Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D na...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 34; pp. 30880 - 30886 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg–1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts. |
---|---|
AbstractList | Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg–1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts. Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt₅FePd₂ 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg–¹, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt₅FePd₂ NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts. Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts. Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt FePd 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg , 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt FePd NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts. |
Author | Zhang, Yangping Shiraishi, Yukihide Du, Yukou Gao, Fei Wang, Caiqin |
AuthorAffiliation | Tokyo University of Science Yamaguchi Nanjing Forestry University College of Science College of Chemistry, Chemical Engineering and Materials Science |
AuthorAffiliation_xml | – name: Tokyo University of Science Yamaguchi – name: College of Chemistry, Chemical Engineering and Materials Science – name: College of Science – name: Nanjing Forestry University |
Author_xml | – sequence: 1 givenname: Yangping surname: Zhang fullname: Zhang, Yangping organization: College of Chemistry, Chemical Engineering and Materials Science – sequence: 2 givenname: Fei surname: Gao fullname: Gao, Fei organization: College of Chemistry, Chemical Engineering and Materials Science – sequence: 3 givenname: Caiqin surname: Wang fullname: Wang, Caiqin email: wangcaiqin@njfu.edu.cn organization: Nanjing Forestry University – sequence: 4 givenname: Yukihide surname: Shiraishi fullname: Shiraishi, Yukihide organization: Tokyo University of Science Yamaguchi – sequence: 5 givenname: Yukou orcidid: 0000-0002-9161-1821 surname: Du fullname: Du, Yukou email: duyk@suda.edu.cn organization: College of Chemistry, Chemical Engineering and Materials Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31368299$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLJDEQxsOirK-9epQcl4UZ8-pHbsow6oKPAd1zSKernUh3MiZpXP97M864B0H2VF8Vv6-g6jtAO847QOiYkikljJ5qE_Vgp7IhklLyDe1TKcSkZgXb-aeF2EMHMT4RUnJGiu9oj1Ne1kzKffQ8d4_WAQTrHvH9yrpXvEgXsGjP1uV0kfDMBzi7Gftk4xL6Ht9q519sgIhfbFriuVtqZ6DFCwidD8O6wVng8974pe_xvAeTgvd_bauT9e4I7Xa6j_BjWw_Rn4v5w-xqcn13-Xt2fj3RvORpImVnCNHcFLzSUlRN11R51LbQUkbbStYFk6yknWGlEQ1hJas7ToDKjheQ5SH6udm7Cv55hJjUYKPJF2gHfoyK8YIJLqua_R9lZVUJznmV0ZMtOjYDtGoV7KDDq_r4aAbEBjDBxxigU8am98NT0LZXlKh1cGoTnNoGl23TT7aPzV8afm0Mea6e_BhcfuZX8Bsqrqpj |
CitedBy_id | crossref_primary_10_1007_s00604_022_05372_9 crossref_primary_10_1016_j_ijhydene_2020_03_066 crossref_primary_10_1016_j_jelechem_2021_115149 crossref_primary_10_1016_j_electacta_2024_145241 crossref_primary_10_1016_j_surfin_2024_104813 crossref_primary_10_1016_j_jelechem_2021_115180 crossref_primary_10_1021_acsaem_2c03815 crossref_primary_10_1021_acs_chemmater_1c00886 crossref_primary_10_1016_j_jcis_2022_12_091 crossref_primary_10_1039_D3TA04894B crossref_primary_10_1039_D0TA03330H crossref_primary_10_1002_adfm_202000793 crossref_primary_10_1021_acsanm_2c03663 crossref_primary_10_26599_NRE_2023_9120070 crossref_primary_10_1016_j_ccr_2023_215280 crossref_primary_10_1002_adfm_202000255 crossref_primary_10_3390_molecules29215015 crossref_primary_10_1039_D0NR02736G crossref_primary_10_1016_j_electacta_2021_138405 crossref_primary_10_1021_acs_langmuir_9b03401 crossref_primary_10_3390_catal12121562 crossref_primary_10_1002_smll_202101428 crossref_primary_10_1016_j_colsurfa_2022_130358 crossref_primary_10_1016_j_jallcom_2021_162158 crossref_primary_10_1016_j_colsurfa_2021_127466 crossref_primary_10_1021_acssuschemeng_2c01592 crossref_primary_10_1007_s40843_022_2150_y crossref_primary_10_1016_j_ijhydene_2024_05_163 crossref_primary_10_1016_j_jcis_2020_04_120 crossref_primary_10_1021_acs_inorgchem_2c01566 crossref_primary_10_1016_j_ccr_2021_214388 crossref_primary_10_1016_S1872_2040_21_60103_2 crossref_primary_10_1016_j_ccr_2021_214244 crossref_primary_10_1039_D3NJ04229D crossref_primary_10_1016_j_ccr_2022_214916 crossref_primary_10_1002_ente_202201354 crossref_primary_10_1016_j_ccr_2021_213825 crossref_primary_10_1016_j_ijhydene_2019_09_219 crossref_primary_10_1021_acsanm_4c01900 crossref_primary_10_1002_celc_201901818 crossref_primary_10_1039_D0NR07339C crossref_primary_10_1016_j_jcis_2019_11_026 |
Cites_doi | 10.1021/acsami.6b14947 10.1016/j.jpowsour.2019.02.031 10.1016/j.apcatb.2018.09.105 10.1021/acsami.9b00589 10.1016/j.ijhydene.2018.04.005 10.1021/acsami.8b05422 10.1016/j.jpowsour.2017.07.114 10.1021/acsami.6b09573 10.1021/acscatal.7b01435 10.1039/c8cc02816h 10.1016/j.jpowsour.2019.04.001 10.1021/acsami.7b16615 10.1016/j.jpowsour.2018.07.070 10.1021/jacs.7b13612 10.1021/cs501449y 10.1002/adma.201706962 10.1002/aenm.201800684 10.1039/c9ta01071h 10.1021/acsami.8b06851 10.1002/aenm.201801326 10.1021/acs.chemrev.7b00689 10.1007/s12274-017-1658-4 10.1039/c4ee02162b 10.1021/acsami.7b10209 10.1021/acsami.8b05873 10.1002/adma.201703057 10.1021/acs.chemrev.7b00727 10.1002/adma.201804074 10.1021/jacs.8b00588 10.1016/j.apcatb.2018.06.051 10.1039/c8ta01698d 10.1002/anie.201702332 10.1016/j.electacta.2017.03.165 10.1002/adma.201603662 10.1021/acsaem.8b02075 10.1002/adma.201701331 10.1021/acsami.7b13080 10.1039/C8NR09892A 10.1007/s12274-017-1881-z 10.1039/c6sc01501h 10.1002/anie.201600081 10.1039/c9gc00263d 10.1021/acssuschemeng.8b05020 10.1021/acsami.5b04391 10.1039/c8ta05710a 10.1002/adma.201604994 10.1021/acsami.7b19727 10.1021/acs.chemmater.6b01642 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.9b09110 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 30886 |
ExternalDocumentID | 31368299 10_1021_acsami_9b09110 h91156851 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-99fc00a3c537a947bfb79fcdded121d798529261fc26c4b02628f30e19f35e8f3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 06:47:24 EDT 2025 Thu Jul 10 23:07:02 EDT 2025 Wed Feb 19 02:36:16 EST 2025 Thu Apr 24 22:56:42 EDT 2025 Tue Jul 01 04:06:33 EDT 2025 Thu Aug 27 13:44:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | direct alcohol fuel cells 1D nanowires core@multishell ethanol oxidation reaction methanol oxidation reaction |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-99fc00a3c537a947bfb79fcdded121d798529261fc26c4b02628f30e19f35e8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9161-1821 |
PMID | 31368299 |
PQID | 2267743337 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2352439782 proquest_miscellaneous_2267743337 pubmed_primary_31368299 crossref_citationtrail_10_1021_acsami_9b09110 crossref_primary_10_1021_acsami_9b09110 acs_journals_10_1021_acsami_9b09110 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-28 |
PublicationDateYYYYMMDD | 2019-08-28 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1021/acsami.6b14947 – ident: ref30/cit30 doi: 10.1016/j.jpowsour.2019.02.031 – ident: ref16/cit16 doi: 10.1016/j.apcatb.2018.09.105 – ident: ref36/cit36 doi: 10.1021/acsami.9b00589 – ident: ref18/cit18 doi: 10.1016/j.ijhydene.2018.04.005 – ident: ref8/cit8 doi: 10.1021/acsami.8b05422 – ident: ref26/cit26 doi: 10.1016/j.jpowsour.2017.07.114 – ident: ref43/cit43 doi: 10.1021/acsami.6b09573 – ident: ref9/cit9 doi: 10.1021/acscatal.7b01435 – ident: ref27/cit27 doi: 10.1039/c8cc02816h – ident: ref32/cit32 doi: 10.1016/j.jpowsour.2019.04.001 – ident: ref40/cit40 doi: 10.1021/acsami.7b16615 – ident: ref28/cit28 doi: 10.1016/j.jpowsour.2018.07.070 – ident: ref29/cit29 doi: 10.1021/jacs.7b13612 – ident: ref22/cit22 doi: 10.1021/cs501449y – ident: ref46/cit46 doi: 10.1002/adma.201706962 – ident: ref42/cit42 doi: 10.1002/aenm.201800684 – ident: ref14/cit14 doi: 10.1039/c9ta01071h – ident: ref19/cit19 doi: 10.1021/acsami.8b06851 – ident: ref31/cit31 doi: 10.1002/aenm.201801326 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.7b00689 – ident: ref17/cit17 doi: 10.1007/s12274-017-1658-4 – ident: ref41/cit41 doi: 10.1039/c4ee02162b – ident: ref48/cit48 doi: 10.1021/acsami.7b10209 – ident: ref15/cit15 doi: 10.1021/acsami.8b05873 – ident: ref5/cit5 doi: 10.1002/adma.201703057 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.7b00727 – ident: ref11/cit11 doi: 10.1002/adma.201804074 – ident: ref1/cit1 doi: 10.1021/jacs.8b00588 – ident: ref12/cit12 doi: 10.1016/j.apcatb.2018.06.051 – ident: ref38/cit38 doi: 10.1039/c8ta01698d – ident: ref4/cit4 doi: 10.1002/anie.201702332 – ident: ref34/cit34 doi: 10.1016/j.electacta.2017.03.165 – ident: ref37/cit37 doi: 10.1002/adma.201603662 – ident: ref44/cit44 doi: 10.1021/acsaem.8b02075 – ident: ref45/cit45 doi: 10.1002/adma.201701331 – ident: ref25/cit25 doi: 10.1021/acsami.7b13080 – ident: ref7/cit7 doi: 10.1039/C8NR09892A – ident: ref21/cit21 doi: 10.1007/s12274-017-1881-z – ident: ref47/cit47 doi: 10.1039/c6sc01501h – ident: ref6/cit6 doi: 10.1002/anie.201600081 – ident: ref24/cit24 doi: 10.1039/c9gc00263d – ident: ref10/cit10 doi: 10.1021/acssuschemeng.8b05020 – ident: ref35/cit35 doi: 10.1021/acsami.5b04391 – ident: ref20/cit20 doi: 10.1039/c8ta05710a – ident: ref13/cit13 doi: 10.1002/adma.201604994 – ident: ref23/cit23 doi: 10.1021/acsami.7b19727 – ident: ref33/cit33 doi: 10.1021/acs.chemmater.6b01642 |
SSID | ssj0063205 |
Score | 2.466361 |
Snippet | Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30880 |
SubjectTerms | catalysts catalytic activity durability engineering ethanol fuel cells guidelines methanol nanowires oxidation palladium platinum synergism |
Title | Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation |
URI | http://dx.doi.org/10.1021/acsami.9b09110 https://www.ncbi.nlm.nih.gov/pubmed/31368299 https://www.proquest.com/docview/2267743337 https://www.proquest.com/docview/2352439782 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6yXvTg-7G-iCh4irZJ-shtZdll8SAL64K30qQpitKu2y6ov95J0_pk1VPTMqVtOpn5Jpl8g9CpBtQLsawk4Hw14dRVRIKnIYJxz2HcEKZXbJ_X_mDMr26924_5ju8r-NS9iFVhSuEICZ7N7KVapD6MYAOCuqPG5vqMVsmKEJFzEoLHaugZf9xvnJAqvjqhOciy8jD9VUt3VFTEhCax5OF8Vspz9fqTtvHPl19DKzXMxJdWL9bRgs420PIn8sFN9PTpDI8m99kLHpZ9PUw65nAxLHE3n-pOtUO3MOmiGCxxbqiNC2xmb3Evu6vSB_DwY_MBhga-tGV3cc-W2Mmf723hpi007vduugNSF2AgMfNZSYRIlePETHksiAUPZCoDuAQWMXGpmwQi9KiAECxV1FdcQjhHw5Q52hUp8zQ0t1EryzO9i3BA08SPHScF-MS5DEUidCJTDgZAhpzKNjqBvorqAVRE1do4dSPbgVHdgW1Emv8WqZrD3JTSeJwrf_YuP7HsHXMljxs1iGCAmVWTONP5rIgAnwJEZowFv8gAjDXILqRttGN16P15zGV-CE5_719fuI-WAJIJM2tNwwPUKqczfQiwp5RHlca_AW-u_EM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hOFAO5dHX8qqrVuJkNrGdh2-sVrvathRFAiRuUZw4KgIllGSlwq9n7CTLS4vgFMeaJLZje76xx98A_NCIetGWVRSVr6aCuSlVqGmo5MJzuDCE6Zbt88ifnIpfZ97ZAvS7szBYiArfVNlN_Ht2AbePeSYijlSo4MyRqiVEIsx06cHwuJt6fc6szyIa5oKGqLg6lsZnzxtdlFaPddEcgGkVzXgVolkRrX_Jxf60Vvvp7RP2xjfUYQ3et6CTDJpesg4LutiAlQdUhB_g34M7cnx1XtyQqB7rKDswl35Uk2F5rQ_sed3KOI8SnJdLQ3RcEbOWS0bFX-tMQKL7owgEE2TQBOEloybgTvn_vAnj9BFOx6OT4YS24Rhown1eUynz1HESnno8SKQIVK4CzML5MXOZmwUy9JhEgyxPmZ8KhcYdC3PuaFfm3NOY_ASLRVnoL0AClmd-4jg5gikhVCgzqTOVC5wOVCiY6sF3bKu4HU5VbHfKmRs3DRi3DdgD2v2-OG0ZzU1gjcu58nsz-auGy2Ou5LeuN8Q43MweSlLoclrFiFYRMHPOgxdkENQanBeyHnxuutLse9zlfogQYPNVNfwKy5OTP4fx4c-j31vwDsGaNOvZLNyGxfp6qncQENVq1w6CO_vwBLM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcmkKbxAIMNKAwwYtKeTBPb-fBbq64VH1MVCZB4i-LEFhUoKU0qAX89ZyctZVOn7SmOdUlsx_b9zvb9DqHvClAv2LKSgPJVhFM3JRI0DRGMew7jhjDdsn0O_bMbfnHr3TZ-3MYXBgpRwptKu4lvRvU40w3DgNuGfBMVR0hQcsatatXs2Zlu3e1dzaZfn1F7bhGMc05CUF4zpsY_njf6KC3f66MlINMqm8EGup4X054xuT-dVvI0ffmNwfE_6_EZrTfgE3fr3rKJPqh8C60tUBJ-QY8Ld_hqPMqfcVQNVJR1zKUdVbhXTFTH-u2W5hAphvm5MITHJTZrurif39lDBTh6c0nAkMDdOhgv7teBd4qnUR3O6Su6GfSve2ekCctAEuazigihU8dJWOqxIBE8kFoGkAXzZOZSNwtE6FEBhplOqZ9yCUYeDTVzlCs08xQkt9FKXuRqF-GA6sxPHEcDqOJchiITKpOaw7QgQ05lC51AW8XNsCpju2NO3bhuwLhpwBYis18Ypw2zuQmw8bBU_sdcflxzeiyVPJ71iBiGndlLSXJVTMsYUCsAZ8ZY8BcZALcG74W0hXbq7jT_HnOZHwIU2PunGh6hj9HPQfzrfHi5jz4BZhNmWZuG39BKNZmqA8BFlTy04-AVaTMHNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Spiny+PtFePd%40PtFe%2FPt+Core%40Multishell+Nanowires+with+Enhanced+Performance+for+Alcohol+Electrooxidation&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Yangping&rft.au=Gao%2C+Fei&rft.au=Wang%2C+Caiqin&rft.au=Shiraishi%2C+Yukihide&rft.date=2019-08-28&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=34&rft.spage=30880&rft.epage=30886&rft_id=info:doi/10.1021%2Facsami.9b09110&rft.externalDocID=h91156851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |