Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration

We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 15; pp. 12295 - 12299
Main Authors Gadwal, Ikhlas, Sheng, Guan, Thankamony, Roshni Lilly, Liu, Yang, Li, Huifang, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.
AbstractList We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.
We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO₄, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.
We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir-Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO , respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.
We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir-Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir-Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.
Author Sheng, Guan
Liu, Yang
Li, Huifang
Gadwal, Ikhlas
Lai, Zhiping
Thankamony, Roshni Lilly
AuthorAffiliation King Abdullah University of Science and Technology
Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering
AuthorAffiliation_xml – name: King Abdullah University of Science and Technology
– name: Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering
Author_xml – sequence: 1
  givenname: Ikhlas
  surname: Gadwal
  fullname: Gadwal, Ikhlas
– sequence: 2
  givenname: Guan
  surname: Sheng
  fullname: Sheng, Guan
– sequence: 3
  givenname: Roshni Lilly
  surname: Thankamony
  fullname: Thankamony, Roshni Lilly
– sequence: 4
  givenname: Yang
  orcidid: 0000-0003-4313-0932
  surname: Liu
  fullname: Liu, Yang
– sequence: 5
  givenname: Huifang
  surname: Li
  fullname: Li, Huifang
– sequence: 6
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29620857$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtPwzAYxC0EgvJYGZFHhJTiVxJnROUpFTq0zJHj2K2RYxc7oeK_J9DSAaliuk-ffnfD3THYd94pAM4xGmJE8LWQUTRmmFe4YCnaA4NeWcJJSva3N2NH4DjGN4QySlB6CI5IkRHE03wAmumnaxcqmgi9htOuSjCCroGzlU9uTaNcNN4JC0f-Q1jlWjgJc-GMhLOFcfDe2AauTLuA04UIS_jsrZKdFQFOjfowbg5fhPPa2DaItg86BQda2KjONnoCXu_vZqPHZDx5eBrdjBNBM9omlJNaaFErzrmuOcWMSEUqggkvciQKWSiU4iyXmWKMEl1rrLOM6TrlFaG6pifgcp27DP69U7EtGxOlslY45btYEowwpd-5_6OIkIKjPE979GKDdlWj6nIZTCPCZ_nbZg8M14AMPsag9BbBqPyeq1zPVW7m6g3sj0Ga9qepvjBjd9uu1rb-X775LvQLxV3wF7K0qDk
CitedBy_id crossref_primary_10_1039_D2NJ00816E
crossref_primary_10_1016_j_memlet_2021_100008
crossref_primary_10_1016_j_seppur_2021_120387
crossref_primary_10_1016_j_fmre_2023_09_008
crossref_primary_10_1016_j_mtchem_2018_12_002
crossref_primary_10_1002_adma_202300525
crossref_primary_10_1002_open_202000041
crossref_primary_10_1039_C9CS00322C
crossref_primary_10_1007_s12274_018_2225_3
crossref_primary_10_1063_5_0195205
crossref_primary_10_1016_j_cej_2021_132353
crossref_primary_10_1038_s41467_019_09151_8
crossref_primary_10_1039_C9TA05040J
crossref_primary_10_1360_TB_2023_0156
crossref_primary_10_1016_j_seppur_2024_126404
crossref_primary_10_1039_D0RA09619A
crossref_primary_10_1002_cjoc_202100831
crossref_primary_10_1039_D1TA06439H
crossref_primary_10_1039_D3SU00212H
crossref_primary_10_1039_D4TA02462A
crossref_primary_10_1002_ajoc_202000726
crossref_primary_10_1016_j_micromeso_2023_112689
crossref_primary_10_1016_j_cej_2019_123347
crossref_primary_10_1016_j_seppur_2023_125324
crossref_primary_10_1039_D4CS01222D
crossref_primary_10_1002_admt_202001189
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_1186_s42480_019_0012_x
crossref_primary_10_1002_adma_202202751
crossref_primary_10_1002_sstr_202100061
crossref_primary_10_1039_D3EW00119A
crossref_primary_10_1016_j_jes_2023_06_037
crossref_primary_10_1016_j_chempr_2023_04_012
crossref_primary_10_1039_D2CC01298G
crossref_primary_10_1039_D3CS00908D
crossref_primary_10_1021_acsnano_1c08804
crossref_primary_10_1021_acs_analchem_1c01797
crossref_primary_10_1021_jacs_8b08788
crossref_primary_10_1021_acs_iecr_9b02708
crossref_primary_10_1021_acs_nanolett_0c02114
crossref_primary_10_1016_j_progpolymsci_2020_101308
crossref_primary_10_1016_j_memsci_2020_118727
crossref_primary_10_1002_admi_202001507
crossref_primary_10_1002_slct_201903076
crossref_primary_10_1002_smll_202206041
crossref_primary_10_1002_smm2_1309
crossref_primary_10_1039_C8TA05641B
crossref_primary_10_1016_j_seppur_2022_122243
crossref_primary_10_1021_acsnano_2c00507
crossref_primary_10_1016_j_scitotenv_2022_155279
crossref_primary_10_1016_j_memsci_2020_118065
crossref_primary_10_1039_C9CS00827F
crossref_primary_10_1016_j_mtchem_2024_102140
crossref_primary_10_1002_adma_202204874
crossref_primary_10_1515_revce_2021_0004
crossref_primary_10_1002_pol_20230273
crossref_primary_10_1016_j_micromeso_2021_111447
crossref_primary_10_1016_j_mattod_2021_08_007
crossref_primary_10_1021_jacs_3c10832
crossref_primary_10_1016_j_chemphys_2024_112236
crossref_primary_10_1021_jacs_8b05136
crossref_primary_10_1016_j_jtice_2023_105067
crossref_primary_10_1016_j_advmem_2021_100014
crossref_primary_10_1021_jacs_0c11159
crossref_primary_10_1016_j_cis_2024_103269
crossref_primary_10_1039_C8CS00919H
crossref_primary_10_1021_acsmaterialslett_9b00272
crossref_primary_10_1021_acsami_0c07341
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1021_acsami_9b03753
crossref_primary_10_5004_dwt_2020_26286
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_mattod_2021_06_013
crossref_primary_10_1021_acs_iecr_9b04632
crossref_primary_10_1146_annurev_chembioeng_112019_084830
crossref_primary_10_1080_10610278_2020_1711906
crossref_primary_10_1002_tcr_202200062
crossref_primary_10_1016_j_seppur_2024_127755
crossref_primary_10_1039_D0QO01354D
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1021_acssuschemeng_9b07591
crossref_primary_10_1007_s40242_022_1477_3
crossref_primary_10_1002_chem_202302460
crossref_primary_10_1016_j_matt_2024_01_028
crossref_primary_10_1039_C9TA06325K
crossref_primary_10_1016_j_seppur_2024_130759
crossref_primary_10_1021_acsaem_3c01845
crossref_primary_10_1002_smll_202205714
crossref_primary_10_1016_j_ccr_2024_215873
crossref_primary_10_1016_j_memsci_2020_118090
crossref_primary_10_1016_j_bios_2020_112545
crossref_primary_10_1039_D0NR02569K
crossref_primary_10_1002_smll_201903879
crossref_primary_10_1007_s12274_021_3788_y
crossref_primary_10_1021_acs_langmuir_2c02866
crossref_primary_10_1016_j_jsamd_2023_100632
crossref_primary_10_1039_D2TA01546C
crossref_primary_10_1039_C8TA06902F
crossref_primary_10_1021_acsapm_3c00200
crossref_primary_10_1002_advs_202103814
Cites_doi 10.1021/ar500037v
10.1021/ja408121p
10.1039/C5CC10221A
10.1002/anie.201506048
10.1039/C4RA11559G
10.1002/smll.201002264
10.1021/ja403464h
10.1021/acsnano.5b00184
10.1002/anie.201100669
10.1002/anie.200801863
10.1002/anie.201508473
10.1038/nchem.2007
10.1021/cr500006j
10.1039/C4CC05665E
10.1021/ja408243n
10.1038/nchem.1628
10.1038/nchem.2008
10.1038/nchem.695
10.1039/C5CC04679C
10.1038/nchem.1265
10.1021/ja512018j
10.1039/C2CE26394G
10.1002/anie.201308896
10.1002/adma.201304705
10.1021/ja510788b
10.1021/acsnano.7b06871
10.1146/annurev.pc.41.100190.002301
10.1039/C2CS35072F
10.1021/ja409421d
10.1126/science.1254227
10.1039/C4PY01383B
10.1016/j.desal.2004.05.001
10.1002/adma.201401857
10.1039/c1cc12510a
10.1080/15583724.2014.963235
10.1039/C5CC07381B
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.7b19450
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 12299
ExternalDocumentID 29620857
10_1021_acsami_7b19450
b14709160
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-382dafade888fd83142ce2b2128970a9c9e05167c6e4432fdf1f664fd58b23fd3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 15:41:29 EDT 2025
Fri Jul 11 14:17:31 EDT 2025
Mon Jul 21 06:08:25 EDT 2025
Tue Jul 01 04:05:51 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Thu Aug 27 13:42:13 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords imine bond
Langmuir−Blodgett
separation
two-dimensional (2D) membranes
nanofiltration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-382dafade888fd83142ce2b2128970a9c9e05167c6e4432fdf1f664fd58b23fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9555-6009
0000-0003-4313-0932
PMID 29620857
PQID 2022980775
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2101333142
proquest_miscellaneous_2022980775
pubmed_primary_29620857
crossref_primary_10_1021_acsami_7b19450
crossref_citationtrail_10_1021_acsami_7b19450
acs_journals_10_1021_acsami_7b19450
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-18
PublicationDateYYYYMMDD 2018-04-18
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1021/ar500037v
– ident: ref19/cit19
  doi: 10.1021/ja408121p
– ident: ref35/cit35
  doi: 10.1039/C5CC10221A
– ident: ref26/cit26
  doi: 10.1002/anie.201506048
– ident: ref27/cit27
  doi: 10.1039/C4RA11559G
– ident: ref18/cit18
  doi: 10.1002/smll.201002264
– ident: ref32/cit32
  doi: 10.1021/ja403464h
– ident: ref4/cit4
  doi: 10.1021/acsnano.5b00184
– ident: ref25/cit25
  doi: 10.1002/anie.201100669
– ident: ref13/cit13
  doi: 10.1002/anie.200801863
– ident: ref31/cit31
  doi: 10.1002/anie.201508473
– ident: ref16/cit16
  doi: 10.1038/nchem.2007
– ident: ref28/cit28
  doi: 10.1021/cr500006j
– ident: ref7/cit7
  doi: 10.1039/C4CC05665E
– ident: ref20/cit20
  doi: 10.1021/ja408243n
– ident: ref3/cit3
  doi: 10.1038/nchem.1628
– ident: ref17/cit17
  doi: 10.1038/nchem.2008
– ident: ref6/cit6
  doi: 10.1038/nchem.695
– ident: ref8/cit8
  doi: 10.1039/C5CC04679C
– ident: ref15/cit15
  doi: 10.1038/nchem.1265
– ident: ref24/cit24
  doi: 10.1021/ja512018j
– ident: ref30/cit30
  doi: 10.1039/C2CE26394G
– ident: ref1/cit1
  doi: 10.1002/anie.201308896
– ident: ref23/cit23
  doi: 10.1002/adma.201304705
– ident: ref12/cit12
  doi: 10.1021/ja510788b
– ident: ref33/cit33
  doi: 10.1021/acsnano.7b06871
– ident: ref34/cit34
  doi: 10.1146/annurev.pc.41.100190.002301
– ident: ref2/cit2
  doi: 10.1039/C2CS35072F
– ident: ref5/cit5
  doi: 10.1021/ja409421d
– ident: ref22/cit22
  doi: 10.1126/science.1254227
– ident: ref11/cit11
  doi: 10.1039/C4PY01383B
– ident: ref36/cit36
  doi: 10.1016/j.desal.2004.05.001
– ident: ref9/cit9
  doi: 10.1002/adma.201401857
– ident: ref21/cit21
  doi: 10.1039/c1cc12510a
– ident: ref10/cit10
  doi: 10.1080/15583724.2014.963235
– ident: ref14/cit14
  doi: 10.1039/C5CC07381B
SSID ssj0063205
Score 2.5367458
Snippet We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12295
SubjectTerms air
atomic force microscopy
desalination
imines
light microscopy
magnesium sulfate
materials science
molecular weight
nanofiltration
porosity
scanning electron microscopy
seawater
sieving
sodium chloride
transmission electron microscopy
Title Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration
URI http://dx.doi.org/10.1021/acsami.7b19450
https://www.ncbi.nlm.nih.gov/pubmed/29620857
https://www.proquest.com/docview/2022980775
https://www.proquest.com/docview/2101333142
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS_RAEG1EL3pw12_caFHw1JpeptM5yugggl5GwVtIbzDoJPJlBtFfb3UWV0a9V0hSqa5X1dV5D6HDyEXUQygQ53RChKEJAVQUxMYO4FLHuuurA7LX8uJWXN517973O75O8Bk9yUwZpHBiDe12aM7nmFRxaLNOe4M250rOqsOKYCKIAsRq6Rm_XR9AyJSfQWhKZVkhTH-ppjsqK2LCcLDk_ngy1sfm5Ttt468Pv4wWmzITn9ZxsYJmXL6KFj6QD66h0eA5h-qvHJa48BgSCORKnI_wzVNBzgLnf83XgXsFBCNAE65_2zQ4SH3i_vBhhMMmLg6Uz4_4qpXZxYOhC5sUGPJ2kANvaHnX0W3__KZ3QRrxBZJxyceEK2Yzn1kHLbK3ilPBjGMakE4lcZQlJnGwnmVspBOCM2899VIKb7tKM-4t30CzeZG7fwhH1GWaa0Otj4TTGTSlkTUeqhOtPYtkBx2An9Jm8ZRpNRdnNK2dlzbO6yDSfrPUNPzlQUbjYar90Zv9Y83cMdVyvw2BFBZXmJhkuSsmZcqgwklUYAn8wQaSGufBPx20WcfP2_1YIisN1K0_veE2modyTIVZFVU7aHb8f-J2oeQZ670q2l8Bd7D77A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5F5YHywNFypC2wiEp92tZ7ZG0_VoEoQFohJZX6ZnkvKaKxqzpRVX49sz5CAQXBqzW21-PZOXZ2vw_gMHIR82gK1DmdUmlYSjEqSmpjh-FSx3rg6w2y52p8IT9fDi57cNKdhcFBVPikqm7i_0QXYCd4LTDixBqr7lCjP8BMhIdq63Q47VyvErzes4gikiYYuDqUxj_uD7HIVL_Gog0JZh1oRk_g63qI9f6Sb8erpT42339Db_yPb3gKj9ukk5w2VvIMeq7YgUf3oAh3YTG9KzAXrOYVKT1Bd4KekxQLMrst6YfAANCgd5BhiaaJgYo0hzgNCcSfZDS_WpCwpEsCAPQ1OetId8l07sKSBUEvHsjBW5De53Ax-jgbjmlLxUBzocSSioTb3OfWYcHsbSKY5MZxjXEvSeMoT03qcHar2CgnpeDeeuaVkt4OEs2Ft-IFbBVl4V4BiZjLtdCGWR9Jp3MsUSNrPOYqWnseqT68Rz1l7VSqsrpLzlnWKC9rldcH2v26zLRo5oFU42qj_NFa_rrB8dgo-a6zhAynWuif5IUrV1XGMd9Jk4AZ-BcZdHFCBP304WVjRuv38VTVjKh7__SFb-HheHY2ySafzr_swzYmaknoYrHkALaWNyv3GpOhpX5TT4Af-4sEXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9tAFB5KAiE9NEnTxWnaTEmhp0k1i0fSMTg1WZpQsAO5Cc0GprZkKpvS_Pq-p8U0DS7tVTxJo9Fb5818HyEfIh_xAKrAvDcpU5anDKKiYi72EC5NbPqh3iB7o89v1eVd_649x41nYWAQFTypqpv4aNVzF1qEAf4JriMrTmyg8sY6fRN7dlhxnQ5GnfvVUtT7FkFEsQSCV4fU-Oh-jEe2ehiP1iSZdbAZ7pDxapj1HpNvJ8uFObH3fyA4_ud37JJnbfJJTxtt2SNPfPGcPP0NknCfzEY_C8gJq0lFy0DBrYAHpcWMjn-U7AyZABoUDzooQUUhYNHmMKelSABKh5PpjOLSLkUg6Dm97sh36WjicemCgjdHkvAWrPcFuR1-Hg_OWUvJwHKp5YLJRLg85M5D4RxcIrkS1gsD8S9J4yhPberBynVstVdKiuACD1qr4PqJETI4-ZJsFGXhXxMacZ8baSx3IVLe5FCqRs4GyFmMCSLSPXIM85S1JlVldbdc8KyZvKydvB5h3e_LbItqjuQa07XyH1fy8wbPY63k-04bMjA57KPkhS-XVSYg70kTxA78iwy4OilxfnrkVaNKq_eJVNfMqAf_9IVHZOvr2TD7cnFz9YZsQ76WYDOLJ4dkY_F96d9CTrQw72ob-AVnfwbf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Sub-10+nm+Two-Dimensional+Covalent+Organic+Thin+Film+with+Sharp+Molecular+Sieving+Nanofiltration&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Gadwal%2C+Ikhlas&rft.au=Sheng%2C+Guan&rft.au=Thankamony%2C+Roshni+Lilly&rft.au=Liu%2C+Yang&rft.date=2018-04-18&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=10&rft.issue=15&rft.spage=12295&rft.epage=12299&rft_id=info:doi/10.1021%2Facsami.7b19450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_7b19450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon