Sulfanilic Acid Pending on a Graphene Scaffold: Novel, Efficient Synthesis and Much Enhanced Polymer Solar Cell Efficiency and Stability Using It as a Hole Extraction Layer

In this contribution, we describe a novel, facile, and scalable methodology for high degree functionalization toward graphene by the reaction between bulk graphite fluoride and in situ generated amine anion. Using this, the rationally designed sulfanilic acid pending on a graphene scaffold (G-SO3H),...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 29; pp. 24679 - 24688
Main Authors Zhao, Fu-Gang, Hu, Cheng-Min, Kong, Yu-Ting, Pan, Bingyige, Yao, Xiang, Chu, Jian, Xu, Zi-Wen, Zuo, Biao, Li, Wei-Shi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this contribution, we describe a novel, facile, and scalable methodology for high degree functionalization toward graphene by the reaction between bulk graphite fluoride and in situ generated amine anion. Using this, the rationally designed sulfanilic acid pending on a graphene scaffold (G-SO3H), a two-dimensional (2D) π-conjugated counterpart of poly­(styrenesulfonate), is available. Combined reliable characterizations demonstrate that a very large quantity of sulfanilic blocks are linked to graphene through the foreseen substitution of carbon–fluorine units and an unexpected reductive defluorination simultaneously proceeds during the one-step reaction, endowing the resultant G-SO3H with splendid dispersity in various solvents and film-forming property via the former, and with recovered 2D π-conjugation via the latter. Besides, the work function of G-SO3H lies at −4.8 eV, well matched with the P3HT donor. Awarded with these fantastic merits, G-SO3H behaves capable in hole collection and transport, indicated by the enhanced device efficiency and stability of polymer solar cells (PSCs) based on intensively studied P3HT:PCBM blends as an active layer. In particular, comparison with conventional poly­(3,4-ethylenedioxythiophene) doped with poly­(styrenesulfonate) and recently rising and shining graphene oxide, G-SO3H outperforms above 17 and 24%, respectively, in efficiency. More impressively, when these three unencapsulated devices are placed in a N2-filled glovebox at around 25 °C for 7 weeks, or subject to thermal treatment at 150 °C for 6 h also in N2 atmosphere, or even rudely exposed to indoor air, G-SO3H-based PSCs exhibit the best stability. These findings enable G-SO3H to be a strongly competitive alternative of the existing hole extraction materials for PSC real-life applications.
AbstractList In this contribution, we describe a novel, facile and scalable methodology for high-degree functionalization towards graphene by the reaction between bulk graphite fluoride and in-situ generated amine anion. Using this, the rationally-designed sulfanilic acid pending on graphene scaffold (G-SO3H), a 2D pi-conjugated counterpart of poly(styrenesulfonate), is available. Combined reliable characterizations demonstrate that a very large quantity of sulfanilic blocks are linked to graphene through the foreseen substitution of carbon-fluorine units and an unexpected reductive defluorination simultaneously proceeds during the one-step reaction, endowing the resultant G-SO3H with splendid dispersity in various solvents and film-forming property via the former, and with recovered 2D pi-conjugation via the latter. Besides, the work function of G-SO3H lies at -4.8 ev, well-matched with P3HT donor. Awarded with these fantastic merits, G-SO3H behaves capable in hole collection and transport, indicated by the enhanced device efficiency and stability of polymer solar cells (PSC) based on intensively studied P3HT:PCBM blends as active layer. In particular comparison with conventional PEDOT:PSS and recently rising and shining GO, G-SO3H outperforms above 17% and 24%, respectively, in efficiency. More impressively, when these three unencapsulated devices are placed in a N2-filled glovebox at around 25 ºC for 7 weeks, or subject to thermal treatment at 150 ºC for 6 hours also in N2 atmosphere, or even rudely exposed to indoor air, G-SO3H-based PSCs exhibits the best stability. These findings enable G-SO3H to be a strongly competitive alternative of the existing hole extraction materials for PSC real-life applications.
In this contribution, we describe a novel, facile, and scalable methodology for high degree functionalization toward graphene by the reaction between bulk graphite fluoride and in situ generated amine anion. Using this, the rationally designed sulfanilic acid pending on a graphene scaffold (G-SO3H), a two-dimensional (2D) π-conjugated counterpart of poly(styrenesulfonate), is available. Combined reliable characterizations demonstrate that a very large quantity of sulfanilic blocks are linked to graphene through the foreseen substitution of carbon-fluorine units and an unexpected reductive defluorination simultaneously proceeds during the one-step reaction, endowing the resultant G-SO3H with splendid dispersity in various solvents and film-forming property via the former, and with recovered 2D π-conjugation via the latter. Besides, the work function of G-SO3H lies at -4.8 eV, well matched with the P3HT donor. Awarded with these fantastic merits, G-SO3H behaves capable in hole collection and transport, indicated by the enhanced device efficiency and stability of polymer solar cells (PSCs) based on intensively studied P3HT:PCBM blends as an active layer. In particular, comparison with conventional poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) and recently rising and shining graphene oxide, G-SO3H outperforms above 17 and 24%, respectively, in efficiency. More impressively, when these three unencapsulated devices are placed in a N2-filled glovebox at around 25 °C for 7 weeks, or subject to thermal treatment at 150 °C for 6 h also in N2 atmosphere, or even rudely exposed to indoor air, G-SO3H-based PSCs exhibit the best stability. These findings enable G-SO3H to be a strongly competitive alternative of the existing hole extraction materials for PSC real-life applications.In this contribution, we describe a novel, facile, and scalable methodology for high degree functionalization toward graphene by the reaction between bulk graphite fluoride and in situ generated amine anion. Using this, the rationally designed sulfanilic acid pending on a graphene scaffold (G-SO3H), a two-dimensional (2D) π-conjugated counterpart of poly(styrenesulfonate), is available. Combined reliable characterizations demonstrate that a very large quantity of sulfanilic blocks are linked to graphene through the foreseen substitution of carbon-fluorine units and an unexpected reductive defluorination simultaneously proceeds during the one-step reaction, endowing the resultant G-SO3H with splendid dispersity in various solvents and film-forming property via the former, and with recovered 2D π-conjugation via the latter. Besides, the work function of G-SO3H lies at -4.8 eV, well matched with the P3HT donor. Awarded with these fantastic merits, G-SO3H behaves capable in hole collection and transport, indicated by the enhanced device efficiency and stability of polymer solar cells (PSCs) based on intensively studied P3HT:PCBM blends as an active layer. In particular, comparison with conventional poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) and recently rising and shining graphene oxide, G-SO3H outperforms above 17 and 24%, respectively, in efficiency. More impressively, when these three unencapsulated devices are placed in a N2-filled glovebox at around 25 °C for 7 weeks, or subject to thermal treatment at 150 °C for 6 h also in N2 atmosphere, or even rudely exposed to indoor air, G-SO3H-based PSCs exhibit the best stability. These findings enable G-SO3H to be a strongly competitive alternative of the existing hole extraction materials for PSC real-life applications.
In this contribution, we describe a novel, facile, and scalable methodology for high degree functionalization toward graphene by the reaction between bulk graphite fluoride and in situ generated amine anion. Using this, the rationally designed sulfanilic acid pending on a graphene scaffold (G-SO₃H), a two-dimensional (2D) π-conjugated counterpart of poly(styrenesulfonate), is available. Combined reliable characterizations demonstrate that a very large quantity of sulfanilic blocks are linked to graphene through the foreseen substitution of carbon–fluorine units and an unexpected reductive defluorination simultaneously proceeds during the one-step reaction, endowing the resultant G-SO₃H with splendid dispersity in various solvents and film-forming property via the former, and with recovered 2D π-conjugation via the latter. Besides, the work function of G-SO₃H lies at −4.8 eV, well matched with the P3HT donor. Awarded with these fantastic merits, G-SO₃H behaves capable in hole collection and transport, indicated by the enhanced device efficiency and stability of polymer solar cells (PSCs) based on intensively studied P3HT:PCBM blends as an active layer. In particular, comparison with conventional poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) and recently rising and shining graphene oxide, G-SO₃H outperforms above 17 and 24%, respectively, in efficiency. More impressively, when these three unencapsulated devices are placed in a N₂-filled glovebox at around 25 °C for 7 weeks, or subject to thermal treatment at 150 °C for 6 h also in N₂ atmosphere, or even rudely exposed to indoor air, G-SO₃H-based PSCs exhibit the best stability. These findings enable G-SO₃H to be a strongly competitive alternative of the existing hole extraction materials for PSC real-life applications.
In this contribution, we describe a novel, facile, and scalable methodology for high degree functionalization toward graphene by the reaction between bulk graphite fluoride and in situ generated amine anion. Using this, the rationally designed sulfanilic acid pending on a graphene scaffold (G-SO3H), a two-dimensional (2D) π-conjugated counterpart of poly­(styrenesulfonate), is available. Combined reliable characterizations demonstrate that a very large quantity of sulfanilic blocks are linked to graphene through the foreseen substitution of carbon–fluorine units and an unexpected reductive defluorination simultaneously proceeds during the one-step reaction, endowing the resultant G-SO3H with splendid dispersity in various solvents and film-forming property via the former, and with recovered 2D π-conjugation via the latter. Besides, the work function of G-SO3H lies at −4.8 eV, well matched with the P3HT donor. Awarded with these fantastic merits, G-SO3H behaves capable in hole collection and transport, indicated by the enhanced device efficiency and stability of polymer solar cells (PSCs) based on intensively studied P3HT:PCBM blends as an active layer. In particular, comparison with conventional poly­(3,4-ethylenedioxythiophene) doped with poly­(styrenesulfonate) and recently rising and shining graphene oxide, G-SO3H outperforms above 17 and 24%, respectively, in efficiency. More impressively, when these three unencapsulated devices are placed in a N2-filled glovebox at around 25 °C for 7 weeks, or subject to thermal treatment at 150 °C for 6 h also in N2 atmosphere, or even rudely exposed to indoor air, G-SO3H-based PSCs exhibit the best stability. These findings enable G-SO3H to be a strongly competitive alternative of the existing hole extraction materials for PSC real-life applications.
Author Yao, Xiang
Xu, Zi-Wen
Li, Wei-Shi
Pan, Bingyige
Chu, Jian
Kong, Yu-Ting
Zhao, Fu-Gang
Hu, Cheng-Min
Zuo, Biao
AuthorAffiliation Department of Chemistry
Zhejiang Sci-Tech University
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
Key Laboratory of Synthetic and Self-Assembly Chemistry for Functional Molecules
AuthorAffiliation_xml – name: Department of Chemistry
– name: Key Laboratory of Synthetic and Self-Assembly Chemistry for Functional Molecules
– name: Zhejiang Sci-Tech University
– name: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Fu-Gang
  orcidid: 0000-0001-8141-2733
  surname: Zhao
  fullname: Zhao, Fu-Gang
  email: zhaofugang85@163.com
  organization: Zhejiang Sci-Tech University
– sequence: 2
  givenname: Cheng-Min
  surname: Hu
  fullname: Hu, Cheng-Min
  organization: Zhejiang Sci-Tech University
– sequence: 3
  givenname: Yu-Ting
  surname: Kong
  fullname: Kong, Yu-Ting
  organization: Zhejiang Sci-Tech University
– sequence: 4
  givenname: Bingyige
  surname: Pan
  fullname: Pan, Bingyige
  organization: Zhejiang Sci-Tech University
– sequence: 5
  givenname: Xiang
  surname: Yao
  fullname: Yao, Xiang
  organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
– sequence: 6
  givenname: Jian
  surname: Chu
  fullname: Chu, Jian
  organization: Zhejiang Sci-Tech University
– sequence: 7
  givenname: Zi-Wen
  surname: Xu
  fullname: Xu, Zi-Wen
  organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
– sequence: 8
  givenname: Biao
  surname: Zuo
  fullname: Zuo, Biao
  organization: Zhejiang Sci-Tech University
– sequence: 9
  givenname: Wei-Shi
  orcidid: 0000-0001-8858-4976
  surname: Li
  fullname: Li, Wei-Shi
  email: liws@mail.sioc.ac.cn
  organization: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29968469$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhSNURB-wZYm8RBUz2E7iOuyq0fQhDQ8pdG3dcW4YV4492A4i_6k_Eg8z7QKpYmXL-s65x_ecFkfOOyyKt4zOGeXsI-gIg5nLNRW14C-KE9ZU1Uzymh893avquDiN8Z5SUXJavyqOedMIWYnmpHhoR9uDM9ZocqlNR76h64z7QbwjQK4DbDfokLQa-t7b7hP54n-h_UCWfW-0QZdIO7m0wWgiAdeRz6PekKXbgNOYzbydBgyk9RYCWaC1T0I9_eXbBOs8PE3kLu7G3iYC2YnceItk-TsF0MnkLCuYMLwuXvZgI745nGfF3dXy--Jmtvp6fbu4XM2gFGWadTXthWAlrUVfCawZCqxYI-u6oSCYxAao5LwrkdWM60ZSpsVFyQD7tQTBy7Pi_d53G_zPEWNSg4k6pweHfoyKMyakEFxW_0fzzi9yFEkz-u6AjusBO7UNZoAwqccyMlDtAR18jAF7pU2C3ffzGoxVjKpd52rfuTp0nmXzf2SPzs8KzveC_K7u_RhcXuZz8B-ujLzn
CitedBy_id crossref_primary_10_1002_agt2_544
crossref_primary_10_1016_j_molliq_2023_122126
crossref_primary_10_3390_nano12030443
crossref_primary_10_1016_j_electacta_2022_140827
crossref_primary_10_2139_ssrn_4118137
crossref_primary_10_1016_j_memsci_2021_119146
crossref_primary_10_1021_acs_jpca_9b02391
crossref_primary_10_1039_D2CE01055K
crossref_primary_10_1002_admi_201801699
crossref_primary_10_1016_j_mseb_2021_115181
crossref_primary_10_1021_acssuschemeng_8b06867
Cites_doi 10.1021/nn100551j
10.1002/smll.201701120
10.1002/adma.201302987
10.1016/j.chempr.2017.01.010
10.1039/c2ee02806a
10.1002/adma.201502775
10.1038/nmat5063
10.1021/jacs.6b03562
10.1021/cm060258+
10.1039/c5ta09712f
10.1039/c4cs00250d
10.1038/nphoton.2015.6
10.1002/adma.201600013
10.1002/adma.201707508
10.1039/c7cs00871f
10.1002/marc.201700470
10.1021/acs.chemmater.6b05040
10.1021/acs.chemrev.5b00098
10.1021/acs.accounts.5b00334
10.1038/nphoton.2016.240
10.1002/adma.201604569
10.1021/jz300723h
10.1038/nature11476
10.1073/pnas.0711990105
10.1021/acsami.7b05422
10.1021/acs.chemrev.7b00535
10.1016/j.solmat.2008.01.005
10.1039/c7cs00852j
10.1039/c3nr05725a
10.1002/chem.201300387
10.1002/adma.201703906
10.1021/jacs.7b13239
10.1021/ja5110602
10.1038/natrevmats.2016.33
10.1002/adma.201104447
10.1016/j.nanoen.2012.07.021
10.1021/acs.chemmater.6b01447
10.1021/jacs.7b10499
10.1021/nn300280q
10.1021/ar400136b
10.1002/adma.201704051
10.1021/jacs.7b11278
10.1002/adma.201100065
10.1021/am504608p
10.1039/c6ta01450j
10.1021/acsami.5b01327
10.1021/ja01539a017
10.1063/1.3507388
10.1016/j.chempr.2018.02.021
10.1016/j.mattod.2016.11.002
10.1021/ja5092613
10.1002/smll.201001555
10.1002/adma.201600281
10.1021/jp9731821
10.1039/c6ta09325f
10.1021/nl9031617
10.1021/acs.accounts.5b00199
10.1002/adma.201104945
10.1038/natrevmats.2017.43
10.1021/am500336s
10.1002/adma.201102207
10.1038/nature24044
10.1016/j.solmat.2009.10.026
10.1038/nchem.281
10.1002/adma.201704271
10.1039/c3ee42963f
10.1039/c0ee00668h
10.1063/1.2174093
10.1016/j.mattod.2013.12.005
10.1021/acsnano.7b08196
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.8b06562
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 24688
ExternalDocumentID 29968469
10_1021_acsami_8b06562
a659427869
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-d50f6613056f46e51e6e41985590a618e9a0822d3e1512c9801c6731aefb8a623
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 07:23:15 EDT 2025
Thu Jul 10 23:51:14 EDT 2025
Thu Apr 03 06:58:37 EDT 2025
Tue Jul 01 04:05:57 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
Thu Aug 27 13:43:30 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords functionalized graphene
polymer solar cell
sulfonation
defluorination
graphite fluoride
hole extraction material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-d50f6613056f46e51e6e41985590a618e9a0822d3e1512c9801c6731aefb8a623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8141-2733
0000-0001-8858-4976
PMID 29968469
PQID 2063713080
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116866284
proquest_miscellaneous_2063713080
pubmed_primary_29968469
crossref_citationtrail_10_1021_acsami_8b06562
crossref_primary_10_1021_acsami_8b06562
acs_journals_10_1021_acsami_8b06562
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-25
PublicationDateYYYYMMDD 2018-07-25
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref37/cit37
  doi: 10.1021/nn100551j
– ident: ref24/cit24
  doi: 10.1002/smll.201701120
– ident: ref54/cit54
  doi: 10.1002/adma.201302987
– ident: ref48/cit48
  doi: 10.1016/j.chempr.2017.01.010
– ident: ref33/cit33
  doi: 10.1039/c2ee02806a
– ident: ref26/cit26
  doi: 10.1002/adma.201502775
– ident: ref3/cit3
  doi: 10.1038/nmat5063
– ident: ref23/cit23
  doi: 10.1021/jacs.6b03562
– ident: ref61/cit61
  doi: 10.1021/cm060258+
– ident: ref60/cit60
  doi: 10.1039/c5ta09712f
– ident: ref4/cit4
  doi: 10.1039/c4cs00250d
– ident: ref7/cit7
  doi: 10.1038/nphoton.2015.6
– ident: ref16/cit16
  doi: 10.1002/adma.201600013
– ident: ref31/cit31
  doi: 10.1002/adma.201707508
– ident: ref49/cit49
  doi: 10.1039/c7cs00871f
– ident: ref18/cit18
  doi: 10.1002/marc.201700470
– ident: ref70/cit70
  doi: 10.1021/acs.chemmater.6b05040
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.5b00098
– ident: ref17/cit17
  doi: 10.1021/acs.accounts.5b00334
– ident: ref10/cit10
  doi: 10.1038/nphoton.2016.240
– ident: ref51/cit51
  doi: 10.1002/adma.201604569
– ident: ref66/cit66
  doi: 10.1021/jz300723h
– ident: ref32/cit32
  doi: 10.1038/nature11476
– ident: ref41/cit41
  doi: 10.1073/pnas.0711990105
– ident: ref56/cit56
  doi: 10.1021/acsami.7b05422
– ident: ref19/cit19
  doi: 10.1021/acs.chemrev.7b00535
– ident: ref39/cit39
  doi: 10.1016/j.solmat.2008.01.005
– ident: ref47/cit47
  doi: 10.1039/c7cs00852j
– ident: ref69/cit69
  doi: 10.1039/c3nr05725a
– ident: ref64/cit64
  doi: 10.1002/chem.201300387
– ident: ref30/cit30
  doi: 10.1002/adma.201703906
– ident: ref29/cit29
  doi: 10.1021/jacs.7b13239
– ident: ref25/cit25
  doi: 10.1021/ja5110602
– ident: ref50/cit50
  doi: 10.1038/natrevmats.2016.33
– ident: ref8/cit8
  doi: 10.1002/adma.201104447
– ident: ref67/cit67
  doi: 10.1016/j.nanoen.2012.07.021
– ident: ref46/cit46
  doi: 10.1021/acs.chemmater.6b01447
– ident: ref15/cit15
  doi: 10.1021/jacs.7b10499
– ident: ref58/cit58
  doi: 10.1021/nn300280q
– ident: ref12/cit12
  doi: 10.1021/ar400136b
– ident: ref22/cit22
  doi: 10.1002/adma.201704051
– ident: ref21/cit21
  doi: 10.1021/jacs.7b11278
– ident: ref43/cit43
  doi: 10.1002/adma.201100065
– ident: ref11/cit11
  doi: 10.1021/am504608p
– ident: ref6/cit6
  doi: 10.1039/c6ta01450j
– ident: ref36/cit36
  doi: 10.1021/acsami.5b01327
– ident: ref42/cit42
  doi: 10.1021/ja01539a017
– ident: ref57/cit57
  doi: 10.1063/1.3507388
– ident: ref44/cit44
  doi: 10.1016/j.chempr.2018.02.021
– ident: ref45/cit45
  doi: 10.1016/j.mattod.2016.11.002
– ident: ref27/cit27
  doi: 10.1021/ja5092613
– ident: ref68/cit68
  doi: 10.1002/smll.201001555
– ident: ref5/cit5
  doi: 10.1002/adma.201600281
– ident: ref63/cit63
  doi: 10.1021/jp9731821
– ident: ref14/cit14
  doi: 10.1039/c6ta09325f
– ident: ref62/cit62
  doi: 10.1021/nl9031617
– ident: ref20/cit20
  doi: 10.1021/acs.accounts.5b00199
– ident: ref55/cit55
  doi: 10.1002/adma.201104945
– ident: ref2/cit2
  doi: 10.1038/natrevmats.2017.43
– ident: ref35/cit35
  doi: 10.1021/am500336s
– ident: ref59/cit59
  doi: 10.1002/adma.201102207
– ident: ref52/cit52
  doi: 10.1038/nature24044
– ident: ref38/cit38
  doi: 10.1016/j.solmat.2009.10.026
– ident: ref65/cit65
  doi: 10.1038/nchem.281
– ident: ref9/cit9
  doi: 10.1002/adma.201704271
– ident: ref34/cit34
  doi: 10.1039/c3ee42963f
– ident: ref28/cit28
  doi: 10.1039/c0ee00668h
– ident: ref40/cit40
  doi: 10.1063/1.2174093
– ident: ref13/cit13
  doi: 10.1016/j.mattod.2013.12.005
– ident: ref53/cit53
  doi: 10.1021/acsnano.7b08196
SSID ssj0063205
Score 2.3013709
Snippet In this contribution, we describe a novel, facile, and scalable methodology for high degree functionalization toward graphene by the reaction between bulk...
In this contribution, we describe a novel, facile and scalable methodology for high-degree functionalization towards graphene by the reaction between bulk...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24679
SubjectTerms air
fluorides
graphene
graphene oxide
heat treatment
nitrogen
polymers
solar cells
solvents
Title Sulfanilic Acid Pending on a Graphene Scaffold: Novel, Efficient Synthesis and Much Enhanced Polymer Solar Cell Efficiency and Stability Using It as a Hole Extraction Layer
URI http://dx.doi.org/10.1021/acsami.8b06562
https://www.ncbi.nlm.nih.gov/pubmed/29968469
https://www.proquest.com/docview/2063713080
https://www.proquest.com/docview/2116866284
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcoED70d5aRBIXMjS2InjcFtVXQpiVyuFlfYWOY6trTAOahJE-U38SMZOWh6rAvexk0xmPN94xp8JeU4ZYtpU5VFVMRMl3hUlFVXEmZIY8HmdKV_RPTrmi9Pk3Vl69nO_488KPo1fSdX6q3BEhcHSL7aXKUcP9iBoVmzWXM5oaFbEjDyJBEasDT3jhfE-CKn29yC0A1mGCHN4faA7agMxoW8s-bjfd9W--naRtvGfL3-DXBthJhwMdnGTXNLuFrn6C_ngbfK96K2RbmmXCg7UsoYTHU64QONAwhtPZI3rIBRKGtPY-jUcN1-0fQnzQDqBsQqKtUP42C5bkK6Go16dw9ydh5YCOGns-pNeQeFTZ5hpa7cD1TrII8wNjblrCG0L8LYDiTPBorEa5l-71XDkAt5LzArukNPD-YfZIhrvbogk46yL6nRquM9NUm4SrtNYc53EucAEZip5LHQuPdd8zbSHHCrHQKl4xmKpTSUkYrK7ZM81Tt8nkNWpYaZOqBY5GhaVCEJqZhCbSJzAZBPyDNVcjr7XlqGsTuNy0H056n5Cos0vL9VIf-5v4bA75V9s5T8PxB87JZ9uLKhE3_QFF-l007clRcPMUAdi-heZOOaCc0QJE3JvML_t8xAqcMSH-YP_-sKH5AqiOeE3nmn6iOx1q14_RsTUVU-Cs_wAqEAPoA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZWywE48Ga3PAeBxIXsNnHiONyqqksX2qpSdqW9RY5ja6sNCWoSRPlN_EjGTlJeKoJrNHbsydjzTWb8mZBXHkVMG8jISVOqHd8sReHx1GFUCnT4LAulyejOF2x67r-_CC72yHF_FgYHUWFPlU3i_2AXcI_xmbkRh6foM82eew2RiGdMejSO-62XUc_WLGJg7jscHVfP0vhHe-OLZPWrL9oBMK2jOblNltsh2vqSq6OmTo_k19_YG_9jDnfIrQ50wqi1krtkTxX3yM2fqAjvk29xk2tRrPKVhJFcZbBU9rwLlAUIeGdorXFXhFgKrcs8ewuL8rPK38DEUlCg54J4UyCYrFYViCKDeSMvYVJc2gIDWJb55qNaQ2wCaRirPN82lBsrj6DXluluwBYxwGkNAnuCaZkrmHyp1-0BDJgJjBEekPOTydl46nQ3OTiCMlo7WTDUzEQqAdM-U4GrmPLdiGM4MxTM5SoShnk-o8oAEBmh25QspK5QOuUCEdpDsl-UhTokEGaBpjrzPcUjNDNPICTJqEakIrADHQ7IS1Rz0q3EKrFJds9NWt0nne4HxOm_fCI7MnRzJ0e-U_71Vv5TSwOyU_JFb0gJrlSTfhGFKpsq8dA-Q9QBH_5FxnUZZwwxw4ActFa4fR8CB4ZoMXr0TzN8Tq5Pz-azZHa6-PCY3ECcx80vaS94QvbrdaOeIpaq02d2_XwHbWIYAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELbQIiF44D7KOQgkXsjSxInj8FaVli7sVpWyK-1b5PjQVptNVk2CKL-JH8nYSSsOFcFrNHZsZ8bzTWb8mZDXAUVMG8nEy3NqvNCaogh47jEqBTp8pmJpM7pHczY7CT-dRqf9OW57FgYHUWNPtUviW6u-VKZnGPDf4XN7Kw7P0W_affeqzdlZtR6N0832y2jg6hYxOA89js5rw9T4R3vrj2T9qz_aATKds5neIsfbYboak_P9tsn35bffGBz_cx63yc0efMKo05Y75Iou75IbP1ES3iPf07YwolwWSwkjuVSw0O7cC1QlCPho6a1xd4RUCmOqQr2HefVFF29h4qgo0INBui4RVNbLGkSp4KiVZzApz1yhASyqYn2hV5DagBrGuii2DeXaySP4deW6a3DFDHDQgMCeYFYVGiZfm1V3EAMOBcYK98nJdHI8nnn9jQ6eoIw2noqGhtmIJWImZDryNdOhn3AMa4aC-VwnwjLQK6otEJEJuk_JYuoLbXIuEKk9IHtlVepHBGIVGWpUGGieoLoFAqGJogYRi8AOTDwgr3CZs94i68wl2wM_69Y-69d-QLzN189kT4pu7-Yodsq_2cpfdnQgOyVfbpQpQ4u1aRhR6qqtswB1NMY14MO_yPg-44whdhiQh50mbt-HAIIhakwe_9MMX5Briw_T7PBg_vkJuY5wj9s_00H0lOw1q1Y_Q0jV5M-dCf0AeO8ahA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfanilic+Acid+Pending+on+a+Graphene+Scaffold%3A+Novel%2C+Efficient+Synthesis+and+Much+Enhanced+Polymer+Solar+Cell+Efficiency+and+Stability+Using+It+as+a+Hole+Extraction+Layer&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhao%2C+Fu-Gang&rft.au=Hu%2C+Cheng-Min&rft.au=Kong%2C+Yu-Ting&rft.au=Pan%2C+Bingyige&rft.date=2018-07-25&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=10&rft.issue=29&rft.spage=24679&rft_id=info:doi/10.1021%2Facsami.8b06562&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon