A Self-Detecting and Self-Cleaning Biomimetic Porous Metal-Based Hydrogel for Oil/Water Separation

Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a po...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 22; pp. 26057 - 26067
Main Authors Li, Zhaoxin, Sang, Shengtian, Jiang, Shuyue, Chen, Liang, Zhang, Haifeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu­(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing.
AbstractList Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH) is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing.
Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)₂ is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing.
Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing.Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing.
Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to monitor the pollution degree and self-cleaning during the separation process limits their application in industrial production. In this study, a porous metal-based hydrogel is proposed, inspired by the porous structure of wood. Porous copper foam with nano-Cu­(OH)2 is used as the skeleton, and its surface is coated with a polyvinyl alcohol, tannic acid, and multiwalled carbon nanotube cross-linked hydrogel coating. The hydrogel has superhydrophilicity and excellent oil/water separation efficiency (>99%) and can adapt to various environments. This approach can also realize hydrogel pollution degree self-detection according to the change in the electrical signal generated during the oil/water separation process, and the hydrogel can also be recovered by soaking to realize self-cleaning. This study will provide new insights into the application of oil/water separation materials in practical industrial manufacturing.
Author Li, Zhaoxin
Jiang, Shuyue
Zhang, Haifeng
Chen, Liang
Sang, Shengtian
AuthorAffiliation MEMS Center
Ministry of Education
Key Laboratory of Micro-Systems and Micro-Structures Manufacturing
AuthorAffiliation_xml – name: MEMS Center
– name: Ministry of Education
– name: Key Laboratory of Micro-Systems and Micro-Structures Manufacturing
Author_xml – sequence: 1
  givenname: Zhaoxin
  surname: Li
  fullname: Li, Zhaoxin
  organization: MEMS Center
– sequence: 2
  givenname: Shengtian
  surname: Sang
  fullname: Sang, Shengtian
  email: stsang@hit.edu.cn
  organization: MEMS Center
– sequence: 3
  givenname: Shuyue
  surname: Jiang
  fullname: Jiang, Shuyue
  organization: MEMS Center
– sequence: 4
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: MEMS Center
– sequence: 5
  givenname: Haifeng
  orcidid: 0000-0002-4917-746X
  surname: Zhang
  fullname: Zhang, Haifeng
  email: zhanghf@hit.edu.cn
  organization: Ministry of Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35608638$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMovrcupUsROubddKnjExQFFZclydxKJG3GJLOYf2-1owtBXN3L4TuXyzk7aL0PPSB0QPCEYEpOtE26cxNqsWC0WkPbpOa8VFTQ9Z-d8y20k9IbxpJRLDbRFhMSK8nUNjKnxSP4tjyHDDa7_rXQ_WyUph50_6mcudC5DrKzxUOIYZGKO8jal2c6way4Xs5ieAVftCEW986fvOgMcTgx11FnF_o9tNFqn2B_NXfR8-XF0_S6vL2_upme3paaSZZLRWxtrKwMlQaDMZxqLoBrCUpJK2qiJBjMREVaUrdWKiYMrZSRLVOM2JbtoqPx7jyG9wWk3HQuWfBe9zA83dCKDFlUVNT_o1KqmhCF-YAertCF6WDWzKPrdFw23xEOwGQEbAwpRWh_EIKbz46asaNm1dFg4L8M1uWvpHLUzv9tOx5tg968hUXshzD_gj8AdqOjZg
CitedBy_id crossref_primary_10_1016_j_seppur_2023_124847
crossref_primary_10_1016_j_chemosphere_2024_143123
crossref_primary_10_1016_j_surfin_2024_104331
crossref_primary_10_1016_j_memsci_2022_121337
crossref_primary_10_1016_j_jece_2024_114215
crossref_primary_10_1016_j_mtphys_2024_101397
crossref_primary_10_1016_j_watres_2022_119052
crossref_primary_10_1016_j_apsusc_2024_161702
crossref_primary_10_1016_j_est_2024_112778
crossref_primary_10_1002_adhm_202401503
crossref_primary_10_1016_j_cej_2024_154000
crossref_primary_10_1039_D4TA09204J
crossref_primary_10_1016_j_ces_2024_120808
crossref_primary_10_1016_j_seppur_2022_122349
crossref_primary_10_1007_s10853_024_10496_9
crossref_primary_10_1016_j_jece_2024_113213
crossref_primary_10_1016_j_cej_2024_150324
crossref_primary_10_1515_bmt_2024_0531
crossref_primary_10_1016_j_seppur_2022_122273
crossref_primary_10_1016_j_efmat_2024_06_001
crossref_primary_10_1016_j_porgcoat_2023_107952
crossref_primary_10_1063_5_0101941
crossref_primary_10_1016_j_jclepro_2023_139911
crossref_primary_10_1016_j_cis_2025_103425
crossref_primary_10_1016_j_talanta_2024_127291
crossref_primary_10_1002_smll_202401719
crossref_primary_10_1007_s00396_024_05306_2
crossref_primary_10_1016_j_cherd_2024_06_044
Cites_doi 10.1002/anie.201405785
10.1002/adma.200801782
10.1016/j.matt.2021.01.017
10.1016/j.cej.2016.10.082
10.1016/j.ijbiomac.2021.07.127
10.1002/aenm.201702481
10.1021/la991621c
10.1021/acsami.0c08731
10.1016/j.snb.2018.12.073
10.1016/j.progpolymsci.2019.101166
10.1021/jp5025476
10.1002/adma.201703453
10.1038/NNANO.2014.56
10.1039/c6ta10474f
10.1002/adma.201600417
10.1016/j.seppur.2019.115856
10.1038/477412a
10.1002/adma.201301480
10.1038/nature06599
10.1016/j.pmatsci.2012.11.001
10.1039/c9ra01632e
10.1016/j.nanoen.2020.105558
10.1016/j.seppur.2020.117517
10.1016/j.corsci.2021.109851
10.1038/s41578-020-0195-z
10.1021/la035702r
10.1126/science.1148326
10.1016/j.nanoen.2019.02.011
10.1016/j.cej.2018.04.146
10.1039/d0ta03844j
10.1021/acsnano.8b00005
10.1002/aenm.201802212
10.1039/d1mh01598b
10.1021/acsnano.7b01350
10.1002/adfm.202104701
10.1021/acsnano.8b05763
10.1016/j.memsci.2018.05.055
10.1016/j.envres.2020.109494
10.1007/s10570-019-02435-8
10.1039/c5ta02053k
10.1021/acsami.7b09680
10.1038/NNANO.2016.300
10.1002/adma.201601812
10.1039/c6ee03716j
10.1126/science.1216852
10.1016/j.carbpol.2017.03.096
10.1021/acsami.0c13531
10.1016/j.cej.2019.122925
10.1038/s41467-021-21526-4
10.1039/c9ta00031c
10.1039/c8ta04984j
10.1021/nl070194h
10.1016/j.apsusc.2011.04.137
10.1039/d0ta00002g
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.2c05327
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 26067
ExternalDocumentID 35608638
10_1021_acsami_2c05327
c749063959
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
F5P
GGK
GNL
IH9
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-81c9bc67b26b0ebb42a45e4a6e886c59186eb03571f19fc6835b278b6f3831cf3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 05:26:12 EDT 2025
Thu Jul 10 22:35:41 EDT 2025
Wed Feb 19 02:26:24 EST 2025
Tue Jul 01 01:14:40 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Fri Jun 10 11:01:41 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords self-detection
hydrogel coating
self-cleaning
oil/water separation
super-wetting surface
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-81c9bc67b26b0ebb42a45e4a6e886c59186eb03571f19fc6835b278b6f3831cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4917-746X
PMID 35608638
PQID 2668911804
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2718247259
proquest_miscellaneous_2668911804
pubmed_primary_35608638
crossref_primary_10_1021_acsami_2c05327
crossref_citationtrail_10_1021_acsami_2c05327
acs_journals_10_1021_acsami_2c05327
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-08
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1002/anie.201405785
– ident: ref12/cit12
  doi: 10.1002/adma.200801782
– ident: ref20/cit20
  doi: 10.1016/j.matt.2021.01.017
– ident: ref10/cit10
  doi: 10.1016/j.cej.2016.10.082
– ident: ref39/cit39
  doi: 10.1016/j.ijbiomac.2021.07.127
– ident: ref46/cit46
  doi: 10.1002/aenm.201702481
– ident: ref49/cit49
  doi: 10.1021/la991621c
– ident: ref32/cit32
  doi: 10.1021/acsami.0c08731
– ident: ref53/cit53
  doi: 10.1016/j.snb.2018.12.073
– ident: ref4/cit4
  doi: 10.1016/j.progpolymsci.2019.101166
– ident: ref48/cit48
  doi: 10.1021/jp5025476
– ident: ref21/cit21
  doi: 10.1002/adma.201703453
– ident: ref45/cit45
  doi: 10.1038/NNANO.2014.56
– ident: ref6/cit6
  doi: 10.1039/c6ta10474f
– ident: ref23/cit23
  doi: 10.1002/adma.201600417
– ident: ref31/cit31
  doi: 10.1016/j.seppur.2019.115856
– ident: ref36/cit36
  doi: 10.1038/477412a
– ident: ref13/cit13
  doi: 10.1002/adma.201301480
– ident: ref1/cit1
  doi: 10.1038/nature06599
– ident: ref8/cit8
  doi: 10.1016/j.pmatsci.2012.11.001
– ident: ref54/cit54
  doi: 10.1039/c9ra01632e
– ident: ref50/cit50
  doi: 10.1016/j.nanoen.2020.105558
– ident: ref11/cit11
  doi: 10.1016/j.seppur.2020.117517
– ident: ref41/cit41
  doi: 10.1016/j.corsci.2021.109851
– ident: ref18/cit18
  doi: 10.1038/s41578-020-0195-z
– ident: ref35/cit35
  doi: 10.1021/la035702r
– ident: ref37/cit37
  doi: 10.1126/science.1148326
– ident: ref47/cit47
  doi: 10.1016/j.nanoen.2019.02.011
– ident: ref24/cit24
  doi: 10.1016/j.cej.2018.04.146
– ident: ref29/cit29
  doi: 10.1039/d0ta03844j
– ident: ref27/cit27
  doi: 10.1021/acsnano.8b00005
– ident: ref52/cit52
  doi: 10.1002/aenm.201802212
– ident: ref15/cit15
  doi: 10.1039/d1mh01598b
– ident: ref19/cit19
  doi: 10.1021/acsnano.7b01350
– ident: ref26/cit26
  doi: 10.1002/adfm.202104701
– ident: ref28/cit28
  doi: 10.1021/acsnano.8b05763
– ident: ref34/cit34
  doi: 10.1016/j.memsci.2018.05.055
– ident: ref9/cit9
  doi: 10.1016/j.envres.2020.109494
– ident: ref43/cit43
  doi: 10.1007/s10570-019-02435-8
– ident: ref14/cit14
  doi: 10.1039/c5ta02053k
– ident: ref33/cit33
  doi: 10.1021/acsami.7b09680
– ident: ref44/cit44
  doi: 10.1038/NNANO.2016.300
– ident: ref5/cit5
  doi: 10.1002/adma.201601812
– ident: ref17/cit17
  doi: 10.1039/c6ee03716j
– ident: ref2/cit2
  doi: 10.1126/science.1216852
– ident: ref38/cit38
  doi: 10.1016/j.carbpol.2017.03.096
– ident: ref42/cit42
  doi: 10.1021/acsami.0c13531
– ident: ref25/cit25
  doi: 10.1016/j.cej.2019.122925
– ident: ref22/cit22
  doi: 10.1038/s41467-021-21526-4
– ident: ref7/cit7
  doi: 10.1039/c9ta00031c
– ident: ref16/cit16
  doi: 10.1039/c8ta04984j
– ident: ref51/cit51
  doi: 10.1021/nl070194h
– ident: ref30/cit30
  doi: 10.1016/j.apsusc.2011.04.137
– ident: ref40/cit40
  doi: 10.1039/d0ta00002g
SSID ssj0063205
Score 2.5121825
Snippet Porous materials with super-wetting surfaces (superhydrophilic/underwater superoleophobic) are ideal for oil/water separation. However, the inability to...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26057
SubjectTerms Applications of Polymer, Composite, and Coating Materials
biomimetics
carbon nanotubes
crosslinking
foams
hydrogels
hydrophilicity
oils
pollution
polyvinyl alcohol
skeleton
tannins
wood
Title A Self-Detecting and Self-Cleaning Biomimetic Porous Metal-Based Hydrogel for Oil/Water Separation
URI http://dx.doi.org/10.1021/acsami.2c05327
https://www.ncbi.nlm.nih.gov/pubmed/35608638
https://www.proquest.com/docview/2668911804
https://www.proquest.com/docview/2718247259
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXNoDjz5gecmolTgZNrbjOMdlAa2QeEgUlVtkOxO0IiRos3uAX884yVJatMAxlvOasT3fzNjfEPILVSwzv3sKwTswia4OMxYvZQamayPOu-AD-qdnanAlT67D67_xjv8z-DzYN67ypXC48zUMok9kgSsdeTer17-crrlK8HqzInrkkmm0WFN6xlf3eyPkqn-N0AxkWVuY46WG7qiqiQn9xpLbvcnY7rnH17SN7378MllsYSbtNeNihcxB8ZV8eUE--I3YHr2EPGOH4PMI2ERNkTZN_RyMj5fQg2F5N7zz5xzpRTkqJxU9BUTr7ABtX0oHD-movIGcIvCl58N8_w8C1xE-ouETL4vv5Or46Hd_wNqKC8wIJcZMBy62TkWWK9sFayU3MgRpFGitXBgHWoHtijAKsiDOnEL4ZnmkrcrQ0Q1cJn6Q-aIsYI3QVISArpYKXIr6cDJGnJRCFMahMFxI3SE_UThJO2OqpE6G8yBpJJa0EusQNlVU4lrScl87I5_Zf_e5_31D1zGz585U7wnOKJ8mMQWgIBOELDr2zHjyjT5o0rmM0HfskNVm0Dy_TyCI1LisrX_oDzfIZ-5PVPjAjt4k8-PRBLYQ54ztdj3EnwDMOPU1
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvKHL0wgQJ7cbx3GcA4ftlmpLuwWprdpbiJ1JtSJN0GZXqPwZ_go_jXEey0uLuFTiGMtybM945hvPeAbgBZFYZi56isA7ckmmDk8MfcoMk74Jheiju9Af76vRkXx7EpyswNfuLQxNoqKRqtqJ_yO7gLdBba4ijrCulEHYRlHu4vlnstGq1ztbRNCXQmy_ORyOeFtGgCe-8mdcezYyVoVGKNNHY6RIZIAyUai1skHkaYWm7wehl3lRZhVhEiNCbVRG1ptnM5_GvQSXCfkIZ90NhgedqFe-qGMkPVow16Qou6yQf8zX6T5b_ar7lgDaWrFt34Bviy2p41k-rs9nZt1--S1b5H-8Zzfheguq2aA5BbdgBYvbcO2nVIt3wAzYAeYZ30LnNaEmlhRp0zTMMXG3Q2xzUp5NztyrTva-nJbzio2RbBO-SZo-ZaPzdFqeYs4I5rN3k3zjmGD6lIZosqeXxV04upBF3oPVoixwDVjqB0iGpfJsSmxgZUSoMMUwiAI_Eb7UPXhOxIhb-VDFtetfeHFDobilUA94xx-xbVO0u0oh-dL-rxb9PzXJSZb2fNaxW0zywzmFkgJpI2MCaDpyeQDlX_oQgBEyJEu5B_cbXl38zyfIrEmIP_inFT6FK6PD8V68t7O_-xCuCveWxF1p6UewOpvO8TEhvJl5Up8yBh8umkW_A6UzVyM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48IYuTyNAnNJuHMdxDhy2u6y2lJZKpaK3YDsTtGqaVJtdofJ3-Cv8MMZ5rHhoEZdKHGNZju0Zz3zjGc8AvCASi8xFTxF4R0-QqeNpQ58iQ903Eed9dBf6e_tyciTeHofHa_CtewtDk6hopKp24rtTfZZmbYYBf4vaXVUcbl05g6iNpNzF8y9kp1Wvd0ZE1Jecj998GE68tpSApwMZzD3l29hYGRkuTR-NEVyLEIWWqJS0YewriaYfhJGf-XFmJeESwyNlZEYWnG-zgMa9BJedj9BZeIPhYSfuZcDrOEmfFu0pUpZdZsg_5uv0n61-1X8rQG2t3MY34PtyW-qYlpPNxdxs2q-_ZYz8z_ftJlxvwTUbNKfhFqxhcRuu_ZRy8Q6YATvEPPNG6Lwn1MR0kTZNwxy1uyVi29PydHrqXneyg3JWLiq2h2SjeNuk8VM2OU9n5WfMGcF99n6ab30kuD6jIZos6mVxF44uZJH3YL0oC9wAlgYhkoEpfZsSK1gREzpMMQrjMNA8EKoHz4kYSSsnqqQOAeB-0lAoaSnUA6_jkcS2qdpdxZB8Zf9Xy_5nTZKSlT2fdSyXkBxxziFdIG1kQkBNxS4foPhLHwIyXERkMffgfsOvy_8FBJ0VCfMH_7TCp3DlYDRO3u3s7z6Eq9w9KXE3W-oRrM9nC3xMQG9untQHjcGni-bQHxGjWaY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Self-Detecting+and+Self-Cleaning+Biomimetic+Porous+Metal-Based+Hydrogel+for+Oil%2FWater+Separation&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Li%2C+Zhaoxin&rft.au=Sang%2C+Shengtian&rft.au=Jiang%2C+Shuyue&rft.au=Chen%2C+Liang&rft.date=2022-06-08&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=22&rft.spage=26057&rft.epage=26067&rft_id=info:doi/10.1021%2Facsami.2c05327&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_2c05327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon