Facile Construction of Novel 3‑Dimensional Graphene/Amorphous Porous Carbon Hybrids with Enhanced Lithium Storage Properties

Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step gro...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 40; pp. 35191 - 35199
Main Authors Zhu, Daming, Liu, Huaqiu, Tai, Lixuan, Zhang, Xiaonan, Jiang, Sheng, Yang, Shumin, Yi, Lin, Wen, Wen, Li, Xiaolong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm–3) and high conductivity (45 S cm–1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g–1.
AbstractList Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm–³) and high conductivity (45 S cm–¹), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO₃, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g–¹.
Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core-shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm-3) and high conductivity (45 S cm-1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g-1.Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core-shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm-3) and high conductivity (45 S cm-1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g-1.
Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core–shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm–3) and high conductivity (45 S cm–1), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO3, superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g–1.
Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of a core-shell amorphous porous carbon/multilayer graphene are synthesized by chemical vapor deposition on Ni foam using a facile one-step growth method. The data suggest that these composites have not only outstanding electrical and mechanical properties of the multilayer graphene but also the mesoporous characteristics of the amorphous carbon. Moreover, the composited carbon materials perfectly inherit the macroporous structure of Ni foam, and the amorphous carbon core in the skeleton serves as a cushion to buffer the volume variation after the removal of Ni. The carbon composites reveal ultralow density (4.45 mg cm ) and high conductivity (45 S cm ), essentially issued from the perfectly preserved structural integrity of graphene. The novel carbon composites can be used as anodes for lithium ion batteries. After these carbon composites are incorporated with NaBiO , superior electrochemical activities above 2 V can be achieved with a discharge capacity of ∼300 mAh g .
Author Wen, Wen
Jiang, Sheng
Liu, Huaqiu
Zhang, Xiaonan
Yang, Shumin
Tai, Lixuan
Yi, Lin
Li, Xiaolong
Zhu, Daming
AuthorAffiliation Key Laboratory of Interfacial Physics and Technology
Tsinghua University
Shanghai Synchrotron Radiation Facility
Department of Electronic Engineering
School of Physics
Huazhong University of Science and Technology
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Department of Electronic Engineering
– name: Shanghai Synchrotron Radiation Facility
– name: School of Physics
– name: Huazhong University of Science and Technology
– name: Tsinghua University
– name: University of Chinese Academy of Sciences
– name: Key Laboratory of Interfacial Physics and Technology
Author_xml – sequence: 1
  givenname: Daming
  surname: Zhu
  fullname: Zhu, Daming
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Huaqiu
  surname: Liu
  fullname: Liu, Huaqiu
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Lixuan
  surname: Tai
  fullname: Tai, Lixuan
  organization: Tsinghua University
– sequence: 4
  givenname: Xiaonan
  orcidid: 0000-0003-4388-1250
  surname: Zhang
  fullname: Zhang, Xiaonan
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Sheng
  surname: Jiang
  fullname: Jiang, Sheng
  organization: Shanghai Synchrotron Radiation Facility
– sequence: 6
  givenname: Shumin
  surname: Yang
  fullname: Yang, Shumin
  organization: Shanghai Synchrotron Radiation Facility
– sequence: 7
  givenname: Lin
  surname: Yi
  fullname: Yi, Lin
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Wen
  orcidid: 0000-0002-5139-9889
  surname: Wen
  fullname: Wen, Wen
  email: wenwen@sinap.ac.cn
  organization: Key Laboratory of Interfacial Physics and Technology
– sequence: 9
  givenname: Xiaolong
  orcidid: 0000-0002-1674-9345
  surname: Li
  fullname: Li, Xiaolong
  email: lixiaolong@sinap.ac.cn
  organization: Key Laboratory of Interfacial Physics and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28926220$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJaC7ttsuiZQjMRJJtjbwM01wKQxNouzbH8lFHwZYcSW7IpvQV8op5kmqYaRaF0NW58P2Hw_8fkT3nHRLygbM5Z4KfgY4w2PmiZaoQ7A055HVZzpSoxN5LX5YH5CjGO8ZkZqq35ECoWkgh2CH5dQna9kiX3sUUJp2sd9Qb-sX_xJ4Wz7-fPtkBXcxr6OlVgHGNDs_OBx_GtZ8ivfVhU5YQ2qy8fmyD7SJ9sGlNL9wanMaOrvJkp4F-TT7AD6S3wY8YksX4juwb6CO-39Vj8v3y4tvyera6ufq8PF_NoJBFmhnRgYS6kqqVFTOdVMAKKAyr9cKgroziSnK2QCMrrksBGlqUWtUAZa0rWRyTk-3dMfj7CWNqBhs19j04zO83gjFWLfJt9l80m8pZne1WGf24Q6d2wK4Zgx0gPDZ_7c3AfAvo4GMMaF4QzppNfs02v2aXXxaU_wi0TbAJJQWw_euy060s75s7P4UcVnwN_gN9zrCb
CitedBy_id crossref_primary_10_1007_s12274_021_3506_9
crossref_primary_10_1016_j_cap_2020_11_004
crossref_primary_10_1016_j_carbon_2018_01_054
crossref_primary_10_1002_adma_202210734
crossref_primary_10_1016_j_diamond_2022_109193
crossref_primary_10_1021_acsnano_7b08714
crossref_primary_10_1016_j_jallcom_2021_161401
crossref_primary_10_1021_acsomega_8b02418
crossref_primary_10_1021_acsami_8b14643
crossref_primary_10_1016_j_cej_2018_06_057
crossref_primary_10_1021_acs_iecr_8b05857
Cites_doi 10.1021/ja105296a
10.1107/S0021889801002242
10.1021/nn901587x
10.1002/adma.200800757
10.1021/nn202996r
10.1021/jp4105689
10.1039/C5NR05151G
10.1006/jssc.1996.0319
10.1016/j.nanoen.2012.10.001
10.1038/nmat1849
10.1002/anie.200903463
10.1126/science.1182383
10.1021/nl202036y
10.1039/c3ta12655b
10.1107/S1600576716008566
10.1021/nl800957b
10.1038/nmat3001
10.1002/adma.200501576
10.1021/nn501284q
10.1016/0008-6223(86)90239-3
10.1002/adma.200903645
10.1038/nature07719
10.13538/j.1001-8042/nst.26.020101
10.1021/la9048743
10.1149/1.1838816
10.1016/j.carbon.2015.07.047
10.1002/smll.201100990
10.1038/nature04969
10.1103/PhysRevB.61.14095
10.1002/adfm.201300464
10.1103/PhysRevLett.97.187401
10.1186/1556-276X-7-33
10.1007/BF02881419
10.1039/C5TA08109B
10.1002/ange.200704909
10.1063/1.1702064
10.1021/ja0530568
10.1126/science.1102896
10.1016/S0378-7753(00)00431-6
10.1063/1.2982585
10.1039/C4RA11378K
10.1021/cm504618r
10.1007/s12274-012-0221-6
10.1016/S0167-2738(99)00037-5
10.1039/C4RA00877D
10.1021/jp3065745
10.1126/science.1157996
10.1038/nnano.2008.96
10.1016/0039-6028(79)90330-3
10.1107/S0021889805030232
10.1002/adma.201001068
10.1016/S0025-5408(00)00453-0
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.7b08320
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 35199
ExternalDocumentID 28926220
10_1021_acsami_7b08320
c164902311
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
EJD
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-f2da6a9568b650fd68a03a3f09c7fec5f8186107ef651c42acabe6c89aa49c563
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Jul 10 23:25:46 EDT 2025
Fri Jul 11 12:21:38 EDT 2025
Thu Jan 02 23:10:07 EST 2025
Tue Jul 01 02:29:22 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Mon Feb 06 12:15:01 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords lithium ion batteries
core−shell
amorphous porous carbon
graphene
NaBiO3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-f2da6a9568b650fd68a03a3f09c7fec5f8186107ef651c42acabe6c89aa49c563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1674-9345
0000-0003-4388-1250
0000-0002-5139-9889
PMID 28926220
PQID 1941090838
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000576500
proquest_miscellaneous_1941090838
pubmed_primary_28926220
crossref_primary_10_1021_acsami_7b08320
crossref_citationtrail_10_1021_acsami_7b08320
acs_journals_10_1021_acsami_7b08320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171011
2017-10-11
2017-Oct-11
PublicationDateYYYYMMDD 2017-10-11
PublicationDate_xml – month: 10
  year: 2017
  text: 20171011
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1021/ja105296a
– ident: ref48/cit48
  doi: 10.1107/S0021889801002242
– ident: ref8/cit8
  doi: 10.1021/nn901587x
– ident: ref14/cit14
  doi: 10.1002/adma.200800757
– ident: ref35/cit35
  doi: 10.1021/nn202996r
– ident: ref42/cit42
  doi: 10.1021/jp4105689
– ident: ref20/cit20
  doi: 10.1039/C5NR05151G
– ident: ref44/cit44
  doi: 10.1006/jssc.1996.0319
– ident: ref29/cit29
  doi: 10.1016/j.nanoen.2012.10.001
– ident: ref1/cit1
  doi: 10.1038/nmat1849
– ident: ref7/cit7
  doi: 10.1002/anie.200903463
– ident: ref5/cit5
  doi: 10.1126/science.1182383
– ident: ref26/cit26
  doi: 10.1021/nl202036y
– ident: ref41/cit41
  doi: 10.1039/c3ta12655b
– ident: ref50/cit50
  doi: 10.1107/S1600576716008566
– ident: ref39/cit39
  doi: 10.1021/nl800957b
– ident: ref27/cit27
  doi: 10.1038/nmat3001
– ident: ref16/cit16
  doi: 10.1002/adma.200501576
– ident: ref19/cit19
  doi: 10.1021/nn501284q
– ident: ref34/cit34
  doi: 10.1016/0008-6223(86)90239-3
– ident: ref6/cit6
  doi: 10.1002/adma.200903645
– ident: ref4/cit4
  doi: 10.1038/nature07719
– ident: ref49/cit49
  doi: 10.13538/j.1001-8042/nst.26.020101
– ident: ref15/cit15
  doi: 10.1021/la9048743
– ident: ref52/cit52
  doi: 10.1149/1.1838816
– ident: ref25/cit25
  doi: 10.1016/j.carbon.2015.07.047
– ident: ref28/cit28
  doi: 10.1002/smll.201100990
– ident: ref11/cit11
  doi: 10.1038/nature04969
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.61.14095
– ident: ref17/cit17
  doi: 10.1002/adfm.201300464
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.97.187401
– ident: ref18/cit18
  doi: 10.1186/1556-276X-7-33
– ident: ref36/cit36
  doi: 10.1007/BF02881419
– ident: ref22/cit22
  doi: 10.1039/C5TA08109B
– ident: ref9/cit9
  doi: 10.1002/ange.200704909
– ident: ref30/cit30
  doi: 10.1063/1.1702064
– ident: ref51/cit51
  doi: 10.1021/ja0530568
– ident: ref2/cit2
  doi: 10.1126/science.1102896
– ident: ref38/cit38
  doi: 10.1016/S0378-7753(00)00431-6
– ident: ref23/cit23
  doi: 10.1063/1.2982585
– ident: ref31/cit31
  doi: 10.1039/C4RA11378K
– ident: ref21/cit21
  doi: 10.1021/cm504618r
– ident: ref24/cit24
  doi: 10.1007/s12274-012-0221-6
– ident: ref46/cit46
  doi: 10.1016/S0167-2738(99)00037-5
– ident: ref40/cit40
  doi: 10.1039/C4RA00877D
– ident: ref43/cit43
  doi: 10.1021/jp3065745
– ident: ref3/cit3
  doi: 10.1126/science.1157996
– ident: ref12/cit12
  doi: 10.1038/nnano.2008.96
– ident: ref37/cit37
  doi: 10.1016/0039-6028(79)90330-3
– ident: ref47/cit47
  doi: 10.1107/S0021889805030232
– ident: ref13/cit13
  doi: 10.1002/adma.201001068
– ident: ref45/cit45
  doi: 10.1016/S0025-5408(00)00453-0
SSID ssj0063205
Score 2.2799263
Snippet Presently, porous materials have become essential to many technological applications. In this account, 3-dimensional skeleton composite materials consisting of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35191
SubjectTerms anodes
composite materials
electrochemistry
foams
graphene
lithium
lithium batteries
mechanical properties
nickel
porous media
vapors
Title Facile Construction of Novel 3‑Dimensional Graphene/Amorphous Porous Carbon Hybrids with Enhanced Lithium Storage Properties
URI http://dx.doi.org/10.1021/acsami.7b08320
https://www.ncbi.nlm.nih.gov/pubmed/28926220
https://www.proquest.com/docview/1941090838
https://www.proquest.com/docview/2000576500
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQvdADUGh5FrkqUk-BxHa83iPasqwQRUiAxC3yUyAgQZtdJDig_oX-xf4SZvKgBbSCUxRl7CSe8Tzs8TeEbCpvU-GDjDrSMwhQnIyMcyLyKpbMd4JNAwaKvw7l4FTsn6Vn_9Y7Xu7gs2Rb2xJL4XQMOAsMgvMPTMIMRieod9zqXAlP0mr_WIhIgcVq4RlftUcjZMvnRmiCZ1lZmP5cDXdUVsCEmFhyuTUemS17_xq28c2PnyezjZtJd2q5-ESmfL5APv4HPrhIHvragkqgWLKzBZGlRaCHxa2_ovzv7z8_Efm_Ru2gewhsDXpxe-e6ANYU45IeFUO89PTQQMvBHZ79Kiku7NLd_LzKLKAHcHcxvqbHENqD5qJHuPY_RBDXz-S0v3vSG0RNNYZIc8lHUWBOS42nCw14dcFJpWOueYi7thOA4wGx8SCYBManiRVMW228tKqrtejaVPIvZDovcr9MqE-UAgGJmedBKOM1d8I5By0SC92YFfIdBi5rZlOZVRvlLMnq0cya0VwhUcvEzDaA5lhX42oi_Y8n-psaymMi5bdWJjKYbbiFonMPQ5qBgGEmq-JqMg0efoIoLo2hn6VaoJ7eB-Etk4zFq-_6wzUyw9CLwASaZJ1MgzD4r-ADjcxGJf6P7zUFUw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcigcoOVZoMUIJE7pJrbj9R5X224X2K5Waiv1FvkpqrYJ2uwiwQHxF_oX-0uYyWPLQyvBKUpiO_Z47JnJeL4h5K3yNhU-yKgrPQMDxcnIOCcir2LJfDfYNKCheDSRo1Px4Sw9WyOdNhYGOlFCS2XlxL9FF0g68Awz4nQN6AwMbPQ7oIkwZOn-4LjdeiW8SSs3shCRAsHVojT-VR9lkS1_l0UrFMxK0AwfkOmyi9X5kou9xdzs2W9_oDf-xxg2yf1G6aT9mku2yJrPH5J7v0ARPiLfh9rCBkExgWcLKUuLQCfFF39J-c2P633MA1BjeNBDhLmGXbLTvypgoopFSafFDC8DPTNQc_QVI8FKir956UH-qTpnQMdwd764osdg6MM-RqfoCZghpOtjcjo8OBmMoiY3Q6S55PMoMKelxlhDAzpecFLpmGse4p7tBpj_gEh5YFoCG6SJFUxbbby0qqe16NlU8idkPS9y_4xQnygF7BIzz4NQxmvuhHMOaiQWmjHb5A0QLmvWVplVbnOWZDU1s4aa2yRq5zKzDbw5Ztm4XFn-3bL85xrYY2XJ1y1rZLD20KGicw8kzYDP8Fyr4mp1GQyFApsujaGdpzVfLb8Hxi6TjMXP_2mEr8jG6ORonI3fTz6-IHcZ6hd4tCZ5SdaBMfwOaEdzs1utiJ9IMA20
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQlRA9tKVQSh_UFUicAonteL3H1cKybelqJUDiFvmpVoUEbXYrlQPqX-hf7C_pTB4roFqpPUVJbMePz_ZMxvMNIbvK21T4IKOO9AwUFCcj45yIvIol851g04CK4ueRHJ6LjxfpRePHjb4wUIkSSiorIz7O6msXGoaB5ACeY1ScjgG5gYGe_ghtdgjrXv-0XX4lvEkrU7IQkYLNq2Vq_Cs_7ke2vL8fLRAyq81m8JSczatZnTH5tj-bmn1784DB8T_b8Yw8aYRP2qvRskaWfP6cPL5DSbhObgfawkJBMZBnSy1Li0BHxXd_Sfnvn78OMR5AzeVBj5HuGlbLg95VAQNWzEo6LiZ46euJgZzDH-gRVlL83UuP8i_VeQN6AndfZ1f0FBR-WM_oGC0CE6R23SDng6Oz_jBqYjREmks-jQJzWmr0OTQg6wUnlY655iHu2k4AHARkzAMVE-CQJlYwbbXx0qqu1qJrU8lfkOW8yP1LQn2iFMAmZp4HoYzX3AnnHORILBRjtsgOdFzWzLEyq8znLMnq3sya3twiUTuemW1ozjHaxuXC9Hvz9Nc1wcfClO9beGQwB9GwonMPXZoB1vB8q-JqcRp0iQKwpjGUs1lja_49UHqZZCx-9U8tfEdWxoeD7OTD6NNrsspQzMATNskbsgy48G9BSJqa7WpS_AHfxRA3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Construction+of+Novel+3%E2%80%91Dimensional+Graphene%2FAmorphous+Porous+Carbon+Hybrids+with+Enhanced+Lithium+Storage+Properties&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhu%2C+Daming&rft.au=Liu%2C+Huaqiu&rft.au=Tai%2C+Lixuan&rft.au=Zhang%2C+Xiaonan&rft.date=2017-10-11&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=40&rft.spage=35191&rft.epage=35199&rft_id=info:doi/10.1021%2Facsami.7b08320&rft.externalDocID=c164902311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon