Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis

Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract’s physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug propertie...

Full description

Saved in:
Bibliographic Details
Published inMolecular pharmaceutics Vol. 18; no. 9; pp. 3326 - 3341
Main Authors Salehi, Niloufar, Kuminek, Gislaine, Al-Gousous, Jozef, Sperry, David C, Greenwood, Dale E, Waltz, Nicholas M, Amidon, Gordon L, Ziff, Robert M, Amidon, Gregory E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract’s physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm. 2018 and Bermejo, et al. M. Mol. Pharm. 2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds’ dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pK a) and its interplay with the pH modifier pK a or pK as. As an example of this complex interaction, for basic drugs with high pK a and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pK a, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model’s predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.
AbstractList Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm.2018 and Bermejo, et al. M. Mol. Pharm.2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pKa) and its interplay with the pH modifier pKa or pKas. As an example of this complex interaction, for basic drugs with high pKa and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pKa, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm.2018 and Bermejo, et al. M. Mol. Pharm.2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pKa) and its interplay with the pH modifier pKa or pKas. As an example of this complex interaction, for basic drugs with high pKa and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pKa, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.
Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract’s physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm. 2018 and Bermejo, et al. M. Mol. Pharm. 2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds’ dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pK a) and its interplay with the pH modifier pK a or pK as. As an example of this complex interaction, for basic drugs with high pK a and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pK a, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model’s predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.
Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. and Bermejo, M. ). The dissolution of an ionizable drug may benefit from manipulating variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents ( , proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties ( solubility and p ) and its interplay with the pH modifier p or p s. As an example of this complex interaction, for basic drugs with high p and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as p , solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to multi-compartment dissolution vessels and are validated by experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both and conditions.
Author Greenwood, Dale E
Salehi, Niloufar
Kuminek, Gislaine
Amidon, Gordon L
Al-Gousous, Jozef
Ziff, Robert M
Sperry, David C
Waltz, Nicholas M
Amidon, Gregory E
AuthorAffiliation University of Michigan
Department of Pharmaceutical Sciences
Johannes Gutenberg University Mainz
Ohio State University
Department of Chemical Engineering
Institute of Pharmaceutical and Biomedical Sciences
Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center
College of Pharmacy
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Institute of Pharmaceutical and Biomedical Sciences
– name: University of Michigan
– name: Department of Pharmaceutical Sciences
– name: College of Pharmacy
– name: Johannes Gutenberg University Mainz
– name: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center
– name: Ohio State University
Author_xml – sequence: 1
  givenname: Niloufar
  orcidid: 0000-0002-0651-4251
  surname: Salehi
  fullname: Salehi, Niloufar
  email: nilousa@umich.edu
  organization: Department of Chemical Engineering
– sequence: 2
  givenname: Gislaine
  orcidid: 0000-0002-3758-579X
  surname: Kuminek
  fullname: Kuminek, Gislaine
  organization: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center
– sequence: 3
  givenname: Jozef
  orcidid: 0000-0001-7994-4175
  surname: Al-Gousous
  fullname: Al-Gousous, Jozef
  organization: Johannes Gutenberg University Mainz
– sequence: 4
  givenname: David C
  surname: Sperry
  fullname: Sperry, David C
  organization: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center
– sequence: 5
  givenname: Dale E
  surname: Greenwood
  fullname: Greenwood, Dale E
  organization: Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center
– sequence: 6
  givenname: Nicholas M
  surname: Waltz
  fullname: Waltz, Nicholas M
  organization: Ohio State University
– sequence: 7
  givenname: Gordon L
  surname: Amidon
  fullname: Amidon, Gordon L
  organization: University of Michigan
– sequence: 8
  givenname: Robert M
  orcidid: 0000-0002-9023-7508
  surname: Ziff
  fullname: Ziff, Robert M
  organization: Department of Chemical Engineering
– sequence: 9
  givenname: Gregory E
  surname: Amidon
  fullname: Amidon, Gregory E
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34428047$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhSNURH_gFZDZscngnySTsEFDB5hKrYqgXVs3jjPjyrGDr1M0b9NHrYeZIsGqK1vydz5L55xmR847nWXvGJ0xytkHUDgbvB03EAZQeoozpijlFX-RnbCyEHktGn70914Xx9kp4l1CipKLV9mxKApe02J-kj1cDGPw98atydIgejtF4x35rDdwb3wg4DpyHcCSRYs-jH8efU-WYVoj-W3ihoyrfKlH7TrtIvmZBK2xJm7JLe6k44pc-c70Rgf8SBbk-2aLxlu_Ngqs3ZIfGqzBaBS5AkRyE8Dh6EMkCwc2ofg6e9mDRf3mcJ5lt1-_3Jyv8svrbxfni8scRCViXvbzntIOFFRVzXXNekZF23aMVnPGBTSM1zXTrFSdrqtWzZtCQylaaCvBu7oVZ9n7vTfV8WvSGOVgUGlrwWk_oeRlVRRNirGEvj2gUzvoTo7BDBC28qnVBHzaAyp4xKB7qUyEXXcxgLGSUbnbUaYd5T87ysOOydD8Z3j65DnZcp_dIXd-CqlJfEbuERSuwG8
CitedBy_id crossref_primary_10_1016_j_ejps_2021_106037
crossref_primary_10_1007_s11095_022_03274_2
crossref_primary_10_1021_acs_molpharmaceut_2c00545
crossref_primary_10_1021_acs_molpharmaceut_3c00607
crossref_primary_10_1080_17425247_2024_2423813
crossref_primary_10_1080_03602532_2024_2345632
crossref_primary_10_32947_ajps_v23i4_1092
crossref_primary_10_1093_chromsci_bmac084
crossref_primary_10_1016_j_ejpb_2024_114513
crossref_primary_10_1021_acs_molpharmaceut_3c00423
crossref_primary_10_1208_s12249_022_02388_5
crossref_primary_10_1016_j_ijpharm_2023_123347
crossref_primary_10_1007_s40268_023_00426_6
crossref_primary_10_1002_app_55610
crossref_primary_10_1016_j_jddst_2024_105836
crossref_primary_10_1063_5_0214020
crossref_primary_10_3897_pharmacia_71_e112449
crossref_primary_10_1016_j_ejps_2024_106892
crossref_primary_10_1016_j_jddst_2023_104997
crossref_primary_10_1021_acs_molpharmaceut_2c00292
Cites_doi 10.1002/jps.24690
10.1517/17425247.2014.881798
10.1002/cpdd.356
10.1007/s11095-016-1882-8
10.1021/acs.molpharmaceut.0c00614
10.1023/a:1015827908309
10.2903/j.efsa.2013.3210
10.1007/s00280-017-3308-7
10.22233/20412495.0909.22
10.1021/acs.molpharmaceut.8b00783
10.1007/s00228-004-0804-6
10.2903/j.efsa.2015.4087
10.1002/aic.690010222
10.1016/j.xphs.2018.10.032
10.1208/s12249-015-0365-2
10.2903/j.efsa.2015.4009
10.1016/0026-265x(85)90028-1
10.1021/mp800148u
10.2903/j.efsa.2020.6030
10.1007/bf01297133
10.1016/s1470-2045(15)00065-0
10.1177/0091270005276738
10.2903/j.efsa.2019.5674
10.1517/17425247.2010.491508
10.3390/pharmaceutics11030122
10.1021/ja01152a095
10.1002/jps.2600700104
10.1177/0009922815604596
10.1023/a:1018918316253
10.1021/acs.molpharmaceut.8b00736
10.1177/1177391x0700100003
10.1016/j.jpba.2011.05.007
10.1208/s12248-018-0250-5
10.1021/es0107531
10.1186/s40360-015-0017-x
10.1007/s11894-008-0098-4
10.1007/s10822-005-8694-y
10.1021/acs.molpharmaceut.8b00515
10.3390/pharmaceutics12060558
10.1021/mp100149j
10.1111/bcp.13038
10.1136/gut.29.8.1035
10.1016/s0022-3549(15)00176-8
10.1023/a:1016212804288
10.1016/j.ejpb.2019.03.012
10.3390/pharmaceutics12060566
10.1023/a:1015009300955
10.1093/jac/dkg089
10.1039/c7cy01374d
10.2165/11592630-000000000-00000
10.1007/s11095-005-8476-1
10.1177/0091270009346061
10.1016/0307-4412(92)90013-C
10.1002/cpdd.337
10.1097/cad.0000000000000212
10.1021/ed037pa490.3
10.1021/acs.molpharmaceut.9b00187
10.6004/jadpro.2020.11.7.5
10.1124/dmd.116.073585
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.molpharmaceut.1c00262
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1543-8392
EndPage 3341
ExternalDocumentID 34428047
10_1021_acs_molpharmaceut_1c00262
b241967102
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
123
4.4
53G
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
H~9
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a363t-5f7f00daca6682e81f103bbd1067123a912881e15cde86bc794ea53bab632d8b3
IEDL.DBID ACS
ISSN 1543-8384
1543-8392
IngestDate Fri Jul 11 15:08:19 EDT 2025
Thu Jan 02 22:55:59 EST 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 04:33:50 EDT 2025
Wed Sep 08 03:12:43 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords mass transport model
surface solubility
hierarchical mass transfer model
surface pH
dissolution modeling
pH modifier
proton pump inhibitor
achlorhydria
diffusion layer model
H2 blockers
gastrointestinal simulator
physiological mass transfer model
elevated gastric pH
H2 antagonists
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-5f7f00daca6682e81f103bbd1067123a912881e15cde86bc794ea53bab632d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3758-579X
0000-0002-0651-4251
0000-0001-7994-4175
0000-0002-9023-7508
PMID 34428047
PQID 2564497941
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2564497941
pubmed_primary_34428047
crossref_citationtrail_10_1021_acs_molpharmaceut_1c00262
crossref_primary_10_1021_acs_molpharmaceut_1c00262
acs_journals_10_1021_acs_molpharmaceut_1c00262
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210906
2021-09-06
PublicationDateYYYYMMDD 2021-09-06
PublicationDate_xml – month: 09
  year: 2021
  text: 20210906
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular pharmaceutics
PublicationTitleAlternate Mol. Pharmaceutics
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
Hulanicki A. (ref78/cit78) 1987
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
Saeeduddin (ref51/cit51) 1996; 9
ref60/cit60
ref74/cit74
Williams D. A. (ref17/cit17) 2002
ref82/cit82
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
Khan M. A. (ref10/cit10) 2018; 13
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref43/cit43
ref80/cit80
Gohel M. (ref88/cit88) 2005; 3
ref28/cit28
ref40/cit40
ref68/cit68
Kuellmer V. (ref48/cit48) 2001
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref40/cit40
  doi: 10.1002/jps.24690
– ident: ref74/cit74
  doi: 10.1517/17425247.2014.881798
– ident: ref38/cit38
  doi: 10.1002/cpdd.356
– ident: ref8/cit8
  doi: 10.1007/s11095-016-1882-8
– volume-title: Foye’s Principles of Medicinal Chemistry
  year: 2002
  ident: ref17/cit17
– ident: ref25/cit25
– ident: ref86/cit86
  doi: 10.1021/acs.molpharmaceut.0c00614
– ident: ref66/cit66
– ident: ref6/cit6
  doi: 10.1023/a:1015827908309
– ident: ref52/cit52
  doi: 10.2903/j.efsa.2013.3210
– ident: ref12/cit12
  doi: 10.1007/s00280-017-3308-7
– ident: ref50/cit50
– ident: ref47/cit47
– ident: ref70/cit70
– ident: ref61/cit61
– ident: ref58/cit58
– ident: ref33/cit33
– ident: ref68/cit68
  doi: 10.22233/20412495.0909.22
– ident: ref82/cit82
  doi: 10.1021/acs.molpharmaceut.8b00783
– ident: ref23/cit23
  doi: 10.1007/s00228-004-0804-6
– ident: ref49/cit49
  doi: 10.2903/j.efsa.2015.4087
– ident: ref44/cit44
  doi: 10.1002/aic.690010222
– ident: ref22/cit22
– ident: ref72/cit72
– ident: ref24/cit24
  doi: 10.1016/j.xphs.2018.10.032
– ident: ref15/cit15
  doi: 10.1208/s12249-015-0365-2
– ident: ref54/cit54
  doi: 10.2903/j.efsa.2015.4009
– ident: ref69/cit69
  doi: 10.1016/0026-265x(85)90028-1
– ident: ref80/cit80
  doi: 10.1021/mp800148u
– ident: ref76/cit76
  doi: 10.2903/j.efsa.2020.6030
– ident: ref9/cit9
  doi: 10.1007/bf01297133
– ident: ref37/cit37
  doi: 10.1016/s1470-2045(15)00065-0
– ident: ref14/cit14
  doi: 10.1177/0091270005276738
– ident: ref71/cit71
  doi: 10.2903/j.efsa.2019.5674
– ident: ref73/cit73
– ident: ref19/cit19
  doi: 10.1517/17425247.2010.491508
– ident: ref27/cit27
– ident: ref64/cit64
– ident: ref85/cit85
  doi: 10.3390/pharmaceutics11030122
– ident: ref75/cit75
– ident: ref59/cit59
  doi: 10.1021/ja01152a095
– ident: ref79/cit79
  doi: 10.1002/jps.2600700104
– volume: 3
  year: 2005
  ident: ref88/cit88
  publication-title: Pharm. Rev.
– ident: ref18/cit18
  doi: 10.1177/0009922815604596
– ident: ref30/cit30
  doi: 10.1023/a:1018918316253
– ident: ref1/cit1
  doi: 10.1021/acs.molpharmaceut.8b00736
– ident: ref16/cit16
  doi: 10.1177/1177391x0700100003
– ident: ref43/cit43
  doi: 10.1016/j.jpba.2011.05.007
– ident: ref89/cit89
  doi: 10.1208/s12248-018-0250-5
– ident: ref60/cit60
– ident: ref55/cit55
  doi: 10.1021/es0107531
– ident: ref28/cit28
  doi: 10.1186/s40360-015-0017-x
– ident: ref65/cit65
– ident: ref11/cit11
  doi: 10.1007/s11894-008-0098-4
– ident: ref21/cit21
  doi: 10.1007/s10822-005-8694-y
– ident: ref2/cit2
  doi: 10.1021/acs.molpharmaceut.8b00515
– ident: ref87/cit87
  doi: 10.3390/pharmaceutics12060558
– volume-title: Kirk-Othmer Encyclopedia of Chemical Technology
  year: 2001
  ident: ref48/cit48
– ident: ref4/cit4
  doi: 10.1021/mp100149j
– ident: ref41/cit41
  doi: 10.1111/bcp.13038
– ident: ref5/cit5
  doi: 10.1136/gut.29.8.1035
– volume: 9
  start-page: 21
  year: 1996
  ident: ref51/cit51
  publication-title: Pak. J. Pharm. Sci.
– ident: ref67/cit67
– ident: ref31/cit31
  doi: 10.1016/s0022-3549(15)00176-8
– ident: ref35/cit35
– ident: ref3/cit3
  doi: 10.1023/a:1016212804288
– ident: ref56/cit56
– ident: ref45/cit45
– ident: ref46/cit46
– ident: ref83/cit83
  doi: 10.1016/j.ejpb.2019.03.012
– ident: ref57/cit57
– ident: ref84/cit84
  doi: 10.3390/pharmaceutics12060566
– ident: ref29/cit29
  doi: 10.1023/a:1015009300955
– ident: ref13/cit13
  doi: 10.1093/jac/dkg089
– ident: ref77/cit77
  doi: 10.1039/c7cy01374d
– ident: ref63/cit63
– ident: ref39/cit39
  doi: 10.2165/11592630-000000000-00000
– ident: ref7/cit7
  doi: 10.1007/s11095-005-8476-1
– ident: ref36/cit36
  doi: 10.1177/0091270009346061
– ident: ref62/cit62
  doi: 10.1016/0307-4412(92)90013-C
– ident: ref26/cit26
  doi: 10.1007/s00280-017-3308-7
– ident: ref34/cit34
  doi: 10.1002/cpdd.337
– volume-title: Reactions of Acids and Bases in Analytical Chemistry
  year: 1987
  ident: ref78/cit78
– volume: 13
  start-page: 169
  year: 2018
  ident: ref10/cit10
  publication-title: Gastroenterol. Hepatol.
– ident: ref32/cit32
  doi: 10.1097/cad.0000000000000212
– ident: ref53/cit53
  doi: 10.1021/ed037pa490.3
– ident: ref81/cit81
  doi: 10.1021/acs.molpharmaceut.9b00187
– ident: ref20/cit20
  doi: 10.6004/jadpro.2020.11.7.5
– ident: ref42/cit42
  doi: 10.1124/dmd.116.073585
SSID ssj0024523
Score 2.4469862
Snippet Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution...
Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. drug dissolution depends on the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3326
SubjectTerms Administration, Oral
Betaine - pharmacology
Biological Availability
Chemistry, Pharmaceutical
Computer Simulation
Drug Design
Drug Liberation
Excipients - pharmacology
Fumarates - pharmacology
Gastrointestinal Absorption - drug effects
Humans
Hydrogen-Ion Concentration - drug effects
Models, Biological
Solubility
Tartrates - pharmacology
Title Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis
URI http://dx.doi.org/10.1021/acs.molpharmaceut.1c00262
https://www.ncbi.nlm.nih.gov/pubmed/34428047
https://www.proquest.com/docview/2564497941
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFBYlhdJL92W68QIlp3hqW7Ks6S1kGobCtKGdQG5GawlN7WB7DpNfk5_aJ3kZ0lKaXG0_YaG36S3fI-Q9yyTafcpQ0oyLGJroaKa1jqgSsczRxrIQ71h-4YsT9vk0O932cf-ZwU-TD1I301-VbzztQ7zTRPubA-rduylHYfb-0OH3LcBeFma6oWtAI0EFu0d2_7uUN026uW6a_uFvBrtz9JCshu6drtzk53Tdqqm-_BvM8TZbekQe9H4oHHSM85jcseUTsnfcfbvZh9W2L6vZhz043kJcb56SqzEWAfOzkX2hB1usQZYGvtZ-fdVUddBKUDmY1-sfDfjQL1wsonk_f7cFH5sLRbobCCUM-BaWlTlzfk73RziAUKc6qOnzDXyzHrcR_w2W6PzDiNAOA8bKM3Jy9Gl1uIj6WQ-RpJy2UeZyF8dGasm5SK1IXBJTpYxHuEPjKmdoR0Vik0wbK7jSqEaszKiSitPUCEWfk52yKu1LAkiqZaZMZmacOWeF4bHLlcycQ3eF5ROCrNoUvaw2RUjDp0nhH147laI_lQkRA18UukdO9wM8zm9Cmo6kFx18yE2IdgfmK1DYfQZHlrZaN4WXHTbDvScT8qLjynFZyvAmGbP81W2395rcT32hjs-S8Tdkp63X9i16Wq16FyTrN80lLFU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkYAL78fynEqop2abxHbi5bbqUi3QLRVspUocIj9RRUmqJHtYfg0_lbE3m1WREIWrk7FseV6eGX9DyGvGJdp9ylDSjIsYmuhopLWOqBKxzNHGshDvmB1l0xP2_pSfdlWV_i0MLqLBmZqQxN-gCyR7fux75d-fdpHeYaL9BQLV73V0SlLP3eP9zxucPR5au6GHQCNBBbtBtv86lbdQurlsof7gdgbzc3CHfOkXHqpOvg0XrRrqH79hOv7fzu6S251XCuMVG90j12x5n-wcr_5d7sJ880qr2YUdON4AXi8fkJ99ZAImZz0zQwe9WIMsDXys_fyqqeqgo6ByMKkXXxvwgWC4mEaTrhtvCz5SF0p2lxAKGvArzCpz5nzX7jcwhlC1ulba50v4ZD2KI64NZngVgB6vHdaIKw_JycHb-f406jo_RJJmtI24y10cG6lllonUisQlMVXKeLw7NLVyhFZVJDbh2liRKY1KxUpOlVQZTY1Q9BHZKqvSPiGApFpyZbgZZcw5K0wWu1xJ7hw6LywfEH8oRSe5TRGS8mlS-MFLp1J0pzIgYs0ehe5w1H07j_OrkKY96cUKTOQqRNtrHixQ9H0-R5a2WjSFlyQ2wr0nA_J4xZz9tJThvTJm-dN_3d4rcnM6nx0Wh--OPjwjt1JfwuPzZ9lzstXWC_sCfbBWvQzC9gsZsTS2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQkCZeuMO6cTmT0J6WksRO4vJWrVTl0lHBJu0t8hVNjKRK2ofya_ip-LhuqiEhBq9OjmXL5-Zzjr9DyCuWCWf3KXOSpm3EnImOBkqpiEoei8LZWObjHdPTfHLO3l9kFyHghm9h3CJaN1Prk_go1XNtA8JA8hrHv9f4BjVEe_uJwkuEU8G3MX2HHD48-bLF2st8ezfnJdCIU852yeFfp0IrpdrrVuoPrqc3QeN7pOwW7ytPvvWXC9lXP37Ddfz_3d0nd4N3CsM1Oz0gt0z1kBzN1v-ujuFs-1qrPYYjmG2Br1ePyM8uQgGjy46pIUAwNiAqDZ8anF-2deN1FdQWRs3yawsYEIb5JBqFrrwLwIidL91dgS9scF9hWutLi92738AQfPXqRnlfreCzQTRHtzaYuisBdLjtsEFeeUzOx2_PTiZR6AARCZrTRZTZwsaxFkrkOU8NT2wSUyk14t45kysGzrryxCSZ0obnUjnlYkRGpZA5TTWX9AnZqerK7BFwpEpkUmd6kDNrDdd5bAspMmudE8OKHsGDKYMEt6VPzqdJiYPXTqUMp9IjfMMipQp46tjW4-ompGlHOl-DityE6HDDh6VTAZjXEZWpl22JEsUGbu9JjzxdM2g3LWXufhmzYv9ft_eS7M5G4_Lju9MPB-ROipU8mEbLn5GdRbM0z50rtpAvvLz9AqoPNzk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Dissolution+Behavior+and+Oral+Absorption+of+Drugs+with+pH-Dependent+Solubility+Using+pH+Modifiers%3A+A+Physiologically+Realistic+Mass+Transport+Analysis&rft.jtitle=Molecular+pharmaceutics&rft.au=Salehi%2C+Niloufar&rft.au=Kuminek%2C+Gislaine&rft.au=Al-Gousous%2C+Jozef&rft.au=Sperry%2C+David+C&rft.date=2021-09-06&rft.pub=American+Chemical+Society&rft.issn=1543-8384&rft.eissn=1543-8392&rft.volume=18&rft.issue=9&rft.spage=3326&rft.epage=3341&rft_id=info:doi/10.1021%2Facs.molpharmaceut.1c00262&rft.externalDocID=b241967102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon