Flexible Strain Sensors Based on an Interlayer Synergistic Effect of Nanomaterials for Continuous and Noninvasive Blood Pressure Monitoring
The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer syner...
Saved in:
Published in | ACS applied materials & interfaces Vol. 16; no. 20; pp. 26943 - 26953 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram–photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring. |
---|---|
AbstractList | The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring. The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring. |
Author | Li, Xiaochun Gao, Xiaoguang Li, Xiujun Yuan, Lin Zhang, Xiaoliang Kang, Ranran Meng, Xuejuan |
AuthorAffiliation | College of Biomedical Engineering Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering Nankai University The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education |
AuthorAffiliation_xml | – name: College of Biomedical Engineering – name: Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering – name: The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education – name: Nankai University |
Author_xml | – sequence: 1 givenname: Lin surname: Yuan fullname: Yuan, Lin organization: College of Biomedical Engineering – sequence: 2 givenname: Xiaoguang surname: Gao fullname: Gao, Xiaoguang email: gaoxiaoguang@tyut.edu.cn organization: Nankai University – sequence: 3 givenname: Ranran surname: Kang fullname: Kang, Ranran organization: College of Biomedical Engineering – sequence: 4 givenname: Xiaoliang surname: Zhang fullname: Zhang, Xiaoliang organization: College of Biomedical Engineering – sequence: 5 givenname: Xuejuan surname: Meng fullname: Meng, Xuejuan organization: College of Biomedical Engineering – sequence: 6 givenname: Xiaochun orcidid: 0000-0001-6358-9818 surname: Li fullname: Li, Xiaochun email: lixiaochun@tyut.edu.cn organization: College of Biomedical Engineering – sequence: 7 givenname: Xiujun orcidid: 0000-0002-7954-0717 surname: Li fullname: Li, Xiujun email: xli4@utep.edu organization: Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38718354$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEUhUVJaV7ddlm0DAW7etqaZWKSNpAXOF2LOzNXQWFGSiVNqH9D_3RV7HRRCFkIiavvHC7nHJK9EAMS8omzOWeCf4Uuw-jnqmOKS_WOHPBGqZkRWuz9eyu1Tw5zfmRsIQXTH8i-NEtupFYH5PfFgL98OyBdlwQ-0DWGHFOmZ5CxpzFQCPQyFEwDbDDR9SZgevC5-I6eO4ddodHRGwhxhAp5GDJ1MdFVDMWHKU65GvT0JgYfniH7Z6RnQ4w9vUuY85SQXtevEpMPD8fkvat6_Li7j8iPi_P71ffZ1e23y9Xp1QzkQpaZQaGX2nGhkXeqwTrkrO1l0zYNSIEttoZD74w2TjfCNE5pgUJJ6FHwtpVH5GTr-5TizwlzsaPPHQ4DBKwL2xoSq2ehlm-jTEsuDVeLin7eoVM7Ym-fkh8hbexL1hVQW6BLMeeEzna-QPE1qZr8YDmzfyu120rtrtIqm_8ne3F-VfBlK6hz-xinFGqYr8F_ABWxtEE |
CitedBy_id | crossref_primary_10_1002_adfm_202413552 crossref_primary_10_1016_j_jece_2025_115788 crossref_primary_10_1109_JIOT_2024_3483450 crossref_primary_10_3390_mi15080989 crossref_primary_10_1002_smtd_202402179 crossref_primary_10_1016_j_apsusc_2025_162348 crossref_primary_10_1016_j_mtcomm_2024_110235 crossref_primary_10_1002_adma_202413929 crossref_primary_10_1021_polymscitech_4c00047 crossref_primary_10_1021_acsaelm_4c01385 |
Cites_doi | 10.1021/acsnano.7b02826 10.1073/pnas.1814392115 10.1002/adhm.201900109 10.1161/01.HYP.0000107251.49515.c2 10.1039/D1NH00648G 10.1002/adfm.201802343 10.1109/MIS.2015.72 10.1109/JBHI.2016.2620995 10.1016/j.nanoen.2016.02.037 10.1021/acsami.9b11554 10.1016/j.addr.2022.114365 10.1109/TBME.2015.2441951 10.1021/acsami.6b09188 10.1016/0140-6736(90)90878-9 10.1016/j.carbon.2018.11.008 10.1002/adfm.201806388 10.1038/s41528-020-00090-9 10.1093/nsr/nwaa022 10.1016/j.trac.2022.116806 10.1021/acs.analchem.1c01323 10.1021/acsnano.7b07613 10.1038/sj.jhh.1002120 10.1109/ACCESS.2020.2981903 10.1016/j.compositesb.2021.109365 10.1002/adfm.201504755 10.1039/D1LC00414J 10.1039/C3NR04521H 10.1021/acsami.7b16284 10.3390/technologies5020021 10.1161/HYPERTENSIONAHA.111.171504 10.1016/j.bios.2020.112947 10.1038/s41551-018-0287-x 10.1136/thx.54.5.452 10.1038/s41746-019-0117-x 10.1002/adfm.201504560 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.4c04134 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 26953 |
ExternalDocumentID | 38718354 10_1021_acsami_4c04134 a412857352 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABLBI CITATION NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-8e2575f125e1c49e36310bd39b99a32ebeb81adf858f59289f452e243ade21bb3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Wed Jul 02 04:44:05 EDT 2025 Fri Jul 11 16:55:38 EDT 2025 Mon Jul 21 06:03:09 EDT 2025 Tue Jul 01 04:03:10 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 Thu May 23 04:40:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | flexible strain sensor wearable sensors interlayer synergistic effect graphene continuous blood pressure monitoring |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-8e2575f125e1c49e36310bd39b99a32ebeb81adf858f59289f452e243ade21bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7954-0717 0000-0001-6358-9818 |
PMID | 38718354 |
PQID | 3053138146 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3200320647 proquest_miscellaneous_3053138146 pubmed_primary_38718354 crossref_citationtrail_10_1021_acsami_4c04134 crossref_primary_10_1021_acsami_4c04134 acs_journals_10_1021_acsami_4c04134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-22 |
PublicationDateYYYYMMDD | 2024-05-22 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref23/cit23 doi: 10.1021/acsnano.7b02826 – ident: ref29/cit29 doi: 10.1073/pnas.1814392115 – ident: ref18/cit18 doi: 10.1002/adhm.201900109 – ident: ref2/cit2 doi: 10.1161/01.HYP.0000107251.49515.c2 – ident: ref19/cit19 doi: 10.1039/D1NH00648G – ident: ref26/cit26 doi: 10.1002/adfm.201802343 – ident: ref6/cit6 doi: 10.1109/MIS.2015.72 – ident: ref3/cit3 doi: 10.1109/JBHI.2016.2620995 – ident: ref4/cit4 doi: 10.1016/j.nanoen.2016.02.037 – ident: ref27/cit27 doi: 10.1021/acsami.9b11554 – ident: ref32/cit32 doi: 10.1016/j.addr.2022.114365 – ident: ref12/cit12 doi: 10.1109/TBME.2015.2441951 – ident: ref21/cit21 doi: 10.1021/acsami.6b09188 – ident: ref1/cit1 doi: 10.1016/0140-6736(90)90878-9 – ident: ref20/cit20 doi: 10.1016/j.carbon.2018.11.008 – ident: ref16/cit16 doi: 10.1002/adfm.201806388 – ident: ref9/cit9 doi: 10.1038/s41528-020-00090-9 – ident: ref14/cit14 doi: 10.1093/nsr/nwaa022 – ident: ref31/cit31 doi: 10.1016/j.trac.2022.116806 – ident: ref34/cit34 doi: 10.1021/acs.analchem.1c01323 – ident: ref24/cit24 doi: 10.1021/acsnano.7b07613 – ident: ref11/cit11 doi: 10.1038/sj.jhh.1002120 – ident: ref13/cit13 doi: 10.1109/ACCESS.2020.2981903 – ident: ref17/cit17 doi: 10.1016/j.compositesb.2021.109365 – ident: ref28/cit28 doi: 10.1002/adfm.201504755 – ident: ref33/cit33 doi: 10.1039/D1LC00414J – ident: ref25/cit25 doi: 10.1039/C3NR04521H – ident: ref22/cit22 doi: 10.1021/acsami.7b16284 – ident: ref8/cit8 doi: 10.3390/technologies5020021 – ident: ref30/cit30 doi: 10.1161/HYPERTENSIONAHA.111.171504 – ident: ref35/cit35 doi: 10.1016/j.bios.2020.112947 – ident: ref5/cit5 doi: 10.1038/s41551-018-0287-x – ident: ref10/cit10 doi: 10.1136/thx.54.5.452 – ident: ref7/cit7 doi: 10.1038/s41746-019-0117-x – ident: ref15/cit15 doi: 10.1002/adfm.201504560 |
SSID | ssj0063205 |
Score | 2.4809525 |
Snippet | The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26943 |
SubjectTerms | blood pressure graphene humans nanowires polydimethylsiloxane silver Surfaces, Interfaces, and Applications synergism |
Title | Flexible Strain Sensors Based on an Interlayer Synergistic Effect of Nanomaterials for Continuous and Noninvasive Blood Pressure Monitoring |
URI | http://dx.doi.org/10.1021/acsami.4c04134 https://www.ncbi.nlm.nih.gov/pubmed/38718354 https://www.proquest.com/docview/3053138146 https://www.proquest.com/docview/3200320647 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9lIOpaXQLrTVIJA4BRI_svERUFeoElwWJG6R7TgSYpVUm10k-Av8aWbiLE8t9Bo5iTMZz3wznvnM2E4aD0xBFTW6jFUkjTORRVOMxlDpwiIAKDNqFD45TY_P5d8LdfGY73i5g8-TfeMaOgpHuhjtrVxiH3maDSjMOjgazW1uKnhbrIgRuYwy9FhzesZX95MTcs1zJ7QAWbYeZrgS6I6alpiQCkuu9mZTu-duX9M2vjv5L-xzBzPhIOjFV_bBV6ts-Qn54Dd2NyQuTDv2MGrPiYARRrT1pIFDdGwF1BWYCtqE4dggLofRDbUJtrzOEDiPoS4BrXONoDfoMSACBuK7uqxm9azBBxRwSvnea0NV8nBIVfIQOhInHoI9odmssfPhn7Oj46g7miEyIhXTKPO41FWJ6MgnTmqPF5PYFkJbrY3gqBk2S0xRZiorlcagrpSKey6FKTxPrBXrrFfVlf_BwHjllFFWlFpI9I421m4g0iy2TirEH322jVLMu6XV5O2uOU_yINq8E22fRfM_mruO3ZyEN144fvdh_L_A67Fw5NZcQXJcerSfYiqPQswFGTBBOdQ3xlDxH6eO3j77HrTr4X0Cg1XKu2381xdusk8cARVVLnD-k_Wmk5n_hYBoan-3a-Eesh0Hbw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvCkLBQaBxClt4kcaH9uK1QLtCmlbqbfIThwJdZWgzS4S_AX-NDNOshTQIrhGjmNPxjPf2DOfAV6n8YEtOaPGVLGOlC1s5MgUkzHUpnQEAKqMC4VPp-nkXL2_0BdbsD_UwtAgWuqpDYf4P9kFkn16xjfiqCIms6uuwXVCIoKjrcPj2WB6UylCziIF5irKyHENLI1_vM--qGh_9UUbAGZwNOM78HE9xJBfcrm3Wrq94ttv7I3_MYe7cLsHnXjYack92PL1fbh1hYrwAXwfMzOmm3uchVsjcEbxbbNo8YjcXIlNjbbGsH04t4TScfaViwYDyzN2DMjYVEi2uiEI3Gk1Eh5GZr_6VK-aVUsdlDjl3d8vlnPm8Yhz5rGrT1x47KwLj-YhnI_fnh1Pov6ihsjKVC6jzNPC1xVhJZ8Uynh6mMSulMYZY6UgPXFZYssq01mlDYV4ldLCCyVt6UXinHwE23VT-8eA1utCW-1kZaQiX-liUxzINItdoTShkRG8Iinm_UJr83CGLpK8E23ei3YE0fBj86LnOmfhzTe2f7Nu_7lj-djY8uWgJzktRD5dsbUnIeaSzZnkHdW_tOFUQMH1vSPY6ZRs_T1JoSvvwj35pxm-gBuTs9OT_OTd9MNTuCkIanFOgxC7sL1crPwzgkpL9zwsjx9q2g_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglRAcaMtzoYVBIHFKm_iRxsc-WJW2rJC2lXqLbMeWEKuk2uwiwV_gTzPjZFelaBFcI8exJ-OZb-yZz4y9y9N9U1FGjQ6pSqRxJrFoitEYKl1ZBAChoELhT6P85FKeXqmrvo6bamFwEC321MZDfFrV11XoGQayPXxOt-JIl6LplXfZOp3ZUcR1cDRemN9c8Ji3iMG5TAp0Xgumxj_eJ3_k2t_90QqQGZ3NcINdLIcZc0y-7s5ndtf9uMXg-J_z2GQPe_AJB522bLE7vn7EHtygJHzMfg6JIdNOPIzj7REwxji3mbZwiO6ugqYGU0PcRpwYROsw_k7Fg5HtGTomZGgCoM1uEAp32g2Ii4FYsL7U82beYgcVjGgX-Juh3Hk4pNx56OoUpx46K0OjecIuhx8ujk6S_sKGxIhczJLCowFQATGTz5zUHh9mqa2EtlobwVFfbJGZKhSqCEpjqBek4p5LYSrPM2vFU7ZWN7V_zsB45ZRRVgQtJPpMm2q3L_IitU4qRCUD9halWPYLri3jWTrPyk60ZS_aAUsWP7d0Pec5CW-ysv37Zfvrju1jZcs3C10pcUHSKYupPQqxFGTWBO2s_qUNpQRyqvMdsGedoi2_JzCEpd24F_80w9fs3ufjYXn-cXT2kt3niLgotYHzbbY2m879DiKmmX0VV8gvJX0SUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Strain+Sensors+Based+on+an+Interlayer+Synergistic+Effect+of+Nanomaterials+for+Continuous+and+Noninvasive+Blood+Pressure+Monitoring&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Yuan%2C+Lin&rft.au=Gao%2C+Xiaoguang&rft.au=Kang%2C+Ranran&rft.au=Zhang%2C+Xiaoliang&rft.date=2024-05-22&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=16&rft.issue=20&rft.spage=26943&rft.epage=26953&rft_id=info:doi/10.1021%2Facsami.4c04134&rft.externalDocID=a412857352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |