Ultrahigh Proton Conductivities of Postmodified Hf(IV) Metal–Organic Frameworks and Related Chitosan-Based Composite Membranes

Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosit...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 29; pp. 35128 - 35139
Main Authors Chen, Xin, Zhang, Shuai-Long, Xiao, Shang-Hao, Li, Zi-Feng, Li, Gang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free −COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10–2 and 0.71 × 10–2 S cm–1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10–2 S cm–1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.
AbstractList Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free −COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10–2 and 0.71 × 10–2 S cm–1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10–2 S cm–1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.
Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free -COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10-2 and 0.71 × 10-2 S cm-1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10-2 S cm-1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)2 (1) and Hf-UiO-66-NH2 (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free -COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10-2 and 0.71 × 10-2 S cm-1. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10-2 S cm-1 under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.
Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH)₂ (1) and Hf-UiO-66-NH₂ (2) were chemically modified by a ligand design strategy to obtain SA-1 and CBD-2 bearing free −COOH units. The proton conductivities of SA-1 and CBD-2 under optimal test conditions reached 1.23 × 10-² and 0.71 × 10-² S cm-¹. After that, we prepared composite membranes CS/SA-1 and CS/CBD-2 by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10-² S cm-¹ under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.
Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ). First, the nanoscale MOFs Hf-UiO-66-(OH) ( ) and Hf-UiO-66-NH ( ) were chemically modified by a ligand design strategy to obtain and bearing free -COOH units. The proton conductivities of and under optimal test conditions reached 1.23 × 10 and 0.71 × 10 S cm . After that, we prepared composite membranes and by the casting method; tests revealed that the introduction of MOFs improved the stabilities and σ values of the membranes, and their best σ could reach above 10 S cm under 100 °C/98% RH. Further structural characterization and activation energy calculation revealed the conductive mechanism of the composite films. This investigation not only proposes a novel chemical modification method for optimizing the σ of MOFs but also promotes the development of MOF-doped composite membranes and provides a basis for future applications of MOFs in fuel cells.
Author Xiao, Shang-Hao
Chen, Xin
Li, Zi-Feng
Li, Gang
Zhang, Shuai-Long
AuthorAffiliation College of Chemistry and Green Catalysis Centre
AuthorAffiliation_xml – name: College of Chemistry and Green Catalysis Centre
Author_xml – sequence: 1
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
– sequence: 2
  givenname: Shuai-Long
  surname: Zhang
  fullname: Zhang, Shuai-Long
– sequence: 3
  givenname: Shang-Hao
  surname: Xiao
  fullname: Xiao, Shang-Hao
– sequence: 4
  givenname: Zi-Feng
  surname: Li
  fullname: Li, Zi-Feng
  email: lzf2004@zzu.edu.cn
– sequence: 5
  givenname: Gang
  orcidid: 0000-0001-9049-4208
  surname: Li
  fullname: Li, Gang
  email: gangli@zzu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37462149$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi3Uil5gyxJ5WZAy-J54CSNKKxW1Qm231knidFwSe2o7IHZ9B96QJ6mrmbJAqtj4pu87sv7_AO344C1CbyhZUMLoB-gSTG7BO9IQUr9A-1QLUTVMsp2_ZyH20EFKt4Qozoh8ifZ4LRSjQu-j-6sxR1i5mxW-iCEHj5fB93OX3Q-XnU04DPgipDyF3g3O9vhkODq9foe_2gzjn_vf5_EGvOvwcYTJ_gzxe8Lge_zNjpALvVy5HBL46hOkx2uY1iG5bIs_tRG8Ta_Q7gBjsq-3-yG6Ov58uTypzs6_nC4_nlXAFc-VELSWXCpoqdUDMG5rSjh0WlLZNlqKmoFuWQGsUkRI6HWhlbJNWTpd80N0tJm7juFutimbyaXOjmP5RJiT4UQQrqSU7L8oa7hmohFMFvTtFp3byfZmHd0E8Zd5CrgAYgN0MaQU7WA6lyG74EvsbjSUmMcezaZHs-2xaIt_tKfJzwrvN0J5N7dhjr6E-Rz8AF4iryM
CitedBy_id crossref_primary_10_1016_j_rsurfi_2024_100218
crossref_primary_10_1039_D3DT03882C
crossref_primary_10_1016_j_micromeso_2024_113342
crossref_primary_10_1021_acs_inorgchem_4c01105
crossref_primary_10_1021_acs_cgd_5c00081
crossref_primary_10_1016_j_jcis_2023_12_026
crossref_primary_10_1021_acs_inorgchem_3c03400
crossref_primary_10_1002_adfm_202308656
crossref_primary_10_1016_j_ijhydene_2023_10_015
crossref_primary_10_3390_molecules30050981
crossref_primary_10_1016_j_pmatsci_2024_101387
crossref_primary_10_1021_acsami_4c09126
crossref_primary_10_1002_chem_202402165
crossref_primary_10_1038_s41598_024_69111_1
crossref_primary_10_1016_j_jallcom_2024_177546
crossref_primary_10_1016_j_psep_2024_04_113
crossref_primary_10_1021_acsami_5c01422
crossref_primary_10_1016_j_cej_2023_148146
crossref_primary_10_1021_acs_inorgchem_4c04935
crossref_primary_10_1007_s10904_024_03572_9
Cites_doi 10.1039/C7TA10148A
10.1021/jacs.6b02194
10.1039/C8CE00476E
10.1021/acsami.8b22327
10.1039/C0CS00031K
10.1039/C7CY01668A
10.1007/s11426-021-9976-7
10.3390/nano8121042
10.1016/j.jpowsour.2014.03.123
10.1039/C3CC47980C
10.1002/aoc.5981
10.1021/acs.inorgchem.8b01748
10.1002/mame.202100519
10.1016/j.enconman.2021.115182
10.1039/C7TA00413C
10.1021/acsami.0c21840
10.1021/acs.inorgchem.9b03395
10.1039/c2cc34246d
10.1016/j.carbpol.2012.07.037
10.1016/j.memsci.2016.01.013
10.1021/cm500473f
10.1021/acsami.9b16834
10.1039/C6DT00290K
10.1002/chem.201505185
10.1016/j.micromeso.2019.109763
10.1021/jacs.9b13461
10.1039/C8CE01506F
10.1021/acsami.0c08103
10.1021/acs.inorgchem.1c03679
10.1021/jacs.7b01559
10.1007/s41061-022-00367-9
10.1016/j.ccr.2022.214699
10.1038/nmat2526
10.1038/nchem.402
10.1021/cr020715f
10.1016/j.cej.2018.08.118
10.1021/acsami.9b03330
10.1021/ja5006465
10.1039/C8CC08700H
10.1016/j.rser.2018.03.007
10.1071/CH19271
10.1039/D0CC07375J
10.1002/chem.201003211
10.1039/c4ta00208c
10.1002/slct.201802423
10.1021/acs.inorgchem.9b01408
10.1021/jacs.7b11364
10.1002/adfm.202006291
10.1016/j.memsci.2014.01.059
10.1016/j.apenergy.2022.118555
10.1016/j.ccr.2022.214740
10.1021/acs.inorgchem.1c02671
10.1039/C5TA03507D
10.1016/j.catcom.2018.05.010
10.1021/ja512411b
10.1016/j.ccr.2021.214301
10.1021/acs.nanolett.8b04518
10.1002/tcr.202000072
10.1021/cm502716e
10.1021/acsami.7b13013
10.1021/acs.chemmater.8b02765
10.1021/acs.energyfuels.0c00367
10.1021/ja402727d
10.1016/j.rser.2022.112111
10.1021/acs.inorgchem.2c00809
10.1039/C6TA07761G
10.1021/acs.inorgchem.5b02312
10.1039/C7NR06274E
10.1080/15583720600796474
10.1021/acsami.8b12846
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.3c08007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 35139
ExternalDocumentID 37462149
10_1021_acsami_3c08007
d008992319
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-44175356ab1e9fa23e7103ac9515b895472a9b256ae66045ad935666e8666c973
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 10:48:23 EDT 2025
Thu Jul 10 19:18:54 EDT 2025
Thu Apr 03 07:25:22 EDT 2025
Tue Jul 01 03:31:35 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Fri Jul 28 03:16:50 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords CS composite membrane
proton conduction
hafnium-based MOFs
postmodification
mechanism
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-44175356ab1e9fa23e7103ac9515b895472a9b256ae66045ad935666e8666c973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9049-4208
PMID 37462149
PQID 2839248425
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3040365552
proquest_miscellaneous_2839248425
pubmed_primary_37462149
crossref_citationtrail_10_1021_acsami_3c08007
crossref_primary_10_1021_acsami_3c08007
acs_journals_10_1021_acsami_3c08007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-26
PublicationDateYYYYMMDD 2023-07-26
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1039/C7TA10148A
– ident: ref50/cit50
  doi: 10.1021/jacs.6b02194
– ident: ref70/cit70
  doi: 10.1039/C8CE00476E
– ident: ref17/cit17
  doi: 10.1021/acsami.8b22327
– ident: ref22/cit22
  doi: 10.1039/C0CS00031K
– ident: ref40/cit40
  doi: 10.1039/C7CY01668A
– ident: ref18/cit18
  doi: 10.1007/s11426-021-9976-7
– ident: ref69/cit69
  doi: 10.3390/nano8121042
– ident: ref10/cit10
  doi: 10.1016/j.jpowsour.2014.03.123
– ident: ref23/cit23
  doi: 10.1039/C3CC47980C
– ident: ref65/cit65
  doi: 10.1002/aoc.5981
– ident: ref43/cit43
  doi: 10.1021/acs.inorgchem.8b01748
– ident: ref58/cit58
  doi: 10.1002/mame.202100519
– ident: ref2/cit2
  doi: 10.1016/j.enconman.2021.115182
– ident: ref32/cit32
  doi: 10.1039/C7TA00413C
– ident: ref59/cit59
  doi: 10.1021/acsami.0c21840
– ident: ref19/cit19
  doi: 10.1021/acs.inorgchem.9b03395
– ident: ref44/cit44
  doi: 10.1039/c2cc34246d
– ident: ref57/cit57
  doi: 10.1016/j.carbpol.2012.07.037
– ident: ref6/cit6
  doi: 10.1016/j.memsci.2016.01.013
– ident: ref54/cit54
  doi: 10.1021/cm500473f
– ident: ref41/cit41
  doi: 10.1021/acsami.9b16834
– ident: ref30/cit30
  doi: 10.1039/C6DT00290K
– ident: ref38/cit38
  doi: 10.1002/chem.201505185
– ident: ref68/cit68
  doi: 10.1016/j.micromeso.2019.109763
– ident: ref11/cit11
  doi: 10.1021/jacs.9b13461
– ident: ref64/cit64
  doi: 10.1039/C8CE01506F
– ident: ref9/cit9
  doi: 10.1021/acsami.0c08103
– ident: ref47/cit47
  doi: 10.1021/acs.inorgchem.1c03679
– ident: ref21/cit21
  doi: 10.1021/jacs.7b01559
– ident: ref13/cit13
  doi: 10.1007/s41061-022-00367-9
– ident: ref24/cit24
  doi: 10.1016/j.ccr.2022.214699
– ident: ref27/cit27
  doi: 10.1038/nmat2526
– ident: ref26/cit26
  doi: 10.1038/nchem.402
– ident: ref28/cit28
  doi: 10.1021/cr020715f
– ident: ref45/cit45
  doi: 10.1016/j.cej.2018.08.118
– ident: ref51/cit51
  doi: 10.1021/acsami.9b03330
– ident: ref31/cit31
  doi: 10.1021/ja5006465
– ident: ref60/cit60
  doi: 10.1039/C8CC08700H
– ident: ref5/cit5
  doi: 10.1016/j.rser.2018.03.007
– ident: ref34/cit34
  doi: 10.1071/CH19271
– ident: ref46/cit46
  doi: 10.1039/D0CC07375J
– ident: ref33/cit33
  doi: 10.1002/chem.201003211
– ident: ref55/cit55
  doi: 10.1039/c4ta00208c
– ident: ref42/cit42
  doi: 10.1002/slct.201802423
– ident: ref37/cit37
  doi: 10.1021/acs.inorgchem.9b01408
– ident: ref16/cit16
  doi: 10.1021/jacs.7b11364
– ident: ref25/cit25
  doi: 10.1002/adfm.202006291
– ident: ref12/cit12
  doi: 10.1016/j.memsci.2014.01.059
– ident: ref4/cit4
  doi: 10.1016/j.apenergy.2022.118555
– ident: ref7/cit7
  doi: 10.1016/j.ccr.2022.214740
– ident: ref53/cit53
  doi: 10.1021/acs.inorgchem.1c02671
– ident: ref66/cit66
  doi: 10.1039/C5TA03507D
– ident: ref39/cit39
  doi: 10.1016/j.catcom.2018.05.010
– ident: ref61/cit61
  doi: 10.1021/ja512411b
– ident: ref14/cit14
  doi: 10.1016/j.ccr.2021.214301
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.8b04518
– ident: ref63/cit63
  doi: 10.1002/tcr.202000072
– ident: ref15/cit15
  doi: 10.1021/cm502716e
– ident: ref67/cit67
  doi: 10.1021/acsami.7b13013
– ident: ref20/cit20
  doi: 10.1021/acs.chemmater.8b02765
– ident: ref56/cit56
  doi: 10.1021/acs.energyfuels.0c00367
– ident: ref62/cit62
  doi: 10.1021/ja402727d
– ident: ref1/cit1
  doi: 10.1016/j.rser.2022.112111
– ident: ref48/cit48
  doi: 10.1021/acs.inorgchem.2c00809
– ident: ref8/cit8
  doi: 10.1039/C6TA07761G
– ident: ref36/cit36
  doi: 10.1021/acs.inorgchem.5b02312
– ident: ref49/cit49
  doi: 10.1039/C7NR06274E
– ident: ref3/cit3
  doi: 10.1080/15583720600796474
– ident: ref52/cit52
  doi: 10.1021/acsami.8b12846
SSID ssj0063205
Score 2.5159438
Snippet Recently, researchers have focused on preparing and studying proton exchange membranes. Metal–organic frameworks (MOFs) are candidates for composite membrane...
Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35128
SubjectTerms activation energy
asymmetric membranes
chitosan
cost effectiveness
crystal structure
Energy, Environmental, and Catalysis Applications
fuels
ligands
porosity
Title Ultrahigh Proton Conductivities of Postmodified Hf(IV) Metal–Organic Frameworks and Related Chitosan-Based Composite Membranes
URI http://dx.doi.org/10.1021/acsami.3c08007
https://www.ncbi.nlm.nih.gov/pubmed/37462149
https://www.proquest.com/docview/2839248425
https://www.proquest.com/docview/3040365552
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQudBDW15lW0BGVAIObnf9in0sK1YLUlGlslVvke04AtEm1SZ76Wn_A_-wv6QzebRAtYJLpEiT18Se-cYz_oaQvcR6gK0ygdgkKiZHmWVW-IyBlRyGkAnjM9w7fPRVT2fyy5k6u1vv-DuDz0cHLlTYCkcgJTZuG3_ItUkwzDocn_Q2VwveFCtCRC6ZAY_V0zPeux6dUKj-dEIrkGXjYSabLd1R1RATYmHJz_1F7ffD1X3axn--_BbZ6GAmPWzHxWPyIBZPyPpv5INPyXJ2XoOlgeCcHs9LgIB0XBbI_ortJCB-pmVOsZXvRZn9yAGo0mn-_vPpB3oUAa9fL3-1uzgDnfTlXRV1RUab6jqQHn8HW1G5gn0EPwmnYHewPizC9RcQoYOFfUZmk0_fxlPW9WNgTmhRM-xWpoTSzo-izR0XEeCJcAFAmvLGKplwZz1gKBe1BqjoMgvSWkcDh2AT8ZysFWURXxDqhTU-mGEmnZbeORNMnqgIxiVwuMlwQN6C6tJuPlVpkyrno7TVZ9rpc0BY_xvT0FGaY2eN85Xy727lL1syj5WSb_pRkcJ8wyQKKKZcVClHRCkxeblaRoBlFFopxQdkux1St88TidQcwtKd__rCXfII-9vjYjLXL8laPV_EV4CCav-6mQA3avsCSw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcgAOUF5loYARSMDB7a4dO_GxrFhtoVtVoot6i2zHEahtUjXZC6f-B_5hf0k_57G8tBJcIiUaO_bEnvkmM54h5HWsLWBrFMM28ZJFo0wzLWzGICWHzmUisVk4Ozw7UNN59PFYHq-Rnf4sDAZRoaeqceL_zC4w2sGzUBFHhMzY4fT4DSARHqyt3fHnXvQqwZuYRRjmEUuguPosjX-1D7rIVb_rohUAs1E0k7vkcDnEJr7kZHtR2233_Y_sjf8xhw1ypwOddLddJffImi_uk9u_pCJ8QC7npzXkDkx1enhRAhDScVmEXLChuASsaVrmNBT2PSuzbzlgK53mb_e-vKMzD_R-dfmjPdPp6KQP9qqoKTLaxNqBevwVkqMyBXsPrYlbSKEQLebR_gz2OuTtQzKffDgaT1lXnYEZoUTNQu0yKaQyduR1brjwACvCOEA2aRMto5gbbYGojFcKwNFkGtRK-QQXp2PxiKwXZeEfE2qFTqxLhllkVGSNSVySx9JD1DiOToYD8gqsS7vdVaWN45yP0pafacfPAWH910xdl-A81Nk4XUn_Zkl_3qb2WEn5sl8cKXZfcKmAMeWiSnnAl1FwZa6mEZCTQkkp-YBstitr-T4RR4rDSH3yTzN8QW5Oj2b76f7ewaen5BYH3gq_mbnaIuv1xcI_Az6q7fNmT1wDoO4KrA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZQkRAcyt4OqxFIwCFlxo6d5FgGRlOgVSU6qLfIWwSiTaomc-HU_8A_5JfwvSwjFo0El0iJnh3bsd_7Xt7G2LMks4CtcQLdJKgonvgsyqT1Ebjk2DkvU-spdnj_QM8X8btjddzHcVMsDAZRo6e6NeLTqT7zRZ9hYPIKz6kqjqTs2BRBfplsdqRx7U4_DuxXS9H6LUI5j6MUwmvI1PhXe5JHrv5dHq0Bma2wmV1nR6thtj4mX3eWjd1x3_7I4Pif87jBNnvwyXe73XKTXQrlLXbtl5SEt9nF4qQB_4HKzg_PKwBDPq1KyglLRSagVfOq4FTg97TyXwrAVz4vXux9esn3A1D8j4vvXWyn47PB6avmpvS89bkD9fQzOEhtyug1pCduwY3Iayyg_Sn0dvDdO2wxe3s0nUd9lYbISC2biGqYKam0sZOQFUbIANAijQN0UzbNVJwIk1kgKxO0BoA0PgO11iHFxWWJvMs2yqoM24xbmaXWpWMfGx1bY1KXFokKYDlOoJPxiD3F0uX9Kavz1oAuJnm3nnm_niMWDV80d32ic6q3cbKW_vmK_qxL8bGW8smwQXKcQjKtYGGqZZ0LwpkxmTTX00jwS6mVUmLEtrrdtXqfTGItoKze-6cZPmZXDt_M8g97B-_vs6sCsIv-Ngv9gG0058vwEDCpsY_aY_ETPC0NLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+Proton+Conductivities+of+Postmodified+Hf%28IV%29+Metal-Organic+Frameworks+and+Related+Chitosan-Based+Composite+Membranes&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Xin&rft.au=Zhang%2C+Shuai-Long&rft.au=Xiao%2C+Shang-Hao&rft.au=Li%2C+Zi-Feng&rft.date=2023-07-26&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=15&rft.issue=29&rft.spage=35128&rft_id=info:doi/10.1021%2Facsami.3c08007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon