Improving Perovskite Solar Cell Performance and Stability via Thermal Imprinting-Assisted Ion Exchange Passivation
The latest development in perovskite solar cell (PSC) technology has been significantly influenced by advanced techniques aimed at passivating surface defects. This work presents a new approach called thermal imprinting-assisted ion exchange passivation (TIAIEP), which delivers a different approach...
Saved in:
Published in | ACS applied materials & interfaces Vol. 16; no. 38; pp. 51037 - 51045 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.4c08538 |
Cover
Loading…
Abstract | The latest development in perovskite solar cell (PSC) technology has been significantly influenced by advanced techniques aimed at passivating surface defects. This work presents a new approach called thermal imprinting-assisted ion exchange passivation (TIAIEP), which delivers a different approach to conventional solution-based methods. TIAIEP focuses on addressing surface imperfections in solid-state films by using a passivator that promotes ion exchange specifically at the defect sites within the perovskite layer. By adjusting the time and temperature of the TIAIEP process, we achieve substantial enhancement in the creation of a compositional gradient within the films. This optimization slows the cooling rate of hot carriers, leading to minimizing charge recombination and improving the device performance. Remarkably, devices treated with TIAIEP achieve a 22.29% power conversion efficiency and show outstanding stability, with unencapsulated PSCs maintaining 91% of their original efficiency after over 2000 h of storage and 90% efficiency after 1200 h of constant illumination. These results highlight TIAIEP’s effectiveness in mitigating surface defects, improving both the photoelectric and stability performance of PSCs, and indicating significant potential for large-scale application in perovskite film passivation, promoting the widespread adoption of this technology. |
---|---|
AbstractList | The latest development in perovskite solar cell (PSC) technology has been significantly influenced by advanced techniques aimed at passivating surface defects. This work presents a new approach called thermal imprinting-assisted ion exchange passivation (TIAIEP), which delivers a different approach to conventional solution-based methods. TIAIEP focuses on addressing surface imperfections in solid-state films by using a passivator that promotes ion exchange specifically at the defect sites within the perovskite layer. By adjusting the time and temperature of the TIAIEP process, we achieve substantial enhancement in the creation of a compositional gradient within the films. This optimization slows the cooling rate of hot carriers, leading to minimizing charge recombination and improving the device performance. Remarkably, devices treated with TIAIEP achieve a 22.29% power conversion efficiency and show outstanding stability, with unencapsulated PSCs maintaining 91% of their original efficiency after over 2000 h of storage and 90% efficiency after 1200 h of constant illumination. These results highlight TIAIEP's effectiveness in mitigating surface defects, improving both the photoelectric and stability performance of PSCs, and indicating significant potential for large-scale application in perovskite film passivation, promoting the widespread adoption of this technology.The latest development in perovskite solar cell (PSC) technology has been significantly influenced by advanced techniques aimed at passivating surface defects. This work presents a new approach called thermal imprinting-assisted ion exchange passivation (TIAIEP), which delivers a different approach to conventional solution-based methods. TIAIEP focuses on addressing surface imperfections in solid-state films by using a passivator that promotes ion exchange specifically at the defect sites within the perovskite layer. By adjusting the time and temperature of the TIAIEP process, we achieve substantial enhancement in the creation of a compositional gradient within the films. This optimization slows the cooling rate of hot carriers, leading to minimizing charge recombination and improving the device performance. Remarkably, devices treated with TIAIEP achieve a 22.29% power conversion efficiency and show outstanding stability, with unencapsulated PSCs maintaining 91% of their original efficiency after over 2000 h of storage and 90% efficiency after 1200 h of constant illumination. These results highlight TIAIEP's effectiveness in mitigating surface defects, improving both the photoelectric and stability performance of PSCs, and indicating significant potential for large-scale application in perovskite film passivation, promoting the widespread adoption of this technology. The latest development in perovskite solar cell (PSC) technology has been significantly influenced by advanced techniques aimed at passivating surface defects. This work presents a new approach called thermal imprinting-assisted ion exchange passivation (TIAIEP), which delivers a different approach to conventional solution-based methods. TIAIEP focuses on addressing surface imperfections in solid-state films by using a passivator that promotes ion exchange specifically at the defect sites within the perovskite layer. By adjusting the time and temperature of the TIAIEP process, we achieve substantial enhancement in the creation of a compositional gradient within the films. This optimization slows the cooling rate of hot carriers, leading to minimizing charge recombination and improving the device performance. Remarkably, devices treated with TIAIEP achieve a 22.29% power conversion efficiency and show outstanding stability, with unencapsulated PSCs maintaining 91% of their original efficiency after over 2000 h of storage and 90% efficiency after 1200 h of constant illumination. These results highlight TIAIEP's effectiveness in mitigating surface defects, improving both the photoelectric and stability performance of PSCs, and indicating significant potential for large-scale application in perovskite film passivation, promoting the widespread adoption of this technology. |
Author | Qi, Shuwen Hua, Yong Wang, Peng Zhao, Yuping Xie, Lin Ge, Chenghao Wu, Bin Zhao, Rongjun Shafian, Shafidah |
AuthorAffiliation | Department of Physics, Center for Optoelectronics Engineering Research School of Materials and Energy Solar Energy Research Institute |
AuthorAffiliation_xml | – name: Solar Energy Research Institute – name: School of Materials and Energy – name: Department of Physics, Center for Optoelectronics Engineering Research |
Author_xml | – sequence: 1 givenname: Shuwen surname: Qi fullname: Qi, Shuwen organization: School of Materials and Energy – sequence: 2 givenname: Chenghao surname: Ge fullname: Ge, Chenghao organization: School of Materials and Energy – sequence: 3 givenname: Peng surname: Wang fullname: Wang, Peng organization: School of Materials and Energy – sequence: 4 givenname: Bin surname: Wu fullname: Wu, Bin organization: School of Materials and Energy – sequence: 5 givenname: Yuping surname: Zhao fullname: Zhao, Yuping organization: School of Materials and Energy – sequence: 6 givenname: Rongjun surname: Zhao fullname: Zhao, Rongjun organization: Department of Physics, Center for Optoelectronics Engineering Research – sequence: 7 givenname: Shafidah orcidid: 0000-0002-7533-7148 surname: Shafian fullname: Shafian, Shafidah email: norshafidah@ukm.edu.my organization: Solar Energy Research Institute – sequence: 8 givenname: Yong orcidid: 0000-0003-4799-2871 surname: Hua fullname: Hua, Yong email: huayong@ynu.edu.cn organization: School of Materials and Energy – sequence: 9 givenname: Lin orcidid: 0000-0002-8496-0548 surname: Xie fullname: Xie, Lin email: l.xie@ynu.edu.cn organization: School of Materials and Energy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39261789$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1rFDEUxYNU7Ie--ih5FGHWfM1M8liWWhcKFlqfh7vJnTZ1JtEku9j_3mx37YNQ8CmXm985cM49JUchBiTkPWcLzgT_DDbD7BfKMt1K_YqccKNUo0Urjp5npY7Jac4PjHVSsPYNOZZGdLzX5oSk1fwzxa0Pd_Qa65B_-IL0Jk6Q6BKnabcdY5ohWKQQHL0psPaTL49064He3mP9m-jOxYdSbZrznH0u6OgqBnrx295DuEN6DXW9heJjeEtejzBlfHd4z8j3Lxe3y6_N1bfL1fL8qgHZydL0YHkrbeewU9ByoVG7Vjg3tr1A1zmDay3XVjFjjOvF6ITp2pEbA0qPowR5Rj7ufWvAXxvMZZh9tjUTBIybPMhqr1Wtrf8PlEmljDCsoh8O6GY9oxtq7hnS4_C30gos9oBNMeeE4zPC2bC72bC_2XC4WRWofwTWl6emSgI_vSz7tJfV_fAQNynUMl-C_wAN0Kuj |
CitedBy_id | crossref_primary_10_1002_smll_202408362 crossref_primary_10_1016_j_jechem_2024_10_027 |
Cites_doi | 10.1126/science.abh1885 10.1039/C9EE00872A 10.1038/s41578-020-0221-1 10.1021/jacs.2c00391 10.1002/adfm.202007520 10.1016/j.joule.2024.02.019 10.1126/science.abi6323 10.1038/s41566-023-01373-z 10.1038/s41467-021-23616-9 10.1002/anie.202305670 10.1038/s41586-022-04604-5 10.1021/acsenergylett.1c00124 10.1002/adfm.202200473 10.1016/j.joule.2020.10.014 10.1016/j.matt.2022.04.006 10.1038/s41560-020-00749-7 10.1039/C8EE02730G 10.1002/eom2.12313 10.1038/s41586-023-05825-y 10.1038/s41586-021-03406-5 10.1038/s41586-022-05268-x 10.1021/acsenergylett.9b01356 10.1039/D3EE03435F 10.1038/s41566-019-0398-2 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.4c08538 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 51045 |
ExternalDocumentID | 39261789 10_1021_acsami_4c08538 c994432612 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABLBI CITATION NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-7ac153c6de64a5128e8d52ddf572ed6d9eb83bc40999d72fd2965f199a48ff3a3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Wed Jul 02 04:28:54 EDT 2025 Fri Jul 11 09:39:46 EDT 2025 Wed Feb 19 02:03:58 EST 2025 Tue Jul 01 04:03:24 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Fri Sep 27 04:42:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | hole collection built-in electric field hole transport layer charge recombination perovskite solar cells |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-7ac153c6de64a5128e8d52ddf572ed6d9eb83bc40999d72fd2965f199a48ff3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8496-0548 0000-0003-4799-2871 0000-0002-7533-7148 |
PMID | 39261789 |
PQID | 3103449290 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3153848537 proquest_miscellaneous_3103449290 pubmed_primary_39261789 crossref_primary_10_1021_acsami_4c08538 crossref_citationtrail_10_1021_acsami_4c08538 acs_journals_10_1021_acsami_4c08538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-25 |
PublicationDateYYYYMMDD | 2024-09-25 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref17/cit17 ref6/cit6 ref10/cit10 ref3/cit3 ref18/cit18 ref19/cit19 ref21/cit21 ref11/cit11 ref12/cit12 ref15/cit15 ref16/cit16 ref22/cit22 ref23/cit23 ref13/cit13 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref4/cit4 ref1/cit1 ref24/cit24 ref20/cit20 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1126/science.abh1885 – ident: ref22/cit22 doi: 10.1039/C9EE00872A – ident: ref7/cit7 doi: 10.1038/s41578-020-0221-1 – ident: ref10/cit10 doi: 10.1021/jacs.2c00391 – ident: ref21/cit21 doi: 10.1002/adfm.202007520 – ident: ref13/cit13 doi: 10.1016/j.joule.2024.02.019 – ident: ref18/cit18 doi: 10.1126/science.abi6323 – ident: ref3/cit3 doi: 10.1038/s41566-023-01373-z – ident: ref19/cit19 doi: 10.1038/s41467-021-23616-9 – ident: ref24/cit24 doi: 10.1002/anie.202305670 – ident: ref5/cit5 doi: 10.1038/s41586-022-04604-5 – ident: ref6/cit6 doi: 10.1021/acsenergylett.1c00124 – ident: ref15/cit15 doi: 10.1002/adfm.202200473 – ident: ref4/cit4 doi: 10.1016/j.joule.2020.10.014 – ident: ref9/cit9 doi: 10.1016/j.matt.2022.04.006 – ident: ref16/cit16 doi: 10.1038/s41560-020-00749-7 – ident: ref17/cit17 doi: 10.1039/C8EE02730G – ident: ref23/cit23 doi: 10.1002/eom2.12313 – ident: ref1/cit1 doi: 10.1038/s41586-023-05825-y – ident: ref12/cit12 doi: 10.1038/s41586-021-03406-5 – ident: ref14/cit14 doi: 10.1038/s41586-022-05268-x – ident: ref20/cit20 doi: 10.1021/acsenergylett.9b01356 – ident: ref2/cit2 doi: 10.1039/D3EE03435F – ident: ref8/cit8 doi: 10.1038/s41566-019-0398-2 |
SSID | ssj0063205 |
Score | 2.4766498 |
Snippet | The latest development in perovskite solar cell (PSC) technology has been significantly influenced by advanced techniques aimed at passivating surface defects.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 51037 |
SubjectTerms | Functional Inorganic Materials and Devices ion exchange lighting solar cells temperature |
Title | Improving Perovskite Solar Cell Performance and Stability via Thermal Imprinting-Assisted Ion Exchange Passivation |
URI | http://dx.doi.org/10.1021/acsami.4c08538 https://www.ncbi.nlm.nih.gov/pubmed/39261789 https://www.proquest.com/docview/3103449290 https://www.proquest.com/docview/3153848537 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TB-2XeiCj4VF2TNE0fZUxUUAZzsLeS5gLi6GTtRP31nvQyb0x9K-1pmiYnOV9OTr6D0Inh2ggZUI8HUnhMwwJFKu48Yn6olA60LkiSbu_4VZ_dDILBh7_j-w4-8c-lylwqHKYAHFAxjxYIhxHsQFC7V8-5nJIiWBFW5MwTYLFqesYf7zsjpLKvRmgGsiwszOVKSXeUFcSELrDk8WySJ2fq7Sdt45-VX0XLFczEF6VerKE5k66jpU_kgxtoPPUn4K6Bi8z5cXHPLXVx2wyH7m59pgDLVGPApUUk7St-fpAY9AueDbEr5aFIN-FBVzul0fh6lOLOS3mmGHcBnlcp1DZR_7Jz377yqgwMnqSc5l4oFcyICvqTMwnQQBihA6K1DUJiNNeRSQRNFHMwU4fEahLxwPpRJJmwlkq6hRrpKDU7CAsT-TKJEkVDyUjLipZNpOXa-tLXwqdNdAyNFVcjKIuLzXHix2ULxlULNpFXd1ysKhJzl0tjOFP-dCr_VNJ3zJQ8qvUghhHmtk1kakaTLHaZ2BgDGNn6TQaKYFBO2ETbpRJNvwcI1J3DjHb_9Yd7aJEAbnIhKSTYR418PDEHgHvy5LBQ-Xfen_-b |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROFAOtKU8tg9q1Eo9ZdnYjuMc0Qq0UEArARK3yPFDQqyyiOwi6K_v2Em2LWgR3CJnMvFj7PlszwPghxXGSpWwSCRKRtzgBkVp4U_E4lRrkxgTgiSdnIrBBT-6TC4XYLf1hcFKVMipCpf4f6MLxLtY5jPicI0Ygck3sIRIhHqR3uuftUuvYDTYLOLGnEcSFVcbpfHJ914X6ep_XTQHYAZFc_AOhrMqBvuS6-50UnT170fRG1_Rhvew2oBOsldLyQdYsOUarPwTivAj3M5OF8jQ4kPlT3XJmd_4kr4djXxp62FAVGkIotRgV_tA7q4UQWnDdyPiuVyF5BMRDrwXIUMOxyXZv689jMkQwXqTUG0dLg72z_uDqMnHECkm2CRKlcb1UePoCq4QKEgrTUKNcUlKrREms4VkheYedJqUOkMzkbg4yxSXzjHFNmCxHJd2C4i0WayKrNAsVZz2nOy5QjlhXKxiI2PWge_YWXkzn6o8XJXTOK97MG96sANRO365bkKa-8wao7n0P2f0N3Uwj7mUO6045Djf_CWKKu14WuU-LxvnCCp7z9EgC4580g5s1rI0-x_iUe-VmX16UQu_wfLg_OQ4Pz48_fUZ3lJEVN5YhSZfYHFyO7VfERFNiu0wC_4ArvUICw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgeYAPGCmwYgcRTtsZ2HOdxKqs2BlOlbdLeIsdnS9OqdFraCfjruXOSig8VsbfIcS7-uPP9bN8HYx-8Bm9sJhOdWZMowA2KdZpOxNLcOcgAYpCkryf68Fx9vsguOj9u8oXBRjRIqYmX-CTV1xC6CAPpHpZTVhzlECdIc589oDs7Yuv90Wm__Gopot0ibs5VYlB59ZEa__qe9JFrftdHK0BmVDbjp-xs2cxoY3K1u5hXu-7HHxEc79iPdfakA598v-WWDXbP18_Y419CEj5nN8tTBj7x-NDQ6S4_pQ0wH_nplEp7TwNua-CIVqN97Xd-e2k5ch2-m3KichmTUCTIAMRKwI9mNT_41noa8wmC9i6x2gt2Pj44Gx0mXV6GxEot50luHa6TDmdZK4uAwXgDmQAIWS48aCh8ZWTlFIFPyEUAUegspEVhlQlBWrnJ1upZ7bcYN75IbVVUTuZWiWEww1DZoCGkNgWTygF7j4NVdnLVlPHKXKRlO4JlN4IDlvRzWLoutDll2JiurP9xWf-6Deqxsua7niVKlDu6TLG1ny2akvKzKYXgcvivOkhCIZ18wF62_LT8H-JS8s4sXv1XD9-yh5NP4_LL0cnxa_ZIILAimxWRvWFr85uF30ZgNK92oiD8BChhCo4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Perovskite+Solar+Cell+Performance+and+Stability+via+Thermal+Imprinting-Assisted+Ion+Exchange+Passivation&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Qi%2C+Shuwen&rft.au=Ge%2C+Chenghao&rft.au=Wang%2C+Peng&rft.au=Wu%2C+Bin&rft.date=2024-09-25&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=16&rft.issue=38&rft.spage=51037&rft_id=info:doi/10.1021%2Facsami.4c08538&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |