Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis
Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract’s physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug propertie...
Saved in:
Published in | Molecular pharmaceutics Vol. 18; no. 9; pp. 3326 - 3341 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract’s physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm. 2018 and Bermejo, et al. M. Mol. Pharm. 2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds’ dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pK a) and its interplay with the pH modifier pK a or pK as. As an example of this complex interaction, for basic drugs with high pK a and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pK a, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model’s predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions. |
---|---|
AbstractList | Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm.2018 and Bermejo, et al. M. Mol. Pharm.2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pKa) and its interplay with the pH modifier pKa or pKas. As an example of this complex interaction, for basic drugs with high pKa and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pKa, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm.2018 and Bermejo, et al. M. Mol. Pharm.2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pKa) and its interplay with the pH modifier pKa or pKas. As an example of this complex interaction, for basic drugs with high pKa and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pKa, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions. Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract’s physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm. 2018 and Bermejo, et al. M. Mol. Pharm. 2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds’ dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pK a) and its interplay with the pH modifier pK a or pK as. As an example of this complex interaction, for basic drugs with high pK a and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pK a, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model’s predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions. Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. and Bermejo, M. ). The dissolution of an ionizable drug may benefit from manipulating variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents ( , proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties ( solubility and p ) and its interplay with the pH modifier p or p s. As an example of this complex interaction, for basic drugs with high p and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as p , solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to multi-compartment dissolution vessels and are validated by experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both and conditions. |
Author | Greenwood, Dale E Salehi, Niloufar Kuminek, Gislaine Amidon, Gordon L Al-Gousous, Jozef Ziff, Robert M Sperry, David C Waltz, Nicholas M Amidon, Gregory E |
AuthorAffiliation | University of Michigan Department of Pharmaceutical Sciences Johannes Gutenberg University Mainz Ohio State University Department of Chemical Engineering Institute of Pharmaceutical and Biomedical Sciences Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center College of Pharmacy |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Institute of Pharmaceutical and Biomedical Sciences – name: University of Michigan – name: Department of Pharmaceutical Sciences – name: College of Pharmacy – name: Johannes Gutenberg University Mainz – name: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center – name: Ohio State University |
Author_xml | – sequence: 1 givenname: Niloufar orcidid: 0000-0002-0651-4251 surname: Salehi fullname: Salehi, Niloufar email: nilousa@umich.edu organization: Department of Chemical Engineering – sequence: 2 givenname: Gislaine orcidid: 0000-0002-3758-579X surname: Kuminek fullname: Kuminek, Gislaine organization: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center – sequence: 3 givenname: Jozef orcidid: 0000-0001-7994-4175 surname: Al-Gousous fullname: Al-Gousous, Jozef organization: Johannes Gutenberg University Mainz – sequence: 4 givenname: David C surname: Sperry fullname: Sperry, David C organization: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center – sequence: 5 givenname: Dale E surname: Greenwood fullname: Greenwood, Dale E organization: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center – sequence: 6 givenname: Nicholas M surname: Waltz fullname: Waltz, Nicholas M organization: Ohio State University – sequence: 7 givenname: Gordon L surname: Amidon fullname: Amidon, Gordon L organization: University of Michigan – sequence: 8 givenname: Robert M orcidid: 0000-0002-9023-7508 surname: Ziff fullname: Ziff, Robert M organization: Department of Chemical Engineering – sequence: 9 givenname: Gregory E surname: Amidon fullname: Amidon, Gregory E organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34428047$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhSNURH_gFZDZscngnySTsEFDB5hKrYqgXVs3jjPjyrGDr1M0b9NHrYeZIsGqK1vydz5L55xmR847nWXvGJ0xytkHUDgbvB03EAZQeoozpijlFX-RnbCyEHktGn70914Xx9kp4l1CipKLV9mxKApe02J-kj1cDGPw98atydIgejtF4x35rDdwb3wg4DpyHcCSRYs-jH8efU-WYVoj-W3ihoyrfKlH7TrtIvmZBK2xJm7JLe6k44pc-c70Rgf8SBbk-2aLxlu_Ngqs3ZIfGqzBaBS5AkRyE8Dh6EMkCwc2ofg6e9mDRf3mcJ5lt1-_3Jyv8svrbxfni8scRCViXvbzntIOFFRVzXXNekZF23aMVnPGBTSM1zXTrFSdrqtWzZtCQylaaCvBu7oVZ9n7vTfV8WvSGOVgUGlrwWk_oeRlVRRNirGEvj2gUzvoTo7BDBC28qnVBHzaAyp4xKB7qUyEXXcxgLGSUbnbUaYd5T87ysOOydD8Z3j65DnZcp_dIXd-CqlJfEbuERSuwG8 |
CitedBy_id | crossref_primary_10_1016_j_ejps_2021_106037 crossref_primary_10_1007_s11095_022_03274_2 crossref_primary_10_1021_acs_molpharmaceut_2c00545 crossref_primary_10_1021_acs_molpharmaceut_3c00607 crossref_primary_10_1080_17425247_2024_2423813 crossref_primary_10_1080_03602532_2024_2345632 crossref_primary_10_32947_ajps_v23i4_1092 crossref_primary_10_1093_chromsci_bmac084 crossref_primary_10_1016_j_ejpb_2024_114513 crossref_primary_10_1021_acs_molpharmaceut_3c00423 crossref_primary_10_1208_s12249_022_02388_5 crossref_primary_10_1016_j_ijpharm_2023_123347 crossref_primary_10_1007_s40268_023_00426_6 crossref_primary_10_1002_app_55610 crossref_primary_10_1016_j_jddst_2024_105836 crossref_primary_10_1063_5_0214020 crossref_primary_10_3897_pharmacia_71_e112449 crossref_primary_10_1016_j_ejps_2024_106892 crossref_primary_10_1016_j_jddst_2023_104997 crossref_primary_10_1021_acs_molpharmaceut_2c00292 |
Cites_doi | 10.1002/jps.24690 10.1517/17425247.2014.881798 10.1002/cpdd.356 10.1007/s11095-016-1882-8 10.1021/acs.molpharmaceut.0c00614 10.1023/a:1015827908309 10.2903/j.efsa.2013.3210 10.1007/s00280-017-3308-7 10.22233/20412495.0909.22 10.1021/acs.molpharmaceut.8b00783 10.1007/s00228-004-0804-6 10.2903/j.efsa.2015.4087 10.1002/aic.690010222 10.1016/j.xphs.2018.10.032 10.1208/s12249-015-0365-2 10.2903/j.efsa.2015.4009 10.1016/0026-265x(85)90028-1 10.1021/mp800148u 10.2903/j.efsa.2020.6030 10.1007/bf01297133 10.1016/s1470-2045(15)00065-0 10.1177/0091270005276738 10.2903/j.efsa.2019.5674 10.1517/17425247.2010.491508 10.3390/pharmaceutics11030122 10.1021/ja01152a095 10.1002/jps.2600700104 10.1177/0009922815604596 10.1023/a:1018918316253 10.1021/acs.molpharmaceut.8b00736 10.1177/1177391x0700100003 10.1016/j.jpba.2011.05.007 10.1208/s12248-018-0250-5 10.1021/es0107531 10.1186/s40360-015-0017-x 10.1007/s11894-008-0098-4 10.1007/s10822-005-8694-y 10.1021/acs.molpharmaceut.8b00515 10.3390/pharmaceutics12060558 10.1021/mp100149j 10.1111/bcp.13038 10.1136/gut.29.8.1035 10.1016/s0022-3549(15)00176-8 10.1023/a:1016212804288 10.1016/j.ejpb.2019.03.012 10.3390/pharmaceutics12060566 10.1023/a:1015009300955 10.1093/jac/dkg089 10.1039/c7cy01374d 10.2165/11592630-000000000-00000 10.1007/s11095-005-8476-1 10.1177/0091270009346061 10.1016/0307-4412(92)90013-C 10.1002/cpdd.337 10.1097/cad.0000000000000212 10.1021/ed037pa490.3 10.1021/acs.molpharmaceut.9b00187 10.6004/jadpro.2020.11.7.5 10.1124/dmd.116.073585 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.molpharmaceut.1c00262 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1543-8392 |
EndPage | 3341 |
ExternalDocumentID | 34428047 10_1021_acs_molpharmaceut_1c00262 b241967102 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 123 4.4 53G 55A 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GGK GNL H~9 IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F X --- -~X AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a363t-5f7f00daca6682e81f103bbd1067123a912881e15cde86bc794ea53bab632d8b3 |
IEDL.DBID | ACS |
ISSN | 1543-8384 1543-8392 |
IngestDate | Fri Jul 11 15:08:19 EDT 2025 Thu Jan 02 22:55:59 EST 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 04:33:50 EDT 2025 Wed Sep 08 03:12:43 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | mass transport model surface solubility hierarchical mass transfer model surface pH dissolution modeling pH modifier proton pump inhibitor achlorhydria diffusion layer model H2 blockers gastrointestinal simulator physiological mass transfer model elevated gastric pH H2 antagonists |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-5f7f00daca6682e81f103bbd1067123a912881e15cde86bc794ea53bab632d8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3758-579X 0000-0002-0651-4251 0000-0001-7994-4175 0000-0002-9023-7508 |
PMID | 34428047 |
PQID | 2564497941 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2564497941 pubmed_primary_34428047 crossref_citationtrail_10_1021_acs_molpharmaceut_1c00262 crossref_primary_10_1021_acs_molpharmaceut_1c00262 acs_journals_10_1021_acs_molpharmaceut_1c00262 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210906 2021-09-06 |
PublicationDateYYYYMMDD | 2021-09-06 |
PublicationDate_xml | – month: 09 year: 2021 text: 20210906 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular pharmaceutics |
PublicationTitleAlternate | Mol. Pharmaceutics |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 Hulanicki A. (ref78/cit78) 1987 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 Saeeduddin (ref51/cit51) 1996; 9 ref60/cit60 ref74/cit74 Williams D. A. (ref17/cit17) 2002 ref82/cit82 ref35/cit35 ref89/cit89 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 Khan M. A. (ref10/cit10) 2018; 13 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref43/cit43 ref80/cit80 Gohel M. (ref88/cit88) 2005; 3 ref28/cit28 ref40/cit40 ref68/cit68 Kuellmer V. (ref48/cit48) 2001 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref40/cit40 doi: 10.1002/jps.24690 – ident: ref74/cit74 doi: 10.1517/17425247.2014.881798 – ident: ref38/cit38 doi: 10.1002/cpdd.356 – ident: ref8/cit8 doi: 10.1007/s11095-016-1882-8 – volume-title: Foye’s Principles of Medicinal Chemistry year: 2002 ident: ref17/cit17 – ident: ref25/cit25 – ident: ref86/cit86 doi: 10.1021/acs.molpharmaceut.0c00614 – ident: ref66/cit66 – ident: ref6/cit6 doi: 10.1023/a:1015827908309 – ident: ref52/cit52 doi: 10.2903/j.efsa.2013.3210 – ident: ref12/cit12 doi: 10.1007/s00280-017-3308-7 – ident: ref50/cit50 – ident: ref47/cit47 – ident: ref70/cit70 – ident: ref61/cit61 – ident: ref58/cit58 – ident: ref33/cit33 – ident: ref68/cit68 doi: 10.22233/20412495.0909.22 – ident: ref82/cit82 doi: 10.1021/acs.molpharmaceut.8b00783 – ident: ref23/cit23 doi: 10.1007/s00228-004-0804-6 – ident: ref49/cit49 doi: 10.2903/j.efsa.2015.4087 – ident: ref44/cit44 doi: 10.1002/aic.690010222 – ident: ref22/cit22 – ident: ref72/cit72 – ident: ref24/cit24 doi: 10.1016/j.xphs.2018.10.032 – ident: ref15/cit15 doi: 10.1208/s12249-015-0365-2 – ident: ref54/cit54 doi: 10.2903/j.efsa.2015.4009 – ident: ref69/cit69 doi: 10.1016/0026-265x(85)90028-1 – ident: ref80/cit80 doi: 10.1021/mp800148u – ident: ref76/cit76 doi: 10.2903/j.efsa.2020.6030 – ident: ref9/cit9 doi: 10.1007/bf01297133 – ident: ref37/cit37 doi: 10.1016/s1470-2045(15)00065-0 – ident: ref14/cit14 doi: 10.1177/0091270005276738 – ident: ref71/cit71 doi: 10.2903/j.efsa.2019.5674 – ident: ref73/cit73 – ident: ref19/cit19 doi: 10.1517/17425247.2010.491508 – ident: ref27/cit27 – ident: ref64/cit64 – ident: ref85/cit85 doi: 10.3390/pharmaceutics11030122 – ident: ref75/cit75 – ident: ref59/cit59 doi: 10.1021/ja01152a095 – ident: ref79/cit79 doi: 10.1002/jps.2600700104 – volume: 3 year: 2005 ident: ref88/cit88 publication-title: Pharm. Rev. – ident: ref18/cit18 doi: 10.1177/0009922815604596 – ident: ref30/cit30 doi: 10.1023/a:1018918316253 – ident: ref1/cit1 doi: 10.1021/acs.molpharmaceut.8b00736 – ident: ref16/cit16 doi: 10.1177/1177391x0700100003 – ident: ref43/cit43 doi: 10.1016/j.jpba.2011.05.007 – ident: ref89/cit89 doi: 10.1208/s12248-018-0250-5 – ident: ref60/cit60 – ident: ref55/cit55 doi: 10.1021/es0107531 – ident: ref28/cit28 doi: 10.1186/s40360-015-0017-x – ident: ref65/cit65 – ident: ref11/cit11 doi: 10.1007/s11894-008-0098-4 – ident: ref21/cit21 doi: 10.1007/s10822-005-8694-y – ident: ref2/cit2 doi: 10.1021/acs.molpharmaceut.8b00515 – ident: ref87/cit87 doi: 10.3390/pharmaceutics12060558 – volume-title: Kirk-Othmer Encyclopedia of Chemical Technology year: 2001 ident: ref48/cit48 – ident: ref4/cit4 doi: 10.1021/mp100149j – ident: ref41/cit41 doi: 10.1111/bcp.13038 – ident: ref5/cit5 doi: 10.1136/gut.29.8.1035 – volume: 9 start-page: 21 year: 1996 ident: ref51/cit51 publication-title: Pak. J. Pharm. Sci. – ident: ref67/cit67 – ident: ref31/cit31 doi: 10.1016/s0022-3549(15)00176-8 – ident: ref35/cit35 – ident: ref3/cit3 doi: 10.1023/a:1016212804288 – ident: ref56/cit56 – ident: ref45/cit45 – ident: ref46/cit46 – ident: ref83/cit83 doi: 10.1016/j.ejpb.2019.03.012 – ident: ref57/cit57 – ident: ref84/cit84 doi: 10.3390/pharmaceutics12060566 – ident: ref29/cit29 doi: 10.1023/a:1015009300955 – ident: ref13/cit13 doi: 10.1093/jac/dkg089 – ident: ref77/cit77 doi: 10.1039/c7cy01374d – ident: ref63/cit63 – ident: ref39/cit39 doi: 10.2165/11592630-000000000-00000 – ident: ref7/cit7 doi: 10.1007/s11095-005-8476-1 – ident: ref36/cit36 doi: 10.1177/0091270009346061 – ident: ref62/cit62 doi: 10.1016/0307-4412(92)90013-C – ident: ref26/cit26 doi: 10.1007/s00280-017-3308-7 – ident: ref34/cit34 doi: 10.1002/cpdd.337 – volume-title: Reactions of Acids and Bases in Analytical Chemistry year: 1987 ident: ref78/cit78 – volume: 13 start-page: 169 year: 2018 ident: ref10/cit10 publication-title: Gastroenterol. Hepatol. – ident: ref32/cit32 doi: 10.1097/cad.0000000000000212 – ident: ref53/cit53 doi: 10.1021/ed037pa490.3 – ident: ref81/cit81 doi: 10.1021/acs.molpharmaceut.9b00187 – ident: ref20/cit20 doi: 10.6004/jadpro.2020.11.7.5 – ident: ref42/cit42 doi: 10.1124/dmd.116.073585 |
SSID | ssj0024523 |
Score | 2.4469862 |
Snippet | Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution... Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. drug dissolution depends on the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3326 |
SubjectTerms | Administration, Oral Betaine - pharmacology Biological Availability Chemistry, Pharmaceutical Computer Simulation Drug Design Drug Liberation Excipients - pharmacology Fumarates - pharmacology Gastrointestinal Absorption - drug effects Humans Hydrogen-Ion Concentration - drug effects Models, Biological Solubility Tartrates - pharmacology |
Title | Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis |
URI | http://dx.doi.org/10.1021/acs.molpharmaceut.1c00262 https://www.ncbi.nlm.nih.gov/pubmed/34428047 https://www.proquest.com/docview/2564497941 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFBYlhdJL92W68QIlp3hqW7Ks6S1kGobCtKGdQG5GawlN7WB7DpNfk5_aJ3kZ0lKaXG0_YaG36S3fI-Q9yyTafcpQ0oyLGJroaKa1jqgSsczRxrIQ71h-4YsT9vk0O932cf-ZwU-TD1I301-VbzztQ7zTRPubA-rduylHYfb-0OH3LcBeFma6oWtAI0EFu0d2_7uUN026uW6a_uFvBrtz9JCshu6drtzk53Tdqqm-_BvM8TZbekQe9H4oHHSM85jcseUTsnfcfbvZh9W2L6vZhz043kJcb56SqzEWAfOzkX2hB1usQZYGvtZ-fdVUddBKUDmY1-sfDfjQL1wsonk_f7cFH5sLRbobCCUM-BaWlTlzfk73RziAUKc6qOnzDXyzHrcR_w2W6PzDiNAOA8bKM3Jy9Gl1uIj6WQ-RpJy2UeZyF8dGasm5SK1IXBJTpYxHuEPjKmdoR0Vik0wbK7jSqEaszKiSitPUCEWfk52yKu1LAkiqZaZMZmacOWeF4bHLlcycQ3eF5ROCrNoUvaw2RUjDp0nhH147laI_lQkRA18UukdO9wM8zm9Cmo6kFx18yE2IdgfmK1DYfQZHlrZaN4WXHTbDvScT8qLjynFZyvAmGbP81W2395rcT32hjs-S8Tdkp63X9i16Wq16FyTrN80lLFU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkYAL78fynEqop2abxHbi5bbqUi3QLRVspUocIj9RRUmqJHtYfg0_lbE3m1WREIWrk7FseV6eGX9DyGvGJdp9ylDSjIsYmuhopLWOqBKxzNHGshDvmB1l0xP2_pSfdlWV_i0MLqLBmZqQxN-gCyR7fux75d-fdpHeYaL9BQLV73V0SlLP3eP9zxucPR5au6GHQCNBBbtBtv86lbdQurlsof7gdgbzc3CHfOkXHqpOvg0XrRrqH79hOv7fzu6S251XCuMVG90j12x5n-wcr_5d7sJ880qr2YUdON4AXi8fkJ99ZAImZz0zQwe9WIMsDXys_fyqqeqgo6ByMKkXXxvwgWC4mEaTrhtvCz5SF0p2lxAKGvArzCpz5nzX7jcwhlC1ulba50v4ZD2KI64NZngVgB6vHdaIKw_JycHb-f406jo_RJJmtI24y10cG6lllonUisQlMVXKeLw7NLVyhFZVJDbh2liRKY1KxUpOlVQZTY1Q9BHZKqvSPiGApFpyZbgZZcw5K0wWu1xJ7hw6LywfEH8oRSe5TRGS8mlS-MFLp1J0pzIgYs0ehe5w1H07j_OrkKY96cUKTOQqRNtrHixQ9H0-R5a2WjSFlyQ2wr0nA_J4xZz9tJThvTJm-dN_3d4rcnM6nx0Wh--OPjwjt1JfwuPzZ9lzstXWC_sCfbBWvQzC9gsZsTS2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQkCZeuMO6cTmT0J6WksRO4vJWrVTl0lHBJu0t8hVNjKRK2ofya_ip-LhuqiEhBq9OjmXL5-Zzjr9DyCuWCWf3KXOSpm3EnImOBkqpiEoei8LZWObjHdPTfHLO3l9kFyHghm9h3CJaN1Prk_go1XNtA8JA8hrHv9f4BjVEe_uJwkuEU8G3MX2HHD48-bLF2st8ezfnJdCIU852yeFfp0IrpdrrVuoPrqc3QeN7pOwW7ytPvvWXC9lXP37Ddfz_3d0nd4N3CsM1Oz0gt0z1kBzN1v-ujuFs-1qrPYYjmG2Br1ePyM8uQgGjy46pIUAwNiAqDZ8anF-2deN1FdQWRs3yawsYEIb5JBqFrrwLwIidL91dgS9scF9hWutLi92738AQfPXqRnlfreCzQTRHtzaYuisBdLjtsEFeeUzOx2_PTiZR6AARCZrTRZTZwsaxFkrkOU8NT2wSUyk14t45kysGzrryxCSZ0obnUjnlYkRGpZA5TTWX9AnZqerK7BFwpEpkUmd6kDNrDdd5bAspMmudE8OKHsGDKYMEt6VPzqdJiYPXTqUMp9IjfMMipQp46tjW4-ompGlHOl-DityE6HDDh6VTAZjXEZWpl22JEsUGbu9JjzxdM2g3LWXufhmzYv9ft_eS7M5G4_Lju9MPB-ROipU8mEbLn5GdRbM0z50rtpAvvLz9AqoPNzk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Dissolution+Behavior+and+Oral+Absorption+of+Drugs+with+pH-Dependent+Solubility+Using+pH+Modifiers%3A+A+Physiologically+Realistic+Mass+Transport+Analysis&rft.jtitle=Molecular+pharmaceutics&rft.au=Salehi%2C+Niloufar&rft.au=Kuminek%2C+Gislaine&rft.au=Al-Gousous%2C+Jozef&rft.au=Sperry%2C+David+C&rft.date=2021-09-06&rft.pub=American+Chemical+Society&rft.issn=1543-8384&rft.eissn=1543-8392&rft.volume=18&rft.issue=9&rft.spage=3326&rft.epage=3341&rft_id=info:doi/10.1021%2Facs.molpharmaceut.1c00262&rft.externalDocID=b241967102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon |