Ultrahigh Proton Conductivities of Postmodified Hf(IV) Metal–Organic Frameworks and Related Chitosan-Based Composite Membranes
Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosit...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 29; pp. 35128 - 35139 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free −COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10–2 and 0.71 × 10–2 S cm–1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10–2 S cm–1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells. |
---|---|
AbstractList | Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free −COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10–2 and 0.71 × 10–2 S cm–1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10–2 S cm–1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells. Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free -COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10-2 and 0.71 × 10-2 S cm-1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10-2 S cm-1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free -COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10-2 and 0.71 × 10-2 S cm-1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10-2 S cm-1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells. Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)₂ (1) and Hf-UiO-66-NH₂ (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free −COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10-² and 0.71 × 10-² S cm-¹. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10-² S cm-¹ under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells. Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH) ( ) and Hf-UiO-66-NH ( ) were chemically modified by a ligand design strategy to obtain and bearing free -COOH units. The proton conductivities of and under optimal test conditions reached 1.23 × 10 and 0.71 × 10 S cm . After that, we prepared composite membranes and by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10 S cm under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells. |
Author | Xiao, Shang-Hao Chen, Xin Li, Zi-Feng Li, Gang Zhang, Shuai-Long |
AuthorAffiliation | College of Chemistry and Green Catalysis Centre |
AuthorAffiliation_xml | – name: College of Chemistry and Green Catalysis Centre |
Author_xml | – sequence: 1 givenname: Xin surname: Chen fullname: Chen, Xin – sequence: 2 givenname: Shuai-Long surname: Zhang fullname: Zhang, Shuai-Long – sequence: 3 givenname: Shang-Hao surname: Xiao fullname: Xiao, Shang-Hao – sequence: 4 givenname: Zi-Feng surname: Li fullname: Li, Zi-Feng email: lzf2004@zzu.edu.cn – sequence: 5 givenname: Gang orcidid: 0000-0001-9049-4208 surname: Li fullname: Li, Gang email: gangli@zzu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37462149$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi3Uil5gyxJ5WZAy-J54CSNKKxW1Qm231knidFwSe2o7IHZ9B96QJ6mrmbJAqtj4pu87sv7_AO344C1CbyhZUMLoB-gSTG7BO9IQUr9A-1QLUTVMsp2_ZyH20EFKt4Qozoh8ifZ4LRSjQu-j-6sxR1i5mxW-iCEHj5fB93OX3Q-XnU04DPgipDyF3g3O9vhkODq9foe_2gzjn_vf5_EGvOvwcYTJ_gzxe8Lge_zNjpALvVy5HBL46hOkx2uY1iG5bIs_tRG8Ta_Q7gBjsq-3-yG6Ov58uTypzs6_nC4_nlXAFc-VELSWXCpoqdUDMG5rSjh0WlLZNlqKmoFuWQGsUkRI6HWhlbJNWTpd80N0tJm7juFutimbyaXOjmP5RJiT4UQQrqSU7L8oa7hmohFMFvTtFp3byfZmHd0E8Zd5CrgAYgN0MaQU7WA6lyG74EvsbjSUmMcezaZHs-2xaIt_tKfJzwrvN0J5N7dhjr6E-Rz8AF4iryM |
CitedBy_id | crossref_primary_10_1016_j_rsurfi_2024_100218 crossref_primary_10_1039_D3DT03882C crossref_primary_10_1016_j_micromeso_2024_113342 crossref_primary_10_1021_acs_inorgchem_4c01105 crossref_primary_10_1021_acs_cgd_5c00081 crossref_primary_10_1016_j_jcis_2023_12_026 crossref_primary_10_1021_acs_inorgchem_3c03400 crossref_primary_10_1002_adfm_202308656 crossref_primary_10_1016_j_ijhydene_2023_10_015 crossref_primary_10_3390_molecules30050981 crossref_primary_10_1016_j_pmatsci_2024_101387 crossref_primary_10_1021_acsami_4c09126 crossref_primary_10_1002_chem_202402165 crossref_primary_10_1038_s41598_024_69111_1 crossref_primary_10_1016_j_jallcom_2024_177546 crossref_primary_10_1016_j_psep_2024_04_113 crossref_primary_10_1021_acsami_5c01422 crossref_primary_10_1016_j_cej_2023_148146 crossref_primary_10_1021_acs_inorgchem_4c04935 crossref_primary_10_1007_s10904_024_03572_9 |
Cites_doi | 10.1039/C7TA10148A 10.1021/jacs.6b02194 10.1039/C8CE00476E 10.1021/acsami.8b22327 10.1039/C0CS00031K 10.1039/C7CY01668A 10.1007/s11426-021-9976-7 10.3390/nano8121042 10.1016/j.jpowsour.2014.03.123 10.1039/C3CC47980C 10.1002/aoc.5981 10.1021/acs.inorgchem.8b01748 10.1002/mame.202100519 10.1016/j.enconman.2021.115182 10.1039/C7TA00413C 10.1021/acsami.0c21840 10.1021/acs.inorgchem.9b03395 10.1039/c2cc34246d 10.1016/j.carbpol.2012.07.037 10.1016/j.memsci.2016.01.013 10.1021/cm500473f 10.1021/acsami.9b16834 10.1039/C6DT00290K 10.1002/chem.201505185 10.1016/j.micromeso.2019.109763 10.1021/jacs.9b13461 10.1039/C8CE01506F 10.1021/acsami.0c08103 10.1021/acs.inorgchem.1c03679 10.1021/jacs.7b01559 10.1007/s41061-022-00367-9 10.1016/j.ccr.2022.214699 10.1038/nmat2526 10.1038/nchem.402 10.1021/cr020715f 10.1016/j.cej.2018.08.118 10.1021/acsami.9b03330 10.1021/ja5006465 10.1039/C8CC08700H 10.1016/j.rser.2018.03.007 10.1071/CH19271 10.1039/D0CC07375J 10.1002/chem.201003211 10.1039/c4ta00208c 10.1002/slct.201802423 10.1021/acs.inorgchem.9b01408 10.1021/jacs.7b11364 10.1002/adfm.202006291 10.1016/j.memsci.2014.01.059 10.1016/j.apenergy.2022.118555 10.1016/j.ccr.2022.214740 10.1021/acs.inorgchem.1c02671 10.1039/C5TA03507D 10.1016/j.catcom.2018.05.010 10.1021/ja512411b 10.1016/j.ccr.2021.214301 10.1021/acs.nanolett.8b04518 10.1002/tcr.202000072 10.1021/cm502716e 10.1021/acsami.7b13013 10.1021/acs.chemmater.8b02765 10.1021/acs.energyfuels.0c00367 10.1021/ja402727d 10.1016/j.rser.2022.112111 10.1021/acs.inorgchem.2c00809 10.1039/C6TA07761G 10.1021/acs.inorgchem.5b02312 10.1039/C7NR06274E 10.1080/15583720600796474 10.1021/acsami.8b12846 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.3c08007 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 35139 |
ExternalDocumentID | 37462149 10_1021_acsami_3c08007 d008992319 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-44175356ab1e9fa23e7103ac9515b895472a9b256ae66045ad935666e8666c973 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 10:48:23 EDT 2025 Thu Jul 10 19:18:54 EDT 2025 Thu Apr 03 07:25:22 EDT 2025 Tue Jul 01 03:31:35 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 Fri Jul 28 03:16:50 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | CS composite membrane proton conduction hafnium-based MOFs postmodification mechanism |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-44175356ab1e9fa23e7103ac9515b895472a9b256ae66045ad935666e8666c973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9049-4208 |
PMID | 37462149 |
PQID | 2839248425 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3040365552 proquest_miscellaneous_2839248425 pubmed_primary_37462149 crossref_citationtrail_10_1021_acsami_3c08007 crossref_primary_10_1021_acsami_3c08007 acs_journals_10_1021_acsami_3c08007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-26 |
PublicationDateYYYYMMDD | 2023-07-26 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1039/C7TA10148A – ident: ref50/cit50 doi: 10.1021/jacs.6b02194 – ident: ref70/cit70 doi: 10.1039/C8CE00476E – ident: ref17/cit17 doi: 10.1021/acsami.8b22327 – ident: ref22/cit22 doi: 10.1039/C0CS00031K – ident: ref40/cit40 doi: 10.1039/C7CY01668A – ident: ref18/cit18 doi: 10.1007/s11426-021-9976-7 – ident: ref69/cit69 doi: 10.3390/nano8121042 – ident: ref10/cit10 doi: 10.1016/j.jpowsour.2014.03.123 – ident: ref23/cit23 doi: 10.1039/C3CC47980C – ident: ref65/cit65 doi: 10.1002/aoc.5981 – ident: ref43/cit43 doi: 10.1021/acs.inorgchem.8b01748 – ident: ref58/cit58 doi: 10.1002/mame.202100519 – ident: ref2/cit2 doi: 10.1016/j.enconman.2021.115182 – ident: ref32/cit32 doi: 10.1039/C7TA00413C – ident: ref59/cit59 doi: 10.1021/acsami.0c21840 – ident: ref19/cit19 doi: 10.1021/acs.inorgchem.9b03395 – ident: ref44/cit44 doi: 10.1039/c2cc34246d – ident: ref57/cit57 doi: 10.1016/j.carbpol.2012.07.037 – ident: ref6/cit6 doi: 10.1016/j.memsci.2016.01.013 – ident: ref54/cit54 doi: 10.1021/cm500473f – ident: ref41/cit41 doi: 10.1021/acsami.9b16834 – ident: ref30/cit30 doi: 10.1039/C6DT00290K – ident: ref38/cit38 doi: 10.1002/chem.201505185 – ident: ref68/cit68 doi: 10.1016/j.micromeso.2019.109763 – ident: ref11/cit11 doi: 10.1021/jacs.9b13461 – ident: ref64/cit64 doi: 10.1039/C8CE01506F – ident: ref9/cit9 doi: 10.1021/acsami.0c08103 – ident: ref47/cit47 doi: 10.1021/acs.inorgchem.1c03679 – ident: ref21/cit21 doi: 10.1021/jacs.7b01559 – ident: ref13/cit13 doi: 10.1007/s41061-022-00367-9 – ident: ref24/cit24 doi: 10.1016/j.ccr.2022.214699 – ident: ref27/cit27 doi: 10.1038/nmat2526 – ident: ref26/cit26 doi: 10.1038/nchem.402 – ident: ref28/cit28 doi: 10.1021/cr020715f – ident: ref45/cit45 doi: 10.1016/j.cej.2018.08.118 – ident: ref51/cit51 doi: 10.1021/acsami.9b03330 – ident: ref31/cit31 doi: 10.1021/ja5006465 – ident: ref60/cit60 doi: 10.1039/C8CC08700H – ident: ref5/cit5 doi: 10.1016/j.rser.2018.03.007 – ident: ref34/cit34 doi: 10.1071/CH19271 – ident: ref46/cit46 doi: 10.1039/D0CC07375J – ident: ref33/cit33 doi: 10.1002/chem.201003211 – ident: ref55/cit55 doi: 10.1039/c4ta00208c – ident: ref42/cit42 doi: 10.1002/slct.201802423 – ident: ref37/cit37 doi: 10.1021/acs.inorgchem.9b01408 – ident: ref16/cit16 doi: 10.1021/jacs.7b11364 – ident: ref25/cit25 doi: 10.1002/adfm.202006291 – ident: ref12/cit12 doi: 10.1016/j.memsci.2014.01.059 – ident: ref4/cit4 doi: 10.1016/j.apenergy.2022.118555 – ident: ref7/cit7 doi: 10.1016/j.ccr.2022.214740 – ident: ref53/cit53 doi: 10.1021/acs.inorgchem.1c02671 – ident: ref66/cit66 doi: 10.1039/C5TA03507D – ident: ref39/cit39 doi: 10.1016/j.catcom.2018.05.010 – ident: ref61/cit61 doi: 10.1021/ja512411b – ident: ref14/cit14 doi: 10.1016/j.ccr.2021.214301 – ident: ref35/cit35 doi: 10.1021/acs.nanolett.8b04518 – ident: ref63/cit63 doi: 10.1002/tcr.202000072 – ident: ref15/cit15 doi: 10.1021/cm502716e – ident: ref67/cit67 doi: 10.1021/acsami.7b13013 – ident: ref20/cit20 doi: 10.1021/acs.chemmater.8b02765 – ident: ref56/cit56 doi: 10.1021/acs.energyfuels.0c00367 – ident: ref62/cit62 doi: 10.1021/ja402727d – ident: ref1/cit1 doi: 10.1016/j.rser.2022.112111 – ident: ref48/cit48 doi: 10.1021/acs.inorgchem.2c00809 – ident: ref8/cit8 doi: 10.1039/C6TA07761G – ident: ref36/cit36 doi: 10.1021/acs.inorgchem.5b02312 – ident: ref49/cit49 doi: 10.1039/C7NR06274E – ident: ref3/cit3 doi: 10.1080/15583720600796474 – ident: ref52/cit52 doi: 10.1021/acsami.8b12846 |
SSID | ssj0063205 |
Score | 2.5159438 |
Snippet | Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane... Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35128 |
SubjectTerms | activation energy asymmetric membranes chitosan cost effectiveness crystal structure Energy, Environmental, and Catalysis Applications fuels ligands porosity |
Title | Ultrahigh Proton Conductivities of Postmodified Hf(IV) Metal–Organic Frameworks and Related Chitosan-Based Composite Membranes |
URI | http://dx.doi.org/10.1021/acsami.3c08007 https://www.ncbi.nlm.nih.gov/pubmed/37462149 https://www.proquest.com/docview/2839248425 https://www.proquest.com/docview/3040365552 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQudBDW15lW0BGVAIObnf9in0sK1YLUlGlslVvke04AtEm1SZ76Wn_A_-wv6QzebRAtYJLpEiT18Se-cYz_oaQvcR6gK0ygdgkKiZHmWVW-IyBlRyGkAnjM9w7fPRVT2fyy5k6u1vv-DuDz0cHLlTYCkcgJTZuG3_ItUkwzDocn_Q2VwveFCtCRC6ZAY_V0zPeux6dUKj-dEIrkGXjYSabLd1R1RATYmHJz_1F7ffD1X3axn--_BbZ6GAmPWzHxWPyIBZPyPpv5INPyXJ2XoOlgeCcHs9LgIB0XBbI_ortJCB-pmVOsZXvRZn9yAGo0mn-_vPpB3oUAa9fL3-1uzgDnfTlXRV1RUab6jqQHn8HW1G5gn0EPwmnYHewPizC9RcQoYOFfUZmk0_fxlPW9WNgTmhRM-xWpoTSzo-izR0XEeCJcAFAmvLGKplwZz1gKBe1BqjoMgvSWkcDh2AT8ZysFWURXxDqhTU-mGEmnZbeORNMnqgIxiVwuMlwQN6C6tJuPlVpkyrno7TVZ9rpc0BY_xvT0FGaY2eN85Xy727lL1syj5WSb_pRkcJ8wyQKKKZcVClHRCkxeblaRoBlFFopxQdkux1St88TidQcwtKd__rCXfII-9vjYjLXL8laPV_EV4CCav-6mQA3avsCSw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcgAOUF5loYARSMDB7a4dO_GxrFhtoVtVoot6i2zHEahtUjXZC6f-B_5hf0k_57G8tBJcIiUaO_bEnvkmM54h5HWsLWBrFMM28ZJFo0wzLWzGICWHzmUisVk4Ozw7UNN59PFYHq-Rnf4sDAZRoaeqceL_zC4w2sGzUBFHhMzY4fT4DSARHqyt3fHnXvQqwZuYRRjmEUuguPosjX-1D7rIVb_rohUAs1E0k7vkcDnEJr7kZHtR2233_Y_sjf8xhw1ypwOddLddJffImi_uk9u_pCJ8QC7npzXkDkx1enhRAhDScVmEXLChuASsaVrmNBT2PSuzbzlgK53mb_e-vKMzD_R-dfmjPdPp6KQP9qqoKTLaxNqBevwVkqMyBXsPrYlbSKEQLebR_gz2OuTtQzKffDgaT1lXnYEZoUTNQu0yKaQyduR1brjwACvCOEA2aRMto5gbbYGojFcKwNFkGtRK-QQXp2PxiKwXZeEfE2qFTqxLhllkVGSNSVySx9JD1DiOToYD8gqsS7vdVaWN45yP0pafacfPAWH910xdl-A81Nk4XUn_Zkl_3qb2WEn5sl8cKXZfcKmAMeWiSnnAl1FwZa6mEZCTQkkp-YBstitr-T4RR4rDSH3yTzN8QW5Oj2b76f7ewaen5BYH3gq_mbnaIuv1xcI_Az6q7fNmT1wDoO4KrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZQkRAcyt4OqxFIwCFlxo6d5FgGRlOgVSU6qLfIWwSiTaomc-HU_8A_5JfwvSwjFo0El0iJnh3bsd_7Xt7G2LMks4CtcQLdJKgonvgsyqT1Ebjk2DkvU-spdnj_QM8X8btjddzHcVMsDAZRo6e6NeLTqT7zRZ9hYPIKz6kqjqTs2BRBfplsdqRx7U4_DuxXS9H6LUI5j6MUwmvI1PhXe5JHrv5dHq0Bma2wmV1nR6thtj4mX3eWjd1x3_7I4Pif87jBNnvwyXe73XKTXQrlLXbtl5SEt9nF4qQB_4HKzg_PKwBDPq1KyglLRSagVfOq4FTg97TyXwrAVz4vXux9esn3A1D8j4vvXWyn47PB6avmpvS89bkD9fQzOEhtyug1pCduwY3Iayyg_Sn0dvDdO2wxe3s0nUd9lYbISC2biGqYKam0sZOQFUbIANAijQN0UzbNVJwIk1kgKxO0BoA0PgO11iHFxWWJvMs2yqoM24xbmaXWpWMfGx1bY1KXFokKYDlOoJPxiD3F0uX9Kavz1oAuJnm3nnm_niMWDV80d32ic6q3cbKW_vmK_qxL8bGW8smwQXKcQjKtYGGqZZ0LwpkxmTTX00jwS6mVUmLEtrrdtXqfTGItoKze-6cZPmZXDt_M8g97B-_vs6sCsIv-Ngv9gG0058vwEDCpsY_aY_ETPC0NLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+Proton+Conductivities+of+Postmodified+Hf%28IV%29+Metal-Organic+Frameworks+and+Related+Chitosan-Based+Composite+Membranes&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Xin&rft.au=Zhang%2C+Shuai-Long&rft.au=Xiao%2C+Shang-Hao&rft.au=Li%2C+Zi-Feng&rft.date=2023-07-26&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=15&rft.issue=29&rft.spage=35128&rft_id=info:doi/10.1021%2Facsami.3c08007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |