Fabrication of Metal–Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity

Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the d...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 14; pp. 12051 - 12059
Main Authors Kou, Jiahui, Sun, Lin-Bing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel–Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications.
AbstractList Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel–Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications.
Due to their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great inter-est for diverse applications including catalysis. However, the poor hydrostability of most reported MOFs hinders their cata-lytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with 2D hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF pre-cursors with a volume equal to or less than the pore volume of the support, so that the MOF can be formed selectively in the channels of support. Our results show that, upon confinement in silica nanopores, the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel-Crafts alkylation reaction can reach 100% at 80 oC for 3 h, which is much higher than pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs which is highly expected for a variety of applications.
Because of their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel-Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications.Because of their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel-Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications.
Author Sun, Lin-Bing
Kou, Jiahui
AuthorAffiliation State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
College of Chemical Engineering
Nanjing Tech University
College of Materials Science and Engineering
AuthorAffiliation_xml – name: Nanjing Tech University
– name: State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– name: College of Materials Science and Engineering
– name: College of Chemical Engineering
Author_xml – sequence: 1
  givenname: Jiahui
  surname: Kou
  fullname: Kou, Jiahui
  organization: Nanjing Tech University
– sequence: 2
  givenname: Lin-Bing
  orcidid: 0000-0002-6395-312X
  surname: Sun
  fullname: Sun, Lin-Bing
  email: lbsun@njtech.edu.cn
  organization: Nanjing Tech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29537251$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhS0URB7QUiKXCGkXP-bhLaNVNkFKSAHU1h37TuIwYy-2l2i6SPkJ-Yf8Ekx2Q4EUUdm6_s658jmHZM8Hj4S85WzOmeAfwSQY3Vx1jDe1eEEO-KKqZkrUYu_vvar2yWFKN4w1UrD6FdkXi1q2ouYH5H4FXXQGsguehp5eYIbh193DZbwC7wxdRRjxNsTviTqfnEX6xQ2Fp5_Bh3WImOity9dleuVdXx58HiZ64q_BG7T0bLIxpAxdEeWJgrd0CWXDlIv3scnuZxm_Ji97GBK-2Z1H5Nvq5OvybHZ-efppeXw-A9nIXD5irOg7VJ1EAwvJ0YJive0sMtHIpu1V13NmjG1RtNYaDqpAC6FM3daVlEfk_dZ3HcOPDaasR5cMDgN4DJukBWdcStUI_n-0kK1SjLOCvtuhm25Eq9fRjRAn_ZRxAaotYEoUKWKvjcuPgecIbtCc6T9V6m2Veldlkc3_kT05Pyv4sBWUub4Jm-hLmM_BvwFYzbOU
CitedBy_id crossref_primary_10_1016_j_colsurfa_2022_128421
crossref_primary_10_1016_j_micromeso_2024_113354
crossref_primary_10_3390_polym11111823
crossref_primary_10_1039_C9DT00941H
crossref_primary_10_1021_acsami_9b00223
crossref_primary_10_1016_j_jece_2024_114634
crossref_primary_10_1016_j_jcis_2019_06_079
crossref_primary_10_1016_j_ccr_2020_213442
crossref_primary_10_1016_j_isci_2021_102982
crossref_primary_10_1021_acsami_8b13602
crossref_primary_10_1039_D3DT02236F
crossref_primary_10_1039_C9NJ06358G
crossref_primary_10_1021_acssuschemeng_8b06214
crossref_primary_10_1016_j_jece_2023_109291
crossref_primary_10_1039_C8TA05323E
crossref_primary_10_1007_s10853_024_09901_0
crossref_primary_10_1016_j_vibspec_2023_103496
crossref_primary_10_1002_adma_201900820
crossref_primary_10_1016_j_jtice_2020_11_025
crossref_primary_10_1021_acsami_2c06880
crossref_primary_10_1016_j_ccr_2021_214107
crossref_primary_10_3390_jcs5030075
crossref_primary_10_1007_s43153_021_00192_5
crossref_primary_10_1021_acs_inorgchem_1c03818
crossref_primary_10_1016_j_jhazmat_2024_133888
crossref_primary_10_1016_j_inoche_2024_112147
crossref_primary_10_1016_j_micromeso_2021_111156
crossref_primary_10_1016_j_mtchem_2022_100796
crossref_primary_10_1016_j_jece_2024_113051
crossref_primary_10_1007_s12209_022_00353_8
crossref_primary_10_1039_D0NJ03714A
crossref_primary_10_1039_D0NJ02672G
crossref_primary_10_1080_10426507_2023_2271116
crossref_primary_10_1016_j_jcis_2024_11_090
crossref_primary_10_1039_D0RA07042D
crossref_primary_10_1016_j_materresbull_2021_111227
crossref_primary_10_1002_cctc_202400355
crossref_primary_10_1039_D2QM01127A
crossref_primary_10_1021_acs_inorgchem_1c00438
crossref_primary_10_1016_j_trac_2024_117910
crossref_primary_10_1021_acsami_8b17508
crossref_primary_10_1007_s13738_020_02032_8
crossref_primary_10_1016_j_fuel_2023_127409
crossref_primary_10_1007_s40843_021_1910_2
crossref_primary_10_1021_acs_inorgchem_9b00088
crossref_primary_10_1021_acsanm_3c05407
crossref_primary_10_1016_j_chroma_2024_464924
crossref_primary_10_1039_C9CC08232H
crossref_primary_10_1021_acs_cgd_9b00879
crossref_primary_10_1039_D5CE00013K
crossref_primary_10_1007_s10562_022_03995_4
crossref_primary_10_1016_j_snb_2024_135770
crossref_primary_10_57634_RCR5055
crossref_primary_10_1016_j_micromeso_2022_112250
crossref_primary_10_1002_chem_201803157
crossref_primary_10_1002_cctc_202401477
crossref_primary_10_1016_j_jcou_2025_103025
crossref_primary_10_1016_j_micromeso_2023_112707
crossref_primary_10_1021_acssuschemeng_9b05617
crossref_primary_10_1016_j_ccr_2021_213827
crossref_primary_10_1016_j_micromeso_2019_03_046
crossref_primary_10_1021_acsanm_3c01558
crossref_primary_10_3390_inorganics9110081
crossref_primary_10_1016_j_jwpe_2020_101227
crossref_primary_10_1016_j_trac_2023_117109
crossref_primary_10_1016_j_matt_2019_05_018
crossref_primary_10_1021_acsanm_8b01841
crossref_primary_10_1039_D0NR00732C
Cites_doi 10.1038/nenergy.2016.34
10.1002/anie.201001847
10.1039/B802882F
10.1002/chem.201503685
10.1021/jp106939d
10.1039/C3CS60472A
10.1016/j.apcata.2010.04.053
10.1002/anie.201501475
10.1038/natrevmats.2015.18
10.1021/ja906198y
10.1039/C6CS00532B
10.1021/cm200521t
10.1039/C7TA05800D
10.1021/cr3002824
10.1021/ja076877g
10.1021/acs.chemrev.7b00091
10.1039/C3EE43040E
10.1021/acsami.7b08117
10.1021/ja4102979
10.1038/nmat2608
10.1016/j.cej.2015.04.005
10.1021/cr5002589
10.1038/ncomms14460
10.1021/ar400265x
10.1021/ja411887c
10.1021/la101856d
10.1039/C4CE00321G
10.1021/ar400049h
10.1021/jacs.6b00625
10.1039/c2cc38366g
10.1021/ja209698f
10.1039/c3ta14760f
10.1021/acsami.5b02680
10.1039/C5TA02461G
10.1021/jacs.5b11150
10.1021/ja411468e
10.1016/j.micromeso.2015.10.019
10.1021/ja110369d
10.1039/C6TA04619C
10.1021/ja803018w
10.1002/anie.201004133
10.1016/j.cej.2010.09.036
10.1021/ja9061085
10.1039/c2ta01125e
10.1021/jacs.5b12189
10.1039/C5TA00959F
10.1021/cr200077m
10.1039/C7TA04959E
10.1021/jp7110633
10.1016/S1381-1169(03)00211-5
10.1002/anie.201801122
10.1021/acs.langmuir.5b00833
10.1016/j.molcata.2007.05.032
10.1016/j.apcata.2008.03.042
10.1039/C4CC08733J
10.1016/S0021-9517(03)00295-1
10.1021/ja4030269
10.1038/ncomms13300
10.1039/C3SC52633J
10.1039/c2cc32264a
10.1021/acs.chemmater.5b00084
10.1021/ic402012d
10.1126/science.279.5350.548
10.1126/science.1230444
10.1039/C5CS00090D
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.8b01652
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 12059
ExternalDocumentID 29537251
10_1021_acsami_8b01652
b854999608
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-82cd2fbe8b3eca931eda80fdbde026367f8bf10ccd7e27ddc1a831e928c575433
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 12:28:28 EDT 2025
Thu Jul 10 23:38:22 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Tue Jul 01 04:05:49 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords double-solvent strategy
mesoporous silica
MOFs
confinement
hydrostability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-82cd2fbe8b3eca931eda80fdbde026367f8bf10ccd7e27ddc1a831e928c575433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6395-312X
PMID 29537251
PQID 2013788010
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2101338621
proquest_miscellaneous_2013788010
pubmed_primary_29537251
crossref_citationtrail_10_1021_acsami_8b01652
crossref_primary_10_1021_acsami_8b01652
acs_journals_10_1021_acsami_8b01652
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-11
PublicationDateYYYYMMDD 2018-04-11
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1038/nenergy.2016.34
– ident: ref36/cit36
  doi: 10.1002/anie.201001847
– ident: ref15/cit15
  doi: 10.1039/B802882F
– ident: ref2/cit2
  doi: 10.1002/chem.201503685
– ident: ref46/cit46
  doi: 10.1021/jp106939d
– ident: ref39/cit39
  doi: 10.1039/C3CS60472A
– ident: ref59/cit59
  doi: 10.1016/j.apcata.2010.04.053
– ident: ref44/cit44
  doi: 10.1002/anie.201501475
– ident: ref26/cit26
  doi: 10.1038/natrevmats.2015.18
– ident: ref17/cit17
  doi: 10.1021/ja906198y
– ident: ref31/cit31
  doi: 10.1039/C6CS00532B
– ident: ref53/cit53
  doi: 10.1021/cm200521t
– ident: ref29/cit29
  doi: 10.1039/C7TA05800D
– ident: ref1/cit1
  doi: 10.1021/cr3002824
– ident: ref58/cit58
  doi: 10.1021/ja076877g
– ident: ref23/cit23
  doi: 10.1021/acs.chemrev.7b00091
– ident: ref20/cit20
  doi: 10.1039/C3EE43040E
– ident: ref11/cit11
  doi: 10.1021/acsami.7b08117
– ident: ref13/cit13
  doi: 10.1021/ja4102979
– ident: ref18/cit18
  doi: 10.1038/nmat2608
– ident: ref42/cit42
  doi: 10.1016/j.cej.2015.04.005
– ident: ref25/cit25
  doi: 10.1021/cr5002589
– ident: ref10/cit10
  doi: 10.1038/ncomms14460
– ident: ref22/cit22
  doi: 10.1021/ar400265x
– ident: ref21/cit21
  doi: 10.1021/ja411887c
– ident: ref54/cit54
  doi: 10.1021/la101856d
– ident: ref55/cit55
  doi: 10.1039/C4CE00321G
– ident: ref16/cit16
  doi: 10.1021/ar400049h
– ident: ref64/cit64
  doi: 10.1021/jacs.6b00625
– ident: ref57/cit57
  doi: 10.1039/c2cc38366g
– ident: ref5/cit5
  doi: 10.1021/ja209698f
– ident: ref47/cit47
  doi: 10.1039/c3ta14760f
– ident: ref40/cit40
  doi: 10.1021/acsami.5b02680
– ident: ref41/cit41
  doi: 10.1039/C5TA02461G
– ident: ref49/cit49
  doi: 10.1021/jacs.5b11150
– ident: ref38/cit38
  doi: 10.1021/ja411468e
– ident: ref63/cit63
  doi: 10.1016/j.micromeso.2015.10.019
– ident: ref33/cit33
  doi: 10.1021/ja110369d
– ident: ref8/cit8
  doi: 10.1039/C6TA04619C
– ident: ref32/cit32
  doi: 10.1021/ja803018w
– ident: ref35/cit35
  doi: 10.1002/anie.201004133
– ident: ref52/cit52
  doi: 10.1016/j.cej.2010.09.036
– ident: ref34/cit34
  doi: 10.1021/ja9061085
– ident: ref37/cit37
  doi: 10.1039/c2ta01125e
– ident: ref7/cit7
  doi: 10.1021/jacs.5b12189
– ident: ref51/cit51
  doi: 10.1039/C5TA00959F
– ident: ref3/cit3
  doi: 10.1021/cr200077m
– ident: ref12/cit12
  doi: 10.1039/C7TA04959E
– ident: ref56/cit56
  doi: 10.1021/jp7110633
– ident: ref65/cit65
  doi: 10.1016/S1381-1169(03)00211-5
– ident: ref27/cit27
  doi: 10.1002/anie.201801122
– ident: ref48/cit48
  doi: 10.1021/acs.langmuir.5b00833
– ident: ref62/cit62
  doi: 10.1016/j.molcata.2007.05.032
– ident: ref60/cit60
  doi: 10.1016/j.apcata.2008.03.042
– ident: ref50/cit50
  doi: 10.1039/C4CC08733J
– ident: ref61/cit61
  doi: 10.1016/S0021-9517(03)00295-1
– ident: ref30/cit30
  doi: 10.1021/ja4030269
– ident: ref9/cit9
  doi: 10.1038/ncomms13300
– ident: ref14/cit14
  doi: 10.1039/C3SC52633J
– ident: ref45/cit45
  doi: 10.1039/c2cc32264a
– ident: ref28/cit28
  doi: 10.1021/acs.chemmater.5b00084
– ident: ref19/cit19
  doi: 10.1021/ic402012d
– ident: ref43/cit43
  doi: 10.1126/science.279.5350.548
– ident: ref6/cit6
  doi: 10.1126/science.1230444
– ident: ref24/cit24
  doi: 10.1039/C5CS00090D
SSID ssj0063205
Score 2.496594
Snippet Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications,...
Due to their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great inter-est for diverse applications...
Because of their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great interest for diverse applications,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12051
SubjectTerms alkylation
catalytic activity
coordination polymers
hydrophilicity
hydrophobicity
nanopores
organobromine compounds
porosity
porous media
silica
solvents
Title Fabrication of Metal–Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity
URI http://dx.doi.org/10.1021/acsami.8b01652
https://www.ncbi.nlm.nih.gov/pubmed/29537251
https://www.proquest.com/docview/2013788010
https://www.proquest.com/docview/2101338621
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5EL3pwX-rGiIKn1MxMlumxFEMR9KJCb2G2qFhSadpDPAn-BP-hv8Q3WepSqt5CeGEms7z9fQ-hE8UDLg0NHZDl0vF8eGoZJR1qXB5qE_o-s9XIl1dB99a76Pm9T3_Hzwg-JWdCZbYVDpe28AaY7QINeGjNrHbnuua5AaNFsiJY5J7DQWLV8IxT31shpLLvQmiGZllImGilhDvKCmBCm1jy2ByPZFM9T8M2_jn5VbRcqZm4XZ6LNTRn0nW09AV8cAO9RkIOK48dHiT40oAe_v7yVlZnKhzVaVsZfiiaeuLrB-vhw8CQB6C1mwxbJy68vUttvhFsUT_H5-l9kVOAu7m2BSUlDHiORapxx7qKcpgRbquyacUmuo3Obzpdp2rJ4AgWsBGsrdI0kYZLZpRoMWK04G6ipTZgzLEgTLhMiKuUDuEAaK2I4EDUolyBXugxtoXm00FqdhCWxtgiXMXApPME9SVjrvCEYon0kpDqBjqG1YurK5XFRbSckrhc0rha0gZy6p2MVYVqbptr9GfSn07on0o8j5mUR_XBiOHK2TiKSM1gnMXUwjQC3yPuLzTA6sD6DyhpoO3yVE3Goy2fhaBX7v7rD_fQIgzIbQSLkH00PxqOzQEoQiN5WNyBD5c-BsU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1JbtRAsBSFA3BgC8sQQhoFxMmJe7HdPnAYDRlNSCaXJFJupjdDRORB8YyQOUXiCTyAr_AWXpJqLwMBDeISiZvVKrnLXeXauhaA50bGUjuWBKjLdSAifEqd0QFzoUysS6KI-2rk8X48OhJvjqPjJfjW1cIgEiW-qawv8X92F6BbuOYn4kjt629Ym0W566pP6KOVr3ZeI0FfMDbcPhyMgnaMQKB4zKeBZMayXDupuTMq5dRZJcPcauvQAeFxkkud09AYmyDS1hqqJAKlTBq0ZYSPeKKMv4aWD_PeXX9w0In6mLM6R5KmQuA2QnRdIf_A1-s-U17WfQsM2lqxDW_D9_mR1PksHzZnU71pPv_WLfI_PrM7cKs1qkm_-QvuwpIr7sHNX1otrsCXodJnbXySTHIyduh1_Dj_2tSiGjLsktRKclKPMCUHJz6eSVD9TNBHcSXxIWtcfVf47CpkyNOKbBfv6wwKMqqsL59pmp5XRBWWDHxgrEKMSN80Izruw9GVnMIDWC4mhXsERDvnS44NRwdWKBZpzkMllOG5FnnCbA82kFpZK0DKrM4NYDRrSJi1JOxB0DFQZtoe7n6UyOlC-Jdz-I9N95KFkM86fsxQwPhbI1W4yazMmG9KiVKehn-BQcHOOTrHtAcPG2ae78fSiCdoRT_-py9ch-ujw_Fetrezv7sKN3Bz6e_uKH0Cy9OzmVtDE3Cqn9a_IYG3V83DF34YbF4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR3batRA9FAqFH2o1utq1REVn9JmLkkmDz4s24attUWohb7FuUVLS7Y0u0h8EvyEfoK_4pf4JZ7JZfHCii8F30I4ZCZzzpz7BeCZkbHUjiUBynIdiAifUmd0wFwoE-uSKOK-GnlvPx4fildH0dESfO1rYXATFX6paoL4_laf2aLrMEA38b2fiiO1r8FhXSblrqs_op1WvdzZQqQ-ZyzbfjsaB90ogUDxmE8DyYxlhXZSc2dUyqmzSoaF1dahEcLjpJC6oKExNsGNW2uokgiUMmlQnxHe64l8_oqPEXoLbzg66Nl9zFmTJ0lTIXAZIfrOkH_s18s_U_0q_xYotY1wy67Dt_mxNDktJxuzqd4wn37rGPmfn9sNWO2UazJsb8MaLLnyJlz7qeXiLfiSKX3e-SnJpCB7Dq2P758v2ppUQ7I-Wa0ix80oU3Jw7P2aBMXQBG0VVxHvusa370ufZYWEeVqT7fJDk0lBxrX1ZTRt8_OaqNKSkXeQ1bgjMjTtqI7bcHgpp3AHlstJ6e4B0c750mPD0ZAVikWa81AJZXihRZEwO4CniK28YyRV3uQIMJq3KMw7FA4g6IkoN10vdz9S5HQh_Is5_FnbxWQh5JOeJnNkND56pEo3mVU5880pkdvT8C8wyOA5RyOZDuBuS9Dz9Vga8QS16fv_9IePYeXNVpa_3tnffQBXcW3pQ3iUrsPy9HzmHqImONWPmptI4N1lk_APPedu4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Metal%E2%80%93Organic+Frameworks+inside+Silica+Nanopores+with+Significantly+Enhanced+Hydrostability+and+Catalytic+Activity&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Kou%2C+Jiahui&rft.au=Sun%2C+Lin-Bing&rft.date=2018-04-11&rft.issn=1944-8252&rft.volume=10&rft.issue=14+p.12051-12059&rft.spage=12051&rft.epage=12059&rft_id=info:doi/10.1021%2Facsami.8b01652&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon