A Self-Detecting and Self-Cleaning Biomimetic Porous Metal-Based Hydrogel for Oil/Water Separation
Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a po...
Saved in:
Published in | ACS applied materials & interfaces Vol. 14; no. 22; pp. 26057 - 26067 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing. |
---|---|
AbstractList | Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)
is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing. Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)₂ is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing. Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing.Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing. Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing. |
Author | Li, Zhaoxin Jiang, Shuyue Zhang, Haifeng Chen, Liang Sang, Shengtian |
AuthorAffiliation | MEMS Center Ministry of Education Key Laboratory of Micro-Systems and Micro-Structures Manufacturing |
AuthorAffiliation_xml | – name: MEMS Center – name: Ministry of Education – name: Key Laboratory of Micro-Systems and Micro-Structures Manufacturing |
Author_xml | – sequence: 1 givenname: Zhaoxin surname: Li fullname: Li, Zhaoxin organization: MEMS Center – sequence: 2 givenname: Shengtian surname: Sang fullname: Sang, Shengtian email: stsang@hit.edu.cn organization: MEMS Center – sequence: 3 givenname: Shuyue surname: Jiang fullname: Jiang, Shuyue organization: MEMS Center – sequence: 4 givenname: Liang surname: Chen fullname: Chen, Liang organization: MEMS Center – sequence: 5 givenname: Haifeng orcidid: 0000-0002-4917-746X surname: Zhang fullname: Zhang, Haifeng email: zhanghf@hit.edu.cn organization: Ministry of Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35608638$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMovrcupUsROubddKnjExQFFZclydxKJG3GJLOYf2-1owtBXN3L4TuXyzk7aL0PPSB0QPCEYEpOtE26cxNqsWC0WkPbpOa8VFTQ9Z-d8y20k9IbxpJRLDbRFhMSK8nUNjKnxSP4tjyHDDa7_rXQ_WyUph50_6mcudC5DrKzxUOIYZGKO8jal2c6way4Xs5ieAVftCEW986fvOgMcTgx11FnF_o9tNFqn2B_NXfR8-XF0_S6vL2_upme3paaSZZLRWxtrKwMlQaDMZxqLoBrCUpJK2qiJBjMREVaUrdWKiYMrZSRLVOM2JbtoqPx7jyG9wWk3HQuWfBe9zA83dCKDFlUVNT_o1KqmhCF-YAertCF6WDWzKPrdFw23xEOwGQEbAwpRWh_EIKbz46asaNm1dFg4L8M1uWvpHLUzv9tOx5tg968hUXshzD_gj8AdqOjZg |
CitedBy_id | crossref_primary_10_1016_j_seppur_2023_124847 crossref_primary_10_1016_j_chemosphere_2024_143123 crossref_primary_10_1016_j_surfin_2024_104331 crossref_primary_10_1016_j_memsci_2022_121337 crossref_primary_10_1016_j_jece_2024_114215 crossref_primary_10_1016_j_mtphys_2024_101397 crossref_primary_10_1016_j_watres_2022_119052 crossref_primary_10_1016_j_apsusc_2024_161702 crossref_primary_10_1016_j_est_2024_112778 crossref_primary_10_1002_adhm_202401503 crossref_primary_10_1016_j_cej_2024_154000 crossref_primary_10_1039_D4TA09204J crossref_primary_10_1016_j_ces_2024_120808 crossref_primary_10_1016_j_seppur_2022_122349 crossref_primary_10_1007_s10853_024_10496_9 crossref_primary_10_1016_j_jece_2024_113213 crossref_primary_10_1016_j_cej_2024_150324 crossref_primary_10_1515_bmt_2024_0531 crossref_primary_10_1016_j_seppur_2022_122273 crossref_primary_10_1016_j_efmat_2024_06_001 crossref_primary_10_1016_j_porgcoat_2023_107952 crossref_primary_10_1063_5_0101941 crossref_primary_10_1016_j_jclepro_2023_139911 crossref_primary_10_1016_j_cis_2025_103425 crossref_primary_10_1016_j_talanta_2024_127291 crossref_primary_10_1002_smll_202401719 crossref_primary_10_1007_s00396_024_05306_2 crossref_primary_10_1016_j_cherd_2024_06_044 |
Cites_doi | 10.1002/anie.201405785 10.1002/adma.200801782 10.1016/j.matt.2021.01.017 10.1016/j.cej.2016.10.082 10.1016/j.ijbiomac.2021.07.127 10.1002/aenm.201702481 10.1021/la991621c 10.1021/acsami.0c08731 10.1016/j.snb.2018.12.073 10.1016/j.progpolymsci.2019.101166 10.1021/jp5025476 10.1002/adma.201703453 10.1038/NNANO.2014.56 10.1039/c6ta10474f 10.1002/adma.201600417 10.1016/j.seppur.2019.115856 10.1038/477412a 10.1002/adma.201301480 10.1038/nature06599 10.1016/j.pmatsci.2012.11.001 10.1039/c9ra01632e 10.1016/j.nanoen.2020.105558 10.1016/j.seppur.2020.117517 10.1016/j.corsci.2021.109851 10.1038/s41578-020-0195-z 10.1021/la035702r 10.1126/science.1148326 10.1016/j.nanoen.2019.02.011 10.1016/j.cej.2018.04.146 10.1039/d0ta03844j 10.1021/acsnano.8b00005 10.1002/aenm.201802212 10.1039/d1mh01598b 10.1021/acsnano.7b01350 10.1002/adfm.202104701 10.1021/acsnano.8b05763 10.1016/j.memsci.2018.05.055 10.1016/j.envres.2020.109494 10.1007/s10570-019-02435-8 10.1039/c5ta02053k 10.1021/acsami.7b09680 10.1038/NNANO.2016.300 10.1002/adma.201601812 10.1039/c6ee03716j 10.1126/science.1216852 10.1016/j.carbpol.2017.03.096 10.1021/acsami.0c13531 10.1016/j.cej.2019.122925 10.1038/s41467-021-21526-4 10.1039/c9ta00031c 10.1039/c8ta04984j 10.1021/nl070194h 10.1016/j.apsusc.2011.04.137 10.1039/d0ta00002g |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.2c05327 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 26067 |
ExternalDocumentID | 35608638 10_1021_acsami_2c05327 c749063959 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED F5P GGK GNL IH9 JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ ED~ JG~ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-81c9bc67b26b0ebb42a45e4a6e886c59186eb03571f19fc6835b278b6f3831cf3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 05:26:12 EDT 2025 Thu Jul 10 22:35:41 EDT 2025 Wed Feb 19 02:26:24 EST 2025 Tue Jul 01 01:14:40 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Fri Jun 10 11:01:41 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | self-detection hydrogel coating self-cleaning oil/water separation super-wetting surface |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-81c9bc67b26b0ebb42a45e4a6e886c59186eb03571f19fc6835b278b6f3831cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4917-746X |
PMID | 35608638 |
PQID | 2668911804 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2718247259 proquest_miscellaneous_2668911804 pubmed_primary_35608638 crossref_primary_10_1021_acsami_2c05327 crossref_citationtrail_10_1021_acsami_2c05327 acs_journals_10_1021_acsami_2c05327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-08 |
PublicationDateYYYYMMDD | 2022-06-08 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1002/anie.201405785 – ident: ref12/cit12 doi: 10.1002/adma.200801782 – ident: ref20/cit20 doi: 10.1016/j.matt.2021.01.017 – ident: ref10/cit10 doi: 10.1016/j.cej.2016.10.082 – ident: ref39/cit39 doi: 10.1016/j.ijbiomac.2021.07.127 – ident: ref46/cit46 doi: 10.1002/aenm.201702481 – ident: ref49/cit49 doi: 10.1021/la991621c – ident: ref32/cit32 doi: 10.1021/acsami.0c08731 – ident: ref53/cit53 doi: 10.1016/j.snb.2018.12.073 – ident: ref4/cit4 doi: 10.1016/j.progpolymsci.2019.101166 – ident: ref48/cit48 doi: 10.1021/jp5025476 – ident: ref21/cit21 doi: 10.1002/adma.201703453 – ident: ref45/cit45 doi: 10.1038/NNANO.2014.56 – ident: ref6/cit6 doi: 10.1039/c6ta10474f – ident: ref23/cit23 doi: 10.1002/adma.201600417 – ident: ref31/cit31 doi: 10.1016/j.seppur.2019.115856 – ident: ref36/cit36 doi: 10.1038/477412a – ident: ref13/cit13 doi: 10.1002/adma.201301480 – ident: ref1/cit1 doi: 10.1038/nature06599 – ident: ref8/cit8 doi: 10.1016/j.pmatsci.2012.11.001 – ident: ref54/cit54 doi: 10.1039/c9ra01632e – ident: ref50/cit50 doi: 10.1016/j.nanoen.2020.105558 – ident: ref11/cit11 doi: 10.1016/j.seppur.2020.117517 – ident: ref41/cit41 doi: 10.1016/j.corsci.2021.109851 – ident: ref18/cit18 doi: 10.1038/s41578-020-0195-z – ident: ref35/cit35 doi: 10.1021/la035702r – ident: ref37/cit37 doi: 10.1126/science.1148326 – ident: ref47/cit47 doi: 10.1016/j.nanoen.2019.02.011 – ident: ref24/cit24 doi: 10.1016/j.cej.2018.04.146 – ident: ref29/cit29 doi: 10.1039/d0ta03844j – ident: ref27/cit27 doi: 10.1021/acsnano.8b00005 – ident: ref52/cit52 doi: 10.1002/aenm.201802212 – ident: ref15/cit15 doi: 10.1039/d1mh01598b – ident: ref19/cit19 doi: 10.1021/acsnano.7b01350 – ident: ref26/cit26 doi: 10.1002/adfm.202104701 – ident: ref28/cit28 doi: 10.1021/acsnano.8b05763 – ident: ref34/cit34 doi: 10.1016/j.memsci.2018.05.055 – ident: ref9/cit9 doi: 10.1016/j.envres.2020.109494 – ident: ref43/cit43 doi: 10.1007/s10570-019-02435-8 – ident: ref14/cit14 doi: 10.1039/c5ta02053k – ident: ref33/cit33 doi: 10.1021/acsami.7b09680 – ident: ref44/cit44 doi: 10.1038/NNANO.2016.300 – ident: ref5/cit5 doi: 10.1002/adma.201601812 – ident: ref17/cit17 doi: 10.1039/c6ee03716j – ident: ref2/cit2 doi: 10.1126/science.1216852 – ident: ref38/cit38 doi: 10.1016/j.carbpol.2017.03.096 – ident: ref42/cit42 doi: 10.1021/acsami.0c13531 – ident: ref25/cit25 doi: 10.1016/j.cej.2019.122925 – ident: ref22/cit22 doi: 10.1038/s41467-021-21526-4 – ident: ref7/cit7 doi: 10.1039/c9ta00031c – ident: ref16/cit16 doi: 10.1039/c8ta04984j – ident: ref51/cit51 doi: 10.1021/nl070194h – ident: ref30/cit30 doi: 10.1016/j.apsusc.2011.04.137 – ident: ref40/cit40 doi: 10.1039/d0ta00002g |
SSID | ssj0063205 |
Score | 2.5121825 |
Snippet | Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26057 |
SubjectTerms | Applications of Polymer, Composite, and Coating Materials biomimetics carbon nanotubes crosslinking foams hydrogels hydrophilicity oils pollution polyvinyl alcohol skeleton tannins wood |
Title | A Self-Detecting and Self-Cleaning Biomimetic Porous Metal-Based Hydrogel for Oil/Water Separation |
URI | http://dx.doi.org/10.1021/acsami.2c05327 https://www.ncbi.nlm.nih.gov/pubmed/35608638 https://www.proquest.com/docview/2668911804 https://www.proquest.com/docview/2718247259 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXNoDjz5gecmolTgZNrbjOMdlAa2QeEgUlVtkOxO0IiRos3uAX884yVJatMAxlvOasT3fzNjfEPILVSwzv3sKwTswia4OMxYvZQamayPOu-AD-qdnanAlT67D67_xjv8z-DzYN67ypXC48zUMok9kgSsdeTer17-crrlK8HqzInrkkmm0WFN6xlf3eyPkqn-N0AxkWVuY46WG7qiqiQn9xpLbvcnY7rnH17SN7378MllsYSbtNeNihcxB8ZV8eUE--I3YHr2EPGOH4PMI2ERNkTZN_RyMj5fQg2F5N7zz5xzpRTkqJxU9BUTr7ABtX0oHD-movIGcIvCl58N8_w8C1xE-ouETL4vv5Or46Hd_wNqKC8wIJcZMBy62TkWWK9sFayU3MgRpFGitXBgHWoHtijAKsiDOnEL4ZnmkrcrQ0Q1cJn6Q-aIsYI3QVISArpYKXIr6cDJGnJRCFMahMFxI3SE_UThJO2OqpE6G8yBpJJa0EusQNlVU4lrScl87I5_Zf_e5_31D1zGz585U7wnOKJ8mMQWgIBOELDr2zHjyjT5o0rmM0HfskNVm0Dy_TyCI1LisrX_oDzfIZ-5PVPjAjt4k8-PRBLYQ54ztdj3EnwDMOPU1 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvKHL0wgQJ7cbx3GcA4ftlmpLuwWprdpbiJ1JtSJN0GZXqPwZ_go_jXEey0uLuFTiGMtybM945hvPeAbgBZFYZi56isA7ckmmDk8MfcoMk74Jheiju9Af76vRkXx7EpyswNfuLQxNoqKRqtqJ_yO7gLdBba4ijrCulEHYRlHu4vlnstGq1ztbRNCXQmy_ORyOeFtGgCe-8mdcezYyVoVGKNNHY6RIZIAyUai1skHkaYWm7wehl3lRZhVhEiNCbVRG1ptnM5_GvQSXCfkIZ90NhgedqFe-qGMkPVow16Qou6yQf8zX6T5b_ar7lgDaWrFt34Bviy2p41k-rs9nZt1--S1b5H-8Zzfheguq2aA5BbdgBYvbcO2nVIt3wAzYAeYZ30LnNaEmlhRp0zTMMXG3Q2xzUp5NztyrTva-nJbzio2RbBO-SZo-ZaPzdFqeYs4I5rN3k3zjmGD6lIZosqeXxV04upBF3oPVoixwDVjqB0iGpfJsSmxgZUSoMMUwiAI_Eb7UPXhOxIhb-VDFtetfeHFDobilUA94xx-xbVO0u0oh-dL-rxb9PzXJSZb2fNaxW0zywzmFkgJpI2MCaDpyeQDlX_oQgBEyJEu5B_cbXl38zyfIrEmIP_inFT6FK6PD8V68t7O_-xCuCveWxF1p6UewOpvO8TEhvJl5Up8yBh8umkW_A6UzVyM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48IYuTyNAnNJuHMdxDhy2u6y2lJZKpaK3YDsTtGqaVJtdofJ3-Cv8MMZ5rHhoEZdKHGNZju0Zz3zjGc8AvCASi8xFTxF4R0-QqeNpQ58iQ903Eed9dBf6e_tyciTeHofHa_CtewtDk6hopKp24rtTfZZmbYYBf4vaXVUcbl05g6iNpNzF8y9kp1Wvd0ZE1Jecj998GE68tpSApwMZzD3l29hYGRkuTR-NEVyLEIWWqJS0YewriaYfhJGf-XFmJeESwyNlZEYWnG-zgMa9BJedj9BZeIPhYSfuZcDrOEmfFu0pUpZdZsg_5uv0n61-1X8rQG2t3MY34PtyW-qYlpPNxdxs2q-_ZYz8z_ftJlxvwTUbNKfhFqxhcRuu_ZRy8Q6YATvEPPNG6Lwn1MR0kTZNwxy1uyVi29PydHrqXneyg3JWLiq2h2SjeNuk8VM2OU9n5WfMGcF99n6ab30kuD6jIZos6mVxF44uZJH3YL0oC9wAlgYhkoEpfZsSK1gREzpMMQrjMNA8EKoHz4kYSSsnqqQOAeB-0lAoaSnUA6_jkcS2qdpdxZB8Zf9Xy_5nTZKSlT2fdSyXkBxxziFdIG1kQkBNxS4foPhLHwIyXERkMffgfsOvy_8FBJ0VCfMH_7TCp3DlYDRO3u3s7z6Eq9w9KXE3W-oRrM9nC3xMQG9untQHjcGni-bQHxGjWaY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Self-Detecting+and+Self-Cleaning+Biomimetic+Porous+Metal-Based+Hydrogel+for+Oil%2FWater+Separation&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Zhaoxin&rft.au=Sang%2C+Shengtian&rft.au=Jiang%2C+Shuyue&rft.au=Chen%2C+Liang&rft.date=2022-06-08&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=22&rft.spage=26057&rft.epage=26067&rft_id=info:doi/10.1021%2Facsami.2c05327&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_2c05327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |