Fabrication of Metal–Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity
Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the d...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 14; pp. 12051 - 12059 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel–Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications. |
---|---|
AbstractList | Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel–Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications. Due to their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great inter-est for diverse applications including catalysis. However, the poor hydrostability of most reported MOFs hinders their cata-lytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with 2D hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF pre-cursors with a volume equal to or less than the pore volume of the support, so that the MOF can be formed selectively in the channels of support. Our results show that, upon confinement in silica nanopores, the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel-Crafts alkylation reaction can reach 100% at 80 oC for 3 h, which is much higher than pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs which is highly expected for a variety of applications. Because of their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel-Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications.Because of their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great interest for diverse applications, including catalysis. However, the poor hydrostability of most reported MOFs hinders their catalytic applications seriously. In addition, the development of an effective method to improve the catalytic activity of MOFs is another challenge. Here, we report for the first time the development of a double-solvent strategy to fabricate MOFs inside silica nanopores. A typical MOF (MOF-5) and a mesoporous silica with two-dimensional hexagonal pore regularity (SBA-15) were first attempted. The double-solvent strategy is based on a hydrophobic solvent and a hydrophilic solution containing MOF precursors with a volume equal to or less than the pore volume of the support so that the MOF can be formed selectively in the channels of support. Our results show that upon confinement in silica nanopores the hydrostability of MOF-5 is apparently improved. The framework of MOF-5 is destroyed obviously in a humid environment for 15 min, but that confined in SBA-15 is well preserved after 8 h. Moreover, the catalytic activity of the composite MOF-5@SBA-15 is superior to that of pure MOF-5 regarding activity and reaction rate. Under the catalysis of MOF-5@SBA-15, the conversion of benzyl bromide in the Friedel-Crafts alkylation reaction can reach 100% at 80 °C for 3 h, which is much higher than that of pure MOF-5 (61%) and SBA-15 (0%). We also demonstrate that the double-solvent strategy can be successfully extended to other MOFs, such as HKUST-1 and ZIF-8. Our work might open up an avenue for the improvement of stability and performance of MOFs, which is highly expected for a variety of applications. |
Author | Sun, Lin-Bing Kou, Jiahui |
AuthorAffiliation | State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University College of Materials Science and Engineering |
AuthorAffiliation_xml | – name: Nanjing Tech University – name: State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – name: College of Materials Science and Engineering – name: College of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Jiahui surname: Kou fullname: Kou, Jiahui organization: Nanjing Tech University – sequence: 2 givenname: Lin-Bing orcidid: 0000-0002-6395-312X surname: Sun fullname: Sun, Lin-Bing email: lbsun@njtech.edu.cn organization: Nanjing Tech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29537251$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtvFDEUhS0URB7QUiKXCGkXP-bhLaNVNkFKSAHU1h37TuIwYy-2l2i6SPkJ-Yf8Ekx2Q4EUUdm6_s658jmHZM8Hj4S85WzOmeAfwSQY3Vx1jDe1eEEO-KKqZkrUYu_vvar2yWFKN4w1UrD6FdkXi1q2ouYH5H4FXXQGsguehp5eYIbh193DZbwC7wxdRRjxNsTviTqfnEX6xQ2Fp5_Bh3WImOity9dleuVdXx58HiZ64q_BG7T0bLIxpAxdEeWJgrd0CWXDlIv3scnuZxm_Ji97GBK-2Z1H5Nvq5OvybHZ-efppeXw-A9nIXD5irOg7VJ1EAwvJ0YJive0sMtHIpu1V13NmjG1RtNYaDqpAC6FM3daVlEfk_dZ3HcOPDaasR5cMDgN4DJukBWdcStUI_n-0kK1SjLOCvtuhm25Eq9fRjRAn_ZRxAaotYEoUKWKvjcuPgecIbtCc6T9V6m2Veldlkc3_kT05Pyv4sBWUub4Jm-hLmM_BvwFYzbOU |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2022_128421 crossref_primary_10_1016_j_micromeso_2024_113354 crossref_primary_10_3390_polym11111823 crossref_primary_10_1039_C9DT00941H crossref_primary_10_1021_acsami_9b00223 crossref_primary_10_1016_j_jece_2024_114634 crossref_primary_10_1016_j_jcis_2019_06_079 crossref_primary_10_1016_j_ccr_2020_213442 crossref_primary_10_1016_j_isci_2021_102982 crossref_primary_10_1021_acsami_8b13602 crossref_primary_10_1039_D3DT02236F crossref_primary_10_1039_C9NJ06358G crossref_primary_10_1021_acssuschemeng_8b06214 crossref_primary_10_1016_j_jece_2023_109291 crossref_primary_10_1039_C8TA05323E crossref_primary_10_1007_s10853_024_09901_0 crossref_primary_10_1016_j_vibspec_2023_103496 crossref_primary_10_1002_adma_201900820 crossref_primary_10_1016_j_jtice_2020_11_025 crossref_primary_10_1021_acsami_2c06880 crossref_primary_10_1016_j_ccr_2021_214107 crossref_primary_10_3390_jcs5030075 crossref_primary_10_1007_s43153_021_00192_5 crossref_primary_10_1021_acs_inorgchem_1c03818 crossref_primary_10_1016_j_jhazmat_2024_133888 crossref_primary_10_1016_j_inoche_2024_112147 crossref_primary_10_1016_j_micromeso_2021_111156 crossref_primary_10_1016_j_mtchem_2022_100796 crossref_primary_10_1016_j_jece_2024_113051 crossref_primary_10_1007_s12209_022_00353_8 crossref_primary_10_1039_D0NJ03714A crossref_primary_10_1039_D0NJ02672G crossref_primary_10_1080_10426507_2023_2271116 crossref_primary_10_1016_j_jcis_2024_11_090 crossref_primary_10_1039_D0RA07042D crossref_primary_10_1016_j_materresbull_2021_111227 crossref_primary_10_1002_cctc_202400355 crossref_primary_10_1039_D2QM01127A crossref_primary_10_1021_acs_inorgchem_1c00438 crossref_primary_10_1016_j_trac_2024_117910 crossref_primary_10_1021_acsami_8b17508 crossref_primary_10_1007_s13738_020_02032_8 crossref_primary_10_1016_j_fuel_2023_127409 crossref_primary_10_1007_s40843_021_1910_2 crossref_primary_10_1021_acs_inorgchem_9b00088 crossref_primary_10_1021_acsanm_3c05407 crossref_primary_10_1016_j_chroma_2024_464924 crossref_primary_10_1039_C9CC08232H crossref_primary_10_1021_acs_cgd_9b00879 crossref_primary_10_1039_D5CE00013K crossref_primary_10_1007_s10562_022_03995_4 crossref_primary_10_1016_j_snb_2024_135770 crossref_primary_10_57634_RCR5055 crossref_primary_10_1016_j_micromeso_2022_112250 crossref_primary_10_1002_chem_201803157 crossref_primary_10_1002_cctc_202401477 crossref_primary_10_1016_j_jcou_2025_103025 crossref_primary_10_1016_j_micromeso_2023_112707 crossref_primary_10_1021_acssuschemeng_9b05617 crossref_primary_10_1016_j_ccr_2021_213827 crossref_primary_10_1016_j_micromeso_2019_03_046 crossref_primary_10_1021_acsanm_3c01558 crossref_primary_10_3390_inorganics9110081 crossref_primary_10_1016_j_jwpe_2020_101227 crossref_primary_10_1016_j_trac_2023_117109 crossref_primary_10_1016_j_matt_2019_05_018 crossref_primary_10_1021_acsanm_8b01841 crossref_primary_10_1039_D0NR00732C |
Cites_doi | 10.1038/nenergy.2016.34 10.1002/anie.201001847 10.1039/B802882F 10.1002/chem.201503685 10.1021/jp106939d 10.1039/C3CS60472A 10.1016/j.apcata.2010.04.053 10.1002/anie.201501475 10.1038/natrevmats.2015.18 10.1021/ja906198y 10.1039/C6CS00532B 10.1021/cm200521t 10.1039/C7TA05800D 10.1021/cr3002824 10.1021/ja076877g 10.1021/acs.chemrev.7b00091 10.1039/C3EE43040E 10.1021/acsami.7b08117 10.1021/ja4102979 10.1038/nmat2608 10.1016/j.cej.2015.04.005 10.1021/cr5002589 10.1038/ncomms14460 10.1021/ar400265x 10.1021/ja411887c 10.1021/la101856d 10.1039/C4CE00321G 10.1021/ar400049h 10.1021/jacs.6b00625 10.1039/c2cc38366g 10.1021/ja209698f 10.1039/c3ta14760f 10.1021/acsami.5b02680 10.1039/C5TA02461G 10.1021/jacs.5b11150 10.1021/ja411468e 10.1016/j.micromeso.2015.10.019 10.1021/ja110369d 10.1039/C6TA04619C 10.1021/ja803018w 10.1002/anie.201004133 10.1016/j.cej.2010.09.036 10.1021/ja9061085 10.1039/c2ta01125e 10.1021/jacs.5b12189 10.1039/C5TA00959F 10.1021/cr200077m 10.1039/C7TA04959E 10.1021/jp7110633 10.1016/S1381-1169(03)00211-5 10.1002/anie.201801122 10.1021/acs.langmuir.5b00833 10.1016/j.molcata.2007.05.032 10.1016/j.apcata.2008.03.042 10.1039/C4CC08733J 10.1016/S0021-9517(03)00295-1 10.1021/ja4030269 10.1038/ncomms13300 10.1039/C3SC52633J 10.1039/c2cc32264a 10.1021/acs.chemmater.5b00084 10.1021/ic402012d 10.1126/science.279.5350.548 10.1126/science.1230444 10.1039/C5CS00090D |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.8b01652 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 12059 |
ExternalDocumentID | 29537251 10_1021_acsami_8b01652 b854999608 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-82cd2fbe8b3eca931eda80fdbde026367f8bf10ccd7e27ddc1a831e928c575433 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 12:28:28 EDT 2025 Thu Jul 10 23:38:22 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Tue Jul 01 04:05:49 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | double-solvent strategy mesoporous silica MOFs confinement hydrostability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-82cd2fbe8b3eca931eda80fdbde026367f8bf10ccd7e27ddc1a831e928c575433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6395-312X |
PMID | 29537251 |
PQID | 2013788010 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2101338621 proquest_miscellaneous_2013788010 pubmed_primary_29537251 crossref_citationtrail_10_1021_acsami_8b01652 crossref_primary_10_1021_acsami_8b01652 acs_journals_10_1021_acsami_8b01652 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-11 |
PublicationDateYYYYMMDD | 2018-04-11 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1038/nenergy.2016.34 – ident: ref36/cit36 doi: 10.1002/anie.201001847 – ident: ref15/cit15 doi: 10.1039/B802882F – ident: ref2/cit2 doi: 10.1002/chem.201503685 – ident: ref46/cit46 doi: 10.1021/jp106939d – ident: ref39/cit39 doi: 10.1039/C3CS60472A – ident: ref59/cit59 doi: 10.1016/j.apcata.2010.04.053 – ident: ref44/cit44 doi: 10.1002/anie.201501475 – ident: ref26/cit26 doi: 10.1038/natrevmats.2015.18 – ident: ref17/cit17 doi: 10.1021/ja906198y – ident: ref31/cit31 doi: 10.1039/C6CS00532B – ident: ref53/cit53 doi: 10.1021/cm200521t – ident: ref29/cit29 doi: 10.1039/C7TA05800D – ident: ref1/cit1 doi: 10.1021/cr3002824 – ident: ref58/cit58 doi: 10.1021/ja076877g – ident: ref23/cit23 doi: 10.1021/acs.chemrev.7b00091 – ident: ref20/cit20 doi: 10.1039/C3EE43040E – ident: ref11/cit11 doi: 10.1021/acsami.7b08117 – ident: ref13/cit13 doi: 10.1021/ja4102979 – ident: ref18/cit18 doi: 10.1038/nmat2608 – ident: ref42/cit42 doi: 10.1016/j.cej.2015.04.005 – ident: ref25/cit25 doi: 10.1021/cr5002589 – ident: ref10/cit10 doi: 10.1038/ncomms14460 – ident: ref22/cit22 doi: 10.1021/ar400265x – ident: ref21/cit21 doi: 10.1021/ja411887c – ident: ref54/cit54 doi: 10.1021/la101856d – ident: ref55/cit55 doi: 10.1039/C4CE00321G – ident: ref16/cit16 doi: 10.1021/ar400049h – ident: ref64/cit64 doi: 10.1021/jacs.6b00625 – ident: ref57/cit57 doi: 10.1039/c2cc38366g – ident: ref5/cit5 doi: 10.1021/ja209698f – ident: ref47/cit47 doi: 10.1039/c3ta14760f – ident: ref40/cit40 doi: 10.1021/acsami.5b02680 – ident: ref41/cit41 doi: 10.1039/C5TA02461G – ident: ref49/cit49 doi: 10.1021/jacs.5b11150 – ident: ref38/cit38 doi: 10.1021/ja411468e – ident: ref63/cit63 doi: 10.1016/j.micromeso.2015.10.019 – ident: ref33/cit33 doi: 10.1021/ja110369d – ident: ref8/cit8 doi: 10.1039/C6TA04619C – ident: ref32/cit32 doi: 10.1021/ja803018w – ident: ref35/cit35 doi: 10.1002/anie.201004133 – ident: ref52/cit52 doi: 10.1016/j.cej.2010.09.036 – ident: ref34/cit34 doi: 10.1021/ja9061085 – ident: ref37/cit37 doi: 10.1039/c2ta01125e – ident: ref7/cit7 doi: 10.1021/jacs.5b12189 – ident: ref51/cit51 doi: 10.1039/C5TA00959F – ident: ref3/cit3 doi: 10.1021/cr200077m – ident: ref12/cit12 doi: 10.1039/C7TA04959E – ident: ref56/cit56 doi: 10.1021/jp7110633 – ident: ref65/cit65 doi: 10.1016/S1381-1169(03)00211-5 – ident: ref27/cit27 doi: 10.1002/anie.201801122 – ident: ref48/cit48 doi: 10.1021/acs.langmuir.5b00833 – ident: ref62/cit62 doi: 10.1016/j.molcata.2007.05.032 – ident: ref60/cit60 doi: 10.1016/j.apcata.2008.03.042 – ident: ref50/cit50 doi: 10.1039/C4CC08733J – ident: ref61/cit61 doi: 10.1016/S0021-9517(03)00295-1 – ident: ref30/cit30 doi: 10.1021/ja4030269 – ident: ref9/cit9 doi: 10.1038/ncomms13300 – ident: ref14/cit14 doi: 10.1039/C3SC52633J – ident: ref45/cit45 doi: 10.1039/c2cc32264a – ident: ref28/cit28 doi: 10.1021/acs.chemmater.5b00084 – ident: ref19/cit19 doi: 10.1021/ic402012d – ident: ref43/cit43 doi: 10.1126/science.279.5350.548 – ident: ref6/cit6 doi: 10.1126/science.1230444 – ident: ref24/cit24 doi: 10.1039/C5CS00090D |
SSID | ssj0063205 |
Score | 2.496594 |
Snippet | Because of their diverse structure, high porosity, and tunable functionality, metal–organic frameworks (MOFs) are of great interest for diverse applications,... Due to their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great inter-est for diverse applications... Because of their diverse structure, high porosity, and tunable functionality, metal-organic frameworks (MOFs) are of great interest for diverse applications,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12051 |
SubjectTerms | alkylation catalytic activity coordination polymers hydrophilicity hydrophobicity nanopores organobromine compounds porosity porous media silica solvents |
Title | Fabrication of Metal–Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity |
URI | http://dx.doi.org/10.1021/acsami.8b01652 https://www.ncbi.nlm.nih.gov/pubmed/29537251 https://www.proquest.com/docview/2013788010 https://www.proquest.com/docview/2101338621 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5EL3pwX-rGiIKn1MxMlumxFEMR9KJCb2G2qFhSadpDPAn-BP-hv8Q3WepSqt5CeGEms7z9fQ-hE8UDLg0NHZDl0vF8eGoZJR1qXB5qE_o-s9XIl1dB99a76Pm9T3_Hzwg-JWdCZbYVDpe28AaY7QINeGjNrHbnuua5AaNFsiJY5J7DQWLV8IxT31shpLLvQmiGZllImGilhDvKCmBCm1jy2ByPZFM9T8M2_jn5VbRcqZm4XZ6LNTRn0nW09AV8cAO9RkIOK48dHiT40oAe_v7yVlZnKhzVaVsZfiiaeuLrB-vhw8CQB6C1mwxbJy68vUttvhFsUT_H5-l9kVOAu7m2BSUlDHiORapxx7qKcpgRbquyacUmuo3Obzpdp2rJ4AgWsBGsrdI0kYZLZpRoMWK04G6ipTZgzLEgTLhMiKuUDuEAaK2I4EDUolyBXugxtoXm00FqdhCWxtgiXMXApPME9SVjrvCEYon0kpDqBjqG1YurK5XFRbSckrhc0rha0gZy6p2MVYVqbptr9GfSn07on0o8j5mUR_XBiOHK2TiKSM1gnMXUwjQC3yPuLzTA6sD6DyhpoO3yVE3Goy2fhaBX7v7rD_fQIgzIbQSLkH00PxqOzQEoQiN5WNyBD5c-BsU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1JbtRAsBSFA3BgC8sQQhoFxMmJe7HdPnAYDRlNSCaXJFJupjdDRORB8YyQOUXiCTyAr_AWXpJqLwMBDeISiZvVKrnLXeXauhaA50bGUjuWBKjLdSAifEqd0QFzoUysS6KI-2rk8X48OhJvjqPjJfjW1cIgEiW-qawv8X92F6BbuOYn4kjt629Ym0W566pP6KOVr3ZeI0FfMDbcPhyMgnaMQKB4zKeBZMayXDupuTMq5dRZJcPcauvQAeFxkkud09AYmyDS1hqqJAKlTBq0ZYSPeKKMv4aWD_PeXX9w0In6mLM6R5KmQuA2QnRdIf_A1-s-U17WfQsM2lqxDW_D9_mR1PksHzZnU71pPv_WLfI_PrM7cKs1qkm_-QvuwpIr7sHNX1otrsCXodJnbXySTHIyduh1_Dj_2tSiGjLsktRKclKPMCUHJz6eSVD9TNBHcSXxIWtcfVf47CpkyNOKbBfv6wwKMqqsL59pmp5XRBWWDHxgrEKMSN80Izruw9GVnMIDWC4mhXsERDvnS44NRwdWKBZpzkMllOG5FnnCbA82kFpZK0DKrM4NYDRrSJi1JOxB0DFQZtoe7n6UyOlC-Jdz-I9N95KFkM86fsxQwPhbI1W4yazMmG9KiVKehn-BQcHOOTrHtAcPG2ae78fSiCdoRT_-py9ch-ujw_Fetrezv7sKN3Bz6e_uKH0Cy9OzmVtDE3Cqn9a_IYG3V83DF34YbF4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR3batRA9FAqFH2o1utq1REVn9JmLkkmDz4s24attUWohb7FuUVLS7Y0u0h8EvyEfoK_4pf4JZ7JZfHCii8F30I4ZCZzzpz7BeCZkbHUjiUBynIdiAifUmd0wFwoE-uSKOK-GnlvPx4fildH0dESfO1rYXATFX6paoL4_laf2aLrMEA38b2fiiO1r8FhXSblrqs_op1WvdzZQqQ-ZyzbfjsaB90ogUDxmE8DyYxlhXZSc2dUyqmzSoaF1dahEcLjpJC6oKExNsGNW2uokgiUMmlQnxHe64l8_oqPEXoLbzg66Nl9zFmTJ0lTIXAZIfrOkH_s18s_U_0q_xYotY1wy67Dt_mxNDktJxuzqd4wn37rGPmfn9sNWO2UazJsb8MaLLnyJlz7qeXiLfiSKX3e-SnJpCB7Dq2P758v2ppUQ7I-Wa0ix80oU3Jw7P2aBMXQBG0VVxHvusa370ufZYWEeVqT7fJDk0lBxrX1ZTRt8_OaqNKSkXeQ1bgjMjTtqI7bcHgpp3AHlstJ6e4B0c750mPD0ZAVikWa81AJZXihRZEwO4CniK28YyRV3uQIMJq3KMw7FA4g6IkoN10vdz9S5HQh_Is5_FnbxWQh5JOeJnNkND56pEo3mVU5880pkdvT8C8wyOA5RyOZDuBuS9Dz9Vga8QS16fv_9IePYeXNVpa_3tnffQBXcW3pQ3iUrsPy9HzmHqImONWPmptI4N1lk_APPedu4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Metal%E2%80%93Organic+Frameworks+inside+Silica+Nanopores+with+Significantly+Enhanced+Hydrostability+and+Catalytic+Activity&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Kou%2C+Jiahui&rft.au=Sun%2C+Lin-Bing&rft.date=2018-04-11&rft.issn=1944-8252&rft.volume=10&rft.issue=14+p.12051-12059&rft.spage=12051&rft.epage=12059&rft_id=info:doi/10.1021%2Facsami.8b01652&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |