Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors
Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alc...
Saved in:
Published in | ACS applied materials & interfaces Vol. 8; no. 40; pp. 27199 - 27206 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively. |
---|---|
AbstractList | Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively. Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively. Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively. |
Author | Wang, Yaxin Wang, Huiliang Liu, Tianqi Peng, Lufang Chen, Ya-Nan Shi, Shengjie |
AuthorAffiliation | College of Chemistry Beijing Normal University |
AuthorAffiliation_xml | – name: Beijing Normal University – name: College of Chemistry |
Author_xml | – sequence: 1 givenname: Ya-Nan surname: Chen fullname: Chen, Ya-Nan – sequence: 2 givenname: Lufang surname: Peng fullname: Peng, Lufang – sequence: 3 givenname: Tianqi surname: Liu fullname: Liu, Tianqi – sequence: 4 givenname: Yaxin surname: Wang fullname: Wang, Yaxin – sequence: 5 givenname: Shengjie surname: Shi fullname: Shi, Shengjie – sequence: 6 givenname: Huiliang surname: Wang fullname: Wang, Huiliang email: wanghl@bnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27648478$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQxi0EKn_aa4-VjxRpt3bi2N4jRVAqgYpUerYmttMYHHuxs7S58Q68YZ-kRrtwqIR6mtHM7xuNvm8fbYcYLELvKZlTUtFPoDMMbs5bImvBttAeXTA2k1VTbb_0jO2i_ZxvCOF1RZo3aLcSnEkm5B66vYp-Orx3YfIYvI599B__PDxeQwhO42PtDD6fTIo_rc_4lxt7fPpbW-9tGPGl1T0UDDy-SnFp0-hsxhAM_t7D0pb9ENOEP9se7l1M-S3a6cBn-25TD9CPs9Prk_PZxbcvX0-OL2ZQ83qcacI7LgkVBCqpG0E5tx0jTIiKcdoZIvXCLFoJUstWSNkWRtemFVw23JiuPkCH67vLFO9WNo9qcPnpaQg2rrKqCCE1oYuG_xelsm4YLW7Kgn7YoKt2sEYtkxsgTerZywKwNaBTzDnZTmk3wuhiGBM4ryhRT5GpdWRqE1mRzf-RPV9-VXC0FpS5uomrFIqZr8F_AYtDqJ4 |
CitedBy_id | crossref_primary_10_1021_acsapm_2c01926 crossref_primary_10_1016_j_eurpolymj_2024_113034 crossref_primary_10_1002_mame_202100823 crossref_primary_10_1021_acsami_2c00236 crossref_primary_10_1039_D4NJ01258E crossref_primary_10_1016_j_ijbiomac_2024_137021 crossref_primary_10_1016_j_carbpol_2021_118697 crossref_primary_10_1021_acsapm_3c02433 crossref_primary_10_4028_www_scientific_net_KEM_821_23 crossref_primary_10_3390_polym15122695 crossref_primary_10_1002_admi_201900761 crossref_primary_10_1021_acs_macromol_1c02103 crossref_primary_10_1016_j_ijbiomac_2024_131700 crossref_primary_10_1186_s12951_020_00612_7 crossref_primary_10_1021_acsnano_0c09204 crossref_primary_10_34133_2020_2038560 crossref_primary_10_1007_s10854_024_11927_8 crossref_primary_10_1016_j_jconrel_2020_04_042 crossref_primary_10_3390_gels9090695 crossref_primary_10_1016_j_progpolymsci_2017_04_001 crossref_primary_10_1021_acsmacrolett_4c00769 crossref_primary_10_1016_j_ijbiomac_2024_132919 crossref_primary_10_1021_acsbiomaterials_9b00604 crossref_primary_10_3390_gels8110751 crossref_primary_10_1007_s42235_021_00079_8 crossref_primary_10_1002_jbm_b_34990 crossref_primary_10_1002_smll_202205489 crossref_primary_10_1016_j_bios_2023_115773 crossref_primary_10_1016_j_mtcomm_2020_101569 crossref_primary_10_1039_D2QM00041E crossref_primary_10_1016_j_jcis_2021_03_174 crossref_primary_10_1016_j_jobe_2024_111442 crossref_primary_10_1016_j_jclepro_2023_140503 crossref_primary_10_1021_acsapm_1c00042 crossref_primary_10_1007_s10570_019_02871_6 crossref_primary_10_1016_j_susmat_2024_e00990 crossref_primary_10_1021_acsami_8b14238 crossref_primary_10_1039_D0CS00908C crossref_primary_10_1021_acsapm_3c00356 crossref_primary_10_1016_j_carbpol_2018_03_071 crossref_primary_10_1016_j_ijbiomac_2017_12_032 crossref_primary_10_1002_advs_202303651 crossref_primary_10_1016_j_cej_2024_151419 crossref_primary_10_1002_mabi_202000252 crossref_primary_10_1016_j_carbpol_2020_116905 crossref_primary_10_1021_acsami_3c07989 crossref_primary_10_1016_j_ijbiomac_2024_129847 crossref_primary_10_1016_j_jece_2024_114881 crossref_primary_10_1007_s10570_018_1873_5 crossref_primary_10_1039_D2SM01417C crossref_primary_10_1016_j_colsurfa_2025_136383 crossref_primary_10_1016_j_ijbiomac_2024_137587 crossref_primary_10_1002_adfm_202306586 crossref_primary_10_1016_j_ijpharm_2024_124016 crossref_primary_10_3390_pharmaceutics14040732 crossref_primary_10_1002_adma_202001085 crossref_primary_10_1016_j_diamond_2023_110782 crossref_primary_10_1016_j_ijbiomac_2023_125911 crossref_primary_10_1002_aisy_202000208 crossref_primary_10_1080_00914037_2019_1581780 crossref_primary_10_1016_j_eurpolymj_2022_111737 crossref_primary_10_1002_adfm_202104701 crossref_primary_10_1016_j_ceramint_2024_10_326 crossref_primary_10_1016_j_jpowsour_2017_08_022 crossref_primary_10_1016_j_memsci_2021_119287 crossref_primary_10_1002_adfm_201903984 crossref_primary_10_1016_j_carbpol_2019_115008 crossref_primary_10_1016_j_biomaterials_2018_04_023 crossref_primary_10_1039_D1TC05864A crossref_primary_10_1016_j_msec_2017_11_025 crossref_primary_10_1007_s10853_022_07179_8 crossref_primary_10_1021_acsami_3c06230 crossref_primary_10_1002_marc_201900038 crossref_primary_10_1021_acssuschemeng_2c02506 crossref_primary_10_1063_5_0035996 crossref_primary_10_1002_marc_202200766 crossref_primary_10_1016_j_matlet_2021_130172 crossref_primary_10_1002_marc_201700421 crossref_primary_10_1002_app_56450 crossref_primary_10_1016_j_eurpolymj_2022_111751 crossref_primary_10_1016_j_jmrt_2021_06_088 crossref_primary_10_1021_acsami_4c00354 crossref_primary_10_1039_D1NJ00804H crossref_primary_10_1021_acsami_7b10345 crossref_primary_10_1002_pola_29305 crossref_primary_10_1039_C9RA02842K crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_1021_acs_chemmater_9b02612 crossref_primary_10_1016_j_mtcomm_2022_104551 crossref_primary_10_1021_acsapm_3c01247 crossref_primary_10_3390_ijms222313050 crossref_primary_10_1002_app_49158 crossref_primary_10_1002_app_55129 crossref_primary_10_1002_adma_202309952 crossref_primary_10_1002_smll_201704497 crossref_primary_10_1039_C9TB00372J crossref_primary_10_1039_D1QM00921D crossref_primary_10_3390_molecules25214910 crossref_primary_10_1039_D2TB01056A crossref_primary_10_1039_D4TA00748D crossref_primary_10_1016_j_jmbbm_2021_104452 crossref_primary_10_1039_C9SM00869A crossref_primary_10_1021_acs_biomac_9b01223 crossref_primary_10_1002_pat_4722 crossref_primary_10_1088_1361_665X_acdf9c crossref_primary_10_1007_s10965_024_04230_x crossref_primary_10_1016_j_cej_2021_133202 crossref_primary_10_1016_j_polymer_2022_125270 crossref_primary_10_1021_acs_est_3c04540 crossref_primary_10_1080_10584587_2023_2296314 crossref_primary_10_1016_j_indcrop_2023_117495 crossref_primary_10_1016_j_msec_2020_111750 crossref_primary_10_1021_acsami_8b06567 crossref_primary_10_1021_acsami_9b18646 crossref_primary_10_1016_j_jhazmat_2024_136552 crossref_primary_10_1016_j_tifs_2023_04_004 crossref_primary_10_1016_j_seppur_2022_120937 crossref_primary_10_1016_j_cej_2025_160399 crossref_primary_10_1021_acsami_0c07753 crossref_primary_10_1021_acssuschemeng_3c03468 crossref_primary_10_1002_adhm_202201730 crossref_primary_10_1016_j_progpolymsci_2018_08_005 crossref_primary_10_1016_j_carbpol_2021_117633 crossref_primary_10_3390_molecules26154705 crossref_primary_10_3390_pharmaceutics15051326 crossref_primary_10_1016_j_eurpolymj_2024_113651 crossref_primary_10_1016_j_rinma_2023_100425 crossref_primary_10_1021_acssuschemeng_1c03852 crossref_primary_10_1016_j_ijbiomac_2024_133042 crossref_primary_10_1002_adma_202105829 crossref_primary_10_1002_ange_201807804 crossref_primary_10_1016_j_colsurfa_2023_132706 crossref_primary_10_1002_batt_202200275 crossref_primary_10_1016_j_eurpolymj_2023_112277 crossref_primary_10_1016_j_est_2022_105853 crossref_primary_10_1007_s11595_019_2217_5 crossref_primary_10_1016_j_aca_2022_340252 crossref_primary_10_1016_j_matchemphys_2019_122112 crossref_primary_10_1016_j_ijbiomac_2023_126954 crossref_primary_10_1021_acsami_7b04290 crossref_primary_10_1002_mabi_202400101 crossref_primary_10_1016_j_ijbiomac_2024_132182 crossref_primary_10_3390_gels11030168 crossref_primary_10_1002_cssc_201902079 crossref_primary_10_1039_D2SM00453D crossref_primary_10_1016_j_matdes_2024_113048 crossref_primary_10_1021_acsami_7b09614 crossref_primary_10_1016_j_carbpol_2017_09_030 crossref_primary_10_1016_j_ijbiomac_2023_127931 crossref_primary_10_1021_acsaem_0c01794 crossref_primary_10_1016_j_jcis_2018_10_017 crossref_primary_10_3389_fmats_2021_671451 crossref_primary_10_1021_acsami_0c02037 crossref_primary_10_1016_j_chroma_2021_462648 crossref_primary_10_1016_j_reactfunctpolym_2021_104983 crossref_primary_10_3389_fbioe_2022_855013 crossref_primary_10_1021_acsabm_0c01633 crossref_primary_10_1021_acsami_0c06995 crossref_primary_10_1021_acsami_1c04781 crossref_primary_10_1039_D4RA04294H crossref_primary_10_1021_acs_analchem_1c03514 crossref_primary_10_3390_pharmaceutics14122649 crossref_primary_10_1021_jacs_4c00625 crossref_primary_10_1016_j_bioactmat_2021_04_007 crossref_primary_10_1016_j_ijbiomac_2024_133368 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1021_acsami_0c07717 crossref_primary_10_1039_D4TB00608A crossref_primary_10_1039_C9TA10502F crossref_primary_10_3390_polym15204092 crossref_primary_10_1016_j_eurpolymj_2025_113897 crossref_primary_10_1021_acsomega_8b00079 crossref_primary_10_1007_s10924_022_02454_w crossref_primary_10_1002_mame_202000285 crossref_primary_10_1016_j_jcis_2023_11_093 crossref_primary_10_3390_polym13152535 crossref_primary_10_1016_j_foodhyd_2024_110636 crossref_primary_10_1016_j_eurpolymj_2021_110786 crossref_primary_10_1016_j_jece_2024_114215 crossref_primary_10_1016_j_polymer_2025_128131 crossref_primary_10_1039_D3TB01900D crossref_primary_10_1039_D1SM01201K crossref_primary_10_3390_gels8040210 crossref_primary_10_1021_acs_jafc_8b05147 crossref_primary_10_1039_D0PY00023J crossref_primary_10_3390_polym14173532 crossref_primary_10_1016_j_jcis_2024_11_045 crossref_primary_10_1021_acsami_2c03596 crossref_primary_10_1002_pola_29272 crossref_primary_10_1007_s40242_019_8341_0 crossref_primary_10_1002_smll_202311240 crossref_primary_10_1016_j_ijbiomac_2022_12_286 crossref_primary_10_1002_adma_202416744 crossref_primary_10_1088_1361_665X_acafbc crossref_primary_10_1002_macp_202100061 crossref_primary_10_1039_D0QM00566E crossref_primary_10_1039_C8NJ06559D crossref_primary_10_1016_j_colsurfb_2021_111869 crossref_primary_10_1016_j_polymertesting_2020_107006 crossref_primary_10_3390_polym15061406 crossref_primary_10_1007_s10118_017_1991_9 crossref_primary_10_1016_j_colsurfa_2022_129795 crossref_primary_10_1016_j_seppur_2023_125959 crossref_primary_10_1016_j_seppur_2022_122164 crossref_primary_10_34133_research_0089 crossref_primary_10_1016_j_ultsonch_2017_12_037 crossref_primary_10_1002_slct_202302496 crossref_primary_10_1039_D2NJ00056C crossref_primary_10_1021_acsami_0c18250 crossref_primary_10_1021_acsami_2c18441 crossref_primary_10_3390_polym9030095 crossref_primary_10_1016_j_carbpol_2022_119268 crossref_primary_10_1016_j_ijbiomac_2021_09_169 crossref_primary_10_1021_acsomega_8b02041 crossref_primary_10_1039_D0TB01769H crossref_primary_10_1016_j_eurpolymj_2023_112336 crossref_primary_10_1016_j_compositesb_2024_111720 crossref_primary_10_1016_j_jre_2022_10_001 crossref_primary_10_3390_polym16192755 crossref_primary_10_1039_D3MH01714A crossref_primary_10_1016_j_jmbbm_2023_106219 crossref_primary_10_1016_j_ijbiomac_2021_01_038 crossref_primary_10_1039_D1GC01998H crossref_primary_10_3390_polym16142021 crossref_primary_10_1002_marc_202200047 crossref_primary_10_1002_app_49880 crossref_primary_10_1016_j_porgcoat_2023_107880 crossref_primary_10_1080_01694243_2024_2369270 crossref_primary_10_1039_C9CS00849G crossref_primary_10_1016_j_matdes_2023_111911 crossref_primary_10_1039_D1PY00542A crossref_primary_10_1039_C8SM01126E crossref_primary_10_1016_j_compscitech_2023_110295 crossref_primary_10_1002_admi_202300274 crossref_primary_10_1021_acs_chemrev_7b00168 crossref_primary_10_1007_s42452_020_03516_1 crossref_primary_10_1016_j_jmbbm_2024_106825 crossref_primary_10_1016_j_cej_2018_02_009 crossref_primary_10_3390_polym16192752 crossref_primary_10_1016_j_carbpol_2023_121738 crossref_primary_10_1016_j_jpowsour_2022_232015 crossref_primary_10_1016_j_matdes_2025_113613 crossref_primary_10_1039_D4TA00129J crossref_primary_10_1016_j_ijbiomac_2023_127401 crossref_primary_10_3390_biomimetics4020030 crossref_primary_10_1016_j_ijbiomac_2024_135729 crossref_primary_10_1039_D1RA04434F crossref_primary_10_1007_s00289_022_04133_1 crossref_primary_10_1016_j_eurpolymj_2021_110974 crossref_primary_10_3390_gels10040256 crossref_primary_10_1016_j_est_2024_110961 crossref_primary_10_1016_j_jiec_2023_02_005 crossref_primary_10_1007_s11581_022_04877_w crossref_primary_10_1016_j_cej_2024_148808 crossref_primary_10_1039_C7PY00698E crossref_primary_10_3390_polym12010239 crossref_primary_10_1016_j_memsci_2018_02_009 crossref_primary_10_1039_D0PY01036G crossref_primary_10_1002_pc_24988 crossref_primary_10_1016_j_jcis_2019_02_015 crossref_primary_10_1002_slct_202404009 crossref_primary_10_1016_j_polymer_2020_122643 crossref_primary_10_1016_j_ijbiomac_2022_10_262 crossref_primary_10_1016_j_bioactmat_2023_06_007 crossref_primary_10_1021_acsomega_2c06730 crossref_primary_10_1039_C8TB02556H crossref_primary_10_1021_acsami_3c02781 crossref_primary_10_1002_adfm_202413036 crossref_primary_10_1016_j_desal_2024_117609 crossref_primary_10_1016_j_polymer_2017_01_051 crossref_primary_10_1021_acsami_1c08061 crossref_primary_10_1016_j_matlet_2018_06_032 crossref_primary_10_1021_acsami_1c23102 crossref_primary_10_1016_j_ijbiomac_2021_09_123 crossref_primary_10_1039_D4TA04012K crossref_primary_10_1016_j_eurpolymj_2023_112373 crossref_primary_10_1016_j_actbio_2024_08_049 crossref_primary_10_1002_ange_201907670 crossref_primary_10_1021_acs_macromol_7b02653 crossref_primary_10_1016_j_jconrel_2024_08_011 crossref_primary_10_1039_D4SM00882K crossref_primary_10_1021_acsapm_2c00191 crossref_primary_10_1002_app_54829 crossref_primary_10_1016_j_ijbiomac_2022_05_071 crossref_primary_10_1021_acs_macromol_1c01725 crossref_primary_10_1080_09205063_2023_2230855 crossref_primary_10_1002_marc_201800190 crossref_primary_10_1016_j_fpsl_2024_101401 crossref_primary_10_1007_s00396_020_04756_8 crossref_primary_10_1016_j_carbpol_2020_117508 crossref_primary_10_1039_C8TB02679C crossref_primary_10_1021_acsbiomaterials_8b01507 crossref_primary_10_1016_j_jcis_2023_12_057 crossref_primary_10_3390_membranes12111151 crossref_primary_10_1021_acssuschemeng_9b02576 crossref_primary_10_1039_D0TB00424C crossref_primary_10_1021_acs_macromol_2c01364 crossref_primary_10_1021_acsapm_2c02248 crossref_primary_10_1021_acsapm_2c01158 crossref_primary_10_4028_p_zi6u2q crossref_primary_10_1016_j_carbpol_2020_116656 crossref_primary_10_1021_acs_langmuir_1c00604 crossref_primary_10_1021_acsapm_1c01724 crossref_primary_10_1039_D4RA03751K crossref_primary_10_1002_pat_5466 crossref_primary_10_1021_acsami_8b20380 crossref_primary_10_1021_acsami_3c02408 crossref_primary_10_1002_mame_202100096 crossref_primary_10_1039_D2TB00541G crossref_primary_10_1021_acsmaterialslett_1c00203 crossref_primary_10_1177_1528083720944485 crossref_primary_10_1016_j_est_2023_108618 crossref_primary_10_1038_s41428_018_0167_y crossref_primary_10_1002_eem2_12464 crossref_primary_10_1016_j_compstruct_2024_118783 crossref_primary_10_1021_acsami_8b01425 crossref_primary_10_1007_s00289_024_05324_8 crossref_primary_10_1007_s10853_018_03279_6 crossref_primary_10_1016_j_eurpolymj_2024_112902 crossref_primary_10_1016_j_cej_2019_02_030 crossref_primary_10_1088_1361_665X_ac27c1 crossref_primary_10_1142_S1793604722500102 crossref_primary_10_1002_marc_202000202 crossref_primary_10_1002_app_48285 crossref_primary_10_1080_1539445X_2019_1606012 crossref_primary_10_1016_j_cis_2024_103359 crossref_primary_10_1021_acsami_7b03624 crossref_primary_10_1007_s10853_019_04315_9 crossref_primary_10_1016_j_eurpolymj_2022_111262 crossref_primary_10_3390_molecules28124690 crossref_primary_10_3390_polym10101102 crossref_primary_10_1038_s41598_025_85298_3 crossref_primary_10_3390_jfb13030140 crossref_primary_10_1007_s10965_021_02624_9 crossref_primary_10_1016_j_carbpol_2022_119314 crossref_primary_10_1007_s10570_024_05971_0 crossref_primary_10_1021_acsami_8b09026 crossref_primary_10_1016_j_chemosphere_2021_132529 crossref_primary_10_1002_anie_201907670 crossref_primary_10_1039_C9TB02156F crossref_primary_10_1007_s13726_020_00821_9 crossref_primary_10_1016_j_compscitech_2020_108608 crossref_primary_10_1016_j_molliq_2022_120226 crossref_primary_10_1021_acsapm_3c02376 crossref_primary_10_1021_acssuschemeng_8b04851 crossref_primary_10_1021_acsbiomaterials_2c00997 crossref_primary_10_1002_eem2_12357 crossref_primary_10_1002_mabi_202100055 crossref_primary_10_1016_j_cej_2021_129991 crossref_primary_10_1080_01932691_2020_1844740 crossref_primary_10_1002_slct_202404597 crossref_primary_10_1021_acsami_0c13531 crossref_primary_10_1002_adfm_202420683 crossref_primary_10_1016_j_colsurfa_2021_127823 crossref_primary_10_3390_jfb14040234 crossref_primary_10_1016_j_colsurfa_2021_127948 crossref_primary_10_1016_j_polymer_2024_127343 crossref_primary_10_1016_j_reactfunctpolym_2022_105384 crossref_primary_10_1016_j_memsci_2024_123596 crossref_primary_10_1039_C9RA09344C crossref_primary_10_1002_adfm_202011259 crossref_primary_10_1002_mame_202100455 crossref_primary_10_1016_j_eurpolymj_2023_112708 crossref_primary_10_1021_acsaem_0c01051 crossref_primary_10_1016_j_jallcom_2024_175235 crossref_primary_10_1016_j_cis_2025_103425 crossref_primary_10_1038_s41598_023_32566_9 crossref_primary_10_15825_1995_1191_2021_1_75_83 crossref_primary_10_1002_anie_201807804 crossref_primary_10_1021_acs_macromol_4c00875 crossref_primary_10_1016_j_cej_2021_130886 crossref_primary_10_1039_D3NJ02229C crossref_primary_10_1002_pen_25574 crossref_primary_10_1021_acsami_8b11391 crossref_primary_10_1039_D1TB02114A crossref_primary_10_1002_app_52918 crossref_primary_10_1016_j_ijbiomac_2023_123841 crossref_primary_10_1016_j_ijbiomac_2020_07_250 crossref_primary_10_1016_j_cej_2021_132957 crossref_primary_10_1016_j_indcrop_2024_119598 crossref_primary_10_1002_pen_25449 crossref_primary_10_1016_j_jpowsour_2020_228602 crossref_primary_10_1039_D1TB02101J crossref_primary_10_1016_j_colsurfa_2019_03_027 crossref_primary_10_3390_gels9010007 crossref_primary_10_1039_D1CS00688F crossref_primary_10_1039_D0BM00429D crossref_primary_10_7240_jeps_1089688 crossref_primary_10_1016_j_ijbiomac_2020_12_148 crossref_primary_10_1039_D0RA06053D crossref_primary_10_1016_j_carbpol_2017_04_035 crossref_primary_10_1021_acsami_9b14756 crossref_primary_10_1063_5_0242425 crossref_primary_10_1016_j_ijbiomac_2023_127278 crossref_primary_10_1016_j_ijbiomac_2022_09_113 crossref_primary_10_1016_j_ijbiomac_2024_131611 crossref_primary_10_1002_smll_202206819 crossref_primary_10_1021_acsomega_3c06683 crossref_primary_10_1039_D1ME00111F crossref_primary_10_1002_mame_202100486 crossref_primary_10_1016_j_polymertesting_2018_04_032 crossref_primary_10_1016_j_carbpol_2023_120609 crossref_primary_10_1016_j_reactfunctpolym_2022_105454 crossref_primary_10_1016_j_matdes_2023_112244 crossref_primary_10_1016_j_ijbiomac_2023_128495 crossref_primary_10_1007_s10965_021_02777_7 crossref_primary_10_1039_C7PY01105A crossref_primary_10_3390_polym14193941 crossref_primary_10_1016_j_heliyon_2023_e21835 crossref_primary_10_1177_08853282211058099 crossref_primary_10_1002_btm2_10540 crossref_primary_10_1016_j_colsurfb_2024_114390 crossref_primary_10_3390_gels8070419 crossref_primary_10_1016_j_ijbiomac_2025_140857 crossref_primary_10_1021_acssuschemeng_3c06472 crossref_primary_10_1016_j_eurpolymj_2019_03_004 crossref_primary_10_1002_marc_201900217 crossref_primary_10_1016_j_nanoen_2022_108127 crossref_primary_10_1039_D4NJ02752C crossref_primary_10_1021_acsami_9b14538 crossref_primary_10_1021_acsami_7b00169 crossref_primary_10_1016_j_compositesb_2022_110181 |
Cites_doi | 10.1039/C3SM52666F 10.1021/mz4004997 10.1002/adfm.201505391 10.1002/marc.201400648 10.1002/anie.201601667 10.1039/C4CC04760E 10.1021/acs.langmuir.5b03474 10.1021/acsami.5b02234 10.1021/acsami.5b05074 10.1039/C4PY00554F 10.1021/ma400494n 10.1038/nature03496 10.1016/j.polymer.2012.05.036 10.1016/j.matdes.2013.08.016 10.1002/adma.201004566 10.1039/C5SM00168D 10.1039/b924430a 10.1002/adfm.201400763 10.1039/c2sm26102b 10.1038/376219a0 10.1002/adma.201503724 10.1007/BF01412597 10.1039/C5TB00781J 10.1021/mz3006389 10.1016/j.eurpolymj.2014.06.006 10.1002/marc.201400698 10.1126/science.1237265 10.1002/adfm.201403992 10.1021/jacs.5b06510 10.1021/ma501590x 10.1002/adfm.201503434 10.1021/acsami.5b01304 10.1002/adfm.201200138 10.1002/adma.201403702 10.1039/C5TB02737C 10.1021/acsami.6b00867 10.1002/adma.201503132 10.1002/anie.201502957 10.1002/app.1992.070451019 10.1021/ja205332w 10.1039/C6SC02354A 10.1007/978-3-662-04201-4 10.1039/c0jm04043f 10.1039/c4tb00315b |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.6b08374 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 27206 |
ExternalDocumentID | 27648478 10_1021_acsami_6b08374 a105144670 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-c06f680170a28c57166ef404772461fd08c9d9b8a8c8b788bc57c3db76856ddf3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 13:13:06 EDT 2025 Thu Jul 10 22:06:45 EDT 2025 Mon Jul 21 05:41:44 EDT 2025 Tue Jul 01 02:28:57 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Thu Aug 27 13:42:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | PVA tannic acid hydrogels shape memory mechanical properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-c06f680170a28c57166ef404772461fd08c9d9b8a8c8b788bc57c3db76856ddf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27648478 |
PQID | 1835412528 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000301956 proquest_miscellaneous_1835412528 pubmed_primary_27648478 crossref_citationtrail_10_1021_acsami_6b08374 crossref_primary_10_1021_acsami_6b08374 acs_journals_10_1021_acsami_6b08374 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161012 2016-10-12 2016-Oct-12 |
PublicationDateYYYYMMDD | 2016-10-12 |
PublicationDate_xml | – month: 10 year: 2016 text: 20161012 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1039/C3SM52666F – ident: ref20/cit20 doi: 10.1021/mz4004997 – ident: ref6/cit6 doi: 10.1002/adfm.201505391 – ident: ref27/cit27 doi: 10.1002/marc.201400648 – ident: ref30/cit30 doi: 10.1002/anie.201601667 – ident: ref28/cit28 doi: 10.1039/C4CC04760E – ident: ref25/cit25 doi: 10.1021/acs.langmuir.5b03474 – ident: ref26/cit26 doi: 10.1021/acsami.5b02234 – ident: ref5/cit5 doi: 10.1021/acsami.5b05074 – ident: ref4/cit4 doi: 10.1039/C4PY00554F – ident: ref15/cit15 doi: 10.1021/ma400494n – ident: ref11/cit11 doi: 10.1038/nature03496 – ident: ref14/cit14 doi: 10.1016/j.polymer.2012.05.036 – ident: ref44/cit44 doi: 10.1016/j.matdes.2013.08.016 – ident: ref9/cit9 doi: 10.1002/adma.201004566 – ident: ref41/cit41 doi: 10.1039/C5SM00168D – ident: ref7/cit7 doi: 10.1039/b924430a – ident: ref35/cit35 doi: 10.1002/adfm.201400763 – ident: ref38/cit38 doi: 10.1039/c2sm26102b – ident: ref13/cit13 doi: 10.1038/376219a0 – ident: ref22/cit22 doi: 10.1002/adma.201503724 – ident: ref24/cit24 doi: 10.1007/BF01412597 – ident: ref19/cit19 doi: 10.1039/C5TB00781J – ident: ref1/cit1 doi: 10.1021/mz3006389 – ident: ref40/cit40 doi: 10.1016/j.eurpolymj.2014.06.006 – ident: ref23/cit23 doi: 10.1002/marc.201400698 – ident: ref33/cit33 doi: 10.1126/science.1237265 – ident: ref32/cit32 doi: 10.1002/adfm.201403992 – ident: ref16/cit16 doi: 10.1021/jacs.5b06510 – ident: ref37/cit37 doi: 10.1021/ma501590x – ident: ref17/cit17 doi: 10.1002/adfm.201503434 – ident: ref31/cit31 doi: 10.1021/acsami.5b01304 – ident: ref34/cit34 doi: 10.1002/adfm.201200138 – ident: ref2/cit2 doi: 10.1002/adma.201403702 – ident: ref42/cit42 doi: 10.1039/C5TB02737C – ident: ref3/cit3 doi: 10.1021/acsami.6b00867 – ident: ref8/cit8 doi: 10.1002/adma.201503132 – ident: ref21/cit21 doi: 10.1002/anie.201502957 – ident: ref12/cit12 doi: 10.1002/app.1992.070451019 – ident: ref10/cit10 doi: 10.1021/ja205332w – ident: ref29/cit29 doi: 10.1039/C6SC02354A – ident: ref36/cit36 doi: 10.1007/978-3-662-04201-4 – ident: ref39/cit39 doi: 10.1039/c0jm04043f – ident: ref43/cit43 doi: 10.1039/c4tb00315b |
SSID | ssj0063205 |
Score | 2.6358397 |
Snippet | Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27199 |
SubjectTerms | alcohols ambient temperature coagulation crosslinking gelation hydrogels hydrogen bonding mechanical properties polyvinyl alcohol tannins |
Title | Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors |
URI | http://dx.doi.org/10.1021/acsami.6b08374 https://www.ncbi.nlm.nih.gov/pubmed/27648478 https://www.proquest.com/docview/1835412528 https://www.proquest.com/docview/2000301956 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYLnBgX8omI5CAQ0rruK57rBCoQgIhARK3yFsAURKUpIhy4h_4Q76EmSRlVQXnTGR7PPa8GdtvCNl2nNmGZWC8WkGAYg33JFPcYwarOrBaGGp8jXxyKjqX_PiqcfWZ7_h5gs_q-8qkWApHaAALTT5KxpmQTQyz2gfngz1X-Cy_rAgRObbF-YCe8df_6IRM-t0JDUGWuYc5mi7ojtKcmBAvltxVe5mumufftI1_dn6GTJUwk7YLu5glIy6aI5NfyAfnyd1Z3O3vPt5G_S5VRaHcvbeX1wssYmRo29xa2unbJL4G70kxXUsPn_I0f5TRE4cPhnF-6Rlm8xOkZaUqsvT8Rj04-H4fJ31aki8m6QK5PDq8OOh4ZekFT_nCzzxTE6GQyK2jmDQNCKqEC3mNAxbnoh7amjQt29JSSSM1RNEaZAxSNQvZENaG_iIZi-LILROqNaAq2I5DiMQ4fFcwPb5oWW64qzPDK2QLtBSUSycN8lNxVg8K1QWl6irEG8xYYEr2ciyi0R0qv_Mh_1DwdgyV3BwYQABLCxWpIhf3oCeYFAMAyORwGVYElTC2ClkqrOejPdYUHJy_XPnXCFfJBIAx4eW3ZdbIWJb03DoAnkxv5Lb-DutS-zo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5ROLQ9FPqgDfThqpVaDguJ1zHOMUKgtCUoEkHitvJrKSLdRbubquHEf-Af9pd0Zh-htIrUXtezu_Z4bH8ztr8BeO8Fd13H0XiNRgfFWREorkXALWV14O04NnQbeXgkByfi82n3dAl2mrswWIkcv5SXm_i37AKdHXxGGXGkQcywK-7BCiIRTt5Wf--4mXplyMszi-iY0y-FaFga_3qf1iKb312LFgDMcqE5WIXRvIrl-ZKL7Wlhtu3VH-yN_9GGNXhUg07Wr6zkMSz55Ak8_I2K8ClcjNLJ7OP382Q2YbpKm7v18_pmTCmNLOvbc8cGM5elZ7iWMgresv0fZdA_KdjQ0_Vh6m02oth-RiStTCeOHX_Vlx7Lv6XZjNVUjFn-DE4O9sd7g6BOxBDoUIZFYNsyloqYdjRXtosulvSxaAtE5kJ2YtdWtud6RmlllUGf2qCMJeJmqbrSuThch-UkTfwLYMYgxsLJOUa_TGC5xl4KZc8JK3yHW9GCd6ilqB5IeVTukfNOVKkuqlXXgqDpuMjWXOaUUmOyUP7DXP6yYvFYKPm2sYMIBxopUic-nWJNKESGcJCrxTK8cjGxbS14XhnR_H98VwqEAmrjn1r4Bu4PxsPD6PDT0ZdNeIAwTQblOZqXsFxkU_8KoVBhXpfm_wtgMgOq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9tAEB61VEL0oQdX03MRSMCDIVlvls1jRInSAxSJIPFm7eUWkdqR7VRNn_of-g_7SzpjOxEFRaKv3rG91-x8M7v7DcCOF9y1HcfJazQ6KM6KQHEtAm4pqwNvxrGh28inZ7J_IT5eti_re9x0FwYrkeOX8nITn7R67OKaYaB1iM8pK440iBuOxEN4RHt25HF1j89ny68MeXluEZ1z-q0QM6bGO--TPbL5v_ZoAcgsjU3vKQzn1SzPmFwfTApzYH_eYnD8z3Y8gyc1-GTdarY8hwc-WYXHNygJ1-B6kI6me9-vkumI6Sp97v6fX7-HlNrIsq69cqw_dVn6BW0qoyAuO_lRBv-Tgp16ukZMo84GFOPPiKyV6cSx86967LH8W5pNWU3JmOXrcNE7GR73gzohQ6BDGRaBbcpYKmLc0VzZNrpa0seiKRChC9mKXVPZjusYpZVVBn1rgzKWCJylakvn4nADlpI08S-AGYNYCxfpGP0zgeUaRyqUHSes8C1uRQO2sZeiWqHyqNwr562o6rqo7roGBLPBi2zNaU6pNUYL5Xfn8uOKzWOh5NZsLkSocNSROvHpBGtCoTKEhVwtluGVq4lta8BmNZHm_-NHUiAkUC_v1cJ3sDx434s-fzj79ApWEK3JoDxO8xqWimzi3yAiKszbUgP-AskgBi0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28vinyl+alcohol%29%E2%80%93Tannic+Acid+Hydrogels+with+Excellent+Mechanical+Properties+and+Shape+Memory+Behaviors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Ya-Nan&rft.au=Peng%2C+Lufang&rft.au=Liu%2C+Tianqi&rft.au=Wang%2C+Yaxin&rft.date=2016-10-12&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=8&rft.issue=40&rft.spage=27199&rft.epage=27206&rft_id=info:doi/10.1021%2Facsami.6b08374&rft.externalDocID=a105144670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |