3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles

A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 4; pp. 5687 - 5700
Main Authors Jiang, Xuehe, Mietner, J. Benedikt, Harder, Constantin, Komban, Rajesh, Chen, Shouzheng, Strelow, Christian, Sazama, Uta, Fröba, Michael, Gimmler, Christoph, Müller-Buschbaum, Peter, Roth, Stephan V., Navarro, Julien R. G.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.
AbstractList A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.
A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu⁰-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.
A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu -mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.
A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.
Author Jiang, Xuehe
Harder, Constantin
Mietner, J. Benedikt
Chen, Shouzheng
Sazama, Uta
Fröba, Michael
Strelow, Christian
Gimmler, Christoph
Müller-Buschbaum, Peter
Roth, Stephan V.
Navarro, Julien R. G.
Komban, Rajesh
AuthorAffiliation Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ)
University Hamburg
Physik-Department, Lehrstuhl für Funtionelle Materielien
Institute of Wood Science
Department of Chemistry, Institute of Physical Chemistry
Department of Chemistry, Institute of Inorganic and Applied Chemistry
AuthorAffiliation_xml – name: Department of Chemistry, Institute of Physical Chemistry
– name: Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ)
– name: Department of Chemistry, Institute of Inorganic and Applied Chemistry
– name: University Hamburg
– name: Institute of Wood Science
– name: Physik-Department, Lehrstuhl für Funtionelle Materielien
Author_xml – sequence: 1
  givenname: Xuehe
  orcidid: 0000-0001-5616-6702
  surname: Jiang
  fullname: Jiang, Xuehe
  organization: Institute of Wood Science
– sequence: 2
  givenname: J. Benedikt
  surname: Mietner
  fullname: Mietner, J. Benedikt
  organization: Institute of Wood Science
– sequence: 3
  givenname: Constantin
  surname: Harder
  fullname: Harder, Constantin
– sequence: 4
  givenname: Rajesh
  surname: Komban
  fullname: Komban, Rajesh
– sequence: 5
  givenname: Shouzheng
  surname: Chen
  fullname: Chen, Shouzheng
– sequence: 6
  givenname: Christian
  orcidid: 0000-0002-5989-1675
  surname: Strelow
  fullname: Strelow, Christian
  organization: University Hamburg
– sequence: 7
  givenname: Uta
  surname: Sazama
  fullname: Sazama, Uta
  organization: University Hamburg
– sequence: 8
  givenname: Michael
  surname: Fröba
  fullname: Fröba, Michael
  organization: University Hamburg
– sequence: 9
  givenname: Christoph
  surname: Gimmler
  fullname: Gimmler, Christoph
– sequence: 10
  givenname: Peter
  orcidid: 0000-0002-9566-6088
  surname: Müller-Buschbaum
  fullname: Müller-Buschbaum, Peter
  organization: Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ)
– sequence: 11
  givenname: Stephan V.
  surname: Roth
  fullname: Roth, Stephan V.
– sequence: 12
  givenname: Julien R. G.
  orcidid: 0000-0001-8791-6190
  surname: Navarro
  fullname: Navarro, Julien R. G.
  email: Julien.navarro@uni-hamburg.de
  organization: Institute of Wood Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36669131$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQgC1URB9w5Yh8LEgbbK_34SMKpY2UQtSE88prz0quvHawvZXCD-R34TRtDkgVJ4883zdjjeccnTjvAKH3lMwoYfSzVFGOZsYUI01TvUJnVHBetKxiJ8eY81N0HuM9IXXJSPUGnZZ1XQta0jP0p_yKV8G4JHsL-GbXB6PxNVh8KzVgP-CVt7sRAl5PYZAKiluvzWBA4zlYO1kfAX-Xzg8mmzbmWrCVIaf73VFZOJOMTHvHuxS8tTm8k9ooaZ_rm98yGe_w5XpRrK82xfJu9RFLp_HPrfLuAULcZ5fTaBxEBS49ds2tklEW4lv0epA2wrun8wJtvl1t5jfF8sf1Yv5lWciyLlNR95oDJ0INvWoaDpoKUENVCejLFoiqgYu-kbQsK0ka2XKhBM2z1G1b7a8v0OWh7Db4XxPE1I0mv8Za6cBPsWOCM0qEqNj_0aZuGas4azP64Qmd-hF0tw1mlGHXPf9SBmYHQAUfY4DhiFDS7degO6xB97QGWeD_CMqkxwGnII19Wft00PJ9d--n4PIsX4L_Anh8yHg
CitedBy_id crossref_primary_10_1002_smll_202309035
crossref_primary_10_1039_D4NA00191E
crossref_primary_10_1021_acsabm_4c00694
crossref_primary_10_1021_acsanm_3c04272
crossref_primary_10_1021_acsanm_4c02851
crossref_primary_10_1021_acsabm_3c00675
crossref_primary_10_3390_ma16103642
crossref_primary_10_1177_07316844241273038
crossref_primary_10_1016_j_cogsc_2023_100851
crossref_primary_10_1021_acsami_3c10581
crossref_primary_10_1039_D4TB01579G
crossref_primary_10_1016_j_ijbiomac_2023_126287
crossref_primary_10_1021_acsanm_4c03604
Cites_doi 10.1021/acsami.7b13400
10.1107/S0021889810015773
10.1039/c5gc02500a
10.1016/j.trac.2021.116256
10.1039/C5NR06653K
10.1515/ntrev-2020-0025
10.1021/acsapm.0c00212
10.1021/acsnano.1c00856
10.1002/adfm.202108556
10.1016/j.ijbiomac.2020.03.163
10.1038/s41598-021-85865-4
10.1016/j.matlet.2018.09.085
10.1021/acsabm.1c00440
10.1039/c8nr08194h
10.1016/j.ccr.2021.213821
10.1021/bm400178m
10.1002/anie.201201025
10.1007/978-3-030-32036-2
10.1021/acs.macromol.9b00531
10.3390/POLYM12040986
10.1021/ja0256055
10.1007/s10570-021-04154-5
10.1021/acs.biomac.0c00210
10.1039/C9NR10964A
10.1021/acsami.8b17414
10.1107/S0909049512016895
10.1021/acsapm.2c01286
10.1016/B978-0-12-817840-9.00006-0
10.1007/s10570-021-03702-3
10.1002/aelm.202100137
10.1039/b411311j
10.1146/annurev-physchem-040214-121344
10.1002/adom.201600514
10.3390/nano10020292
10.1021/acsanm.1c01849
10.1016/j.carbpol.2022.119320
10.1021/acs.biomac.1c00669
10.1039/d1gc02292j
10.3390/fib11010002
10.1021/ar500253g
10.1016/j.carbpol.2018.12.073
10.1021/acsami.5b02092
10.1021/acssuschemeng.0c07542
10.1021/acsnano.7b02305
10.1021/acssuschemeng.7b03439
10.1021/ja108948z
10.1021/acs.biomac.6b00668
10.1021/acssuschemeng.6b00811
10.1016/j.carbpol.2019.115588
10.1002/zaac.19502610110
10.1039/c0cs00108b
10.1021/acs.biomac.7b00398
10.1021/acs.biomac.9b00153
10.1021/acs.jpcc.8b09327
10.1021/acs.biomac.1c01505
10.1021/acsami.5b02090
10.1039/D0NA01045F
10.1002/marc.202000531
10.1016/j.actbio.2018.10.036
10.1038/s41598-019-41482-w
10.1007/s40820-015-0040-x
10.1021/acsanm.0c02819
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.2c20775
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 5700
ExternalDocumentID 36669131
10_1021_acsami_2c20775
c897439522
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-6bd4e409cfbc774ed19ecf559eb38e0c6e49b7a1335a07a849c91252d8857a13
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 10:14:48 EDT 2025
Thu Jul 10 17:50:16 EDT 2025
Thu Jan 02 22:53:12 EST 2025
Thu Apr 24 22:50:06 EDT 2025
Tue Jul 01 00:55:37 EDT 2025
Fri Feb 03 03:10:56 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cellulose nanofibrils (CNFs)
single electron transfer living radical polymerization (SET-LRP)
upconversion nanoparticles (UCNPs)
cellulose-based hybrid material
3D gel printing
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-6bd4e409cfbc774ed19ecf559eb38e0c6e49b7a1335a07a849c91252d8857a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9566-6088
0000-0001-8791-6190
0000-0002-5989-1675
0000-0001-5616-6702
PMID 36669131
PQID 2768225428
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2942109952
proquest_miscellaneous_2768225428
pubmed_primary_36669131
crossref_primary_10_1021_acsami_2c20775
crossref_citationtrail_10_1021_acsami_2c20775
acs_journals_10_1021_acsami_2c20775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
Minor J. L. (ref19/cit19) 1994; 3
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1021/acsami.7b13400
– ident: ref56/cit56
  doi: 10.1107/S0021889810015773
– ident: ref11/cit11
  doi: 10.1039/c5gc02500a
– ident: ref30/cit30
  doi: 10.1016/j.trac.2021.116256
– ident: ref50/cit50
– ident: ref51/cit51
  doi: 10.1039/C5NR06653K
– ident: ref63/cit63
  doi: 10.1515/ntrev-2020-0025
– ident: ref47/cit47
  doi: 10.1021/acsapm.0c00212
– ident: ref18/cit18
  doi: 10.1021/acsnano.1c00856
– ident: ref61/cit61
  doi: 10.1002/adfm.202108556
– ident: ref3/cit3
  doi: 10.1016/j.ijbiomac.2020.03.163
– ident: ref45/cit45
  doi: 10.1038/s41598-021-85865-4
– ident: ref6/cit6
  doi: 10.1016/j.matlet.2018.09.085
– ident: ref15/cit15
  doi: 10.1021/acsabm.1c00440
– ident: ref55/cit55
  doi: 10.1039/c8nr08194h
– ident: ref33/cit33
  doi: 10.1016/j.ccr.2021.213821
– ident: ref40/cit40
  doi: 10.1021/bm400178m
– ident: ref48/cit48
  doi: 10.1002/anie.201201025
– ident: ref31/cit31
  doi: 10.1007/978-3-030-32036-2
– ident: ref59/cit59
  doi: 10.1021/acs.macromol.9b00531
– ident: ref7/cit7
  doi: 10.3390/POLYM12040986
– volume: 3
  start-page: 93
  year: 1994
  ident: ref19/cit19
  publication-title: Progrress Pap. Recycl.
– ident: ref27/cit27
  doi: 10.1021/ja0256055
– ident: ref24/cit24
  doi: 10.1007/s10570-021-04154-5
– ident: ref26/cit26
  doi: 10.1021/acs.biomac.0c00210
– ident: ref57/cit57
  doi: 10.1039/C9NR10964A
– ident: ref10/cit10
  doi: 10.1021/acsami.8b17414
– ident: ref49/cit49
  doi: 10.1107/S0909049512016895
– ident: ref41/cit41
  doi: 10.1021/acsapm.2c01286
– ident: ref29/cit29
  doi: 10.1016/B978-0-12-817840-9.00006-0
– ident: ref2/cit2
  doi: 10.1007/s10570-021-03702-3
– ident: ref58/cit58
  doi: 10.1002/aelm.202100137
– ident: ref16/cit16
  doi: 10.1039/b411311j
– ident: ref28/cit28
  doi: 10.1146/annurev-physchem-040214-121344
– ident: ref36/cit36
  doi: 10.1002/adom.201600514
– ident: ref12/cit12
  doi: 10.3390/nano10020292
– ident: ref9/cit9
  doi: 10.1021/acsanm.1c01849
– ident: ref21/cit21
  doi: 10.1016/j.carbpol.2022.119320
– ident: ref35/cit35
  doi: 10.1021/acs.biomac.1c00669
– ident: ref22/cit22
  doi: 10.1039/d1gc02292j
– ident: ref25/cit25
  doi: 10.3390/fib11010002
– ident: ref37/cit37
  doi: 10.1021/ar500253g
– ident: ref23/cit23
  doi: 10.1016/j.carbpol.2018.12.073
– ident: ref54/cit54
  doi: 10.1021/acsami.5b02092
– ident: ref17/cit17
  doi: 10.1021/acssuschemeng.0c07542
– ident: ref8/cit8
  doi: 10.1021/acsnano.7b02305
– ident: ref5/cit5
  doi: 10.1021/acssuschemeng.7b03439
– ident: ref38/cit38
  doi: 10.1021/ja108948z
– ident: ref64/cit64
  doi: 10.1021/acs.biomac.6b00668
– ident: ref42/cit42
  doi: 10.1021/acssuschemeng.6b00811
– ident: ref62/cit62
  doi: 10.1016/j.carbpol.2019.115588
– ident: ref52/cit52
  doi: 10.1002/zaac.19502610110
– ident: ref1/cit1
  doi: 10.1039/c0cs00108b
– ident: ref46/cit46
  doi: 10.1021/acs.biomac.7b00398
– ident: ref39/cit39
  doi: 10.1021/acs.biomac.9b00153
– ident: ref53/cit53
  doi: 10.1021/acs.jpcc.8b09327
– ident: ref20/cit20
  doi: 10.1021/acs.biomac.1c01505
– ident: ref44/cit44
  doi: 10.1021/acsami.5b02090
– ident: ref34/cit34
  doi: 10.1039/D0NA01045F
– ident: ref43/cit43
  doi: 10.1002/marc.202000531
– ident: ref13/cit13
  doi: 10.1016/j.actbio.2018.10.036
– ident: ref32/cit32
  doi: 10.1038/s41598-019-41482-w
– ident: ref14/cit14
  doi: 10.1007/s40820-015-0040-x
– ident: ref60/cit60
  doi: 10.1021/acsanm.0c02819
SSID ssj0063205
Score 2.4748905
Snippet A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5687
SubjectTerms cellulose
cellulose nanofibers
crosslinking
Fourier transform infrared spectroscopy
Functional Nanostructured Materials (including low-D carbon)
gels
hydrophilicity
hydrophobicity
ligands
luminescence
luminescent assay
nanoparticles
oleic acid
polymerization
polymers
rheology
small-angle X-ray scattering
thermogravimetry
viscoelasticity
X-ray diffraction
Title 3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles
URI http://dx.doi.org/10.1021/acsami.2c20775
https://www.ncbi.nlm.nih.gov/pubmed/36669131
https://www.proquest.com/docview/2768225428
https://www.proquest.com/docview/2942109952
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4EDUJ7LozICCTi4bWwnmxzRtmWLumjV3Uq9RX5MJESarDbJYfmB_C7GTrI8qi29WZHHTuLx-BvP5zEh71QopRWxZVoJwWSkBNNgHckRMqGyIRpLt98x-RqNL-SXy_Dy937HvxF8HhwoU7mrcLjhLlvbHbLDI5zBDgSNZr3NjQT3ZEX0yCWLccXq0zNek3eLkKn-XoQ2IEu_wpw8aNMdVT4xoSOWfN9var1vflxP2_jfl39I7ncwk35q9WKXbEHxiNz7I_ngY_JTHNEpFmt3eIqOV-7oFv0MOZ0oC7TM6LTMV1ewpLNmmSkDbFLabxkiVjqCPG_ysgKKthmVEyXzCtsCz2anerUWOXXUJESzKNNS4nMsnisfG-rb7w6C0g-zUzTuc3Z2Pv1IVWHpxcJT4v1-Hj1rrhxB33FJfa-LntH3hMxPjuejMetudWBKRKJmkbYS0Ks0mTaIPcEGCZgMHRt062M4NBHIRA8V-s6hOhyqWCYmQRTGbRyH7vFTsl2UBTwnVGsZ68DqZKiNDNFyI1SSQiulYh3qSA_IW_z_aTcpq9TH23mQtoOSdoMyIKzXhdR0edHd9Rz5xvrv1_UXbUaQjTXf9KqV4qR1kRhVQNlUKUcnDw0pun431Ekkd2HLkA_Is1Yv1_0JdDqTQAQvbvWFL8ldjtCs5Zq_Itv1soHXCKVqvedn0S85LBwp
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4a4wF44A4rVyOQYA_eFttJk8epMFpop2rtpL1FvkVCy5KqaR7KD-R3cewk5aYieLMsX-L4-Pg7Pp-PAd7IUAjDY0OV5JyKSHKqrHEkR5txmfVRWbrzjslpNDwXny7Cix047O7C4EdU2FLlnfg_ogsEh5jnXsRhmrmgbdfgOiIR5kT6eDDrVG_EmecsomEuaIwbVxel8Y_6bi_S1a970RaA6Teakzsw3Xyi55dcHtQrdaC__ha98T_GcBdut6CTHDdScg92bHEfbv0UivABfOPvyRSTK3eVigzX7iIX-WhzMpHGkjIj0zJfX9klmdXLTGpLJ6X5kiF-JQOb53VeVpagpkZRxZp5hW1Zz20nar2pMnJEJcS2WKchyOeYPJPeU9S1314LJe9mI1T1czo-m-4TWRhyvvAEeX-6R8b1laPrO2ap73XR8fsewvzkw3wwpO0bD1TyiK9opIywaGPqTGlEotYEidUZmjlo5Mf2SEdWJKov0ZIO5VFfxiLRCWIyZuI4dNmPYLcoC7sHRCkRq8CopK-0CFGPI3ASXEkpYxWqSPXgNf7_tF2iVeq97yxIm0lJ20npAe1EItVtlHT3WEe-tfzbTflFEx9ka8lXnYSluISdX0YWtqyrlKHJh2oVDcG_lEkEc07MkPXgcSOem_44mqBJwIMn_zTCl3BjOJ-M0_Ho9PNTuMkQtDUs9Gewu1rW9jmCrJV64RfWdySQJIo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgeYHwXNjACCfbgscROmjxOHaWFdqrWTtpb5I-LNC1LqiZ5KH8gfxdnJ6kYqAjeosjnxMn5_Dvf786EvJeBEIZHhinJOROh5EyBsSRHSLlM-2gs7X7H9DQcnYuvF8FFm8dtc2HwJUrsqXRBfDurlyZtKwx4n_C-PRXH174t3Hab3LExO6vWx4N5Z35D7jveIjrngkW4eHWVGv-Qt-uRLm-uR1tApltshg_JYvOajmNydVhX6lB__62C43-OY5c8aMEnPW605RG5Bfljcv-XkoRPyA9-Qmd4WdmUKjpa24Qu-gUyOpUGaJHSWZGtr2FF5_UqlRrYtDCXKeJYOoAsq7OiBIoWG1UWJbMS-wLHcadqvREZW8ISYlyUaYjyGV6eSRcx6vpv00Ppx_kYTf6CTc5mB1Tmhp4vHVHe7fLRSX1tafuWYeqeuux4fk_JYvh5MRix9qwHJnnIKxYqIwB9TZ0qjYgUjBeDTtHdQWc_giMdgohVX6JHHcijvoxErGPEZr6JosDefkZ28iKHF4QqJSLlGRX3lRYB2nMEUIIrKWWkAhWqHnmH3z9pp2qZuCi87yXNT0nan9IjrFOLRLfV0u2hHdnW9h827ZdNnZCtLd92WpbgVLbxGZlDUZeJj64fmld0CP_SJha-DWYGfo88b1R08zyOrmjsce_lP43wDbk7Oxkmk_Hpt1fkno_YrSGj75GdalXDPmKtSr12c-snbvwnDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printable+Hybrid+Gel+Made+of+Polymer+Surface-Modified+Cellulose+Nanofibrils+Prepared+by+Surface-Initiated+Controlled+Radical+Polymerization+%28SI-SET-LRP%29+and+Upconversion+Luminescent+Nanoparticles&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Jiang%2C+Xuehe&rft.au=Mietner%2C+J+Benedikt&rft.au=Harder%2C+Constantin&rft.au=Komban%2C+Rajesh&rft.date=2023-02-01&rft.issn=1944-8252&rft.volume=15&rft.issue=4+p.5687-5700&rft.spage=5687&rft.epage=5700&rft_id=info:doi/10.1021%2Facsami.2c20775&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon