0021889805030232 10.1002/adma.201001068 10.1016/S0025-5408(00)00453-0 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.7b08320 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 35199 |
ExternalDocumentID | 28926220 10_1021_acsami_7b08320 c164902311 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ EJD F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-f2da6a9568b650fd68a03a3f09c7fec5f8186107ef651c42acabe6c89aa49c563 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Thu Jul 10 23:25:46 EDT 2025 Fri Jul 11 12:21:38 EDT 2025 Thu Jan 02 23:10:07 EST 2025 Tue Jul 01 02:29:22 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Mon Feb 06 12:15:01 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | lithium ion batteries core−shell amorphous porous carbon graphene NaBiO3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-f2da6a9568b650fd68a03a3f09c7fec5f8186107ef651c42acabe6c89aa49c563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1674-9345 0000-0003-4388-1250 0000-0002-5139-9889 |
PMID | 28926220 |
PQID | 1941090838 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000576500 proquest_miscellaneous_1941090838 pubmed_primary_28926220 crossref_primary_10_1021_acsami_7b08320 crossref_citationtrail_10_1021_acsami_7b08320 acs_journals_10_1021_acsami_7b08320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171011 2017-10-11 2017-Oct-11 |
PublicationDateYYYYMMDD | 2017-10-11 |
PublicationDate_xml | – month: 10 year: 2017 text: 20171011 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1021/ja105296a – ident: ref48/cit48 doi: 10.1107/S0021889801002242 – ident: ref8/cit8 doi: 10.1021/nn901587x – ident: ref14/cit14 doi: 10.1002/adma.200800757 – ident: ref35/cit35 doi: 10.1021/nn202996r – ident: ref42/cit42 doi: 10.1021/jp4105689 – ident: ref20/cit20 doi: 10.1039/C5NR05151G – ident: ref44/cit44 doi: 10.1006/jssc.1996.0319 – ident: ref29/cit29 doi: 10.1016/j.nanoen.2012.10.001 – ident: ref1/cit1 doi: 10.1038/nmat1849 – ident: ref7/cit7 doi: 10.1002/anie.200903463 – ident: ref5/cit5 doi: 10.1126/science.1182383 – ident: ref26/cit26 doi: 10.1021/nl202036y – ident: ref41/cit41 doi: 10.1039/c3ta12655b – ident: ref50/cit50 doi: 10.1107/S1600576716008566 – ident: ref39/cit39 doi: 10.1021/nl800957b – ident: ref27/cit27 doi: 10.1038/nmat3001 – ident: ref16/cit16 doi: 10.1002/adma.200501576 – ident: ref19/cit19 doi: 10.1021/nn501284q – ident: ref34/cit34 doi: 10.1016/0008-6223(86)90239-3 – ident: ref6/cit6 doi: 10.1002/adma.200903645 – ident: ref4/cit4 doi: 10.1038/nature07719 – ident: ref49/cit49 doi: 10.13538/j.1001-8042/nst.26.020101 – ident: ref15/cit15 doi: 10.1021/la9048743 – ident: ref52/cit52 doi: 10.1149/1.1838816 – ident: ref25/cit25 doi: 10.1016/j.carbon.2015.07.047 – ident: ref28/cit28 doi: 10.1002/smll.201100990 – ident: ref11/cit11 doi: 10.1038/nature04969 – ident: ref33/cit33 doi: 10.1103/PhysRevB.61.14095 – ident: ref17/cit17 doi: 10.1002/adfm.201300464 – ident: ref32/cit32 doi: 10.1103/PhysRevLett.97.187401 – ident: ref18/cit18 doi: 10.1186/1556-276X-7-33 – ident: ref36/cit36 doi: 10.1007/BF02881419 – ident: ref22/cit22 doi: 10.1039/C5TA08109B – ident: ref9/cit9 doi: 10.1002/ange.200704909 – ident: ref30/cit30 doi: 10.1063/1.1702064 – ident: ref51/cit51 doi: 10.1021/ja0530568 – ident: ref2/cit2 doi: 10.1126/science.1102896 – ident: ref38/cit38 doi: 10.1016/S0378-7753(00)00431-6 – ident: ref23/cit23 doi: 10.1063/1.2982585 – ident: ref31/cit31 doi: 10.1039/C4RA11378K – ident: ref21/cit21 doi: 10.1021/cm504618r – ident: ref24/cit24 doi: 10.1007/s12274-012-0221-6 – ident: ref46/cit46 doi: 10.1016/S0167-2738(99)00037-5 – ident: ref40/cit40 doi: 10.1039/C4RA00877D – ident: ref43/cit43 doi: 10.1021/jp3065745 – ident: ref3/cit3 doi: 10.1126/science.1157996 – ident: ref12/cit12 doi: 10.1038/nnano.2008.96 – ident: ref37/cit37 doi: 10.1016/0039-6028(79)90330-3 – ident: ref47/cit47 doi: 10.1107/S0021889805030232 – ident: ref13/cit13 doi: 10.1002/adma.201001068 – ident: ref45/cit45 doi: 10.1016/S0025-5408(00)00453-0 |
SSID | ssj0063205 |
Score | 2.2799263 |
Snippet | Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35191 |
SubjectTerms | anodes composite materials electrochemistry foams graphene lithium lithium batteries mechanical properties nickel porous media vapors |
Title | Facile Construction of Novel 3‑Dimensional Graphene/Amorphous Porous Carbon Hybrids with Enhanced Lithium Storage Properties |
URI | http://dx.doi.org/10.1021/acsami.7b08320 https://www.ncbi.nlm.nih.gov/pubmed/28926220 https://www.proquest.com/docview/1941090838 https://www.proquest.com/docview/2000576500 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQvdADUGh5FrkqUk-BxHa83iPasqwQRUiAxC3yUyAgQZtdJDig_oX-xf4SZvKgBbSCUxRl7CSe8Tzs8TeEbCpvU-GDjDrSMwhQnIyMcyLyKpbMd4JNAwaKvw7l4FTsn6Vn_9Y7Xu7gs2Rb2xJL4XQMOAsMgvMPTMIMRieod9zqXAlP0mr_WIhIgcVq4RlftUcjZMvnRmiCZ1lZmP5cDXdUVsCEmFhyuTUemS17_xq28c2PnyezjZtJd2q5-ESmfL5APv4HPrhIHvragkqgWLKzBZGlRaCHxa2_ovzv7z8_Efm_Ru2gewhsDXpxe-e6ANYU45IeFUO89PTQQMvBHZ79Kiku7NLd_LzKLKAHcHcxvqbHENqD5qJHuPY_RBDXz-S0v3vSG0RNNYZIc8lHUWBOS42nCw14dcFJpWOueYi7thOA4wGx8SCYBManiRVMW228tKqrtejaVPIvZDovcr9MqE-UAgGJmedBKOM1d8I5By0SC92YFfIdBi5rZlOZVRvlLMnq0cya0VwhUcvEzDaA5lhX42oi_Y8n-psaymMi5bdWJjKYbbiFonMPQ5qBgGEmq-JqMg0efoIoLo2hn6VaoJ7eB-Etk4zFq-_6wzUyw9CLwASaZJ1MgzD4r-ADjcxGJf6P7zUFUw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcigcoOVZoMUIJE7pJrbj9R5X224X2K5Waiv1FvkpqrYJ2uwiwQHxF_oX-0uYyWPLQyvBKUpiO_Z47JnJeL4h5K3yNhU-yKgrPQMDxcnIOCcir2LJfDfYNKCheDSRo1Px4Sw9WyOdNhYGOlFCS2XlxL9FF0g68Awz4nQN6AwMbPQ7oIkwZOn-4LjdeiW8SSs3shCRAsHVojT-VR9lkS1_l0UrFMxK0AwfkOmyi9X5kou9xdzs2W9_oDf-xxg2yf1G6aT9mku2yJrPH5J7v0ARPiLfh9rCBkExgWcLKUuLQCfFF39J-c2P633MA1BjeNBDhLmGXbLTvypgoopFSafFDC8DPTNQc_QVI8FKir956UH-qTpnQMdwd764osdg6MM-RqfoCZghpOtjcjo8OBmMoiY3Q6S55PMoMKelxlhDAzpecFLpmGse4p7tBpj_gEh5YFoCG6SJFUxbbby0qqe16NlU8idkPS9y_4xQnygF7BIzz4NQxmvuhHMOaiQWmjHb5A0QLmvWVplVbnOWZDU1s4aa2yRq5zKzDbw5Ztm4XFn-3bL85xrYY2XJ1y1rZLD20KGicw8kzYDP8Fyr4mp1GQyFApsujaGdpzVfLb8Hxi6TjMXP_2mEr8jG6ORonI3fTz6-IHcZ6hd4tCZ5SdaBMfwOaEdzs1utiJ9IMA20 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQlRA9tKVQSh_UFUicAonteL3H1cKybelqJUDiFvmpVoUEbXYrlQPqX-hf7C_pTB4roFqpPUVJbMePz_ZMxvMNIbvK21T4IKOO9AwUFCcj45yIvIol851g04CK4ueRHJ6LjxfpRePHjb4wUIkSSiorIz7O6msXGoaB5ACeY1ScjgG5gYGe_ghtdgjrXv-0XX4lvEkrU7IQkYLNq2Vq_Cs_7ke2vL8fLRAyq81m8JSczatZnTH5tj-bmn1784DB8T_b8Yw8aYRP2qvRskaWfP6cPL5DSbhObgfawkJBMZBnSy1Li0BHxXd_Sfnvn78OMR5AzeVBj5HuGlbLg95VAQNWzEo6LiZ46euJgZzDH-gRVlL83UuP8i_VeQN6AndfZ1f0FBR-WM_oGC0CE6R23SDng6Oz_jBqYjREmks-jQJzWmr0OTQg6wUnlY655iHu2k4AHARkzAMVE-CQJlYwbbXx0qqu1qJrU8lfkOW8yP1LQn2iFMAmZp4HoYzX3AnnHORILBRjtsgOdFzWzLEyq8znLMnq3sya3twiUTuemW1ozjHaxuXC9Hvz9Nc1wcfClO9beGQwB9GwonMPXZoB1vB8q-JqcRp0iQKwpjGUs1lja_49UHqZZCx-9U8tfEdWxoeD7OTD6NNrsspQzMATNskbsgy48G9BSJqa7WpS_AHfxRA3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Construction+of+Novel+3%E2%80%91Dimensional+Graphene%2FAmorphous+Porous+Carbon+Hybrids+with+Enhanced+Lithium+Storage+Properties&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhu%2C+Daming&rft.au=Liu%2C+Huaqiu&rft.au=Tai%2C+Lixuan&rft.au=Zhang%2C+Xiaonan&rft.date=2017-10-11&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=40&rft.spage=35191&rft.epage=35199&rft_id=info:doi/10.1021%2Facsami.7b08320&rft.externalDocID=c164902311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |