Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration
We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 15; pp. 12295 - 12299 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules. |
---|---|
AbstractList | We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules. We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO₄, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules. We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir-Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO , respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules. We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir-Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir-Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules. |
Author | Sheng, Guan Liu, Yang Li, Huifang Gadwal, Ikhlas Lai, Zhiping Thankamony, Roshni Lilly |
AuthorAffiliation | King Abdullah University of Science and Technology Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering |
AuthorAffiliation_xml | – name: King Abdullah University of Science and Technology – name: Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering |
Author_xml | – sequence: 1 givenname: Ikhlas surname: Gadwal fullname: Gadwal, Ikhlas – sequence: 2 givenname: Guan surname: Sheng fullname: Sheng, Guan – sequence: 3 givenname: Roshni Lilly surname: Thankamony fullname: Thankamony, Roshni Lilly – sequence: 4 givenname: Yang orcidid: 0000-0003-4313-0932 surname: Liu fullname: Liu, Yang – sequence: 5 givenname: Huifang surname: Li fullname: Li, Huifang – sequence: 6 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29620857$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtPwzAYxC0EgvJYGZFHhJTiVxJnROUpFTq0zJHj2K2RYxc7oeK_J9DSAaliuk-ffnfD3THYd94pAM4xGmJE8LWQUTRmmFe4YCnaA4NeWcJJSva3N2NH4DjGN4QySlB6CI5IkRHE03wAmumnaxcqmgi9htOuSjCCroGzlU9uTaNcNN4JC0f-Q1jlWjgJc-GMhLOFcfDe2AauTLuA04UIS_jsrZKdFQFOjfowbg5fhPPa2DaItg86BQda2KjONnoCXu_vZqPHZDx5eBrdjBNBM9omlJNaaFErzrmuOcWMSEUqggkvciQKWSiU4iyXmWKMEl1rrLOM6TrlFaG6pifgcp27DP69U7EtGxOlslY45btYEowwpd-5_6OIkIKjPE979GKDdlWj6nIZTCPCZ_nbZg8M14AMPsag9BbBqPyeq1zPVW7m6g3sj0Ga9qepvjBjd9uu1rb-X775LvQLxV3wF7K0qDk |
CitedBy_id | crossref_primary_10_1039_D2NJ00816E crossref_primary_10_1016_j_memlet_2021_100008 crossref_primary_10_1016_j_seppur_2021_120387 crossref_primary_10_1016_j_fmre_2023_09_008 crossref_primary_10_1016_j_mtchem_2018_12_002 crossref_primary_10_1002_adma_202300525 crossref_primary_10_1002_open_202000041 crossref_primary_10_1039_C9CS00322C crossref_primary_10_1007_s12274_018_2225_3 crossref_primary_10_1063_5_0195205 crossref_primary_10_1016_j_cej_2021_132353 crossref_primary_10_1038_s41467_019_09151_8 crossref_primary_10_1039_C9TA05040J crossref_primary_10_1360_TB_2023_0156 crossref_primary_10_1016_j_seppur_2024_126404 crossref_primary_10_1039_D0RA09619A crossref_primary_10_1002_cjoc_202100831 crossref_primary_10_1039_D1TA06439H crossref_primary_10_1039_D3SU00212H crossref_primary_10_1039_D4TA02462A crossref_primary_10_1002_ajoc_202000726 crossref_primary_10_1016_j_micromeso_2023_112689 crossref_primary_10_1016_j_cej_2019_123347 crossref_primary_10_1016_j_seppur_2023_125324 crossref_primary_10_1039_D4CS01222D crossref_primary_10_1002_admt_202001189 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_1186_s42480_019_0012_x crossref_primary_10_1002_adma_202202751 crossref_primary_10_1002_sstr_202100061 crossref_primary_10_1039_D3EW00119A crossref_primary_10_1016_j_jes_2023_06_037 crossref_primary_10_1016_j_chempr_2023_04_012 crossref_primary_10_1039_D2CC01298G crossref_primary_10_1039_D3CS00908D crossref_primary_10_1021_acsnano_1c08804 crossref_primary_10_1021_acs_analchem_1c01797 crossref_primary_10_1021_jacs_8b08788 crossref_primary_10_1021_acs_iecr_9b02708 crossref_primary_10_1021_acs_nanolett_0c02114 crossref_primary_10_1016_j_progpolymsci_2020_101308 crossref_primary_10_1016_j_memsci_2020_118727 crossref_primary_10_1002_admi_202001507 crossref_primary_10_1002_slct_201903076 crossref_primary_10_1002_smll_202206041 crossref_primary_10_1002_smm2_1309 crossref_primary_10_1039_C8TA05641B crossref_primary_10_1016_j_seppur_2022_122243 crossref_primary_10_1021_acsnano_2c00507 crossref_primary_10_1016_j_scitotenv_2022_155279 crossref_primary_10_1016_j_memsci_2020_118065 crossref_primary_10_1039_C9CS00827F crossref_primary_10_1016_j_mtchem_2024_102140 crossref_primary_10_1002_adma_202204874 crossref_primary_10_1515_revce_2021_0004 crossref_primary_10_1002_pol_20230273 crossref_primary_10_1016_j_micromeso_2021_111447 crossref_primary_10_1016_j_mattod_2021_08_007 crossref_primary_10_1021_jacs_3c10832 crossref_primary_10_1016_j_chemphys_2024_112236 crossref_primary_10_1021_jacs_8b05136 crossref_primary_10_1016_j_jtice_2023_105067 crossref_primary_10_1016_j_advmem_2021_100014 crossref_primary_10_1021_jacs_0c11159 crossref_primary_10_1016_j_cis_2024_103269 crossref_primary_10_1039_C8CS00919H crossref_primary_10_1021_acsmaterialslett_9b00272 crossref_primary_10_1021_acsami_0c07341 crossref_primary_10_1039_D0CS00552E crossref_primary_10_1021_acsami_9b03753 crossref_primary_10_5004_dwt_2020_26286 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1016_j_mattod_2021_06_013 crossref_primary_10_1021_acs_iecr_9b04632 crossref_primary_10_1146_annurev_chembioeng_112019_084830 crossref_primary_10_1080_10610278_2020_1711906 crossref_primary_10_1002_tcr_202200062 crossref_primary_10_1016_j_seppur_2024_127755 crossref_primary_10_1039_D0QO01354D crossref_primary_10_1002_adma_202108457 crossref_primary_10_1021_acssuschemeng_9b07591 crossref_primary_10_1007_s40242_022_1477_3 crossref_primary_10_1002_chem_202302460 crossref_primary_10_1016_j_matt_2024_01_028 crossref_primary_10_1039_C9TA06325K crossref_primary_10_1016_j_seppur_2024_130759 crossref_primary_10_1021_acsaem_3c01845 crossref_primary_10_1002_smll_202205714 crossref_primary_10_1016_j_ccr_2024_215873 crossref_primary_10_1016_j_memsci_2020_118090 crossref_primary_10_1016_j_bios_2020_112545 crossref_primary_10_1039_D0NR02569K crossref_primary_10_1002_smll_201903879 crossref_primary_10_1007_s12274_021_3788_y crossref_primary_10_1021_acs_langmuir_2c02866 crossref_primary_10_1016_j_jsamd_2023_100632 crossref_primary_10_1039_D2TA01546C crossref_primary_10_1039_C8TA06902F crossref_primary_10_1021_acsapm_3c00200 crossref_primary_10_1002_advs_202103814 |
Cites_doi | 10.1021/ar500037v 10.1021/ja408121p 10.1039/C5CC10221A 10.1002/anie.201506048 10.1039/C4RA11559G 10.1002/smll.201002264 10.1021/ja403464h 10.1021/acsnano.5b00184 10.1002/anie.201100669 10.1002/anie.200801863 10.1002/anie.201508473 10.1038/nchem.2007 10.1021/cr500006j 10.1039/C4CC05665E 10.1021/ja408243n 10.1038/nchem.1628 10.1038/nchem.2008 10.1038/nchem.695 10.1039/C5CC04679C 10.1038/nchem.1265 10.1021/ja512018j 10.1039/C2CE26394G 10.1002/anie.201308896 10.1002/adma.201304705 10.1021/ja510788b 10.1021/acsnano.7b06871 10.1146/annurev.pc.41.100190.002301 10.1039/C2CS35072F 10.1021/ja409421d 10.1126/science.1254227 10.1039/C4PY01383B 10.1016/j.desal.2004.05.001 10.1002/adma.201401857 10.1039/c1cc12510a 10.1080/15583724.2014.963235 10.1039/C5CC07381B |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.7b19450 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 12299 |
ExternalDocumentID | 29620857 10_1021_acsami_7b19450 b14709160 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-382dafade888fd83142ce2b2128970a9c9e05167c6e4432fdf1f664fd58b23fd3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 15:41:29 EDT 2025 Fri Jul 11 14:17:31 EDT 2025 Mon Jul 21 06:08:25 EDT 2025 Tue Jul 01 04:05:51 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Thu Aug 27 13:42:13 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | imine bond Langmuir−Blodgett separation two-dimensional (2D) membranes nanofiltration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-382dafade888fd83142ce2b2128970a9c9e05167c6e4432fdf1f664fd58b23fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9555-6009 0000-0003-4313-0932 |
PMID | 29620857 |
PQID | 2022980775 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2101333142 proquest_miscellaneous_2022980775 pubmed_primary_29620857 crossref_primary_10_1021_acsami_7b19450 crossref_citationtrail_10_1021_acsami_7b19450 acs_journals_10_1021_acsami_7b19450 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-18 |
PublicationDateYYYYMMDD | 2018-04-18 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1021/ar500037v – ident: ref19/cit19 doi: 10.1021/ja408121p – ident: ref35/cit35 doi: 10.1039/C5CC10221A – ident: ref26/cit26 doi: 10.1002/anie.201506048 – ident: ref27/cit27 doi: 10.1039/C4RA11559G – ident: ref18/cit18 doi: 10.1002/smll.201002264 – ident: ref32/cit32 doi: 10.1021/ja403464h – ident: ref4/cit4 doi: 10.1021/acsnano.5b00184 – ident: ref25/cit25 doi: 10.1002/anie.201100669 – ident: ref13/cit13 doi: 10.1002/anie.200801863 – ident: ref31/cit31 doi: 10.1002/anie.201508473 – ident: ref16/cit16 doi: 10.1038/nchem.2007 – ident: ref28/cit28 doi: 10.1021/cr500006j – ident: ref7/cit7 doi: 10.1039/C4CC05665E – ident: ref20/cit20 doi: 10.1021/ja408243n – ident: ref3/cit3 doi: 10.1038/nchem.1628 – ident: ref17/cit17 doi: 10.1038/nchem.2008 – ident: ref6/cit6 doi: 10.1038/nchem.695 – ident: ref8/cit8 doi: 10.1039/C5CC04679C – ident: ref15/cit15 doi: 10.1038/nchem.1265 – ident: ref24/cit24 doi: 10.1021/ja512018j – ident: ref30/cit30 doi: 10.1039/C2CE26394G – ident: ref1/cit1 doi: 10.1002/anie.201308896 – ident: ref23/cit23 doi: 10.1002/adma.201304705 – ident: ref12/cit12 doi: 10.1021/ja510788b – ident: ref33/cit33 doi: 10.1021/acsnano.7b06871 – ident: ref34/cit34 doi: 10.1146/annurev.pc.41.100190.002301 – ident: ref2/cit2 doi: 10.1039/C2CS35072F – ident: ref5/cit5 doi: 10.1021/ja409421d – ident: ref22/cit22 doi: 10.1126/science.1254227 – ident: ref11/cit11 doi: 10.1039/C4PY01383B – ident: ref36/cit36 doi: 10.1016/j.desal.2004.05.001 – ident: ref9/cit9 doi: 10.1002/adma.201401857 – ident: ref21/cit21 doi: 10.1039/c1cc12510a – ident: ref10/cit10 doi: 10.1080/15583724.2014.963235 – ident: ref14/cit14 doi: 10.1039/C5CC07381B |
SSID | ssj0063205 |
Score | 2.5367458 |
Snippet | We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12295 |
SubjectTerms | air atomic force microscopy desalination imines light microscopy magnesium sulfate materials science molecular weight nanofiltration porosity scanning electron microscopy seawater sieving sodium chloride transmission electron microscopy |
Title | Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration |
URI | http://dx.doi.org/10.1021/acsami.7b19450 https://www.ncbi.nlm.nih.gov/pubmed/29620857 https://www.proquest.com/docview/2022980775 https://www.proquest.com/docview/2101333142 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS_RAEG1EL3pw12_caFHw1JpeptM5yugggl5GwVtIbzDoJPJlBtFfb3UWV0a9V0hSqa5X1dV5D6HDyEXUQygQ53RChKEJAVQUxMYO4FLHuuurA7LX8uJWXN517973O75O8Bk9yUwZpHBiDe12aM7nmFRxaLNOe4M250rOqsOKYCKIAsRq6Rm_XR9AyJSfQWhKZVkhTH-ppjsqK2LCcLDk_ngy1sfm5Ttt468Pv4wWmzITn9ZxsYJmXL6KFj6QD66h0eA5h-qvHJa48BgSCORKnI_wzVNBzgLnf83XgXsFBCNAE65_2zQ4SH3i_vBhhMMmLg6Uz4_4qpXZxYOhC5sUGPJ2kANvaHnX0W3__KZ3QRrxBZJxyceEK2Yzn1kHLbK3ilPBjGMakE4lcZQlJnGwnmVspBOCM2899VIKb7tKM-4t30CzeZG7fwhH1GWaa0Otj4TTGTSlkTUeqhOtPYtkBx2An9Jm8ZRpNRdnNK2dlzbO6yDSfrPUNPzlQUbjYar90Zv9Y83cMdVyvw2BFBZXmJhkuSsmZcqgwklUYAn8wQaSGufBPx20WcfP2_1YIisN1K0_veE2modyTIVZFVU7aHb8f-J2oeQZ670q2l8Bd7D77A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5F5YHywNFypC2wiEp92tZ7ZG0_VoEoQFohJZX6ZnkvKaKxqzpRVX49sz5CAQXBqzW21-PZOXZ2vw_gMHIR82gK1DmdUmlYSjEqSmpjh-FSx3rg6w2y52p8IT9fDi57cNKdhcFBVPikqm7i_0QXYCd4LTDixBqr7lCjP8BMhIdq63Q47VyvErzes4gikiYYuDqUxj_uD7HIVL_Gog0JZh1oRk_g63qI9f6Sb8erpT42339Db_yPb3gKj9ukk5w2VvIMeq7YgUf3oAh3YTG9KzAXrOYVKT1Bd4KekxQLMrst6YfAANCgd5BhiaaJgYo0hzgNCcSfZDS_WpCwpEsCAPQ1OetId8l07sKSBUEvHsjBW5De53Ax-jgbjmlLxUBzocSSioTb3OfWYcHsbSKY5MZxjXEvSeMoT03qcHar2CgnpeDeeuaVkt4OEs2Ft-IFbBVl4V4BiZjLtdCGWR9Jp3MsUSNrPOYqWnseqT68Rz1l7VSqsrpLzlnWKC9rldcH2v26zLRo5oFU42qj_NFa_rrB8dgo-a6zhAynWuif5IUrV1XGMd9Jk4AZ-BcZdHFCBP304WVjRuv38VTVjKh7__SFb-HheHY2ySafzr_swzYmaknoYrHkALaWNyv3GpOhpX5TT4Af-4sEXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9tAFB5KAiE9NEnTxWnaTEmhp0k1i0fSMTg1WZpQsAO5Cc0GprZkKpvS_Pq-p8U0DS7tVTxJo9Fb5818HyEfIh_xAKrAvDcpU5anDKKiYi72EC5NbPqh3iB7o89v1eVd_649x41nYWAQFTypqpv4aNVzF1qEAf4JriMrTmyg8sY6fRN7dlhxnQ5GnfvVUtT7FkFEsQSCV4fU-Oh-jEe2ehiP1iSZdbAZ7pDxapj1HpNvJ8uFObH3fyA4_ud37JJnbfJJTxtt2SNPfPGcPP0NknCfzEY_C8gJq0lFy0DBrYAHpcWMjn-U7AyZABoUDzooQUUhYNHmMKelSABKh5PpjOLSLkUg6Dm97sh36WjicemCgjdHkvAWrPcFuR1-Hg_OWUvJwHKp5YLJRLg85M5D4RxcIrkS1gsD8S9J4yhPberBynVstVdKiuACD1qr4PqJETI4-ZJsFGXhXxMacZ8baSx3IVLe5FCqRs4GyFmMCSLSPXIM85S1JlVldbdc8KyZvKydvB5h3e_LbItqjuQa07XyH1fy8wbPY63k-04bMjA57KPkhS-XVSYg70kTxA78iwy4OilxfnrkVaNKq_eJVNfMqAf_9IVHZOvr2TD7cnFz9YZsQ76WYDOLJ4dkY_F96d9CTrQw72ob-AVnfwbf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Sub-10+nm+Two-Dimensional+Covalent+Organic+Thin+Film+with+Sharp+Molecular+Sieving+Nanofiltration&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Gadwal%2C+Ikhlas&rft.au=Sheng%2C+Guan&rft.au=Thankamony%2C+Roshni+Lilly&rft.au=Liu%2C+Yang&rft.date=2018-04-18&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=10&rft.issue=15&rft.spage=12295&rft.epage=12299&rft_id=info:doi/10.1021%2Facsami.7b19450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_7b19450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |