Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation

Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D na...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 34; pp. 30880 - 30886
Main Authors Zhang, Yangping, Gao, Fei, Wang, Caiqin, Shiraishi, Yukihide, Du, Yukou
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg–1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
AbstractList Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg–1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt₅FePd₂ 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg–¹, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt₅FePd₂ NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt FePd 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg , 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt FePd NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Author Zhang, Yangping
Shiraishi, Yukihide
Du, Yukou
Gao, Fei
Wang, Caiqin
AuthorAffiliation Tokyo University of Science Yamaguchi
Nanjing Forestry University
College of Science
College of Chemistry, Chemical Engineering and Materials Science
AuthorAffiliation_xml – name: Tokyo University of Science Yamaguchi
– name: College of Chemistry, Chemical Engineering and Materials Science
– name: College of Science
– name: Nanjing Forestry University
Author_xml – sequence: 1
  givenname: Yangping
  surname: Zhang
  fullname: Zhang, Yangping
  organization: College of Chemistry, Chemical Engineering and Materials Science
– sequence: 2
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: College of Chemistry, Chemical Engineering and Materials Science
– sequence: 3
  givenname: Caiqin
  surname: Wang
  fullname: Wang, Caiqin
  email: wangcaiqin@njfu.edu.cn
  organization: Nanjing Forestry University
– sequence: 4
  givenname: Yukihide
  surname: Shiraishi
  fullname: Shiraishi, Yukihide
  organization: Tokyo University of Science Yamaguchi
– sequence: 5
  givenname: Yukou
  orcidid: 0000-0002-9161-1821
  surname: Du
  fullname: Du, Yukou
  email: duyk@suda.edu.cn
  organization: College of Chemistry, Chemical Engineering and Materials Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31368299$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLJDEQxsOirK-9epQcl4UZ8-pHbsow6oKPAd1zSKernUh3MiZpXP97M864B0H2VF8Vv6-g6jtAO847QOiYkikljJ5qE_Vgp7IhklLyDe1TKcSkZgXb-aeF2EMHMT4RUnJGiu9oj1Ne1kzKffQ8d4_WAQTrHvH9yrpXvEgXsGjP1uV0kfDMBzi7Gftk4xL6Ht9q519sgIhfbFriuVtqZ6DFCwidD8O6wVng8974pe_xvAeTgvd_bauT9e4I7Xa6j_BjWw_Rn4v5w-xqcn13-Xt2fj3RvORpImVnCNHcFLzSUlRN11R51LbQUkbbStYFk6yknWGlEQ1hJas7ToDKjheQ5SH6udm7Cv55hJjUYKPJF2gHfoyK8YIJLqua_R9lZVUJznmV0ZMtOjYDtGoV7KDDq_r4aAbEBjDBxxigU8am98NT0LZXlKh1cGoTnNoGl23TT7aPzV8afm0Mea6e_BhcfuZX8Bsqrqpj
CitedBy_id crossref_primary_10_1007_s00604_022_05372_9
crossref_primary_10_1016_j_ijhydene_2020_03_066
crossref_primary_10_1016_j_jelechem_2021_115149
crossref_primary_10_1016_j_electacta_2024_145241
crossref_primary_10_1016_j_surfin_2024_104813
crossref_primary_10_1016_j_jelechem_2021_115180
crossref_primary_10_1021_acsaem_2c03815
crossref_primary_10_1021_acs_chemmater_1c00886
crossref_primary_10_1016_j_jcis_2022_12_091
crossref_primary_10_1039_D3TA04894B
crossref_primary_10_1039_D0TA03330H
crossref_primary_10_1002_adfm_202000793
crossref_primary_10_1021_acsanm_2c03663
crossref_primary_10_26599_NRE_2023_9120070
crossref_primary_10_1016_j_ccr_2023_215280
crossref_primary_10_1002_adfm_202000255
crossref_primary_10_3390_molecules29215015
crossref_primary_10_1039_D0NR02736G
crossref_primary_10_1016_j_electacta_2021_138405
crossref_primary_10_1021_acs_langmuir_9b03401
crossref_primary_10_3390_catal12121562
crossref_primary_10_1002_smll_202101428
crossref_primary_10_1016_j_colsurfa_2022_130358
crossref_primary_10_1016_j_jallcom_2021_162158
crossref_primary_10_1016_j_colsurfa_2021_127466
crossref_primary_10_1021_acssuschemeng_2c01592
crossref_primary_10_1007_s40843_022_2150_y
crossref_primary_10_1016_j_ijhydene_2024_05_163
crossref_primary_10_1016_j_jcis_2020_04_120
crossref_primary_10_1021_acs_inorgchem_2c01566
crossref_primary_10_1016_j_ccr_2021_214388
crossref_primary_10_1016_S1872_2040_21_60103_2
crossref_primary_10_1016_j_ccr_2021_214244
crossref_primary_10_1039_D3NJ04229D
crossref_primary_10_1016_j_ccr_2022_214916
crossref_primary_10_1002_ente_202201354
crossref_primary_10_1016_j_ccr_2021_213825
crossref_primary_10_1016_j_ijhydene_2019_09_219
crossref_primary_10_1021_acsanm_4c01900
crossref_primary_10_1002_celc_201901818
crossref_primary_10_1039_D0NR07339C
crossref_primary_10_1016_j_jcis_2019_11_026
Cites_doi 10.1021/acsami.6b14947
10.1016/j.jpowsour.2019.02.031
10.1016/j.apcatb.2018.09.105
10.1021/acsami.9b00589
10.1016/j.ijhydene.2018.04.005
10.1021/acsami.8b05422
10.1016/j.jpowsour.2017.07.114
10.1021/acsami.6b09573
10.1021/acscatal.7b01435
10.1039/c8cc02816h
10.1016/j.jpowsour.2019.04.001
10.1021/acsami.7b16615
10.1016/j.jpowsour.2018.07.070
10.1021/jacs.7b13612
10.1021/cs501449y
10.1002/adma.201706962
10.1002/aenm.201800684
10.1039/c9ta01071h
10.1021/acsami.8b06851
10.1002/aenm.201801326
10.1021/acs.chemrev.7b00689
10.1007/s12274-017-1658-4
10.1039/c4ee02162b
10.1021/acsami.7b10209
10.1021/acsami.8b05873
10.1002/adma.201703057
10.1021/acs.chemrev.7b00727
10.1002/adma.201804074
10.1021/jacs.8b00588
10.1016/j.apcatb.2018.06.051
10.1039/c8ta01698d
10.1002/anie.201702332
10.1016/j.electacta.2017.03.165
10.1002/adma.201603662
10.1021/acsaem.8b02075
10.1002/adma.201701331
10.1021/acsami.7b13080
10.1039/C8NR09892A
10.1007/s12274-017-1881-z
10.1039/c6sc01501h
10.1002/anie.201600081
10.1039/c9gc00263d
10.1021/acssuschemeng.8b05020
10.1021/acsami.5b04391
10.1039/c8ta05710a
10.1002/adma.201604994
10.1021/acsami.7b19727
10.1021/acs.chemmater.6b01642
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b09110
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 30886
ExternalDocumentID 31368299
10_1021_acsami_9b09110
h91156851
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-99fc00a3c537a947bfb79fcdded121d798529261fc26c4b02628f30e19f35e8f3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 06:47:24 EDT 2025
Thu Jul 10 23:07:02 EDT 2025
Wed Feb 19 02:36:16 EST 2025
Thu Apr 24 22:56:42 EDT 2025
Tue Jul 01 04:06:33 EDT 2025
Thu Aug 27 13:44:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords direct alcohol fuel cells
1D nanowires
core@multishell
ethanol oxidation reaction
methanol oxidation reaction
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-99fc00a3c537a947bfb79fcdded121d798529261fc26c4b02628f30e19f35e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9161-1821
PMID 31368299
PQID 2267743337
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2352439782
proquest_miscellaneous_2267743337
pubmed_primary_31368299
crossref_citationtrail_10_1021_acsami_9b09110
crossref_primary_10_1021_acsami_9b09110
acs_journals_10_1021_acsami_9b09110
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-28
PublicationDateYYYYMMDD 2019-08-28
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1021/acsami.6b14947
– ident: ref30/cit30
  doi: 10.1016/j.jpowsour.2019.02.031
– ident: ref16/cit16
  doi: 10.1016/j.apcatb.2018.09.105
– ident: ref36/cit36
  doi: 10.1021/acsami.9b00589
– ident: ref18/cit18
  doi: 10.1016/j.ijhydene.2018.04.005
– ident: ref8/cit8
  doi: 10.1021/acsami.8b05422
– ident: ref26/cit26
  doi: 10.1016/j.jpowsour.2017.07.114
– ident: ref43/cit43
  doi: 10.1021/acsami.6b09573
– ident: ref9/cit9
  doi: 10.1021/acscatal.7b01435
– ident: ref27/cit27
  doi: 10.1039/c8cc02816h
– ident: ref32/cit32
  doi: 10.1016/j.jpowsour.2019.04.001
– ident: ref40/cit40
  doi: 10.1021/acsami.7b16615
– ident: ref28/cit28
  doi: 10.1016/j.jpowsour.2018.07.070
– ident: ref29/cit29
  doi: 10.1021/jacs.7b13612
– ident: ref22/cit22
  doi: 10.1021/cs501449y
– ident: ref46/cit46
  doi: 10.1002/adma.201706962
– ident: ref42/cit42
  doi: 10.1002/aenm.201800684
– ident: ref14/cit14
  doi: 10.1039/c9ta01071h
– ident: ref19/cit19
  doi: 10.1021/acsami.8b06851
– ident: ref31/cit31
  doi: 10.1002/aenm.201801326
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.7b00689
– ident: ref17/cit17
  doi: 10.1007/s12274-017-1658-4
– ident: ref41/cit41
  doi: 10.1039/c4ee02162b
– ident: ref48/cit48
  doi: 10.1021/acsami.7b10209
– ident: ref15/cit15
  doi: 10.1021/acsami.8b05873
– ident: ref5/cit5
  doi: 10.1002/adma.201703057
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.7b00727
– ident: ref11/cit11
  doi: 10.1002/adma.201804074
– ident: ref1/cit1
  doi: 10.1021/jacs.8b00588
– ident: ref12/cit12
  doi: 10.1016/j.apcatb.2018.06.051
– ident: ref38/cit38
  doi: 10.1039/c8ta01698d
– ident: ref4/cit4
  doi: 10.1002/anie.201702332
– ident: ref34/cit34
  doi: 10.1016/j.electacta.2017.03.165
– ident: ref37/cit37
  doi: 10.1002/adma.201603662
– ident: ref44/cit44
  doi: 10.1021/acsaem.8b02075
– ident: ref45/cit45
  doi: 10.1002/adma.201701331
– ident: ref25/cit25
  doi: 10.1021/acsami.7b13080
– ident: ref7/cit7
  doi: 10.1039/C8NR09892A
– ident: ref21/cit21
  doi: 10.1007/s12274-017-1881-z
– ident: ref47/cit47
  doi: 10.1039/c6sc01501h
– ident: ref6/cit6
  doi: 10.1002/anie.201600081
– ident: ref24/cit24
  doi: 10.1039/c9gc00263d
– ident: ref10/cit10
  doi: 10.1021/acssuschemeng.8b05020
– ident: ref35/cit35
  doi: 10.1021/acsami.5b04391
– ident: ref20/cit20
  doi: 10.1039/c8ta05710a
– ident: ref13/cit13
  doi: 10.1002/adma.201604994
– ident: ref23/cit23
  doi: 10.1021/acsami.7b19727
– ident: ref33/cit33
  doi: 10.1021/acs.chemmater.6b01642
SSID ssj0063205
Score 2.466361
Snippet Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30880
SubjectTerms catalysts
catalytic activity
durability
engineering
ethanol
fuel cells
guidelines
methanol
nanowires
oxidation
palladium
platinum
synergism
Title Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation
URI http://dx.doi.org/10.1021/acsami.9b09110
https://www.ncbi.nlm.nih.gov/pubmed/31368299
https://www.proquest.com/docview/2267743337
https://www.proquest.com/docview/2352439782
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6yXvTg-7G-iCh4irZJ-shtZdll8SAL64K30qQpitKu2y6ov95J0_pk1VPTMqVtOpn5Jpl8g9CpBtQLsawk4Hw14dRVRIKnIYJxz2HcEKZXbJ_X_mDMr26924_5ju8r-NS9iFVhSuEICZ7N7KVapD6MYAOCuqPG5vqMVsmKEJFzEoLHaugZf9xvnJAqvjqhOciy8jD9VUt3VFTEhCax5OF8Vspz9fqTtvHPl19DKzXMxJdWL9bRgs420PIn8sFN9PTpDI8m99kLHpZ9PUw65nAxLHE3n-pOtUO3MOmiGCxxbqiNC2xmb3Evu6vSB_DwY_MBhga-tGV3cc-W2Mmf723hpi007vduugNSF2AgMfNZSYRIlePETHksiAUPZCoDuAQWMXGpmwQi9KiAECxV1FdcQjhHw5Q52hUp8zQ0t1EryzO9i3BA08SPHScF-MS5DEUidCJTDgZAhpzKNjqBvorqAVRE1do4dSPbgVHdgW1Emv8WqZrD3JTSeJwrf_YuP7HsHXMljxs1iGCAmVWTONP5rIgAnwJEZowFv8gAjDXILqRttGN16P15zGV-CE5_719fuI-WAJIJM2tNwwPUKqczfQiwp5RHlca_AW-u_EM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hOFAO5dHX8qqrVuJkNrGdh2-sVrvathRFAiRuUZw4KgIllGSlwq9n7CTLS4vgFMeaJLZje76xx98A_NCIetGWVRSVr6aCuSlVqGmo5MJzuDCE6Zbt88ifnIpfZ97ZAvS7szBYiArfVNlN_Ht2AbePeSYijlSo4MyRqiVEIsx06cHwuJt6fc6szyIa5oKGqLg6lsZnzxtdlFaPddEcgGkVzXgVolkRrX_Jxf60Vvvp7RP2xjfUYQ3et6CTDJpesg4LutiAlQdUhB_g34M7cnx1XtyQqB7rKDswl35Uk2F5rQ_sed3KOI8SnJdLQ3RcEbOWS0bFX-tMQKL7owgEE2TQBOEloybgTvn_vAnj9BFOx6OT4YS24Rhown1eUynz1HESnno8SKQIVK4CzML5MXOZmwUy9JhEgyxPmZ8KhcYdC3PuaFfm3NOY_ASLRVnoL0AClmd-4jg5gikhVCgzqTOVC5wOVCiY6sF3bKu4HU5VbHfKmRs3DRi3DdgD2v2-OG0ZzU1gjcu58nsz-auGy2Ou5LeuN8Q43MweSlLoclrFiFYRMHPOgxdkENQanBeyHnxuutLse9zlfogQYPNVNfwKy5OTP4fx4c-j31vwDsGaNOvZLNyGxfp6qncQENVq1w6CO_vwBLM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcmkKbxAIMNKAwwYtKeTBPb-fBbq64VH1MVCZB4i-LEFhUoKU0qAX89ZyctZVOn7SmOdUlsx_b9zvb9DqHvClAv2LKSgPJVhFM3JRI0DRGMew7jhjDdsn0O_bMbfnHr3TZ-3MYXBgpRwptKu4lvRvU40w3DgNuGfBMVR0hQcsatatXs2Zlu3e1dzaZfn1F7bhGMc05CUF4zpsY_njf6KC3f66MlINMqm8EGup4X054xuT-dVvI0ffmNwfE_6_EZrTfgE3fr3rKJPqh8C60tUBJ-QY8Ld_hqPMqfcVQNVJR1zKUdVbhXTFTH-u2W5hAphvm5MITHJTZrurif39lDBTh6c0nAkMDdOhgv7teBd4qnUR3O6Su6GfSve2ekCctAEuazigihU8dJWOqxIBE8kFoGkAXzZOZSNwtE6FEBhplOqZ9yCUYeDTVzlCs08xQkt9FKXuRqF-GA6sxPHEcDqOJchiITKpOaw7QgQ05lC51AW8XNsCpju2NO3bhuwLhpwBYis18Ypw2zuQmw8bBU_sdcflxzeiyVPJ71iBiGndlLSXJVTMsYUCsAZ8ZY8BcZALcG74W0hXbq7jT_HnOZHwIU2PunGh6hj9HPQfzrfHi5jz4BZhNmWZuG39BKNZmqA8BFlTy04-AVaTMHNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Spiny+PtFePd%40PtFe%2FPt+Core%40Multishell+Nanowires+with+Enhanced+Performance+for+Alcohol+Electrooxidation&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Yangping&rft.au=Gao%2C+Fei&rft.au=Wang%2C+Caiqin&rft.au=Shiraishi%2C+Yukihide&rft.date=2019-08-28&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=34&rft.spage=30880&rft.epage=30886&rft_id=info:doi/10.1021%2Facsami.9b09110&rft.externalDocID=h91156851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon