3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles
A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 4; pp. 5687 - 5700 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models. |
---|---|
AbstractList | A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models. A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu⁰-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models. A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu -mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models. A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models. |
Author | Jiang, Xuehe Harder, Constantin Mietner, J. Benedikt Chen, Shouzheng Sazama, Uta Fröba, Michael Strelow, Christian Gimmler, Christoph Müller-Buschbaum, Peter Roth, Stephan V. Navarro, Julien R. G. Komban, Rajesh |
AuthorAffiliation | Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ) University Hamburg Physik-Department, Lehrstuhl für Funtionelle Materielien Institute of Wood Science Department of Chemistry, Institute of Physical Chemistry Department of Chemistry, Institute of Inorganic and Applied Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry, Institute of Physical Chemistry – name: Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ) – name: Department of Chemistry, Institute of Inorganic and Applied Chemistry – name: University Hamburg – name: Institute of Wood Science – name: Physik-Department, Lehrstuhl für Funtionelle Materielien |
Author_xml | – sequence: 1 givenname: Xuehe orcidid: 0000-0001-5616-6702 surname: Jiang fullname: Jiang, Xuehe organization: Institute of Wood Science – sequence: 2 givenname: J. Benedikt surname: Mietner fullname: Mietner, J. Benedikt organization: Institute of Wood Science – sequence: 3 givenname: Constantin surname: Harder fullname: Harder, Constantin – sequence: 4 givenname: Rajesh surname: Komban fullname: Komban, Rajesh – sequence: 5 givenname: Shouzheng surname: Chen fullname: Chen, Shouzheng – sequence: 6 givenname: Christian orcidid: 0000-0002-5989-1675 surname: Strelow fullname: Strelow, Christian organization: University Hamburg – sequence: 7 givenname: Uta surname: Sazama fullname: Sazama, Uta organization: University Hamburg – sequence: 8 givenname: Michael surname: Fröba fullname: Fröba, Michael organization: University Hamburg – sequence: 9 givenname: Christoph surname: Gimmler fullname: Gimmler, Christoph – sequence: 10 givenname: Peter orcidid: 0000-0002-9566-6088 surname: Müller-Buschbaum fullname: Müller-Buschbaum, Peter organization: Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ) – sequence: 11 givenname: Stephan V. surname: Roth fullname: Roth, Stephan V. – sequence: 12 givenname: Julien R. G. orcidid: 0000-0001-8791-6190 surname: Navarro fullname: Navarro, Julien R. G. email: Julien.navarro@uni-hamburg.de organization: Institute of Wood Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36669131$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQgC1URB9w5Yh8LEgbbK_34SMKpY2UQtSE88prz0quvHawvZXCD-R34TRtDkgVJ4883zdjjeccnTjvAKH3lMwoYfSzVFGOZsYUI01TvUJnVHBetKxiJ8eY81N0HuM9IXXJSPUGnZZ1XQta0jP0p_yKV8G4JHsL-GbXB6PxNVh8KzVgP-CVt7sRAl5PYZAKiluvzWBA4zlYO1kfAX-Xzg8mmzbmWrCVIaf73VFZOJOMTHvHuxS8tTm8k9ooaZ_rm98yGe_w5XpRrK82xfJu9RFLp_HPrfLuAULcZ5fTaBxEBS49ds2tklEW4lv0epA2wrun8wJtvl1t5jfF8sf1Yv5lWciyLlNR95oDJ0INvWoaDpoKUENVCejLFoiqgYu-kbQsK0ka2XKhBM2z1G1b7a8v0OWh7Db4XxPE1I0mv8Za6cBPsWOCM0qEqNj_0aZuGas4azP64Qmd-hF0tw1mlGHXPf9SBmYHQAUfY4DhiFDS7degO6xB97QGWeD_CMqkxwGnII19Wft00PJ9d--n4PIsX4L_Anh8yHg |
CitedBy_id | crossref_primary_10_1002_smll_202309035 crossref_primary_10_1039_D4NA00191E crossref_primary_10_1021_acsabm_4c00694 crossref_primary_10_1021_acsanm_3c04272 crossref_primary_10_1021_acsanm_4c02851 crossref_primary_10_1021_acsabm_3c00675 crossref_primary_10_3390_ma16103642 crossref_primary_10_1177_07316844241273038 crossref_primary_10_1016_j_cogsc_2023_100851 crossref_primary_10_1021_acsami_3c10581 crossref_primary_10_1039_D4TB01579G crossref_primary_10_1016_j_ijbiomac_2023_126287 crossref_primary_10_1021_acsanm_4c03604 |
Cites_doi | 10.1021/acsami.7b13400 10.1107/S0021889810015773 10.1039/c5gc02500a 10.1016/j.trac.2021.116256 10.1039/C5NR06653K 10.1515/ntrev-2020-0025 10.1021/acsapm.0c00212 10.1021/acsnano.1c00856 10.1002/adfm.202108556 10.1016/j.ijbiomac.2020.03.163 10.1038/s41598-021-85865-4 10.1016/j.matlet.2018.09.085 10.1021/acsabm.1c00440 10.1039/c8nr08194h 10.1016/j.ccr.2021.213821 10.1021/bm400178m 10.1002/anie.201201025 10.1007/978-3-030-32036-2 10.1021/acs.macromol.9b00531 10.3390/POLYM12040986 10.1021/ja0256055 10.1007/s10570-021-04154-5 10.1021/acs.biomac.0c00210 10.1039/C9NR10964A 10.1021/acsami.8b17414 10.1107/S0909049512016895 10.1021/acsapm.2c01286 10.1016/B978-0-12-817840-9.00006-0 10.1007/s10570-021-03702-3 10.1002/aelm.202100137 10.1039/b411311j 10.1146/annurev-physchem-040214-121344 10.1002/adom.201600514 10.3390/nano10020292 10.1021/acsanm.1c01849 10.1016/j.carbpol.2022.119320 10.1021/acs.biomac.1c00669 10.1039/d1gc02292j 10.3390/fib11010002 10.1021/ar500253g 10.1016/j.carbpol.2018.12.073 10.1021/acsami.5b02092 10.1021/acssuschemeng.0c07542 10.1021/acsnano.7b02305 10.1021/acssuschemeng.7b03439 10.1021/ja108948z 10.1021/acs.biomac.6b00668 10.1021/acssuschemeng.6b00811 10.1016/j.carbpol.2019.115588 10.1002/zaac.19502610110 10.1039/c0cs00108b 10.1021/acs.biomac.7b00398 10.1021/acs.biomac.9b00153 10.1021/acs.jpcc.8b09327 10.1021/acs.biomac.1c01505 10.1021/acsami.5b02090 10.1039/D0NA01045F 10.1002/marc.202000531 10.1016/j.actbio.2018.10.036 10.1038/s41598-019-41482-w 10.1007/s40820-015-0040-x 10.1021/acsanm.0c02819 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.2c20775 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 5700 |
ExternalDocumentID | 36669131 10_1021_acsami_2c20775 c897439522 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-6bd4e409cfbc774ed19ecf559eb38e0c6e49b7a1335a07a849c91252d8857a13 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 10:14:48 EDT 2025 Thu Jul 10 17:50:16 EDT 2025 Thu Jan 02 22:53:12 EST 2025 Thu Apr 24 22:50:06 EDT 2025 Tue Jul 01 00:55:37 EDT 2025 Fri Feb 03 03:10:56 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cellulose nanofibrils (CNFs) single electron transfer living radical polymerization (SET-LRP) upconversion nanoparticles (UCNPs) cellulose-based hybrid material 3D gel printing |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-6bd4e409cfbc774ed19ecf559eb38e0c6e49b7a1335a07a849c91252d8857a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9566-6088 0000-0001-8791-6190 0000-0002-5989-1675 0000-0001-5616-6702 |
PMID | 36669131 |
PQID | 2768225428 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2942109952 proquest_miscellaneous_2768225428 pubmed_primary_36669131 crossref_primary_10_1021_acsami_2c20775 crossref_citationtrail_10_1021_acsami_2c20775 acs_journals_10_1021_acsami_2c20775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 Minor J. L. (ref19/cit19) 1994; 3 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1021/acsami.7b13400 – ident: ref56/cit56 doi: 10.1107/S0021889810015773 – ident: ref11/cit11 doi: 10.1039/c5gc02500a – ident: ref30/cit30 doi: 10.1016/j.trac.2021.116256 – ident: ref50/cit50 – ident: ref51/cit51 doi: 10.1039/C5NR06653K – ident: ref63/cit63 doi: 10.1515/ntrev-2020-0025 – ident: ref47/cit47 doi: 10.1021/acsapm.0c00212 – ident: ref18/cit18 doi: 10.1021/acsnano.1c00856 – ident: ref61/cit61 doi: 10.1002/adfm.202108556 – ident: ref3/cit3 doi: 10.1016/j.ijbiomac.2020.03.163 – ident: ref45/cit45 doi: 10.1038/s41598-021-85865-4 – ident: ref6/cit6 doi: 10.1016/j.matlet.2018.09.085 – ident: ref15/cit15 doi: 10.1021/acsabm.1c00440 – ident: ref55/cit55 doi: 10.1039/c8nr08194h – ident: ref33/cit33 doi: 10.1016/j.ccr.2021.213821 – ident: ref40/cit40 doi: 10.1021/bm400178m – ident: ref48/cit48 doi: 10.1002/anie.201201025 – ident: ref31/cit31 doi: 10.1007/978-3-030-32036-2 – ident: ref59/cit59 doi: 10.1021/acs.macromol.9b00531 – ident: ref7/cit7 doi: 10.3390/POLYM12040986 – volume: 3 start-page: 93 year: 1994 ident: ref19/cit19 publication-title: Progrress Pap. Recycl. – ident: ref27/cit27 doi: 10.1021/ja0256055 – ident: ref24/cit24 doi: 10.1007/s10570-021-04154-5 – ident: ref26/cit26 doi: 10.1021/acs.biomac.0c00210 – ident: ref57/cit57 doi: 10.1039/C9NR10964A – ident: ref10/cit10 doi: 10.1021/acsami.8b17414 – ident: ref49/cit49 doi: 10.1107/S0909049512016895 – ident: ref41/cit41 doi: 10.1021/acsapm.2c01286 – ident: ref29/cit29 doi: 10.1016/B978-0-12-817840-9.00006-0 – ident: ref2/cit2 doi: 10.1007/s10570-021-03702-3 – ident: ref58/cit58 doi: 10.1002/aelm.202100137 – ident: ref16/cit16 doi: 10.1039/b411311j – ident: ref28/cit28 doi: 10.1146/annurev-physchem-040214-121344 – ident: ref36/cit36 doi: 10.1002/adom.201600514 – ident: ref12/cit12 doi: 10.3390/nano10020292 – ident: ref9/cit9 doi: 10.1021/acsanm.1c01849 – ident: ref21/cit21 doi: 10.1016/j.carbpol.2022.119320 – ident: ref35/cit35 doi: 10.1021/acs.biomac.1c00669 – ident: ref22/cit22 doi: 10.1039/d1gc02292j – ident: ref25/cit25 doi: 10.3390/fib11010002 – ident: ref37/cit37 doi: 10.1021/ar500253g – ident: ref23/cit23 doi: 10.1016/j.carbpol.2018.12.073 – ident: ref54/cit54 doi: 10.1021/acsami.5b02092 – ident: ref17/cit17 doi: 10.1021/acssuschemeng.0c07542 – ident: ref8/cit8 doi: 10.1021/acsnano.7b02305 – ident: ref5/cit5 doi: 10.1021/acssuschemeng.7b03439 – ident: ref38/cit38 doi: 10.1021/ja108948z – ident: ref64/cit64 doi: 10.1021/acs.biomac.6b00668 – ident: ref42/cit42 doi: 10.1021/acssuschemeng.6b00811 – ident: ref62/cit62 doi: 10.1016/j.carbpol.2019.115588 – ident: ref52/cit52 doi: 10.1002/zaac.19502610110 – ident: ref1/cit1 doi: 10.1039/c0cs00108b – ident: ref46/cit46 doi: 10.1021/acs.biomac.7b00398 – ident: ref39/cit39 doi: 10.1021/acs.biomac.9b00153 – ident: ref53/cit53 doi: 10.1021/acs.jpcc.8b09327 – ident: ref20/cit20 doi: 10.1021/acs.biomac.1c01505 – ident: ref44/cit44 doi: 10.1021/acsami.5b02090 – ident: ref34/cit34 doi: 10.1039/D0NA01045F – ident: ref43/cit43 doi: 10.1002/marc.202000531 – ident: ref13/cit13 doi: 10.1016/j.actbio.2018.10.036 – ident: ref32/cit32 doi: 10.1038/s41598-019-41482-w – ident: ref14/cit14 doi: 10.1007/s40820-015-0040-x – ident: ref60/cit60 doi: 10.1021/acsanm.0c02819 |
SSID | ssj0063205 |
Score | 2.4748905 |
Snippet | A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5687 |
SubjectTerms | cellulose cellulose nanofibers crosslinking Fourier transform infrared spectroscopy Functional Nanostructured Materials (including low-D carbon) gels hydrophilicity hydrophobicity ligands luminescence luminescent assay nanoparticles oleic acid polymerization polymers rheology small-angle X-ray scattering thermogravimetry viscoelasticity X-ray diffraction |
Title | 3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles |
URI | http://dx.doi.org/10.1021/acsami.2c20775 https://www.ncbi.nlm.nih.gov/pubmed/36669131 https://www.proquest.com/docview/2768225428 https://www.proquest.com/docview/2942109952 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4EDUJ7LozICCTi4bWwnmxzRtmWLumjV3Uq9RX5MJESarDbJYfmB_C7GTrI8qi29WZHHTuLx-BvP5zEh71QopRWxZVoJwWSkBNNgHckRMqGyIRpLt98x-RqNL-SXy_Dy937HvxF8HhwoU7mrcLjhLlvbHbLDI5zBDgSNZr3NjQT3ZEX0yCWLccXq0zNek3eLkKn-XoQ2IEu_wpw8aNMdVT4xoSOWfN9var1vflxP2_jfl39I7ncwk35q9WKXbEHxiNz7I_ngY_JTHNEpFmt3eIqOV-7oFv0MOZ0oC7TM6LTMV1ewpLNmmSkDbFLabxkiVjqCPG_ysgKKthmVEyXzCtsCz2anerUWOXXUJESzKNNS4nMsnisfG-rb7w6C0g-zUzTuc3Z2Pv1IVWHpxcJT4v1-Hj1rrhxB33FJfa-LntH3hMxPjuejMetudWBKRKJmkbYS0Ks0mTaIPcEGCZgMHRt062M4NBHIRA8V-s6hOhyqWCYmQRTGbRyH7vFTsl2UBTwnVGsZ68DqZKiNDNFyI1SSQiulYh3qSA_IW_z_aTcpq9TH23mQtoOSdoMyIKzXhdR0edHd9Rz5xvrv1_UXbUaQjTXf9KqV4qR1kRhVQNlUKUcnDw0pun431Ekkd2HLkA_Is1Yv1_0JdDqTQAQvbvWFL8ldjtCs5Zq_Itv1soHXCKVqvedn0S85LBwp |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4a4wF44A4rVyOQYA_eFttJk8epMFpop2rtpL1FvkVCy5KqaR7KD-R3cewk5aYieLMsX-L4-Pg7Pp-PAd7IUAjDY0OV5JyKSHKqrHEkR5txmfVRWbrzjslpNDwXny7Cix047O7C4EdU2FLlnfg_ogsEh5jnXsRhmrmgbdfgOiIR5kT6eDDrVG_EmecsomEuaIwbVxel8Y_6bi_S1a970RaA6Teakzsw3Xyi55dcHtQrdaC__ha98T_GcBdut6CTHDdScg92bHEfbv0UivABfOPvyRSTK3eVigzX7iIX-WhzMpHGkjIj0zJfX9klmdXLTGpLJ6X5kiF-JQOb53VeVpagpkZRxZp5hW1Zz20nar2pMnJEJcS2WKchyOeYPJPeU9S1314LJe9mI1T1czo-m-4TWRhyvvAEeX-6R8b1laPrO2ap73XR8fsewvzkw3wwpO0bD1TyiK9opIywaGPqTGlEotYEidUZmjlo5Mf2SEdWJKov0ZIO5VFfxiLRCWIyZuI4dNmPYLcoC7sHRCkRq8CopK-0CFGPI3ASXEkpYxWqSPXgNf7_tF2iVeq97yxIm0lJ20npAe1EItVtlHT3WEe-tfzbTflFEx9ka8lXnYSluISdX0YWtqyrlKHJh2oVDcG_lEkEc07MkPXgcSOem_44mqBJwIMn_zTCl3BjOJ-M0_Ho9PNTuMkQtDUs9Gewu1rW9jmCrJV64RfWdySQJIo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgeYHwXNjACCfbgscROmjxOHaWFdqrWTtpb5I-LNC1LqiZ5KH8gfxdnJ6kYqAjeosjnxMn5_Dvf786EvJeBEIZHhinJOROh5EyBsSRHSLlM-2gs7X7H9DQcnYuvF8FFm8dtc2HwJUrsqXRBfDurlyZtKwx4n_C-PRXH174t3Hab3LExO6vWx4N5Z35D7jveIjrngkW4eHWVGv-Qt-uRLm-uR1tApltshg_JYvOajmNydVhX6lB__62C43-OY5c8aMEnPW605RG5Bfljcv-XkoRPyA9-Qmd4WdmUKjpa24Qu-gUyOpUGaJHSWZGtr2FF5_UqlRrYtDCXKeJYOoAsq7OiBIoWG1UWJbMS-wLHcadqvREZW8ISYlyUaYjyGV6eSRcx6vpv00Ppx_kYTf6CTc5mB1Tmhp4vHVHe7fLRSX1tafuWYeqeuux4fk_JYvh5MRix9qwHJnnIKxYqIwB9TZ0qjYgUjBeDTtHdQWc_giMdgohVX6JHHcijvoxErGPEZr6JosDefkZ28iKHF4QqJSLlGRX3lRYB2nMEUIIrKWWkAhWqHnmH3z9pp2qZuCi87yXNT0nan9IjrFOLRLfV0u2hHdnW9h827ZdNnZCtLd92WpbgVLbxGZlDUZeJj64fmld0CP_SJha-DWYGfo88b1R08zyOrmjsce_lP43wDbk7Oxkmk_Hpt1fkno_YrSGj75GdalXDPmKtSr12c-snbvwnDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printable+Hybrid+Gel+Made+of+Polymer+Surface-Modified+Cellulose+Nanofibrils+Prepared+by+Surface-Initiated+Controlled+Radical+Polymerization+%28SI-SET-LRP%29+and+Upconversion+Luminescent+Nanoparticles&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Jiang%2C+Xuehe&rft.au=Mietner%2C+J+Benedikt&rft.au=Harder%2C+Constantin&rft.au=Komban%2C+Rajesh&rft.date=2023-02-01&rft.issn=1944-8252&rft.volume=15&rft.issue=4+p.5687-5700&rft.spage=5687&rft.epage=5700&rft_id=info:doi/10.1021%2Facsami.2c20775&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |