Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors

Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly­(vinyl alc...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 40; pp. 27199 - 27206
Main Authors Chen, Ya-Nan, Peng, Lufang, Liu, Tianqi, Wang, Yaxin, Shi, Shengjie, Wang, Huiliang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly­(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.
AbstractList Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.
Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly­(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.
Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.
Author Wang, Yaxin
Wang, Huiliang
Liu, Tianqi
Peng, Lufang
Chen, Ya-Nan
Shi, Shengjie
AuthorAffiliation College of Chemistry
Beijing Normal University
AuthorAffiliation_xml – name: Beijing Normal University
– name: College of Chemistry
Author_xml – sequence: 1
  givenname: Ya-Nan
  surname: Chen
  fullname: Chen, Ya-Nan
– sequence: 2
  givenname: Lufang
  surname: Peng
  fullname: Peng, Lufang
– sequence: 3
  givenname: Tianqi
  surname: Liu
  fullname: Liu, Tianqi
– sequence: 4
  givenname: Yaxin
  surname: Wang
  fullname: Wang, Yaxin
– sequence: 5
  givenname: Shengjie
  surname: Shi
  fullname: Shi, Shengjie
– sequence: 6
  givenname: Huiliang
  surname: Wang
  fullname: Wang, Huiliang
  email: wanghl@bnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27648478$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQxi0EKn_aa4-VjxRpt3bi2N4jRVAqgYpUerYmttMYHHuxs7S58Q68YZ-kRrtwqIR6mtHM7xuNvm8fbYcYLELvKZlTUtFPoDMMbs5bImvBttAeXTA2k1VTbb_0jO2i_ZxvCOF1RZo3aLcSnEkm5B66vYp-Orx3YfIYvI599B__PDxeQwhO42PtDD6fTIo_rc_4lxt7fPpbW-9tGPGl1T0UDDy-SnFp0-hsxhAM_t7D0pb9ENOEP9se7l1M-S3a6cBn-25TD9CPs9Prk_PZxbcvX0-OL2ZQ83qcacI7LgkVBCqpG0E5tx0jTIiKcdoZIvXCLFoJUstWSNkWRtemFVw23JiuPkCH67vLFO9WNo9qcPnpaQg2rrKqCCE1oYuG_xelsm4YLW7Kgn7YoKt2sEYtkxsgTerZywKwNaBTzDnZTmk3wuhiGBM4ryhRT5GpdWRqE1mRzf-RPV9-VXC0FpS5uomrFIqZr8F_AYtDqJ4
CitedBy_id crossref_primary_10_1021_acsapm_2c01926
crossref_primary_10_1016_j_eurpolymj_2024_113034
crossref_primary_10_1002_mame_202100823
crossref_primary_10_1021_acsami_2c00236
crossref_primary_10_1039_D4NJ01258E
crossref_primary_10_1016_j_ijbiomac_2024_137021
crossref_primary_10_1016_j_carbpol_2021_118697
crossref_primary_10_1021_acsapm_3c02433
crossref_primary_10_4028_www_scientific_net_KEM_821_23
crossref_primary_10_3390_polym15122695
crossref_primary_10_1002_admi_201900761
crossref_primary_10_1021_acs_macromol_1c02103
crossref_primary_10_1016_j_ijbiomac_2024_131700
crossref_primary_10_1186_s12951_020_00612_7
crossref_primary_10_1021_acsnano_0c09204
crossref_primary_10_34133_2020_2038560
crossref_primary_10_1007_s10854_024_11927_8
crossref_primary_10_1016_j_jconrel_2020_04_042
crossref_primary_10_3390_gels9090695
crossref_primary_10_1016_j_progpolymsci_2017_04_001
crossref_primary_10_1021_acsmacrolett_4c00769
crossref_primary_10_1016_j_ijbiomac_2024_132919
crossref_primary_10_1021_acsbiomaterials_9b00604
crossref_primary_10_3390_gels8110751
crossref_primary_10_1007_s42235_021_00079_8
crossref_primary_10_1002_jbm_b_34990
crossref_primary_10_1002_smll_202205489
crossref_primary_10_1016_j_bios_2023_115773
crossref_primary_10_1016_j_mtcomm_2020_101569
crossref_primary_10_1039_D2QM00041E
crossref_primary_10_1016_j_jcis_2021_03_174
crossref_primary_10_1016_j_jobe_2024_111442
crossref_primary_10_1016_j_jclepro_2023_140503
crossref_primary_10_1021_acsapm_1c00042
crossref_primary_10_1007_s10570_019_02871_6
crossref_primary_10_1016_j_susmat_2024_e00990
crossref_primary_10_1021_acsami_8b14238
crossref_primary_10_1039_D0CS00908C
crossref_primary_10_1021_acsapm_3c00356
crossref_primary_10_1016_j_carbpol_2018_03_071
crossref_primary_10_1016_j_ijbiomac_2017_12_032
crossref_primary_10_1002_advs_202303651
crossref_primary_10_1016_j_cej_2024_151419
crossref_primary_10_1002_mabi_202000252
crossref_primary_10_1016_j_carbpol_2020_116905
crossref_primary_10_1021_acsami_3c07989
crossref_primary_10_1016_j_ijbiomac_2024_129847
crossref_primary_10_1016_j_jece_2024_114881
crossref_primary_10_1007_s10570_018_1873_5
crossref_primary_10_1039_D2SM01417C
crossref_primary_10_1016_j_colsurfa_2025_136383
crossref_primary_10_1016_j_ijbiomac_2024_137587
crossref_primary_10_1002_adfm_202306586
crossref_primary_10_1016_j_ijpharm_2024_124016
crossref_primary_10_3390_pharmaceutics14040732
crossref_primary_10_1002_adma_202001085
crossref_primary_10_1016_j_diamond_2023_110782
crossref_primary_10_1016_j_ijbiomac_2023_125911
crossref_primary_10_1002_aisy_202000208
crossref_primary_10_1080_00914037_2019_1581780
crossref_primary_10_1016_j_eurpolymj_2022_111737
crossref_primary_10_1002_adfm_202104701
crossref_primary_10_1016_j_ceramint_2024_10_326
crossref_primary_10_1016_j_jpowsour_2017_08_022
crossref_primary_10_1016_j_memsci_2021_119287
crossref_primary_10_1002_adfm_201903984
crossref_primary_10_1016_j_carbpol_2019_115008
crossref_primary_10_1016_j_biomaterials_2018_04_023
crossref_primary_10_1039_D1TC05864A
crossref_primary_10_1016_j_msec_2017_11_025
crossref_primary_10_1007_s10853_022_07179_8
crossref_primary_10_1021_acsami_3c06230
crossref_primary_10_1002_marc_201900038
crossref_primary_10_1021_acssuschemeng_2c02506
crossref_primary_10_1063_5_0035996
crossref_primary_10_1002_marc_202200766
crossref_primary_10_1016_j_matlet_2021_130172
crossref_primary_10_1002_marc_201700421
crossref_primary_10_1002_app_56450
crossref_primary_10_1016_j_eurpolymj_2022_111751
crossref_primary_10_1016_j_jmrt_2021_06_088
crossref_primary_10_1021_acsami_4c00354
crossref_primary_10_1039_D1NJ00804H
crossref_primary_10_1021_acsami_7b10345
crossref_primary_10_1002_pola_29305
crossref_primary_10_1039_C9RA02842K
crossref_primary_10_1080_87559129_2020_1858313
crossref_primary_10_1021_acs_chemmater_9b02612
crossref_primary_10_1016_j_mtcomm_2022_104551
crossref_primary_10_1021_acsapm_3c01247
crossref_primary_10_3390_ijms222313050
crossref_primary_10_1002_app_49158
crossref_primary_10_1002_app_55129
crossref_primary_10_1002_adma_202309952
crossref_primary_10_1002_smll_201704497
crossref_primary_10_1039_C9TB00372J
crossref_primary_10_1039_D1QM00921D
crossref_primary_10_3390_molecules25214910
crossref_primary_10_1039_D2TB01056A
crossref_primary_10_1039_D4TA00748D
crossref_primary_10_1016_j_jmbbm_2021_104452
crossref_primary_10_1039_C9SM00869A
crossref_primary_10_1021_acs_biomac_9b01223
crossref_primary_10_1002_pat_4722
crossref_primary_10_1088_1361_665X_acdf9c
crossref_primary_10_1007_s10965_024_04230_x
crossref_primary_10_1016_j_cej_2021_133202
crossref_primary_10_1016_j_polymer_2022_125270
crossref_primary_10_1021_acs_est_3c04540
crossref_primary_10_1080_10584587_2023_2296314
crossref_primary_10_1016_j_indcrop_2023_117495
crossref_primary_10_1016_j_msec_2020_111750
crossref_primary_10_1021_acsami_8b06567
crossref_primary_10_1021_acsami_9b18646
crossref_primary_10_1016_j_jhazmat_2024_136552
crossref_primary_10_1016_j_tifs_2023_04_004
crossref_primary_10_1016_j_seppur_2022_120937
crossref_primary_10_1016_j_cej_2025_160399
crossref_primary_10_1021_acsami_0c07753
crossref_primary_10_1021_acssuschemeng_3c03468
crossref_primary_10_1002_adhm_202201730
crossref_primary_10_1016_j_progpolymsci_2018_08_005
crossref_primary_10_1016_j_carbpol_2021_117633
crossref_primary_10_3390_molecules26154705
crossref_primary_10_3390_pharmaceutics15051326
crossref_primary_10_1016_j_eurpolymj_2024_113651
crossref_primary_10_1016_j_rinma_2023_100425
crossref_primary_10_1021_acssuschemeng_1c03852
crossref_primary_10_1016_j_ijbiomac_2024_133042
crossref_primary_10_1002_adma_202105829
crossref_primary_10_1002_ange_201807804
crossref_primary_10_1016_j_colsurfa_2023_132706
crossref_primary_10_1002_batt_202200275
crossref_primary_10_1016_j_eurpolymj_2023_112277
crossref_primary_10_1016_j_est_2022_105853
crossref_primary_10_1007_s11595_019_2217_5
crossref_primary_10_1016_j_aca_2022_340252
crossref_primary_10_1016_j_matchemphys_2019_122112
crossref_primary_10_1016_j_ijbiomac_2023_126954
crossref_primary_10_1021_acsami_7b04290
crossref_primary_10_1002_mabi_202400101
crossref_primary_10_1016_j_ijbiomac_2024_132182
crossref_primary_10_3390_gels11030168
crossref_primary_10_1002_cssc_201902079
crossref_primary_10_1039_D2SM00453D
crossref_primary_10_1016_j_matdes_2024_113048
crossref_primary_10_1021_acsami_7b09614
crossref_primary_10_1016_j_carbpol_2017_09_030
crossref_primary_10_1016_j_ijbiomac_2023_127931
crossref_primary_10_1021_acsaem_0c01794
crossref_primary_10_1016_j_jcis_2018_10_017
crossref_primary_10_3389_fmats_2021_671451
crossref_primary_10_1021_acsami_0c02037
crossref_primary_10_1016_j_chroma_2021_462648
crossref_primary_10_1016_j_reactfunctpolym_2021_104983
crossref_primary_10_3389_fbioe_2022_855013
crossref_primary_10_1021_acsabm_0c01633
crossref_primary_10_1021_acsami_0c06995
crossref_primary_10_1021_acsami_1c04781
crossref_primary_10_1039_D4RA04294H
crossref_primary_10_1021_acs_analchem_1c03514
crossref_primary_10_3390_pharmaceutics14122649
crossref_primary_10_1021_jacs_4c00625
crossref_primary_10_1016_j_bioactmat_2021_04_007
crossref_primary_10_1016_j_ijbiomac_2024_133368
crossref_primary_10_1016_j_mser_2020_100543
crossref_primary_10_1021_acsami_0c07717
crossref_primary_10_1039_D4TB00608A
crossref_primary_10_1039_C9TA10502F
crossref_primary_10_3390_polym15204092
crossref_primary_10_1016_j_eurpolymj_2025_113897
crossref_primary_10_1021_acsomega_8b00079
crossref_primary_10_1007_s10924_022_02454_w
crossref_primary_10_1002_mame_202000285
crossref_primary_10_1016_j_jcis_2023_11_093
crossref_primary_10_3390_polym13152535
crossref_primary_10_1016_j_foodhyd_2024_110636
crossref_primary_10_1016_j_eurpolymj_2021_110786
crossref_primary_10_1016_j_jece_2024_114215
crossref_primary_10_1016_j_polymer_2025_128131
crossref_primary_10_1039_D3TB01900D
crossref_primary_10_1039_D1SM01201K
crossref_primary_10_3390_gels8040210
crossref_primary_10_1021_acs_jafc_8b05147
crossref_primary_10_1039_D0PY00023J
crossref_primary_10_3390_polym14173532
crossref_primary_10_1016_j_jcis_2024_11_045
crossref_primary_10_1021_acsami_2c03596
crossref_primary_10_1002_pola_29272
crossref_primary_10_1007_s40242_019_8341_0
crossref_primary_10_1002_smll_202311240
crossref_primary_10_1016_j_ijbiomac_2022_12_286
crossref_primary_10_1002_adma_202416744
crossref_primary_10_1088_1361_665X_acafbc
crossref_primary_10_1002_macp_202100061
crossref_primary_10_1039_D0QM00566E
crossref_primary_10_1039_C8NJ06559D
crossref_primary_10_1016_j_colsurfb_2021_111869
crossref_primary_10_1016_j_polymertesting_2020_107006
crossref_primary_10_3390_polym15061406
crossref_primary_10_1007_s10118_017_1991_9
crossref_primary_10_1016_j_colsurfa_2022_129795
crossref_primary_10_1016_j_seppur_2023_125959
crossref_primary_10_1016_j_seppur_2022_122164
crossref_primary_10_34133_research_0089
crossref_primary_10_1016_j_ultsonch_2017_12_037
crossref_primary_10_1002_slct_202302496
crossref_primary_10_1039_D2NJ00056C
crossref_primary_10_1021_acsami_0c18250
crossref_primary_10_1021_acsami_2c18441
crossref_primary_10_3390_polym9030095
crossref_primary_10_1016_j_carbpol_2022_119268
crossref_primary_10_1016_j_ijbiomac_2021_09_169
crossref_primary_10_1021_acsomega_8b02041
crossref_primary_10_1039_D0TB01769H
crossref_primary_10_1016_j_eurpolymj_2023_112336
crossref_primary_10_1016_j_compositesb_2024_111720
crossref_primary_10_1016_j_jre_2022_10_001
crossref_primary_10_3390_polym16192755
crossref_primary_10_1039_D3MH01714A
crossref_primary_10_1016_j_jmbbm_2023_106219
crossref_primary_10_1016_j_ijbiomac_2021_01_038
crossref_primary_10_1039_D1GC01998H
crossref_primary_10_3390_polym16142021
crossref_primary_10_1002_marc_202200047
crossref_primary_10_1002_app_49880
crossref_primary_10_1016_j_porgcoat_2023_107880
crossref_primary_10_1080_01694243_2024_2369270
crossref_primary_10_1039_C9CS00849G
crossref_primary_10_1016_j_matdes_2023_111911
crossref_primary_10_1039_D1PY00542A
crossref_primary_10_1039_C8SM01126E
crossref_primary_10_1016_j_compscitech_2023_110295
crossref_primary_10_1002_admi_202300274
crossref_primary_10_1021_acs_chemrev_7b00168
crossref_primary_10_1007_s42452_020_03516_1
crossref_primary_10_1016_j_jmbbm_2024_106825
crossref_primary_10_1016_j_cej_2018_02_009
crossref_primary_10_3390_polym16192752
crossref_primary_10_1016_j_carbpol_2023_121738
crossref_primary_10_1016_j_jpowsour_2022_232015
crossref_primary_10_1016_j_matdes_2025_113613
crossref_primary_10_1039_D4TA00129J
crossref_primary_10_1016_j_ijbiomac_2023_127401
crossref_primary_10_3390_biomimetics4020030
crossref_primary_10_1016_j_ijbiomac_2024_135729
crossref_primary_10_1039_D1RA04434F
crossref_primary_10_1007_s00289_022_04133_1
crossref_primary_10_1016_j_eurpolymj_2021_110974
crossref_primary_10_3390_gels10040256
crossref_primary_10_1016_j_est_2024_110961
crossref_primary_10_1016_j_jiec_2023_02_005
crossref_primary_10_1007_s11581_022_04877_w
crossref_primary_10_1016_j_cej_2024_148808
crossref_primary_10_1039_C7PY00698E
crossref_primary_10_3390_polym12010239
crossref_primary_10_1016_j_memsci_2018_02_009
crossref_primary_10_1039_D0PY01036G
crossref_primary_10_1002_pc_24988
crossref_primary_10_1016_j_jcis_2019_02_015
crossref_primary_10_1002_slct_202404009
crossref_primary_10_1016_j_polymer_2020_122643
crossref_primary_10_1016_j_ijbiomac_2022_10_262
crossref_primary_10_1016_j_bioactmat_2023_06_007
crossref_primary_10_1021_acsomega_2c06730
crossref_primary_10_1039_C8TB02556H
crossref_primary_10_1021_acsami_3c02781
crossref_primary_10_1002_adfm_202413036
crossref_primary_10_1016_j_desal_2024_117609
crossref_primary_10_1016_j_polymer_2017_01_051
crossref_primary_10_1021_acsami_1c08061
crossref_primary_10_1016_j_matlet_2018_06_032
crossref_primary_10_1021_acsami_1c23102
crossref_primary_10_1016_j_ijbiomac_2021_09_123
crossref_primary_10_1039_D4TA04012K
crossref_primary_10_1016_j_eurpolymj_2023_112373
crossref_primary_10_1016_j_actbio_2024_08_049
crossref_primary_10_1002_ange_201907670
crossref_primary_10_1021_acs_macromol_7b02653
crossref_primary_10_1016_j_jconrel_2024_08_011
crossref_primary_10_1039_D4SM00882K
crossref_primary_10_1021_acsapm_2c00191
crossref_primary_10_1002_app_54829
crossref_primary_10_1016_j_ijbiomac_2022_05_071
crossref_primary_10_1021_acs_macromol_1c01725
crossref_primary_10_1080_09205063_2023_2230855
crossref_primary_10_1002_marc_201800190
crossref_primary_10_1016_j_fpsl_2024_101401
crossref_primary_10_1007_s00396_020_04756_8
crossref_primary_10_1016_j_carbpol_2020_117508
crossref_primary_10_1039_C8TB02679C
crossref_primary_10_1021_acsbiomaterials_8b01507
crossref_primary_10_1016_j_jcis_2023_12_057
crossref_primary_10_3390_membranes12111151
crossref_primary_10_1021_acssuschemeng_9b02576
crossref_primary_10_1039_D0TB00424C
crossref_primary_10_1021_acs_macromol_2c01364
crossref_primary_10_1021_acsapm_2c02248
crossref_primary_10_1021_acsapm_2c01158
crossref_primary_10_4028_p_zi6u2q
crossref_primary_10_1016_j_carbpol_2020_116656
crossref_primary_10_1021_acs_langmuir_1c00604
crossref_primary_10_1021_acsapm_1c01724
crossref_primary_10_1039_D4RA03751K
crossref_primary_10_1002_pat_5466
crossref_primary_10_1021_acsami_8b20380
crossref_primary_10_1021_acsami_3c02408
crossref_primary_10_1002_mame_202100096
crossref_primary_10_1039_D2TB00541G
crossref_primary_10_1021_acsmaterialslett_1c00203
crossref_primary_10_1177_1528083720944485
crossref_primary_10_1016_j_est_2023_108618
crossref_primary_10_1038_s41428_018_0167_y
crossref_primary_10_1002_eem2_12464
crossref_primary_10_1016_j_compstruct_2024_118783
crossref_primary_10_1021_acsami_8b01425
crossref_primary_10_1007_s00289_024_05324_8
crossref_primary_10_1007_s10853_018_03279_6
crossref_primary_10_1016_j_eurpolymj_2024_112902
crossref_primary_10_1016_j_cej_2019_02_030
crossref_primary_10_1088_1361_665X_ac27c1
crossref_primary_10_1142_S1793604722500102
crossref_primary_10_1002_marc_202000202
crossref_primary_10_1002_app_48285
crossref_primary_10_1080_1539445X_2019_1606012
crossref_primary_10_1016_j_cis_2024_103359
crossref_primary_10_1021_acsami_7b03624
crossref_primary_10_1007_s10853_019_04315_9
crossref_primary_10_1016_j_eurpolymj_2022_111262
crossref_primary_10_3390_molecules28124690
crossref_primary_10_3390_polym10101102
crossref_primary_10_1038_s41598_025_85298_3
crossref_primary_10_3390_jfb13030140
crossref_primary_10_1007_s10965_021_02624_9
crossref_primary_10_1016_j_carbpol_2022_119314
crossref_primary_10_1007_s10570_024_05971_0
crossref_primary_10_1021_acsami_8b09026
crossref_primary_10_1016_j_chemosphere_2021_132529
crossref_primary_10_1002_anie_201907670
crossref_primary_10_1039_C9TB02156F
crossref_primary_10_1007_s13726_020_00821_9
crossref_primary_10_1016_j_compscitech_2020_108608
crossref_primary_10_1016_j_molliq_2022_120226
crossref_primary_10_1021_acsapm_3c02376
crossref_primary_10_1021_acssuschemeng_8b04851
crossref_primary_10_1021_acsbiomaterials_2c00997
crossref_primary_10_1002_eem2_12357
crossref_primary_10_1002_mabi_202100055
crossref_primary_10_1016_j_cej_2021_129991
crossref_primary_10_1080_01932691_2020_1844740
crossref_primary_10_1002_slct_202404597
crossref_primary_10_1021_acsami_0c13531
crossref_primary_10_1002_adfm_202420683
crossref_primary_10_1016_j_colsurfa_2021_127823
crossref_primary_10_3390_jfb14040234
crossref_primary_10_1016_j_colsurfa_2021_127948
crossref_primary_10_1016_j_polymer_2024_127343
crossref_primary_10_1016_j_reactfunctpolym_2022_105384
crossref_primary_10_1016_j_memsci_2024_123596
crossref_primary_10_1039_C9RA09344C
crossref_primary_10_1002_adfm_202011259
crossref_primary_10_1002_mame_202100455
crossref_primary_10_1016_j_eurpolymj_2023_112708
crossref_primary_10_1021_acsaem_0c01051
crossref_primary_10_1016_j_jallcom_2024_175235
crossref_primary_10_1016_j_cis_2025_103425
crossref_primary_10_1038_s41598_023_32566_9
crossref_primary_10_15825_1995_1191_2021_1_75_83
crossref_primary_10_1002_anie_201807804
crossref_primary_10_1021_acs_macromol_4c00875
crossref_primary_10_1016_j_cej_2021_130886
crossref_primary_10_1039_D3NJ02229C
crossref_primary_10_1002_pen_25574
crossref_primary_10_1021_acsami_8b11391
crossref_primary_10_1039_D1TB02114A
crossref_primary_10_1002_app_52918
crossref_primary_10_1016_j_ijbiomac_2023_123841
crossref_primary_10_1016_j_ijbiomac_2020_07_250
crossref_primary_10_1016_j_cej_2021_132957
crossref_primary_10_1016_j_indcrop_2024_119598
crossref_primary_10_1002_pen_25449
crossref_primary_10_1016_j_jpowsour_2020_228602
crossref_primary_10_1039_D1TB02101J
crossref_primary_10_1016_j_colsurfa_2019_03_027
crossref_primary_10_3390_gels9010007
crossref_primary_10_1039_D1CS00688F
crossref_primary_10_1039_D0BM00429D
crossref_primary_10_7240_jeps_1089688
crossref_primary_10_1016_j_ijbiomac_2020_12_148
crossref_primary_10_1039_D0RA06053D
crossref_primary_10_1016_j_carbpol_2017_04_035
crossref_primary_10_1021_acsami_9b14756
crossref_primary_10_1063_5_0242425
crossref_primary_10_1016_j_ijbiomac_2023_127278
crossref_primary_10_1016_j_ijbiomac_2022_09_113
crossref_primary_10_1016_j_ijbiomac_2024_131611
crossref_primary_10_1002_smll_202206819
crossref_primary_10_1021_acsomega_3c06683
crossref_primary_10_1039_D1ME00111F
crossref_primary_10_1002_mame_202100486
crossref_primary_10_1016_j_polymertesting_2018_04_032
crossref_primary_10_1016_j_carbpol_2023_120609
crossref_primary_10_1016_j_reactfunctpolym_2022_105454
crossref_primary_10_1016_j_matdes_2023_112244
crossref_primary_10_1016_j_ijbiomac_2023_128495
crossref_primary_10_1007_s10965_021_02777_7
crossref_primary_10_1039_C7PY01105A
crossref_primary_10_3390_polym14193941
crossref_primary_10_1016_j_heliyon_2023_e21835
crossref_primary_10_1177_08853282211058099
crossref_primary_10_1002_btm2_10540
crossref_primary_10_1016_j_colsurfb_2024_114390
crossref_primary_10_3390_gels8070419
crossref_primary_10_1016_j_ijbiomac_2025_140857
crossref_primary_10_1021_acssuschemeng_3c06472
crossref_primary_10_1016_j_eurpolymj_2019_03_004
crossref_primary_10_1002_marc_201900217
crossref_primary_10_1016_j_nanoen_2022_108127
crossref_primary_10_1039_D4NJ02752C
crossref_primary_10_1021_acsami_9b14538
crossref_primary_10_1021_acsami_7b00169
crossref_primary_10_1016_j_compositesb_2022_110181
Cites_doi 10.1039/C3SM52666F
10.1021/mz4004997
10.1002/adfm.201505391
10.1002/marc.201400648
10.1002/anie.201601667
10.1039/C4CC04760E
10.1021/acs.langmuir.5b03474
10.1021/acsami.5b02234
10.1021/acsami.5b05074
10.1039/C4PY00554F
10.1021/ma400494n
10.1038/nature03496
10.1016/j.polymer.2012.05.036
10.1016/j.matdes.2013.08.016
10.1002/adma.201004566
10.1039/C5SM00168D
10.1039/b924430a
10.1002/adfm.201400763
10.1039/c2sm26102b
10.1038/376219a0
10.1002/adma.201503724
10.1007/BF01412597
10.1039/C5TB00781J
10.1021/mz3006389
10.1016/j.eurpolymj.2014.06.006
10.1002/marc.201400698
10.1126/science.1237265
10.1002/adfm.201403992
10.1021/jacs.5b06510
10.1021/ma501590x
10.1002/adfm.201503434
10.1021/acsami.5b01304
10.1002/adfm.201200138
10.1002/adma.201403702
10.1039/C5TB02737C
10.1021/acsami.6b00867
10.1002/adma.201503132
10.1002/anie.201502957
10.1002/app.1992.070451019
10.1021/ja205332w
10.1039/C6SC02354A
10.1007/978-3-662-04201-4
10.1039/c0jm04043f
10.1039/c4tb00315b
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.6b08374
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 27206
ExternalDocumentID 27648478
10_1021_acsami_6b08374
a105144670
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-c06f680170a28c57166ef404772461fd08c9d9b8a8c8b788bc57c3db76856ddf3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 13:13:06 EDT 2025
Thu Jul 10 22:06:45 EDT 2025
Mon Jul 21 05:41:44 EDT 2025
Tue Jul 01 02:28:57 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords PVA
tannic acid
hydrogels
shape memory
mechanical properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-c06f680170a28c57166ef404772461fd08c9d9b8a8c8b788bc57c3db76856ddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27648478
PQID 1835412528
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000301956
proquest_miscellaneous_1835412528
pubmed_primary_27648478
crossref_citationtrail_10_1021_acsami_6b08374
crossref_primary_10_1021_acsami_6b08374
acs_journals_10_1021_acsami_6b08374
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161012
2016-10-12
2016-Oct-12
PublicationDateYYYYMMDD 2016-10-12
PublicationDate_xml – month: 10
  year: 2016
  text: 20161012
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1039/C3SM52666F
– ident: ref20/cit20
  doi: 10.1021/mz4004997
– ident: ref6/cit6
  doi: 10.1002/adfm.201505391
– ident: ref27/cit27
  doi: 10.1002/marc.201400648
– ident: ref30/cit30
  doi: 10.1002/anie.201601667
– ident: ref28/cit28
  doi: 10.1039/C4CC04760E
– ident: ref25/cit25
  doi: 10.1021/acs.langmuir.5b03474
– ident: ref26/cit26
  doi: 10.1021/acsami.5b02234
– ident: ref5/cit5
  doi: 10.1021/acsami.5b05074
– ident: ref4/cit4
  doi: 10.1039/C4PY00554F
– ident: ref15/cit15
  doi: 10.1021/ma400494n
– ident: ref11/cit11
  doi: 10.1038/nature03496
– ident: ref14/cit14
  doi: 10.1016/j.polymer.2012.05.036
– ident: ref44/cit44
  doi: 10.1016/j.matdes.2013.08.016
– ident: ref9/cit9
  doi: 10.1002/adma.201004566
– ident: ref41/cit41
  doi: 10.1039/C5SM00168D
– ident: ref7/cit7
  doi: 10.1039/b924430a
– ident: ref35/cit35
  doi: 10.1002/adfm.201400763
– ident: ref38/cit38
  doi: 10.1039/c2sm26102b
– ident: ref13/cit13
  doi: 10.1038/376219a0
– ident: ref22/cit22
  doi: 10.1002/adma.201503724
– ident: ref24/cit24
  doi: 10.1007/BF01412597
– ident: ref19/cit19
  doi: 10.1039/C5TB00781J
– ident: ref1/cit1
  doi: 10.1021/mz3006389
– ident: ref40/cit40
  doi: 10.1016/j.eurpolymj.2014.06.006
– ident: ref23/cit23
  doi: 10.1002/marc.201400698
– ident: ref33/cit33
  doi: 10.1126/science.1237265
– ident: ref32/cit32
  doi: 10.1002/adfm.201403992
– ident: ref16/cit16
  doi: 10.1021/jacs.5b06510
– ident: ref37/cit37
  doi: 10.1021/ma501590x
– ident: ref17/cit17
  doi: 10.1002/adfm.201503434
– ident: ref31/cit31
  doi: 10.1021/acsami.5b01304
– ident: ref34/cit34
  doi: 10.1002/adfm.201200138
– ident: ref2/cit2
  doi: 10.1002/adma.201403702
– ident: ref42/cit42
  doi: 10.1039/C5TB02737C
– ident: ref3/cit3
  doi: 10.1021/acsami.6b00867
– ident: ref8/cit8
  doi: 10.1002/adma.201503132
– ident: ref21/cit21
  doi: 10.1002/anie.201502957
– ident: ref12/cit12
  doi: 10.1002/app.1992.070451019
– ident: ref10/cit10
  doi: 10.1021/ja205332w
– ident: ref29/cit29
  doi: 10.1039/C6SC02354A
– ident: ref36/cit36
  doi: 10.1007/978-3-662-04201-4
– ident: ref39/cit39
  doi: 10.1039/c0jm04043f
– ident: ref43/cit43
  doi: 10.1039/c4tb00315b
SSID ssj0063205
Score 2.6358397
Snippet Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27199
SubjectTerms alcohols
ambient temperature
coagulation
crosslinking
gelation
hydrogels
hydrogen bonding
mechanical properties
polyvinyl alcohol
tannins
Title Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors
URI http://dx.doi.org/10.1021/acsami.6b08374
https://www.ncbi.nlm.nih.gov/pubmed/27648478
https://www.proquest.com/docview/1835412528
https://www.proquest.com/docview/2000301956
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYLnBgX8omI5CAQ0rruK57rBCoQgIhARK3yFsAURKUpIhy4h_4Q76EmSRlVQXnTGR7PPa8GdtvCNl2nNmGZWC8WkGAYg33JFPcYwarOrBaGGp8jXxyKjqX_PiqcfWZ7_h5gs_q-8qkWApHaAALTT5KxpmQTQyz2gfngz1X-Cy_rAgRObbF-YCe8df_6IRM-t0JDUGWuYc5mi7ojtKcmBAvltxVe5mumufftI1_dn6GTJUwk7YLu5glIy6aI5NfyAfnyd1Z3O3vPt5G_S5VRaHcvbeX1wssYmRo29xa2unbJL4G70kxXUsPn_I0f5TRE4cPhnF-6Rlm8xOkZaUqsvT8Rj04-H4fJ31aki8m6QK5PDq8OOh4ZekFT_nCzzxTE6GQyK2jmDQNCKqEC3mNAxbnoh7amjQt29JSSSM1RNEaZAxSNQvZENaG_iIZi-LILROqNaAq2I5DiMQ4fFcwPb5oWW64qzPDK2QLtBSUSycN8lNxVg8K1QWl6irEG8xYYEr2ciyi0R0qv_Mh_1DwdgyV3BwYQABLCxWpIhf3oCeYFAMAyORwGVYElTC2ClkqrOejPdYUHJy_XPnXCFfJBIAx4eW3ZdbIWJb03DoAnkxv5Lb-DutS-zo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5ROLQ9FPqgDfThqpVaDguJ1zHOMUKgtCUoEkHitvJrKSLdRbubquHEf-Af9pd0Zh-htIrUXtezu_Z4bH8ztr8BeO8Fd13H0XiNRgfFWREorkXALWV14O04NnQbeXgkByfi82n3dAl2mrswWIkcv5SXm_i37AKdHXxGGXGkQcywK-7BCiIRTt5Wf--4mXplyMszi-iY0y-FaFga_3qf1iKb312LFgDMcqE5WIXRvIrl-ZKL7Wlhtu3VH-yN_9GGNXhUg07Wr6zkMSz55Ak8_I2K8ClcjNLJ7OP382Q2YbpKm7v18_pmTCmNLOvbc8cGM5elZ7iWMgresv0fZdA_KdjQ0_Vh6m02oth-RiStTCeOHX_Vlx7Lv6XZjNVUjFn-DE4O9sd7g6BOxBDoUIZFYNsyloqYdjRXtosulvSxaAtE5kJ2YtdWtud6RmlllUGf2qCMJeJmqbrSuThch-UkTfwLYMYgxsLJOUa_TGC5xl4KZc8JK3yHW9GCd6ilqB5IeVTukfNOVKkuqlXXgqDpuMjWXOaUUmOyUP7DXP6yYvFYKPm2sYMIBxopUic-nWJNKESGcJCrxTK8cjGxbS14XhnR_H98VwqEAmrjn1r4Bu4PxsPD6PDT0ZdNeIAwTQblOZqXsFxkU_8KoVBhXpfm_wtgMgOq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9tAEB61VEL0oQdX03MRSMCDIVlvls1jRInSAxSJIPFm7eUWkdqR7VRNn_of-g_7SzpjOxEFRaKv3rG91-x8M7v7DcCOF9y1HcfJazQ6KM6KQHEtAm4pqwNvxrGh28inZ7J_IT5eti_re9x0FwYrkeOX8nITn7R67OKaYaB1iM8pK440iBuOxEN4RHt25HF1j89ny68MeXluEZ1z-q0QM6bGO--TPbL5v_ZoAcgsjU3vKQzn1SzPmFwfTApzYH_eYnD8z3Y8gyc1-GTdarY8hwc-WYXHNygJ1-B6kI6me9-vkumI6Sp97v6fX7-HlNrIsq69cqw_dVn6BW0qoyAuO_lRBv-Tgp16ukZMo84GFOPPiKyV6cSx86967LH8W5pNWU3JmOXrcNE7GR73gzohQ6BDGRaBbcpYKmLc0VzZNrpa0seiKRChC9mKXVPZjusYpZVVBn1rgzKWCJylakvn4nADlpI08S-AGYNYCxfpGP0zgeUaRyqUHSes8C1uRQO2sZeiWqHyqNwr562o6rqo7roGBLPBi2zNaU6pNUYL5Xfn8uOKzWOh5NZsLkSocNSROvHpBGtCoTKEhVwtluGVq4lta8BmNZHm_-NHUiAkUC_v1cJ3sDx434s-fzj79ApWEK3JoDxO8xqWimzi3yAiKszbUgP-AskgBi0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28vinyl+alcohol%29%E2%80%93Tannic+Acid+Hydrogels+with+Excellent+Mechanical+Properties+and+Shape+Memory+Behaviors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Ya-Nan&rft.au=Peng%2C+Lufang&rft.au=Liu%2C+Tianqi&rft.au=Wang%2C+Yaxin&rft.date=2016-10-12&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=8&rft.issue=40&rft.spage=27199&rft.epage=27206&rft_id=info:doi/10.1021%2Facsami.6b08374&rft.externalDocID=a105144670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon