Hydrogen Spillover Accelerates Electrocatalytic Semi-hydrogenation of Acetylene in Membrane Electrode Assembly Reactor
Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical de...
Saved in:
Published in | ACS applied materials & interfaces Vol. 16; no. 7; pp. 8668 - 8678 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm−2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis. |
---|---|
AbstractList | Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C₂H₄, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm⁻² in a zero-gap membrane electrode assembly (MEA) reactor, with the C₂H₄ selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C₂H₄ production, thus advancing the field of electrocatalysis in sustainable chemical synthesis. Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C H , a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm in a zero-gap membrane electrode assembly (MEA) reactor, with the C H selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C H production, thus advancing the field of electrocatalysis in sustainable chemical synthesis. Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm-2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis.Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm-2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis. Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used petrochemical feedstock. While the economic feasibility of this route has been demonstrated in three-electrode systems, its viability in practical device remains unverified. In this study, we designed a highly efficient electrocatalyst based on a PdCu alloy system utilizing the hydrogen spillover mechanism. The catalyst achieved an operational current density of 600 mA cm−2 in a zero-gap membrane electrode assembly (MEA) reactor, with the C2H4 selectivity exceeding 85%. This data confirms the economic feasibility of EASH in real-world applications. Furthermore, through in situ Raman spectroscopy and theoretical calculations, we elucidated the catalytic mechanism involving interfacial hydrogen spillover. Our findings underscore the economic viability and potential of EASH as a greener and scalable approach for C2H4 production, thus advancing the field of electrocatalysis in sustainable chemical synthesis. |
Author | Lv, Xue-Hui Zhou, Zhi-You Huang, Huan Cui, Li-Ting Wang, Yu-Cheng Wu, Wenkun Sun, Shi-Gang |
AuthorAffiliation | Chinese Academy of Sciences Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department of Materials Science and Engineering College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces |
AuthorAffiliation_xml | – name: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – name: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces – name: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics – name: Chinese Academy of Sciences – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Xue-Hui surname: Lv fullname: Lv, Xue-Hui organization: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces – sequence: 2 givenname: Huan surname: Huang fullname: Huang, Huan organization: Chinese Academy of Sciences – sequence: 3 givenname: Li-Ting surname: Cui fullname: Cui, Li-Ting email: cuilt1130@xmu.edu.cn organization: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces – sequence: 4 givenname: Zhi-You orcidid: 0000-0001-5181-0642 surname: Zhou fullname: Zhou, Zhi-You organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 5 givenname: Wenkun orcidid: 0000-0002-3764-1130 surname: Wu fullname: Wu, Wenkun email: wuwenkun@umich.edu organization: Department of Materials Science and Engineering – sequence: 6 givenname: Yu-Cheng orcidid: 0000-0002-3356-3403 surname: Wang fullname: Wang, Yu-Cheng email: wangyc@xmu.edu.cn organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 7 givenname: Shi-Gang orcidid: 0000-0003-2327-4090 surname: Sun fullname: Sun, Shi-Gang organization: College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38344994$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlLBDEQRoMo7lePkqMIPWbr7TiIGyiCyzmk09UaSXfGJDPQ_97otB4E8ZSieK9I1beHNgc3AEJHlMwoYfRM6aB6M-Oa5jXLN9AurYXIKpazzZ9aiB20F8IbIQVnJN9GO7ziQtS12EWr67H17gUG_Lgw1roVeDzXGix4FSHgCws6eqdVVHaMRuNH6E32OkkqGjdg1yUF4mhhAGwGfAd941WqJ7kFPA8hNe2IH0Dp6PwB2uqUDXA4vfvo-fLi6fw6u72_ujmf32aKFzxmnJa1ApIXOauo6gRXqiV5V2haNCUv26Yj0IimE3natCSiBWCioEXb6LqCjvB9dLKeu_DufQkhyt6EtJ1N33PLIDkRhBekJOW_KKtZAkVV1gk9ntBl00MrF970yo_y-6wJEGtAexeCh05qE7-OFb0yVlIiP9OT6_TklF7SZr-078l_CqdrIfXlm1v6IR3zL_gDeqCtHQ |
CitedBy_id | crossref_primary_10_1016_j_cclet_2025_110836 crossref_primary_10_1021_jacs_4c17260 crossref_primary_10_1021_acsami_4c10351 crossref_primary_10_1021_acscatal_4c07524 crossref_primary_10_1021_acsomega_4c02107 crossref_primary_10_1002_adma_202408681 |
Cites_doi | 10.1126/science.1156660 10.1063/1.5132354 10.1021/cr400276u 10.1038/s41929-021-00641-x 10.1038/s41467-021-26853-0 10.1002/anie.202007567 10.1021/acs.jpcc.7b08125 10.1021/acscatal.2c02594 10.1021/acscatal.9b02922 10.1180/000985500546666 10.1021/acsenergylett.0c01959 10.1038/s41929-020-00511-y 10.1038/s41893-023-01084-x 10.1021/jacs.0c06779 10.1021/jacs.8b08356 10.1002/anie.202307848 10.1038/s41929-021-00657-3 10.1021/jacs.3c04315 10.1038/s41563-019-0356-x 10.1021/acsenergylett.3c01426 10.1038/s41467-021-27372-8 10.1038/s41586-021-04068-z 10.1063/1.4865107 10.1038/s41467-021-24059-y 10.1126/sciadv.add8873 10.1021/jacs.3c00565 10.1016/j.cej.2012.05.111 10.1038/s41467-022-28843-2 10.1038/s41565-020-0746-x 10.1038/s41467-023-37251-z 10.1126/science.1215864 10.1038/s41467-023-37821-1 10.1021/cs4009623 10.1021/acscatal.2c04174 10.1016/j.xcrp.2021.100405 10.1038/s41570-019-0128-9 10.1002/jcc.21759 10.1016/j.cej.2021.134129 10.1126/science.285.5428.712 10.1002/anie.202009757 10.1021/acssuschemeng.9b01882 10.1038/nature11570 10.1088/0022-3727/42/5/055505 10.1002/adma.201806403 10.1039/D1TA08002D 10.1038/s41467-021-23750-4 10.1346/CCMN.2006.0540609 10.1038/s41467-022-33007-3 10.1002/adma.202303818 10.1002/adma.202103900 10.1038/2001313a0 10.1002/anie.201903827 10.1063/1.3382344 10.1002/adfm.201803291 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.3c15925 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 8678 |
ExternalDocumentID | 38344994 10_1021_acsami_3c15925 d035776553 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABLBI BAANH CITATION CUPRZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-3179ae0565281af43aad05f6c16b737dbf0eb4bf45944704dee24616dbc98ef03 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Wed Jul 02 04:50:59 EDT 2025 Fri Jul 11 13:25:43 EDT 2025 Mon Jul 21 05:57:55 EDT 2025 Tue Jul 01 03:32:10 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Fri Feb 23 03:12:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | PdCu alloy catalysts hydrogen spillover semi-hydrogenation of acetylene electrochemical synthesis membrane electrode assembly reactor |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-3179ae0565281af43aad05f6c16b737dbf0eb4bf45944704dee24616dbc98ef03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5181-0642 0000-0002-3764-1130 0000-0003-2327-4090 0000-0002-3356-3403 |
PMID | 38344994 |
PQID | 2926074879 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3040360707 proquest_miscellaneous_2926074879 pubmed_primary_38344994 crossref_citationtrail_10_1021_acsami_3c15925 crossref_primary_10_1021_acsami_3c15925 acs_journals_10_1021_acsami_3c15925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-21 |
PublicationDateYYYYMMDD | 2024-02-21 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 Wang Y.-C. (ref55/cit55) 2022; 8 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1126/science.1156660 – ident: ref33/cit33 doi: 10.1063/1.5132354 – ident: ref2/cit2 doi: 10.1021/cr400276u – ident: ref21/cit21 doi: 10.1038/s41929-021-00641-x – ident: ref22/cit22 doi: 10.1038/s41467-021-26853-0 – ident: ref44/cit44 doi: 10.1002/anie.202007567 – ident: ref54/cit54 doi: 10.1021/acs.jpcc.7b08125 – ident: ref53/cit53 doi: 10.1021/acscatal.2c02594 – ident: ref5/cit5 doi: 10.1021/acscatal.9b02922 – ident: ref37/cit37 doi: 10.1180/000985500546666 – ident: ref39/cit39 doi: 10.1021/acsenergylett.0c01959 – ident: ref45/cit45 doi: 10.1038/s41929-020-00511-y – ident: ref9/cit9 doi: 10.1038/s41893-023-01084-x – ident: ref24/cit24 doi: 10.1021/jacs.0c06779 – ident: ref34/cit34 doi: 10.1021/jacs.8b08356 – ident: ref15/cit15 doi: 10.1002/anie.202307848 – ident: ref16/cit16 doi: 10.1038/s41929-021-00657-3 – ident: ref38/cit38 doi: 10.1021/jacs.3c04315 – ident: ref41/cit41 doi: 10.1038/s41563-019-0356-x – ident: ref47/cit47 doi: 10.1021/acsenergylett.3c01426 – ident: ref20/cit20 doi: 10.1038/s41467-021-27372-8 – ident: ref42/cit42 doi: 10.1038/s41586-021-04068-z – ident: ref32/cit32 doi: 10.1063/1.4865107 – ident: ref17/cit17 doi: 10.1038/s41467-021-24059-y – volume: 8 start-page: eadd8873 issue: 44 year: 2022 ident: ref55/cit55 publication-title: Sci. Adv. doi: 10.1126/sciadv.add8873 – ident: ref14/cit14 doi: 10.1021/jacs.3c00565 – ident: ref10/cit10 doi: 10.1016/j.cej.2012.05.111 – ident: ref48/cit48 doi: 10.1038/s41467-022-28843-2 – ident: ref28/cit28 doi: 10.1038/s41565-020-0746-x – ident: ref13/cit13 doi: 10.1038/s41467-023-37251-z – ident: ref27/cit27 doi: 10.1126/science.1215864 – ident: ref18/cit18 doi: 10.1038/s41467-023-37821-1 – ident: ref35/cit35 doi: 10.1021/cs4009623 – ident: ref46/cit46 doi: 10.1021/acscatal.2c04174 – ident: ref4/cit4 doi: 10.1016/j.xcrp.2021.100405 – ident: ref7/cit7 doi: 10.1038/s41570-019-0128-9 – ident: ref31/cit31 doi: 10.1002/jcc.21759 – ident: ref26/cit26 doi: 10.1016/j.cej.2021.134129 – ident: ref6/cit6 doi: 10.1126/science.285.5428.712 – ident: ref43/cit43 doi: 10.1002/anie.202009757 – ident: ref23/cit23 doi: 10.1021/acssuschemeng.9b01882 – ident: ref40/cit40 doi: 10.1038/nature11570 – ident: ref11/cit11 doi: 10.1088/0022-3727/42/5/055505 – ident: ref52/cit52 doi: 10.1002/adma.201806403 – ident: ref1/cit1 doi: 10.1039/D1TA08002D – ident: ref50/cit50 doi: 10.1038/s41467-021-23750-4 – ident: ref3/cit3 – ident: ref36/cit36 doi: 10.1346/CCMN.2006.0540609 – ident: ref49/cit49 doi: 10.1038/s41467-022-33007-3 – ident: ref19/cit19 doi: 10.1002/adma.202303818 – ident: ref25/cit25 doi: 10.1002/adma.202103900 – ident: ref8/cit8 doi: 10.1038/2001313a0 – ident: ref29/cit29 doi: 10.1002/anie.201903827 – ident: ref30/cit30 doi: 10.1063/1.3382344 – ident: ref51/cit51 doi: 10.1002/adfm.201803291 |
SSID | ssj0063205 |
Score | 2.4792242 |
Snippet | Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C2H4, a widely used... Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C H , a widely used... Electrocatalytic acetylene semi-hydrogenation (EASH) offers a promising and environmentally friendly pathway for the production of C₂H₄, a widely used... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8668 |
SubjectTerms | acetylene alloys catalysts economic feasibility economic sustainability electrodes Energy, Environmental, and Catalysis Applications feedstocks hydrogen hydrogenation Raman spectroscopy synthesis |
Title | Hydrogen Spillover Accelerates Electrocatalytic Semi-hydrogenation of Acetylene in Membrane Electrode Assembly Reactor |
URI | http://dx.doi.org/10.1021/acsami.3c15925 https://www.ncbi.nlm.nih.gov/pubmed/38344994 https://www.proquest.com/docview/2926074879 https://www.proquest.com/docview/3040360707 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKXMqBFiiwtCCjIvUUSGLHTo6rFWiFtD2wReIW-TFWV-wDkSzS8usZO1lKi1bllsNMHpOxZz6P_Q0hp4xrz_qdRIJbBCgGVKQzHUeJyLQutC2c8wecBz9F_4Zf3Wa3f9Y7_q3gp8m5MpVvhcMMBt40WyMbqcilh1nd3nA55wqWhs2KiMh5lGPEWtIzvtH3QchUfwehFZlliDCXnxq6oyoQE_qNJXdn81qfmae3tI3_ffnPZKtNM2m38Ytt8gGmO2TzFfngLnnsL-zDDP2HDu9H47CVk3aNwTDk2SMqetE0yAnrOwu8DR3CZBT9bpXCD6UzhypQLzB0AR1N6QAmiL7xulW2QH1VeaLHC3oNobXPF3JzefGr14_aLgyRYoLVOEnLQgHmSVmaJ8pxppSNMydMIrRk0moXg-ba8QyNL2NuATxHnbDaFDm4mO2R9elsCgeEShz-BqQDqxRXSioEf9YgBje5MYzpDvmOBivbUVSVoUCeJmVjxbK1YodEy59XmpbI3PfTGK-U__Eif99QeKyUPFn6QomjzJdO0GSzeVWmBeI-ieCuWC3DcD5kwtMndch-40gvz2O-nUlR8MN3feFX8jHF3CmcnE--kfX6YQ5HmPvU-ji4_TNPCAF6 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvB9LeRgB4pSSxM7r0MOqtNrSbg9sK_WW-jERK_ZRNVlQ-DP9K_y0jp1keWklLpW4Rh7H8Yzn88TjbwDecKEs63fgxcJQgKJReipSvhfEkVKZMllR2AvOw8N4cCw-nkQna3DR3YWhQZTUU-kO8X-yCwTv6ZmtiMM14W_YZVHuY_2NYrRya-8DKfRtGO7uHG0PvLaMgCd5zCvyMkkmkYA-CtNAFoJLafyoiHUQq4QnRhU-KqEKEWVCJL4wiJZkLTZKZykWPqd-r8F1K2-ju_72qHP1MQ9djmRAgl5KQNmxQv41Xot9uvwd-1ZsaB2w7d6BH8spcfksXzYXldrU3_9gi_yP5-wu3G431azfrIJ7sIaz-3DrF6rFB_B1UJvzOa0WNjobT1ziKutrTaBruTJKttOUA3J_s2rqho1wOvY-t0LOfNm8IBGsagJqZOMZG-JUEdRjJ2yQ2TP0qZrU7BO6QkYP4fhKPvwRrM_mM3wCLCFnpzEp0EgppEwkhbpGp2mqU605Vz14TQrKW59R5i4dIAzyRmt5q7UeeJ3N5LqlbbfVQyYr279btj9rCEtWtnzVmWBOPsUeFNGUzRdlHmYU5SYUymar23Dy_jy2ZFE9eNzY7_J93BZvyTLx9J--8CXcGBwND_KDvcP9DbgZ0q7RcQYEz2C9Ol_gc9r1VeqFW3kMTq_abC8BrGlkOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Zb9QwEB6VIiF44D6W0wgQTylJ7FwPPKzarraUVoilUt-Cj7FYsZeaLCj8Hf4KP4yxN1lxaCVeKvEajR3HnpnPE4-_AXjOhXKs31GQCkMBikYZqESFQZQmShXKFNa6C85Hx-nwRLw5TU634Ht3F4YGUVFPlT_Ed1a9MLZlGIhe0XNXFYdrwuC4y6Q8xOYrxWnV64M9WtQXcTzY_7A7DNpSAoHkKa_J02SFRAL7JM4jaQWX0oSJTXWUqoxnRtkQlVBWJIUQWSgMoiNaS43SRY425NTvBbjozghdhNffHXXuPuWxz5OMqGGQE1h2zJB_jdfhn65-x78Nm1oPboNr8GM9LT6n5fPOslY7-tsfjJH_-bxdh6vt5pr1V9ZwA7ZwdhOu_EK5eAu-DBtzNierYaPFeOITWFlfawJfx5lRsf1VWSD_V6uhbtgIp-PgU9vIqzGbW2qCdUOAjWw8Y0c4VQT52DU2yNxZ-lRNGvYefUGj23ByLh9-B7Zn8xneA5aR09OYWTRSCikzSSGv0Xme61xrzlUPntECla3vqEqfFhBH5WrVynbVehB0elPqlr7dVRGZbJR_uZZfrIhLNko-7dSwJN_iDoxoyubLqowLinYzCmmLzTKcUICnjjSqB3dXOrx-H3dFXIpC3P-nL3wCl97tDcq3B8eHD-ByTJtHTx0QPYTt-myJj2jzV6vH3vgYfDxvrf0JTsZmvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Spillover+Accelerates+Electrocatalytic+Semi-hydrogenation+of+Acetylene+in+Membrane+Electrode+Assembly+Reactor&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Lv%2C+Xue-Hui&rft.au=Huang%2C+Huan&rft.au=Cui%2C+Li-Ting&rft.au=Zhou%2C+Zhi-You&rft.date=2024-02-21&rft.issn=1944-8252&rft.volume=16&rft.issue=7+p.8668-8678&rft.spage=8668&rft.epage=8678&rft_id=info:doi/10.1021%2Facsami.3c15925&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |