Hydrogen Spillover Accelerates Electrocatalytic Semi-hydrogenation of Acetylene in Membrane Electrode Assembly Reactor

Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical de...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 16; no. 7; pp. 8668 - 8678
Main Authors Lv, Xue-Hui, Huang, Huan, Cui, Li-Ting, Zhou, Zhi-You, Wu, Wenkun, Wang, Yu-Cheng, Sun, Shi-Gang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm−2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.
AbstractList Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C₂H₄, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm⁻² in a zero-gap membrane electrode assembly (MEA) reactor, with the C₂H₄ selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C₂H₄ production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C H , a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm in a zero-gap membrane electrode assembly (MEA) reactor, with the C H selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C H production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm-2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm-2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm−2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.
Author Lv, Xue-Hui
Zhou, Zhi-You
Huang, Huan
Cui, Li-Ting
Wang, Yu-Cheng
Wu, Wenkun
Sun, Shi-Gang
AuthorAffiliation Chinese Academy of Sciences
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics
Department of Materials Science and Engineering
College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces
AuthorAffiliation_xml – name: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– name: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces
– name: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics
– name: Chinese Academy of Sciences
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Xue-Hui
  surname: Lv
  fullname: Lv, Xue-Hui
  organization: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces
– sequence: 2
  givenname: Huan
  surname: Huang
  fullname: Huang, Huan
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Li-Ting
  surname: Cui
  fullname: Cui, Li-Ting
  email: cuilt1130@xmu.edu.cn
  organization: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces
– sequence: 4
  givenname: Zhi-You
  orcidid: 0000-0001-5181-0642
  surname: Zhou
  fullname: Zhou, Zhi-You
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 5
  givenname: Wenkun
  orcidid: 0000-0002-3764-1130
  surname: Wu
  fullname: Wu, Wenkun
  email: wuwenkun@umich.edu
  organization: Department of Materials Science and Engineering
– sequence: 6
  givenname: Yu-Cheng
  orcidid: 0000-0002-3356-3403
  surname: Wang
  fullname: Wang, Yu-Cheng
  email: wangyc@xmu.edu.cn
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 7
  givenname: Shi-Gang
  orcidid: 0000-0003-2327-4090
  surname: Sun
  fullname: Sun, Shi-Gang
  organization: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38344994$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlLBDEQRoMo7lePkqMIPWbr7TiIGyiCyzmk09UaSXfGJDPQ_97otB4E8ZSieK9I1beHNgc3AEJHlMwoYfRM6aB6M-Oa5jXLN9AurYXIKpazzZ9aiB20F8IbIQVnJN9GO7ziQtS12EWr67H17gUG_Lgw1roVeDzXGix4FSHgCws6eqdVVHaMRuNH6E32OkkqGjdg1yUF4mhhAGwGfAd941WqJ7kFPA8hNe2IH0Dp6PwB2uqUDXA4vfvo-fLi6fw6u72_ujmf32aKFzxmnJa1ApIXOauo6gRXqiV5V2haNCUv26Yj0IimE3natCSiBWCioEXb6LqCjvB9dLKeu_DufQkhyt6EtJ1N33PLIDkRhBekJOW_KKtZAkVV1gk9ntBl00MrF970yo_y-6wJEGtAexeCh05qE7-OFb0yVlIiP9OT6_TklF7SZr-078l_CqdrIfXlm1v6IR3zL_gDeqCtHQ
CitedBy_id crossref_primary_10_1016_j_cclet_2025_110836
crossref_primary_10_1021_jacs_4c17260
crossref_primary_10_1021_acsami_4c10351
crossref_primary_10_1021_acscatal_4c07524
crossref_primary_10_1021_acsomega_4c02107
crossref_primary_10_1002_adma_202408681
Cites_doi 10.1126/science.1156660
10.1063/1.5132354
10.1021/cr400276u
10.1038/s41929-021-00641-x
10.1038/s41467-021-26853-0
10.1002/anie.202007567
10.1021/acs.jpcc.7b08125
10.1021/acscatal.2c02594
10.1021/acscatal.9b02922
10.1180/000985500546666
10.1021/acsenergylett.0c01959
10.1038/s41929-020-00511-y
10.1038/s41893-023-01084-x
10.1021/jacs.0c06779
10.1021/jacs.8b08356
10.1002/anie.202307848
10.1038/s41929-021-00657-3
10.1021/jacs.3c04315
10.1038/s41563-019-0356-x
10.1021/acsenergylett.3c01426
10.1038/s41467-021-27372-8
10.1038/s41586-021-04068-z
10.1063/1.4865107
10.1038/s41467-021-24059-y
10.1126/sciadv.add8873
10.1021/jacs.3c00565
10.1016/j.cej.2012.05.111
10.1038/s41467-022-28843-2
10.1038/s41565-020-0746-x
10.1038/s41467-023-37251-z
10.1126/science.1215864
10.1038/s41467-023-37821-1
10.1021/cs4009623
10.1021/acscatal.2c04174
10.1016/j.xcrp.2021.100405
10.1038/s41570-019-0128-9
10.1002/jcc.21759
10.1016/j.cej.2021.134129
10.1126/science.285.5428.712
10.1002/anie.202009757
10.1021/acssuschemeng.9b01882
10.1038/nature11570
10.1088/0022-3727/42/5/055505
10.1002/adma.201806403
10.1039/D1TA08002D
10.1038/s41467-021-23750-4
10.1346/CCMN.2006.0540609
10.1038/s41467-022-33007-3
10.1002/adma.202303818
10.1002/adma.202103900
10.1038/2001313a0
10.1002/anie.201903827
10.1063/1.3382344
10.1002/adfm.201803291
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.3c15925
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 8678
ExternalDocumentID 38344994
10_1021_acsami_3c15925
d035776553
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-3179ae0565281af43aad05f6c16b737dbf0eb4bf45944704dee24616dbc98ef03
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Wed Jul 02 04:50:59 EDT 2025
Fri Jul 11 13:25:43 EDT 2025
Mon Jul 21 05:57:55 EDT 2025
Tue Jul 01 03:32:10 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Fri Feb 23 03:12:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords PdCu alloy catalysts
hydrogen spillover
semi-hydrogenation of acetylene
electrochemical synthesis
membrane electrode assembly reactor
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-3179ae0565281af43aad05f6c16b737dbf0eb4bf45944704dee24616dbc98ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5181-0642
0000-0002-3764-1130
0000-0003-2327-4090
0000-0002-3356-3403
PMID 38344994
PQID 2926074879
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3040360707
proquest_miscellaneous_2926074879
pubmed_primary_38344994
crossref_citationtrail_10_1021_acsami_3c15925
crossref_primary_10_1021_acsami_3c15925
acs_journals_10_1021_acsami_3c15925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-21
PublicationDateYYYYMMDD 2024-02-21
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
Wang Y.-C. (ref55/cit55) 2022; 8
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1126/science.1156660
– ident: ref33/cit33
  doi: 10.1063/1.5132354
– ident: ref2/cit2
  doi: 10.1021/cr400276u
– ident: ref21/cit21
  doi: 10.1038/s41929-021-00641-x
– ident: ref22/cit22
  doi: 10.1038/s41467-021-26853-0
– ident: ref44/cit44
  doi: 10.1002/anie.202007567
– ident: ref54/cit54
  doi: 10.1021/acs.jpcc.7b08125
– ident: ref53/cit53
  doi: 10.1021/acscatal.2c02594
– ident: ref5/cit5
  doi: 10.1021/acscatal.9b02922
– ident: ref37/cit37
  doi: 10.1180/000985500546666
– ident: ref39/cit39
  doi: 10.1021/acsenergylett.0c01959
– ident: ref45/cit45
  doi: 10.1038/s41929-020-00511-y
– ident: ref9/cit9
  doi: 10.1038/s41893-023-01084-x
– ident: ref24/cit24
  doi: 10.1021/jacs.0c06779
– ident: ref34/cit34
  doi: 10.1021/jacs.8b08356
– ident: ref15/cit15
  doi: 10.1002/anie.202307848
– ident: ref16/cit16
  doi: 10.1038/s41929-021-00657-3
– ident: ref38/cit38
  doi: 10.1021/jacs.3c04315
– ident: ref41/cit41
  doi: 10.1038/s41563-019-0356-x
– ident: ref47/cit47
  doi: 10.1021/acsenergylett.3c01426
– ident: ref20/cit20
  doi: 10.1038/s41467-021-27372-8
– ident: ref42/cit42
  doi: 10.1038/s41586-021-04068-z
– ident: ref32/cit32
  doi: 10.1063/1.4865107
– ident: ref17/cit17
  doi: 10.1038/s41467-021-24059-y
– volume: 8
  start-page: eadd8873
  issue: 44
  year: 2022
  ident: ref55/cit55
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add8873
– ident: ref14/cit14
  doi: 10.1021/jacs.3c00565
– ident: ref10/cit10
  doi: 10.1016/j.cej.2012.05.111
– ident: ref48/cit48
  doi: 10.1038/s41467-022-28843-2
– ident: ref28/cit28
  doi: 10.1038/s41565-020-0746-x
– ident: ref13/cit13
  doi: 10.1038/s41467-023-37251-z
– ident: ref27/cit27
  doi: 10.1126/science.1215864
– ident: ref18/cit18
  doi: 10.1038/s41467-023-37821-1
– ident: ref35/cit35
  doi: 10.1021/cs4009623
– ident: ref46/cit46
  doi: 10.1021/acscatal.2c04174
– ident: ref4/cit4
  doi: 10.1016/j.xcrp.2021.100405
– ident: ref7/cit7
  doi: 10.1038/s41570-019-0128-9
– ident: ref31/cit31
  doi: 10.1002/jcc.21759
– ident: ref26/cit26
  doi: 10.1016/j.cej.2021.134129
– ident: ref6/cit6
  doi: 10.1126/science.285.5428.712
– ident: ref43/cit43
  doi: 10.1002/anie.202009757
– ident: ref23/cit23
  doi: 10.1021/acssuschemeng.9b01882
– ident: ref40/cit40
  doi: 10.1038/nature11570
– ident: ref11/cit11
  doi: 10.1088/0022-3727/42/5/055505
– ident: ref52/cit52
  doi: 10.1002/adma.201806403
– ident: ref1/cit1
  doi: 10.1039/D1TA08002D
– ident: ref50/cit50
  doi: 10.1038/s41467-021-23750-4
– ident: ref3/cit3
– ident: ref36/cit36
  doi: 10.1346/CCMN.2006.0540609
– ident: ref49/cit49
  doi: 10.1038/s41467-022-33007-3
– ident: ref19/cit19
  doi: 10.1002/adma.202303818
– ident: ref25/cit25
  doi: 10.1002/adma.202103900
– ident: ref8/cit8
  doi: 10.1038/2001313a0
– ident: ref29/cit29
  doi: 10.1002/anie.201903827
– ident: ref30/cit30
  doi: 10.1063/1.3382344
– ident: ref51/cit51
  doi: 10.1002/adfm.201803291
SSID ssj0063205
Score 2.4792242
Snippet Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used...
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C H , a widely used...
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C₂H₄, a widely used...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8668
SubjectTerms acetylene
alloys
catalysts
economic feasibility
economic sustainability
electrodes
Energy, Environmental, and Catalysis Applications
feedstocks
hydrogen
hydrogenation
Raman spectroscopy
synthesis
Title Hydrogen Spillover Accelerates Electrocatalytic Semi-hydrogenation of Acetylene in Membrane Electrode Assembly Reactor
URI http://dx.doi.org/10.1021/acsami.3c15925
https://www.ncbi.nlm.nih.gov/pubmed/38344994
https://www.proquest.com/docview/2926074879
https://www.proquest.com/docview/3040360707
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKXMqBFiiwtCCjIvUUSGLHTo6rFWiFtD2wReIW-TFWV-wDkSzS8usZO1lKi1bllsNMHpOxZz6P_Q0hp4xrz_qdRIJbBCgGVKQzHUeJyLQutC2c8wecBz9F_4Zf3Wa3f9Y7_q3gp8m5MpVvhcMMBt40WyMbqcilh1nd3nA55wqWhs2KiMh5lGPEWtIzvtH3QchUfwehFZlliDCXnxq6oyoQE_qNJXdn81qfmae3tI3_ffnPZKtNM2m38Ytt8gGmO2TzFfngLnnsL-zDDP2HDu9H47CVk3aNwTDk2SMqetE0yAnrOwu8DR3CZBT9bpXCD6UzhypQLzB0AR1N6QAmiL7xulW2QH1VeaLHC3oNobXPF3JzefGr14_aLgyRYoLVOEnLQgHmSVmaJ8pxppSNMydMIrRk0moXg-ba8QyNL2NuATxHnbDaFDm4mO2R9elsCgeEShz-BqQDqxRXSioEf9YgBje5MYzpDvmOBivbUVSVoUCeJmVjxbK1YodEy59XmpbI3PfTGK-U__Eif99QeKyUPFn6QomjzJdO0GSzeVWmBeI-ieCuWC3DcD5kwtMndch-40gvz2O-nUlR8MN3feFX8jHF3CmcnE--kfX6YQ5HmPvU-ji4_TNPCAF6
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvB9LeRgB4pSSxM7r0MOqtNrSbg9sK_WW-jERK_ZRNVlQ-DP9K_y0jp1keWklLpW4Rh7H8Yzn88TjbwDecKEs63fgxcJQgKJReipSvhfEkVKZMllR2AvOw8N4cCw-nkQna3DR3YWhQZTUU-kO8X-yCwTv6ZmtiMM14W_YZVHuY_2NYrRya-8DKfRtGO7uHG0PvLaMgCd5zCvyMkkmkYA-CtNAFoJLafyoiHUQq4QnRhU-KqEKEWVCJL4wiJZkLTZKZykWPqd-r8F1K2-ju_72qHP1MQ9djmRAgl5KQNmxQv41Xot9uvwd-1ZsaB2w7d6BH8spcfksXzYXldrU3_9gi_yP5-wu3G431azfrIJ7sIaz-3DrF6rFB_B1UJvzOa0WNjobT1ziKutrTaBruTJKttOUA3J_s2rqho1wOvY-t0LOfNm8IBGsagJqZOMZG-JUEdRjJ2yQ2TP0qZrU7BO6QkYP4fhKPvwRrM_mM3wCLCFnpzEp0EgppEwkhbpGp2mqU605Vz14TQrKW59R5i4dIAzyRmt5q7UeeJ3N5LqlbbfVQyYr279btj9rCEtWtnzVmWBOPsUeFNGUzRdlHmYU5SYUymar23Dy_jy2ZFE9eNzY7_J93BZvyTLx9J--8CXcGBwND_KDvcP9DbgZ0q7RcQYEz2C9Ol_gc9r1VeqFW3kMTq_abC8BrGlkOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Zb9QwEB6VIiF44D6W0wgQTylJ7FwPPKzarraUVoilUt-Cj7FYsZeaLCj8Hf4KP4yxN1lxaCVeKvEajR3HnpnPE4-_AXjOhXKs31GQCkMBikYZqESFQZQmShXKFNa6C85Hx-nwRLw5TU634Ht3F4YGUVFPlT_Ed1a9MLZlGIhe0XNXFYdrwuC4y6Q8xOYrxWnV64M9WtQXcTzY_7A7DNpSAoHkKa_J02SFRAL7JM4jaQWX0oSJTXWUqoxnRtkQlVBWJIUQWSgMoiNaS43SRY425NTvBbjozghdhNffHXXuPuWxz5OMqGGQE1h2zJB_jdfhn65-x78Nm1oPboNr8GM9LT6n5fPOslY7-tsfjJH_-bxdh6vt5pr1V9ZwA7ZwdhOu_EK5eAu-DBtzNierYaPFeOITWFlfawJfx5lRsf1VWSD_V6uhbtgIp-PgU9vIqzGbW2qCdUOAjWw8Y0c4VQT52DU2yNxZ-lRNGvYefUGj23ByLh9-B7Zn8xneA5aR09OYWTRSCikzSSGv0Xme61xrzlUPntECla3vqEqfFhBH5WrVynbVehB0elPqlr7dVRGZbJR_uZZfrIhLNko-7dSwJN_iDoxoyubLqowLinYzCmmLzTKcUICnjjSqB3dXOrx-H3dFXIpC3P-nL3wCl97tDcq3B8eHD-ByTJtHTx0QPYTt-myJj2jzV6vH3vgYfDxvrf0JTsZmvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Spillover+Accelerates+Electrocatalytic+Semi-hydrogenation+of+Acetylene+in+Membrane+Electrode+Assembly+Reactor&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Lv%2C+Xue-Hui&rft.au=Huang%2C+Huan&rft.au=Cui%2C+Li-Ting&rft.au=Zhou%2C+Zhi-You&rft.date=2024-02-21&rft.issn=1944-8252&rft.volume=16&rft.issue=7+p.8668-8678&rft.spage=8668&rft.epage=8678&rft_id=info:doi/10.1021%2Facsami.3c15925&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon