Flexible Strain Sensors Based on an Interlayer Synergistic Effect of Nanomaterials for Continuous and Noninvasive Blood Pressure Monitoring

The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer syner...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 16; no. 20; pp. 26943 - 26953
Main Authors Yuan, Lin, Gao, Xiaoguang, Kang, Ranran, Zhang, Xiaoliang, Meng, Xuejuan, Li, Xiaochun, Li, Xiujun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram–photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.
AbstractList The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.
The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.
Author Li, Xiaochun
Gao, Xiaoguang
Li, Xiujun
Yuan, Lin
Zhang, Xiaoliang
Kang, Ranran
Meng, Xuejuan
AuthorAffiliation College of Biomedical Engineering
Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering
Nankai University
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education
AuthorAffiliation_xml – name: College of Biomedical Engineering
– name: Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering
– name: The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education
– name: Nankai University
Author_xml – sequence: 1
  givenname: Lin
  surname: Yuan
  fullname: Yuan, Lin
  organization: College of Biomedical Engineering
– sequence: 2
  givenname: Xiaoguang
  surname: Gao
  fullname: Gao, Xiaoguang
  email: gaoxiaoguang@tyut.edu.cn
  organization: Nankai University
– sequence: 3
  givenname: Ranran
  surname: Kang
  fullname: Kang, Ranran
  organization: College of Biomedical Engineering
– sequence: 4
  givenname: Xiaoliang
  surname: Zhang
  fullname: Zhang, Xiaoliang
  organization: College of Biomedical Engineering
– sequence: 5
  givenname: Xuejuan
  surname: Meng
  fullname: Meng, Xuejuan
  organization: College of Biomedical Engineering
– sequence: 6
  givenname: Xiaochun
  orcidid: 0000-0001-6358-9818
  surname: Li
  fullname: Li, Xiaochun
  email: lixiaochun@tyut.edu.cn
  organization: College of Biomedical Engineering
– sequence: 7
  givenname: Xiujun
  orcidid: 0000-0002-7954-0717
  surname: Li
  fullname: Li, Xiujun
  email: xli4@utep.edu
  organization: Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38718354$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEUhUVJaV7ddlm0DAW7etqaZWKSNpAXOF2LOzNXQWFGSiVNqH9D_3RV7HRRCFkIiavvHC7nHJK9EAMS8omzOWeCf4Uuw-jnqmOKS_WOHPBGqZkRWuz9eyu1Tw5zfmRsIQXTH8i-NEtupFYH5PfFgL98OyBdlwQ-0DWGHFOmZ5CxpzFQCPQyFEwDbDDR9SZgevC5-I6eO4ddodHRGwhxhAp5GDJ1MdFVDMWHKU65GvT0JgYfniH7Z6RnQ4w9vUuY85SQXtevEpMPD8fkvat6_Li7j8iPi_P71ffZ1e23y9Xp1QzkQpaZQaGX2nGhkXeqwTrkrO1l0zYNSIEttoZD74w2TjfCNE5pgUJJ6FHwtpVH5GTr-5TizwlzsaPPHQ4DBKwL2xoSq2ehlm-jTEsuDVeLin7eoVM7Ym-fkh8hbexL1hVQW6BLMeeEzna-QPE1qZr8YDmzfyu120rtrtIqm_8ne3F-VfBlK6hz-xinFGqYr8F_ABWxtEE
CitedBy_id crossref_primary_10_1002_adfm_202413552
crossref_primary_10_1016_j_jece_2025_115788
crossref_primary_10_1109_JIOT_2024_3483450
crossref_primary_10_3390_mi15080989
crossref_primary_10_1002_smtd_202402179
crossref_primary_10_1016_j_apsusc_2025_162348
crossref_primary_10_1016_j_mtcomm_2024_110235
crossref_primary_10_1002_adma_202413929
crossref_primary_10_1021_polymscitech_4c00047
crossref_primary_10_1021_acsaelm_4c01385
Cites_doi 10.1021/acsnano.7b02826
10.1073/pnas.1814392115
10.1002/adhm.201900109
10.1161/01.HYP.0000107251.49515.c2
10.1039/D1NH00648G
10.1002/adfm.201802343
10.1109/MIS.2015.72
10.1109/JBHI.2016.2620995
10.1016/j.nanoen.2016.02.037
10.1021/acsami.9b11554
10.1016/j.addr.2022.114365
10.1109/TBME.2015.2441951
10.1021/acsami.6b09188
10.1016/0140-6736(90)90878-9
10.1016/j.carbon.2018.11.008
10.1002/adfm.201806388
10.1038/s41528-020-00090-9
10.1093/nsr/nwaa022
10.1016/j.trac.2022.116806
10.1021/acs.analchem.1c01323
10.1021/acsnano.7b07613
10.1038/sj.jhh.1002120
10.1109/ACCESS.2020.2981903
10.1016/j.compositesb.2021.109365
10.1002/adfm.201504755
10.1039/D1LC00414J
10.1039/C3NR04521H
10.1021/acsami.7b16284
10.3390/technologies5020021
10.1161/HYPERTENSIONAHA.111.171504
10.1016/j.bios.2020.112947
10.1038/s41551-018-0287-x
10.1136/thx.54.5.452
10.1038/s41746-019-0117-x
10.1002/adfm.201504560
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.4c04134
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 26953
ExternalDocumentID 38718354
10_1021_acsami_4c04134
a412857352
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-8e2575f125e1c49e36310bd39b99a32ebeb81adf858f59289f452e243ade21bb3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Wed Jul 02 04:44:05 EDT 2025
Fri Jul 11 16:55:38 EDT 2025
Mon Jul 21 06:03:09 EDT 2025
Tue Jul 01 04:03:10 EDT 2025
Thu Apr 24 22:58:21 EDT 2025
Thu May 23 04:40:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords flexible strain sensor
wearable sensors
interlayer synergistic effect
graphene
continuous blood pressure monitoring
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-8e2575f125e1c49e36310bd39b99a32ebeb81adf858f59289f452e243ade21bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7954-0717
0000-0001-6358-9818
PMID 38718354
PQID 3053138146
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3200320647
proquest_miscellaneous_3053138146
pubmed_primary_38718354
crossref_citationtrail_10_1021_acsami_4c04134
crossref_primary_10_1021_acsami_4c04134
acs_journals_10_1021_acsami_4c04134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-22
PublicationDateYYYYMMDD 2024-05-22
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1021/acsnano.7b02826
– ident: ref29/cit29
  doi: 10.1073/pnas.1814392115
– ident: ref18/cit18
  doi: 10.1002/adhm.201900109
– ident: ref2/cit2
  doi: 10.1161/01.HYP.0000107251.49515.c2
– ident: ref19/cit19
  doi: 10.1039/D1NH00648G
– ident: ref26/cit26
  doi: 10.1002/adfm.201802343
– ident: ref6/cit6
  doi: 10.1109/MIS.2015.72
– ident: ref3/cit3
  doi: 10.1109/JBHI.2016.2620995
– ident: ref4/cit4
  doi: 10.1016/j.nanoen.2016.02.037
– ident: ref27/cit27
  doi: 10.1021/acsami.9b11554
– ident: ref32/cit32
  doi: 10.1016/j.addr.2022.114365
– ident: ref12/cit12
  doi: 10.1109/TBME.2015.2441951
– ident: ref21/cit21
  doi: 10.1021/acsami.6b09188
– ident: ref1/cit1
  doi: 10.1016/0140-6736(90)90878-9
– ident: ref20/cit20
  doi: 10.1016/j.carbon.2018.11.008
– ident: ref16/cit16
  doi: 10.1002/adfm.201806388
– ident: ref9/cit9
  doi: 10.1038/s41528-020-00090-9
– ident: ref14/cit14
  doi: 10.1093/nsr/nwaa022
– ident: ref31/cit31
  doi: 10.1016/j.trac.2022.116806
– ident: ref34/cit34
  doi: 10.1021/acs.analchem.1c01323
– ident: ref24/cit24
  doi: 10.1021/acsnano.7b07613
– ident: ref11/cit11
  doi: 10.1038/sj.jhh.1002120
– ident: ref13/cit13
  doi: 10.1109/ACCESS.2020.2981903
– ident: ref17/cit17
  doi: 10.1016/j.compositesb.2021.109365
– ident: ref28/cit28
  doi: 10.1002/adfm.201504755
– ident: ref33/cit33
  doi: 10.1039/D1LC00414J
– ident: ref25/cit25
  doi: 10.1039/C3NR04521H
– ident: ref22/cit22
  doi: 10.1021/acsami.7b16284
– ident: ref8/cit8
  doi: 10.3390/technologies5020021
– ident: ref30/cit30
  doi: 10.1161/HYPERTENSIONAHA.111.171504
– ident: ref35/cit35
  doi: 10.1016/j.bios.2020.112947
– ident: ref5/cit5
  doi: 10.1038/s41551-018-0287-x
– ident: ref10/cit10
  doi: 10.1136/thx.54.5.452
– ident: ref7/cit7
  doi: 10.1038/s41746-019-0117-x
– ident: ref15/cit15
  doi: 10.1002/adfm.201504560
SSID ssj0063205
Score 2.4809525
Snippet The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26943
SubjectTerms blood pressure
graphene
humans
nanowires
polydimethylsiloxane
silver
Surfaces, Interfaces, and Applications
synergism
Title Flexible Strain Sensors Based on an Interlayer Synergistic Effect of Nanomaterials for Continuous and Noninvasive Blood Pressure Monitoring
URI http://dx.doi.org/10.1021/acsami.4c04134
https://www.ncbi.nlm.nih.gov/pubmed/38718354
https://www.proquest.com/docview/3053138146
https://www.proquest.com/docview/3200320647
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9lIOpaXQLrTVIJA4BRI_svERUFeoElwWJG6R7TgSYpVUm10k-Av8aWbiLE8t9Bo5iTMZz3wznvnM2E4aD0xBFTW6jFUkjTORRVOMxlDpwiIAKDNqFD45TY_P5d8LdfGY73i5g8-TfeMaOgpHuhjtrVxiH3maDSjMOjgazW1uKnhbrIgRuYwy9FhzesZX95MTcs1zJ7QAWbYeZrgS6I6alpiQCkuu9mZTu-duX9M2vjv5L-xzBzPhIOjFV_bBV6ts-Qn54Dd2NyQuTDv2MGrPiYARRrT1pIFDdGwF1BWYCtqE4dggLofRDbUJtrzOEDiPoS4BrXONoDfoMSACBuK7uqxm9azBBxRwSvnea0NV8nBIVfIQOhInHoI9odmssfPhn7Oj46g7miEyIhXTKPO41FWJ6MgnTmqPF5PYFkJbrY3gqBk2S0xRZiorlcagrpSKey6FKTxPrBXrrFfVlf_BwHjllFFWlFpI9I421m4g0iy2TirEH322jVLMu6XV5O2uOU_yINq8E22fRfM_mruO3ZyEN144fvdh_L_A67Fw5NZcQXJcerSfYiqPQswFGTBBOdQ3xlDxH6eO3j77HrTr4X0Cg1XKu2381xdusk8cARVVLnD-k_Wmk5n_hYBoan-3a-Eesh0Hbw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvCkLBQaBxClt4kcaH9uK1QLtCmlbqbfIThwJdZWgzS4S_AX-NDNOshTQIrhGjmNPxjPf2DOfAV6n8YEtOaPGVLGOlC1s5MgUkzHUpnQEAKqMC4VPp-nkXL2_0BdbsD_UwtAgWuqpDYf4P9kFkn16xjfiqCIms6uuwXVCIoKjrcPj2WB6UylCziIF5irKyHENLI1_vM--qGh_9UUbAGZwNOM78HE9xJBfcrm3Wrq94ttv7I3_MYe7cLsHnXjYack92PL1fbh1hYrwAXwfMzOmm3uchVsjcEbxbbNo8YjcXIlNjbbGsH04t4TScfaViwYDyzN2DMjYVEi2uiEI3Gk1Eh5GZr_6VK-aVUsdlDjl3d8vlnPm8Yhz5rGrT1x47KwLj-YhnI_fnh1Pov6ihsjKVC6jzNPC1xVhJZ8Uynh6mMSulMYZY6UgPXFZYssq01mlDYV4ldLCCyVt6UXinHwE23VT-8eA1utCW-1kZaQiX-liUxzINItdoTShkRG8Iinm_UJr83CGLpK8E23ei3YE0fBj86LnOmfhzTe2f7Nu_7lj-djY8uWgJzktRD5dsbUnIeaSzZnkHdW_tOFUQMH1vSPY6ZRs_T1JoSvvwj35pxm-gBuTs9OT_OTd9MNTuCkIanFOgxC7sL1crPwzgkpL9zwsjx9q2g_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglRAcaMtzoYVBIHFKm_iRxsc-WJW2rJC2lXqLbMeWEKuk2uwiwV_gTzPjZFelaBFcI8exJ-OZb-yZz4y9y9N9U1FGjQ6pSqRxJrFoitEYKl1ZBAChoELhT6P85FKeXqmrvo6bamFwEC321MZDfFrV11XoGQayPXxOt-JIl6LplXfZOp3ZUcR1cDRemN9c8Ji3iMG5TAp0Xgumxj_eJ3_k2t_90QqQGZ3NcINdLIcZc0y-7s5ndtf9uMXg-J_z2GQPe_AJB522bLE7vn7EHtygJHzMfg6JIdNOPIzj7REwxji3mbZwiO6ugqYGU0PcRpwYROsw_k7Fg5HtGTomZGgCoM1uEAp32g2Ii4FYsL7U82beYgcVjGgX-Juh3Hk4pNx56OoUpx46K0OjecIuhx8ujk6S_sKGxIhczJLCowFQATGTz5zUHh9mqa2EtlobwVFfbJGZKhSqCEpjqBek4p5LYSrPM2vFU7ZWN7V_zsB45ZRRVgQtJPpMm2q3L_IitU4qRCUD9halWPYLri3jWTrPyk60ZS_aAUsWP7d0Pec5CW-ysv37Zfvrju1jZcs3C10pcUHSKYupPQqxFGTWBO2s_qUNpQRyqvMdsGedoi2_JzCEpd24F_80w9fs3ufjYXn-cXT2kt3niLgotYHzbbY2m879DiKmmX0VV8gvJX0SUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Strain+Sensors+Based+on+an+Interlayer+Synergistic+Effect+of+Nanomaterials+for+Continuous+and+Noninvasive+Blood+Pressure+Monitoring&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Yuan%2C+Lin&rft.au=Gao%2C+Xiaoguang&rft.au=Kang%2C+Ranran&rft.au=Zhang%2C+Xiaoliang&rft.date=2024-05-22&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=16&rft.issue=20&rft.spage=26943&rft.epage=26953&rft_id=info:doi/10.1021%2Facsami.4c04134&rft.externalDocID=a412857352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon