GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
•Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the models.•Ensemble models enhance the performance of solely applied REPT model.•Hybrid RRept model shows the best result in landslide prediction. Lan...
Saved in:
Published in | Catena (Giessen) Vol. 195; p. 104777 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the models.•Ensemble models enhance the performance of solely applied REPT model.•Hybrid RRept model shows the best result in landslide prediction.
Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide disasters. The purpose of this study is to make use of a hybrid machine learning approach by combining the reduced-error pruning trees (Rept) with a series of ensemble techniques (Bagging, Dagging, and Real Adaboost) and compare the performance of each combination for landslide susceptibility modeling. The combination of Rept model and Real Adaboost (RRept)is a novel application in the field of landslide susceptibility. Firstly, a landslide inventory map was prepared with 298 determined historical landslides events in the study area, 209 landslides (70%) were randomly selected for the training dataset and the remaining 89 landslides (30%) were used for validation dataset. On this basis, 16 landslide influencing factors were included in the landslide susceptibility evaluation (slope angle, elevation, slope aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to roads, distance to faults, soil, normalized difference vegetation index (NDVI), landuse, lithology and rainfall). Secondly, the correlation attribute evaluation (CAE) method was used to select the most important factors for the proposed landslide susceptibility model. The results show that all the factors contribute to the occurrence of landslide. Slope angle, Landuse, Elevation, Distance to roads, Soil and Lithology have the greatest influence on the occurrence of landslide. The receiver operating characteristics (ROC), standard error (SE), 95% confidence interval and mean absolute error (MAE) were then used to validate and compare the performance of the model. The best model should have the largest AUC value, the smallest SE, the narrowest 95% CI and the smallest MAE. The results show that the three hybrid models perform better than the Rept model alone. For the training data set, the RRept model has highest AUC value (0.927), the smallest SE (0.121), the narrowest 95% confidence interval (0.898–0.95) and the lowest MAE (0.20). For the validation data set, the RRept model has the highest AUC value (0.745), the narrowest 95% confidence interval (0.674–0.807) and the lowest MAE (0.33). The RRept has the highest predictive power for landslide susceptibility evaluation. The results show that a hybrid method improves the prediction ability of the base Rept model. In addition, the RRept model is a promising comprehensive model that can be applied to landslide susceptibility mapping. |
---|---|
AbstractList | Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide disasters. The purpose of this study is to make use of a hybrid machine learning approach by combining the reduced-error pruning trees (Rept) with a series of ensemble techniques (Bagging, Dagging, and Real Adaboost) and compare the performance of each combination for landslide susceptibility modeling. The combination of Rept model and Real Adaboost (RRept)is a novel application in the field of landslide susceptibility. Firstly, a landslide inventory map was prepared with 298 determined historical landslides events in the study area, 209 landslides (70%) were randomly selected for the training dataset and the remaining 89 landslides (30%) were used for validation dataset. On this basis, 16 landslide influencing factors were included in the landslide susceptibility evaluation (slope angle, elevation, slope aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to roads, distance to faults, soil, normalized difference vegetation index (NDVI), landuse, lithology and rainfall). Secondly, the correlation attribute evaluation (CAE) method was used to select the most important factors for the proposed landslide susceptibility model. The results show that all the factors contribute to the occurrence of landslide. Slope angle, Landuse, Elevation, Distance to roads, Soil and Lithology have the greatest influence on the occurrence of landslide. The receiver operating characteristics (ROC), standard error (SE), 95% confidence interval and mean absolute error (MAE) were then used to validate and compare the performance of the model. The best model should have the largest AUC value, the smallest SE, the narrowest 95% CI and the smallest MAE. The results show that the three hybrid models perform better than the Rept model alone. For the training data set, the RRept model has highest AUC value (0.927), the smallest SE (0.121), the narrowest 95% confidence interval (0.898–0.95) and the lowest MAE (0.20). For the validation data set, the RRept model has the highest AUC value (0.745), the narrowest 95% confidence interval (0.674–0.807) and the lowest MAE (0.33). The RRept has the highest predictive power for landslide susceptibility evaluation. The results show that a hybrid method improves the prediction ability of the base Rept model. In addition, the RRept model is a promising comprehensive model that can be applied to landslide susceptibility mapping. •Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the models.•Ensemble models enhance the performance of solely applied REPT model.•Hybrid RRept model shows the best result in landslide prediction. Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide disasters. The purpose of this study is to make use of a hybrid machine learning approach by combining the reduced-error pruning trees (Rept) with a series of ensemble techniques (Bagging, Dagging, and Real Adaboost) and compare the performance of each combination for landslide susceptibility modeling. The combination of Rept model and Real Adaboost (RRept)is a novel application in the field of landslide susceptibility. Firstly, a landslide inventory map was prepared with 298 determined historical landslides events in the study area, 209 landslides (70%) were randomly selected for the training dataset and the remaining 89 landslides (30%) were used for validation dataset. On this basis, 16 landslide influencing factors were included in the landslide susceptibility evaluation (slope angle, elevation, slope aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to roads, distance to faults, soil, normalized difference vegetation index (NDVI), landuse, lithology and rainfall). Secondly, the correlation attribute evaluation (CAE) method was used to select the most important factors for the proposed landslide susceptibility model. The results show that all the factors contribute to the occurrence of landslide. Slope angle, Landuse, Elevation, Distance to roads, Soil and Lithology have the greatest influence on the occurrence of landslide. The receiver operating characteristics (ROC), standard error (SE), 95% confidence interval and mean absolute error (MAE) were then used to validate and compare the performance of the model. The best model should have the largest AUC value, the smallest SE, the narrowest 95% CI and the smallest MAE. The results show that the three hybrid models perform better than the Rept model alone. For the training data set, the RRept model has highest AUC value (0.927), the smallest SE (0.121), the narrowest 95% confidence interval (0.898–0.95) and the lowest MAE (0.20). For the validation data set, the RRept model has the highest AUC value (0.745), the narrowest 95% confidence interval (0.674–0.807) and the lowest MAE (0.33). The RRept has the highest predictive power for landslide susceptibility evaluation. The results show that a hybrid method improves the prediction ability of the base Rept model. In addition, the RRept model is a promising comprehensive model that can be applied to landslide susceptibility mapping. |
ArticleNumber | 104777 |
Author | Chen, Wei Li, Yang |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-5825-1422 surname: Chen fullname: Chen, Wei email: chenwei0930@xust.edu.cn – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang |
BookMark | eNqFkE1rGzEQhkVJoI6bf5CDjr2su1rJq90eCsU0bsCQQ5uz0MfIHSOvXEkb8L_vOttTDslpYHifl5nnhlwNcQBC7li9YjVrvxxWVhcY9Kqpm8tKSCk_kAXrZFO1XSevyKLmglUda5uP5CbnQ11PoTVbELV9-FUZncFReNZh1AXjQKOnQQ8uB3RA85gtnAoaDFjOdMw47Omfs0noqI3H01heIB0oDgVCwD0MFugxOgj5E7n2OmS4_T-X5On-x-_Nz2r3uH3YfN9VmrdNqbyXzBlRG9s3wgtoemuM0dJ63jHLQfacade2nAG0wkrRS8-ldNoI58E5viSf595Tin9HyEUdcTo7TG9AHLNq1utJTs_b9RQVc9SmmHMCr04JjzqdFavVxac6qNmnuvhUs88J-_oKszh_XpLG8B78bYYnJfCMkFS2eNHkMIEtykV8u-AfboSYcw |
CitedBy_id | crossref_primary_10_2113_2022_5216125 crossref_primary_10_3390_rs15071886 crossref_primary_10_1007_s11356_022_22778_3 crossref_primary_10_1080_10106049_2021_1920635 crossref_primary_10_3390_rs14143259 crossref_primary_10_1080_27669645_2022_2101256 crossref_primary_10_3389_feart_2021_722491 crossref_primary_10_1007_s40808_023_01888_y crossref_primary_10_1016_j_jenvman_2021_112015 crossref_primary_10_1016_j_gsf_2023_101541 crossref_primary_10_1016_j_jhydrol_2021_126500 crossref_primary_10_3390_ijerph192114248 crossref_primary_10_1007_s11629_020_6393_8 crossref_primary_10_1007_s12665_021_09572_z crossref_primary_10_3390_land12081522 crossref_primary_10_1080_19475683_2022_2040587 crossref_primary_10_1016_j_ecolind_2024_111600 crossref_primary_10_1016_j_nhres_2023_06_006 crossref_primary_10_3390_su15031971 crossref_primary_10_1080_17499518_2024_2302134 crossref_primary_10_1007_s11629_023_8128_0 crossref_primary_10_3390_rs12203347 crossref_primary_10_1016_j_asr_2024_08_003 crossref_primary_10_3390_ijgi9120696 crossref_primary_10_1016_j_ecolind_2023_109919 crossref_primary_10_1007_s12665_021_10033_w crossref_primary_10_1080_19475705_2020_1833990 crossref_primary_10_1155_2021_6647829 crossref_primary_10_1080_10106049_2021_1967464 crossref_primary_10_1007_s12665_021_09921_y crossref_primary_10_1061_NHREFO_NHENG_1771 crossref_primary_10_1007_s11069_024_06844_2 crossref_primary_10_1007_s10064_025_04180_8 crossref_primary_10_1007_s11356_023_26247_3 crossref_primary_10_1007_s41324_022_00444_7 crossref_primary_10_1016_j_catena_2020_104833 crossref_primary_10_1080_10106049_2022_2120638 crossref_primary_10_1007_s40789_024_00678_w crossref_primary_10_1007_s10706_022_02333_0 crossref_primary_10_1080_10106049_2024_2361714 crossref_primary_10_1080_19475705_2021_1947904 crossref_primary_10_1002_gj_5166 crossref_primary_10_1016_j_asr_2024_11_052 crossref_primary_10_1007_s41748_022_00312_2 crossref_primary_10_1007_s11356_022_21931_2 crossref_primary_10_1016_j_ijdrr_2024_104991 crossref_primary_10_1007_s12665_022_10193_3 crossref_primary_10_3390_app12178483 crossref_primary_10_1016_j_catena_2021_105250 crossref_primary_10_3390_app10196652 crossref_primary_10_1016_j_catena_2022_106700 crossref_primary_10_1016_j_ecoinf_2021_101292 crossref_primary_10_3390_app12125992 crossref_primary_10_3390_app14020485 crossref_primary_10_1007_s11069_024_06414_6 crossref_primary_10_1007_s12665_021_09998_5 crossref_primary_10_1016_j_scitotenv_2021_147360 crossref_primary_10_1016_j_catena_2021_105779 crossref_primary_10_1007_s11069_025_07132_3 crossref_primary_10_1016_j_gsf_2020_11_007 crossref_primary_10_3390_geomatics1040023 crossref_primary_10_32604_cmes_2024_056576 crossref_primary_10_1016_j_envsoft_2025_106367 crossref_primary_10_1007_s11069_022_05786_x crossref_primary_10_1007_s12205_022_1471_9 crossref_primary_10_1016_j_jrmge_2023_07_026 crossref_primary_10_1007_s10064_023_03328_8 crossref_primary_10_1007_s11356_023_30762_8 crossref_primary_10_1186_s40068_024_00382_3 crossref_primary_10_1080_10106049_2020_1837262 crossref_primary_10_1080_19475705_2021_1880977 crossref_primary_10_3389_feart_2022_861057 crossref_primary_10_1007_s10346_023_02040_8 crossref_primary_10_21597_jist_1225104 crossref_primary_10_3390_rs12152478 crossref_primary_10_1016_j_catena_2021_105388 crossref_primary_10_1016_j_qsa_2024_100241 crossref_primary_10_1007_s11069_021_04673_1 crossref_primary_10_1016_j_ejrh_2021_100848 crossref_primary_10_1016_j_catena_2022_106379 crossref_primary_10_3390_app14188413 crossref_primary_10_1007_s10668_024_04592_8 crossref_primary_10_3389_feart_2023_1147427 crossref_primary_10_1007_s11069_024_06576_3 crossref_primary_10_3390_app15031163 crossref_primary_10_1016_j_ecolind_2023_109968 crossref_primary_10_3390_ijgi10040232 crossref_primary_10_1016_j_compgeo_2022_105175 crossref_primary_10_1080_24749508_2024_2395205 crossref_primary_10_1515_htmp_2022_0261 crossref_primary_10_1016_j_ecolind_2024_112736 crossref_primary_10_3390_s22010177 crossref_primary_10_1007_s12665_023_10787_5 crossref_primary_10_1080_10106049_2021_1986578 crossref_primary_10_3390_rs12244134 crossref_primary_10_1080_10106049_2024_2322066 crossref_primary_10_3390_ijerph182211987 crossref_primary_10_1007_s12665_022_10534_2 crossref_primary_10_3390_rs12203423 crossref_primary_10_35970_jinita_v5i1_1865 crossref_primary_10_1007_s11069_022_05326_7 crossref_primary_10_1007_s10064_024_03851_2 crossref_primary_10_1080_10106049_2022_2076924 crossref_primary_10_1007_s10064_023_03230_3 crossref_primary_10_3389_fenvs_2025_1522949 crossref_primary_10_3390_app13127276 crossref_primary_10_3390_rs12142180 crossref_primary_10_1016_j_aei_2020_101230 crossref_primary_10_1007_s11069_021_04862_y crossref_primary_10_3389_feart_2024_1464775 crossref_primary_10_1016_j_catena_2022_106239 crossref_primary_10_1016_j_foreco_2023_121288 crossref_primary_10_3390_rs16020347 crossref_primary_10_1016_j_qsa_2023_100083 crossref_primary_10_1007_s11069_022_05430_8 crossref_primary_10_1007_s12665_025_12148_w crossref_primary_10_13168_AGG_2024_0019 crossref_primary_10_3390_su16093701 crossref_primary_10_1080_10106049_2021_1939439 crossref_primary_10_1080_19475705_2024_2396908 crossref_primary_10_1007_s12665_022_10603_6 crossref_primary_10_3390_ijgi10040253 crossref_primary_10_1007_s12665_022_10375_z crossref_primary_10_3389_fenvs_2024_1424988 crossref_primary_10_3390_atmos15070788 crossref_primary_10_1007_s12517_022_09488_3 crossref_primary_10_1007_s12665_021_09889_9 crossref_primary_10_1016_j_asr_2021_02_011 crossref_primary_10_1016_j_pce_2022_103235 crossref_primary_10_3390_ijerph182010971 crossref_primary_10_1016_j_heliyon_2023_e21542 crossref_primary_10_1007_s12665_024_11501_9 crossref_primary_10_3389_feart_2021_589630 crossref_primary_10_1007_s12145_020_00530_0 crossref_primary_10_21605_cukurovaumfd_933874 crossref_primary_10_4236_ijg_2022_133010 crossref_primary_10_1007_s11053_024_10402_9 crossref_primary_10_1080_10106049_2021_2009921 crossref_primary_10_3390_app13158617 crossref_primary_10_3390_rs12233854 crossref_primary_10_1007_s11440_023_01841_4 crossref_primary_10_1016_j_gsf_2021_101203 crossref_primary_10_1080_10106049_2024_2326005 crossref_primary_10_1007_s12665_023_10844_z crossref_primary_10_1080_10106049_2021_2009920 crossref_primary_10_31466_kfbd_1446997 crossref_primary_10_1002_gj_4683 crossref_primary_10_1007_s10064_021_02194_6 crossref_primary_10_1016_j_ijdrr_2021_102662 crossref_primary_10_1016_j_scitotenv_2024_175277 crossref_primary_10_3390_su13105369 crossref_primary_10_1080_10106049_2022_2035830 crossref_primary_10_1016_j_enggeo_2021_106480 crossref_primary_10_1016_j_aiig_2024_100093 crossref_primary_10_1016_j_catena_2024_108437 crossref_primary_10_3390_w15203685 crossref_primary_10_1016_j_gsf_2021_101317 crossref_primary_10_1109_ACCESS_2025_3550572 crossref_primary_10_1007_s11069_023_06279_1 crossref_primary_10_1007_s11069_022_05764_3 crossref_primary_10_1007_s13753_024_00575_5 crossref_primary_10_1007_s10064_023_03409_8 crossref_primary_10_1016_j_catena_2021_105344 crossref_primary_10_3390_ijgi9070443 crossref_primary_10_1016_j_ecolind_2023_111335 crossref_primary_10_3390_math10162945 |
Cites_doi | 10.1007/s10064-016-0919-x 10.3390/app9183755 10.3390/f10090743 10.1016/j.catena.2016.06.004 10.1007/s00704-015-1702-9 10.1016/j.jhydrol.2020.124602 10.3390/sym11060762 10.3390/ijgi9030144 10.3390/sym12030325 10.1007/s002540000163 10.1016/S0169-555X(03)00164-8 10.1006/jcss.1997.1504 10.1016/j.cageo.2008.08.007 10.2307/3673806 10.1007/s12665-015-4950-1 10.3390/su11164386 10.1016/j.catena.2016.09.007 10.1007/BF00058655 10.1007/s11004-013-9511-0 10.1007/s12665-017-6731-5 10.1007/s11063-014-9386-1 10.1016/j.enggeo.2004.06.001 10.1080/02723646.2018.1559583 10.3390/ijerph17072473 10.1080/10106049.2017.1404143 10.1007/s12665-009-0373-1 10.1109/LSP.2014.2313570 10.1039/C7MO00030H 10.1016/j.catena.2015.07.020 10.1007/s10064-017-1202-5 10.1007/s10346-015-0557-6 10.1080/10106049.2017.1404141 10.1016/j.geomorph.2017.12.008 10.1016/j.scitotenv.2019.02.263 10.1016/j.scitotenv.2020.137231 10.1016/0034-4257(94)00071-T 10.1007/s12665-019-8415-9 10.3390/su10103697 10.1007/s11069-005-1709-0 10.3390/rs10101545 10.1080/10106049.2016.1195886 10.3837/tiis.2013.11.010 10.1016/j.cageo.2011.04.012 10.1080/10106049.2018.1499820 10.1016/j.catena.2018.12.033 10.1007/s00704-016-1919-2 10.1016/j.geomorph.2008.05.041 10.5194/nhess-7-523-2007 10.1016/j.scitotenv.2018.01.266 10.1007/s12517-012-0532-7 10.1007/s12665-016-5919-4 10.1002/esp.3290160505 10.1007/s12665-015-5194-9 10.1016/S0013-7952(01)00093-X 10.1016/j.geomorph.2011.12.040 10.1007/s10346-015-0614-1 10.1080/19475705.2018.1549111 10.3390/w12010113 10.1007/s12665-015-5233-6 10.1016/j.geomorph.2005.05.011 10.3390/app10020425 10.1007/s12517-017-2961-9 10.1007/s10651-010-0147-7 10.1007/s10346-011-0283-7 10.1016/S0020-7373(87)80053-6 10.1007/s12594-018-0862-5 10.1016/j.cageo.2020.104445 10.1007/s10346-016-0790-7 10.1007/s12665-011-0976-1 10.1016/j.geomorph.2006.09.023 10.1016/j.catena.2019.104179 10.1016/j.catena.2018.12.018 10.1080/10286608.2019.1568418 10.1007/s10346-016-0743-1 10.1016/j.cageo.2012.08.023 10.1007/s12665-015-4048-9 10.1016/j.geomorph.2004.06.010 10.1023/A:1007614523901 10.1007/s12517-010-0272-5 10.1016/j.bbadis.2017.10.036 10.3390/app10010016 10.1007/s11069-018-3299-7 10.1007/s11069-015-1799-2 10.3390/app9010171 10.1007/s13762-013-0464-0 10.3390/app8071046 10.1016/j.catena.2019.104188 10.1080/10106049.2018.1499816 10.1016/j.proeng.2016.06.169 10.1007/s11069-012-0347-6 10.1016/j.catena.2019.104396 10.1007/s11069-016-2304-2 10.3390/su11247118 10.1080/17538947.2016.1169561 10.1134/S0097807819050051 10.1016/j.catena.2018.07.012 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.catena.2020.104777 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Sciences (General) |
EISSN | 1872-6887 |
ExternalDocumentID | 10_1016_j_catena_2020_104777 S0341816220303271 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a362t-ff71db40bc924f4e29cbbba7cf381c3e7931ad6631ee64c7497f377dab4dfedd3 |
IEDL.DBID | .~1 |
ISSN | 0341-8162 |
IngestDate | Fri Jul 11 08:36:16 EDT 2025 Tue Jul 01 01:46:42 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Fri Feb 23 02:48:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reduced error pruning tree Landslide Dagging Real Adaboost Bagging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-ff71db40bc924f4e29cbbba7cf381c3e7931ad6631ee64c7497f377dab4dfedd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5825-1422 |
PQID | 2552029365 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2552029365 crossref_primary_10_1016_j_catena_2020_104777 crossref_citationtrail_10_1016_j_catena_2020_104777 elsevier_sciencedirect_doi_10_1016_j_catena_2020_104777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Catena (Giessen) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tien Bui, Shirzadi, Shahabi, Geertsema, Omidvar, Clague, Thai Pham, Dou, Talebpour Asl, Bin Ahmad (b0430) 2019; 10 Chen, Hong, Panahi, Shahabi, Wang, Shirzadi, Pirasteh, Alesheikh, Khosravi, Panahi (b0070) 2019; 9 Zhu, Miao, Yang, Bai, Liu, Hong (b0575) 2018; 171 Pham, Prakash (b0315) 2019; 78 Tien Bui, Pradhan, Revhaug, Tran (b0425) 2014 Yilmaz (b0550) 2009; 35 Truong, Mitamura, Kono, Raghavan, Yonezawa, Do, Tien Bui, Lee (b0450) 2018; 8 Dou, Yamagishi, Pourghasemi, Yunus, Song, Xu, Zhu (b0145) 2015; 78 Park, Lee, Lee, Lee (b0280) 2018; 10 Tsangaratos, Ilia (b0455) 2016; 145 Chen, Sun, Han (b0080) 2019; 9 Freund, Schapire (b0165) 1997; 55 Witten, Frank, Hall, Pal (b0500) 2016 Jaafari, Najafi, Pourghasemi, Rezaeian, Sattarian (b0200) 2014; 11 Lee, Lee, Jung, Lee (b0230) 2019 Wang, Guo, Li, He, Wu (b0475) 2019; 10 Trigo, Zêzere, Rodrigues, Trigo (b0445) 2005; 36 Shahri, Spross, Johansson, Larsson (b0390) 2019; 183 Akgun, Sezer, Nefeslioglu, Gokceoglu, Pradhan (b0025) 2012; 38 Mitchell, Michalski, Carbonell (b0265) 2013 Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (b0415) 2016; 75 Guang, Peihua, Chen, Wen, Zhiguang, Junqi, Xiujun (b0175) 2019; 27 Phong, Phan, Prakash, Singh, Shirzadi, Chapi, Ly, Ho, Quoc, Pham (b0330) 2019 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (b0555) 2016; 13 Dehnavi, Aghdam, Pradhan, Varzandeh (b0125) 2015; 135 Li, Wang (b0245) 2019; 11 Breiman (b0050) 1996; 24 Ding, Chen, Hong (b0135) 2017; 32 Pham, Prakash, Singh, Shirzadi, Shahabi, Bui (b0325) 2019; 175 Zhao, Chen (b0565) 2020; 10 Pradhan, Kim (b0360) 2017; 76 Schapire, Singer (b0385) 1999; 37 Wang, Wang, Li, Huang, Cai (b0480) 2018; 14 Sarkar, Kanungo, Mehrotra (b0380) 1995 Nguyen, Ha, Jaafari, Nguyen, Van Phong, Al-Ansari, Prakash, Le, Pham (b0270) 2020; 17 Talebi, A., Uijlenhoet, R., Troch, P.A., 2007. Soil moisture storage and hillslope stability. Sharma, Patel, Debnath, Ghose (b0395) 2012; 5 Pham, Bui, Prakash, Dholakia (b0295) 2016; 83 Chen, Li, Tsangaratos, Shahabi, Ilia, Xue, Bian (b0075) 2020; 10 Akgun (b0020) 2012; 9 Pham, Prakash (b0310) 2019; 34 Xu, Dai, Xu, Lee (b0530) 2012; 145 Guo, Qin, Ma, Xia, Chen, Si, Lu (b0180) 2019 Thai Pham, Shirzadi, Shahabi, Omidvar, Singh, Sahana, Talebpour Asl, Bin Ahmad, Kim Quoc, Lee (b0405) 2019; 11 Wu, Wu, Yang, Chen, Zhang, Ke, Li (b0520) 2017; 10 Can, Nefeslioglu, Gokceoglu, Sonmez, Duman (b0055) 2005; 72 Carrara, Cardinali, Detti, Guzzetti, Pasqui, Reichenbach (b0060) 1991; 16 Micheletti, Foresti, Robert, Leuenberger, Pedrazzini, Jaboyedoff, Kanevski (b0260) 2014; 46 Dai, Lee, Li, Xu (b0115) 2001; 40 Pradhan (b0370) 2013; 51 Ercanoglu, Gokceoglu (b0150) 2004; 75 Dahal, Hasegawa, Nonomura, Yamanaka, Dhakal, Paudyal (b0110) 2008; 102 Tsangaratos, Ilia, Rozos (b0460) 2013 Hong, Liu, Zhu (b0195) 2020; 718 Wu, Nagahashi (b0505) 2014; 21 Xu, W., Lee, E.-J., 2013. A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm. KSII Transactions on Internet & Information Systems, 7. Wang, Duan, Hong (b0485) 2019; 183 Ting, K.M., Witten, I.H., 1997. Stacking bagged and dagged models. Wang, Lei, Chen, Shahabi, Shirzadi (b0470) 2020; 12 Hall, Townshend, Engman (b0185) 1995; 51 Wang, Chen, Chen (b0465) 2020; 9 Zhang, Wu, Niu, Yang, Zhao (b0560) 2017; 76 Bozo, Cela (b0045) 2016; 143 Pham, Bui, Pourghasemi, Indra, Dholakia (b0290) 2017; 128 Xie, Bian, Xia (b0525) 2005; 26 Akgun, Türk (b0030) 2010; 61 Ahachad, Omari, Figueiras-Vidal (b0015) 2015; 42 Pourghasemi, Gayen, Park, Lee, Lee (b0340) 2018; 10 Pham (b0285) 2018; 91 Dai, Lee, Ngai (b0120) 2002; 64 Galli, Ardizzone, Cardinali, Guzzetti, Reichenbach (b0170) 2008; 94 Chen, Liang, Ke, Yang, Zhao (b0090) 2019; 34 Polykretis, Chalkias (b0335) 2018; 93 Khosravi, Pham, Chapi, Shirzadi, Shahabi, Revhaug, Prakash, Bui (b0210) 2018; 627 Lee, Park, Lee (b0225) 2015; 74 Li, Huang (b0240) 2018; 1864 Pham, Prakash, Bui (b0320) 2018; 303 Yilmaz (b0545) 2009; 35 Pham, Prakash (b0305) 2017 Pradhan (b0365) 2011; 18 Ayalew, Yamagishi (b0040) 2005; 65 Yan, Liang, Gui, Xie, Zhao (b0540) 2019; 34 Fang, Wang, Peng, Hong (b0160) 2020; 104470 Hong, Liu, Zhu (b0190) 2019; 78 Pourghasemi, Kerle (b0345) 2016; 75 Devkota, Regmi, Pourghasemi, Yoshida, Pradhan, Ryu, Dhital, Althuwaynee (b0130) 2013; 65 Wang, Fang, Hong (b0490) 2019; 666 Wu, Li, Liu, Bai, Wang, He, Liu, Sun (b0515) 2016; 75 Abedini, Ghasemian, Shirzadi, Shahabi, Chapi, Pham, Bin Ahmad, Tien Bui (b0005) 2019; 34 Tien Bui, Pham, Nguyen, Hoang (b0420) 2016; 9 Costache, Hong, Wang (b0100) 2019; 183 McKean, Roering (b0255) 2004; 57 Pham, Bui, Prakash, Dholakia (b0300) 2017; 149 Li, Chen (b0250) 2020; 12 Aghdam, Varzandeh, Pradhan (b0010) 2016; 75 Nguyen, V.-T., Tran, T.H., Ha, N.A., Ngo, V.L., Nadhir, A.-A., Tran, V.P., Duy Nguyen, H., MA, M., Amini, A., Prakash, I., 2019. GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability, 11, 7118. Ciervo, Rianna, Mercogliano, Papa (b0095) 2017; 14 Cui, Lu, Li (b0105) 2017; 32 Falah, Zeinivand (b0155) 2019; 46 Chen, Oguchi, Hayakawa, Saito, Chen (b0065) 2017; 14 Tien Bui, Tuan, Klempe, Pradhan, Revhaug (b0435) 2016; 13 Pourghasemi, Rossi (b0355) 2017; 130 Quinlan (b0375) 1987; 27 Lepore, Kamal, Shanahan, Bras (b0235) 2012; 66 Chen, Zhao, Tsangaratos, Shahabi, Ilia, Xue, Wang, Ahmad (b0085) 2020; 583 Wang, Fang, Wang, Peng, Hong (b0495) 2020; 138 Thai Pham, Tien Bui, Prakash (b0410) 2018; 35 Dou, Oguchi, Hayakawa, Uchiyama, Saito, Paudel (b0140) 2014 Kotsianti, Kanellopoulos (b0220) 2007 Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (b0570) 2019; 183 Wu, Ke, Chen, Liang, Zhao, Hong (b0510) 2020; 187 Arnone, Francipane, Noto (b0035) 2012 Jaafari, Panahi, Pham, Shahabi, Bui, Rezaie, Lee (b0205) 2019; 175 Pourghasemi, Pradhan, Gokceoglu, Mohammadi, Moradi (b0350) 2013; 6 Kose, Turk (b0215) 2019; 40 10.1016/j.catena.2020.104777_b0275 Guang (10.1016/j.catena.2020.104777_b0175) 2019; 27 Cui (10.1016/j.catena.2020.104777_b0105) 2017; 32 Wu (10.1016/j.catena.2020.104777_b0510) 2020; 187 Zhu (10.1016/j.catena.2020.104777_b0570) 2019; 183 Ahachad (10.1016/j.catena.2020.104777_b0015) 2015; 42 Pham (10.1016/j.catena.2020.104777_b0285) 2018; 91 Jaafari (10.1016/j.catena.2020.104777_b0205) 2019; 175 Nguyen (10.1016/j.catena.2020.104777_b0270) 2020; 17 Wang (10.1016/j.catena.2020.104777_b0490) 2019; 666 Hall (10.1016/j.catena.2020.104777_b0185) 1995; 51 Dai (10.1016/j.catena.2020.104777_b0115) 2001; 40 Pourghasemi (10.1016/j.catena.2020.104777_b0345) 2016; 75 Chen (10.1016/j.catena.2020.104777_b0075) 2020; 10 Li (10.1016/j.catena.2020.104777_b0245) 2019; 11 Ciervo (10.1016/j.catena.2020.104777_b0095) 2017; 14 Tsangaratos (10.1016/j.catena.2020.104777_b0460) 2013 Thai Pham (10.1016/j.catena.2020.104777_b0410) 2018; 35 Pradhan (10.1016/j.catena.2020.104777_b0360) 2017; 76 Wang (10.1016/j.catena.2020.104777_b0475) 2019; 10 Tsangaratos (10.1016/j.catena.2020.104777_b0455) 2016; 145 Fang (10.1016/j.catena.2020.104777_b0160) 2020; 104470 Xie (10.1016/j.catena.2020.104777_b0525) 2005; 26 Pourghasemi (10.1016/j.catena.2020.104777_b0340) 2018; 10 Quinlan (10.1016/j.catena.2020.104777_b0375) 1987; 27 Devkota (10.1016/j.catena.2020.104777_b0130) 2013; 65 Pourghasemi (10.1016/j.catena.2020.104777_b0355) 2017; 130 Tien Bui (10.1016/j.catena.2020.104777_b0430) 2019; 10 Yilmaz (10.1016/j.catena.2020.104777_b0545) 2009; 35 Truong (10.1016/j.catena.2020.104777_b0450) 2018; 8 Jaafari (10.1016/j.catena.2020.104777_b0200) 2014; 11 Chen (10.1016/j.catena.2020.104777_b0085) 2020; 583 Breiman (10.1016/j.catena.2020.104777_b0050) 1996; 24 Tien Bui (10.1016/j.catena.2020.104777_b0425) 2014 Akgun (10.1016/j.catena.2020.104777_b0020) 2012; 9 Costache (10.1016/j.catena.2020.104777_b0100) 2019; 183 Aghdam (10.1016/j.catena.2020.104777_b0010) 2016; 75 Li (10.1016/j.catena.2020.104777_b0240) 2018; 1864 Yan (10.1016/j.catena.2020.104777_b0540) 2019; 34 Ercanoglu (10.1016/j.catena.2020.104777_b0150) 2004; 75 Thai Pham (10.1016/j.catena.2020.104777_b0405) 2019; 11 Pham (10.1016/j.catena.2020.104777_b0325) 2019; 175 10.1016/j.catena.2020.104777_b0440 Shahri (10.1016/j.catena.2020.104777_b0390) 2019; 183 Polykretis (10.1016/j.catena.2020.104777_b0335) 2018; 93 Tien Bui (10.1016/j.catena.2020.104777_b0420) 2016; 9 Mitchell (10.1016/j.catena.2020.104777_b0265) 2013 Zhao (10.1016/j.catena.2020.104777_b0565) 2020; 10 McKean (10.1016/j.catena.2020.104777_b0255) 2004; 57 Zhu (10.1016/j.catena.2020.104777_b0575) 2018; 171 Dai (10.1016/j.catena.2020.104777_b0120) 2002; 64 Sharma (10.1016/j.catena.2020.104777_b0395) 2012; 5 Lee (10.1016/j.catena.2020.104777_b0230) 2019 Pourghasemi (10.1016/j.catena.2020.104777_b0350) 2013; 6 Tien Bui (10.1016/j.catena.2020.104777_b0415) 2016; 75 Chen (10.1016/j.catena.2020.104777_b0080) 2019; 9 Pham (10.1016/j.catena.2020.104777_b0310) 2019; 34 Wang (10.1016/j.catena.2020.104777_b0495) 2020; 138 Pham (10.1016/j.catena.2020.104777_b0320) 2018; 303 Abedini (10.1016/j.catena.2020.104777_b0005) 2019; 34 Pham (10.1016/j.catena.2020.104777_b0290) 2017; 128 Pradhan (10.1016/j.catena.2020.104777_b0370) 2013; 51 Youssef (10.1016/j.catena.2020.104777_b0555) 2016; 13 Kotsianti (10.1016/j.catena.2020.104777_b0220) 2007 Wu (10.1016/j.catena.2020.104777_b0520) 2017; 10 Chen (10.1016/j.catena.2020.104777_b0065) 2017; 14 Galli (10.1016/j.catena.2020.104777_b0170) 2008; 94 Pham (10.1016/j.catena.2020.104777_b0300) 2017; 149 Xu (10.1016/j.catena.2020.104777_b0530) 2012; 145 Akgun (10.1016/j.catena.2020.104777_b0030) 2010; 61 Chen (10.1016/j.catena.2020.104777_b0070) 2019; 9 Hong (10.1016/j.catena.2020.104777_b0190) 2019; 78 Yilmaz (10.1016/j.catena.2020.104777_b0550) 2009; 35 Can (10.1016/j.catena.2020.104777_b0055) 2005; 72 Micheletti (10.1016/j.catena.2020.104777_b0260) 2014; 46 Wu (10.1016/j.catena.2020.104777_b0515) 2016; 75 Hong (10.1016/j.catena.2020.104777_b0195) 2020; 718 Akgun (10.1016/j.catena.2020.104777_b0025) 2012; 38 Pham (10.1016/j.catena.2020.104777_b0315) 2019; 78 Falah (10.1016/j.catena.2020.104777_b0155) 2019; 46 Khosravi (10.1016/j.catena.2020.104777_b0210) 2018; 627 Kose (10.1016/j.catena.2020.104777_b0215) 2019; 40 Phong (10.1016/j.catena.2020.104777_b0330) 2019 Carrara (10.1016/j.catena.2020.104777_b0060) 1991; 16 Zhang (10.1016/j.catena.2020.104777_b0560) 2017; 76 Lee (10.1016/j.catena.2020.104777_b0225) 2015; 74 Witten (10.1016/j.catena.2020.104777_b0500) 2016 Pham (10.1016/j.catena.2020.104777_b0305) 2017 Arnone (10.1016/j.catena.2020.104777_b0035) 2012 Bozo (10.1016/j.catena.2020.104777_b0045) 2016; 143 Wang (10.1016/j.catena.2020.104777_b0485) 2019; 183 Guo (10.1016/j.catena.2020.104777_b0180) 2019 Tien Bui (10.1016/j.catena.2020.104777_b0435) 2016; 13 Chen (10.1016/j.catena.2020.104777_b0090) 2019; 34 Pham (10.1016/j.catena.2020.104777_b0295) 2016; 83 10.1016/j.catena.2020.104777_b0535 Lepore (10.1016/j.catena.2020.104777_b0235) 2012; 66 Wang (10.1016/j.catena.2020.104777_b0465) 2020; 9 Wang (10.1016/j.catena.2020.104777_b0470) 2020; 12 Park (10.1016/j.catena.2020.104777_b0280) 2018; 10 Li (10.1016/j.catena.2020.104777_b0250) 2020; 12 Trigo (10.1016/j.catena.2020.104777_b0445) 2005; 36 Dou (10.1016/j.catena.2020.104777_b0140) 2014 Sarkar (10.1016/j.catena.2020.104777_b0380) 1995 10.1016/j.catena.2020.104777_b0400 Wang (10.1016/j.catena.2020.104777_b0480) 2018; 14 Dou (10.1016/j.catena.2020.104777_b0145) 2015; 78 Dehnavi (10.1016/j.catena.2020.104777_b0125) 2015; 135 Ding (10.1016/j.catena.2020.104777_b0135) 2017; 32 Dahal (10.1016/j.catena.2020.104777_b0110) 2008; 102 Schapire (10.1016/j.catena.2020.104777_b0385) 1999; 37 Wu (10.1016/j.catena.2020.104777_b0505) 2014; 21 Ayalew (10.1016/j.catena.2020.104777_b0040) 2005; 65 Freund (10.1016/j.catena.2020.104777_b0165) 1997; 55 Pradhan (10.1016/j.catena.2020.104777_b0365) 2011; 18 |
References_xml | – volume: 27 start-page: 1153 year: 2019 end-page: 1163 ident: b0175 article-title: ASSESSMENT OF REGIONAL LANDSLIDE SUSCEPTIBILITY BASED ON COMBINED MODEL OF CERTAINTY FACTOR METHOD publication-title: Journal of Engineering Geology – volume: 76 start-page: 1263 year: 2017 end-page: 1279 ident: b0360 article-title: Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea publication-title: Bull. Eng. Geol. Environ. – volume: 12 start-page: 325 year: 2020 ident: b0470 article-title: Hybrid computational intelligence methods for landslide susceptibility mapping publication-title: Symmetry – volume: 14 start-page: 1235 year: 2017 end-page: 1240 ident: b0065 article-title: Relationship between landslide size and rainfall conditions in Taiwan publication-title: Landslides – volume: 102 start-page: 496 year: 2008 end-page: 510 ident: b0110 article-title: Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence publication-title: Geomorphology – volume: 32 start-page: 935 year: 2017 end-page: 955 ident: b0105 article-title: Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models publication-title: Geocarto International – volume: 65 start-page: 135 year: 2013 end-page: 165 ident: b0130 article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya publication-title: Nat. Hazards – volume: 10 start-page: 3697 year: 2018 ident: b0340 article-title: Assessment of landslide-prone areas and their zonation using logistic regression, logitboost, and naïvebayes machine-learning algorithms publication-title: Sustainability – volume: 34 start-page: 1427 year: 2019 end-page: 1457 ident: b0005 article-title: A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment publication-title: Geocarto International – start-page: 493 year: 2007 end-page: 500 ident: b0220 publication-title: Combining bagging, boosting and dagging for classification – volume: 130 start-page: 609 year: 2017 end-page: 633 ident: b0355 article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods publication-title: Theor. Appl. Climatol. – volume: 78 start-page: 1749 year: 2015 end-page: 1776 ident: b0145 article-title: An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan publication-title: Nat. Hazards – year: 2012 ident: b0035 article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a small Sicilian – volume: 9 start-page: 3755 year: 2019 ident: b0070 article-title: Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo) publication-title: Applied Sciences – year: 2016 ident: b0500 article-title: Data Mining: Practical machine learning tools and techniques – volume: 13 start-page: 839 year: 2016 end-page: 856 ident: b0555 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides – volume: 10 start-page: 743 year: 2019 ident: b0430 article-title: New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed publication-title: Forests – start-page: 585 year: 2013 end-page: 593 ident: b0460 article-title: Case event system for landslide susceptibility analysis publication-title: Landslide science and practice – volume: 93 start-page: 249 year: 2018 end-page: 274 ident: b0335 article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models publication-title: Nat. Hazards – volume: 1864 start-page: 2241 year: 2018 end-page: 2246 ident: b0240 article-title: Predicting and analyzing early wake-up associated gene expressions by integrating GWAS and eQTL studies publication-title: Biochimica et Biophys. Acta (BBA)-Mol. Basis Dis. – volume: 66 start-page: 1667 year: 2012 end-page: 1681 ident: b0235 article-title: Rainfall-induced landslide susceptibility zonation of Puerto Rico publication-title: Environ. Earth Sci. – volume: 10 start-page: 820 year: 2019 end-page: 835 ident: b0475 article-title: Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor publication-title: Geomatics Natural Hazards Risk – volume: 34 start-page: 1408 year: 2019 end-page: 1426 ident: b0540 article-title: Optimizing landslide susceptibility mapping in the Kongtong District, NW China: comparing the subdivision criteria of factors publication-title: Geocarto International – volume: 104470 year: 2020 ident: b0160 article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping publication-title: Comput. Geosci. – volume: 78 start-page: 488 year: 2019 ident: b0190 article-title: Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China) publication-title: Environmental Earth Sciences – volume: 40 start-page: 381 year: 2001 end-page: 391 ident: b0115 article-title: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong publication-title: Environ. Geol. – volume: 18 start-page: 471 year: 2011 end-page: 493 ident: b0365 article-title: Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling publication-title: Environ. Ecol. Stat. – volume: 5 start-page: 789 year: 2012 end-page: 796 ident: b0395 article-title: Assessing landslide vulnerability from soil characteristics—a GIS-based analysis publication-title: Arabian J. Geosci. – reference: Nguyen, V.-T., Tran, T.H., Ha, N.A., Ngo, V.L., Nadhir, A.-A., Tran, V.P., Duy Nguyen, H., MA, M., Amini, A., Prakash, I., 2019. GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability, 11, 7118. – volume: 9 start-page: 144 year: 2020 ident: b0465 article-title: Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions publication-title: ISPRS Int. J. Geo-Inf. – volume: 42 start-page: 155 year: 2015 end-page: 165 ident: b0015 article-title: Neighborhood guided smoothed emphasis for real AdaBoost ensembles publication-title: Neural Process. Lett. – volume: 75 start-page: 553 year: 2016 ident: b0010 article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran) publication-title: Environmental Earth Sciences – start-page: 1 year: 2019 end-page: 15 ident: b0230 article-title: Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan publication-title: Korea. Geocarto Int. – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: b0165 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – volume: 37 start-page: 297 year: 1999 end-page: 336 ident: b0385 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Machine Learning – reference: Ting, K.M., Witten, I.H., 1997. Stacking bagged and dagged models. – volume: 46 start-page: 33 year: 2014 end-page: 57 ident: b0260 article-title: Machine learning feature selection methods for landslide susceptibility mapping publication-title: Math. Geosci. – volume: 183 year: 2019 ident: b0570 article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods publication-title: Catena – volume: 34 start-page: 348 year: 2019 end-page: 367 ident: b0090 article-title: Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China publication-title: Geocarto International – volume: 32 start-page: 619 year: 2017 end-page: 639 ident: b0135 article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping publication-title: Geocarto international – volume: 17 start-page: 2473 year: 2020 ident: b0270 article-title: Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study Vietnam publication-title: Int. J. Environ. Res. Public Health – volume: 14 start-page: 64 year: 2018 end-page: 73 ident: b0480 article-title: Identification and analysis of the cleavage site in a signal peptide using SMOTE, dagging, and feature selection methods publication-title: Mol. Omics – volume: 6 start-page: 2351 year: 2013 end-page: 2365 ident: b0350 article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed publication-title: Iran. Arabian J. Geosci. – volume: 72 start-page: 250 year: 2005 end-page: 271 ident: b0055 article-title: Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses publication-title: Geomorphology – volume: 57 start-page: 331 year: 2004 end-page: 351 ident: b0255 article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry publication-title: Geomorphology – volume: 75 start-page: 422 year: 2016 ident: b0515 article-title: Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province publication-title: China. Environ. Earth Sci. – volume: 9 start-page: 93 year: 2012 end-page: 106 ident: b0020 article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at zmir, Turkey publication-title: Landslides – volume: 583 year: 2020 ident: b0085 article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping publication-title: J. Hydrol. – volume: 35 start-page: 1125 year: 2009 end-page: 1138 ident: b0550 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat¡ªTurkey) publication-title: Comput. Geosci. – volume: 175 start-page: 203 year: 2019 end-page: 218 ident: b0325 article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches publication-title: Catena – volume: 9 start-page: 1077 year: 2016 end-page: 1097 ident: b0420 article-title: Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam publication-title: Int. J. Digital Earth – volume: 666 start-page: 975 year: 2019 end-page: 993 ident: b0490 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. – volume: 94 start-page: 268 year: 2008 end-page: 289 ident: b0170 article-title: Comparing landslide inventory maps publication-title: Geomorphology – start-page: 301 year: 1995 end-page: 309 ident: b0380 article-title: Landslide hazard zonation: a case study in Garhwal Himalaya publication-title: India. Mountain Res. Develop. – volume: 11 start-page: 909 year: 2014 end-page: 926 ident: b0200 article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran publication-title: Int. J. Environ. Sci. Technol. – volume: 78 start-page: 1911 year: 2019 end-page: 1925 ident: b0315 article-title: A novel hybrid model of bagging-based naïve bayes trees for landslide susceptibility assessment publication-title: Bull. Eng. Geol. Environ. – volume: 14 start-page: 1043 year: 2017 end-page: 1055 ident: b0095 article-title: Effects of climate change on shallow landslides in a small coastal catchment in southern Italy publication-title: Landslides – volume: 143 start-page: 1435 year: 2016 end-page: 1442 ident: b0045 article-title: Problems with Landslide Stabilization of Dukat in the Road Vlora-Saranda publication-title: Procedia Eng. – volume: 12 start-page: 113 year: 2020 ident: b0250 article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques publication-title: Water – volume: 35 start-page: 1125 year: 2009 end-page: 1138 ident: b0545 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey) publication-title: Comput. Geosci. – volume: 40 start-page: 481 year: 2019 end-page: 501 ident: b0215 article-title: GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods publication-title: Phys. Geogr. – volume: 11 start-page: 762 year: 2019 ident: b0245 article-title: Landslide susceptibility mapping for the Muchuan county (China): A comparison between bivariate statistical models (woe, ebf, and ioe) and their ensembles with logistic regression publication-title: Symmetry – volume: 38 start-page: 23 year: 2012 end-page: 34 ident: b0025 article-title: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm publication-title: Comput. Geosci. – volume: 36 start-page: 331 year: 2005 end-page: 354 ident: b0445 article-title: The influence of the North Atlantic Oscillation on rainfall triggering of landslides near Lisbon publication-title: Nat. Hazards – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0050 article-title: Bagging predictors publication-title: Machine Learning – volume: 83 start-page: 97 year: 2016 end-page: 127 ident: b0295 article-title: Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS publication-title: Nat. Hazards – volume: 175 start-page: 430 year: 2019 end-page: 445 ident: b0205 article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility publication-title: Catena – volume: 11 start-page: 4386 year: 2019 ident: b0405 article-title: Landslide susceptibility assessment by novel hybrid machine learning algorithms publication-title: Sustainability – volume: 10 start-page: 187 year: 2017 ident: b0520 article-title: A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models publication-title: Arabian J. Geosci. – volume: 26 start-page: 71 year: 2005 end-page: 74 ident: b0525 article-title: Systematic analysis of risk evaluation of landslide hazard publication-title: Yantu Lixue(Rock Soil Mech.) – volume: 75 start-page: 185 year: 2016 ident: b0345 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province publication-title: Iran. Environ. Earth Sci. – volume: 718 year: 2020 ident: b0195 article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble publication-title: Sci. Total Environ. – reference: Talebi, A., Uijlenhoet, R., Troch, P.A., 2007. Soil moisture storage and hillslope stability. – volume: 187 year: 2020 ident: b0510 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena – volume: 61 start-page: 595 year: 2010 end-page: 611 ident: b0030 article-title: Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis publication-title: Environmental Earth Sciences – volume: 149 start-page: 52 year: 2017 end-page: 63 ident: b0300 article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS publication-title: Catena – start-page: 87 year: 2014 end-page: 111 ident: b0425 article-title: A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam, Remote Sensing Applications in Environmental Research publication-title: Springer – volume: 138 year: 2020 ident: b0495 article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks publication-title: Comput. Geosci. – volume: 75 start-page: 229 year: 2004 end-page: 250 ident: b0150 article-title: Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey) publication-title: Eng. Geol. – volume: 183 year: 2019 ident: b0100 article-title: Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics publication-title: Catena – volume: 145 start-page: 70 year: 2012 end-page: 80 ident: b0530 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China publication-title: Geomorphology – volume: 145 start-page: 164 year: 2016 end-page: 179 ident: b0455 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size publication-title: Catena – volume: 35 start-page: 139 year: 2018 end-page: 157 ident: b0410 article-title: Landslide susceptibility modelling using different advanced decision trees methods publication-title: Civil Eng. Environ. Syst. – volume: 10 start-page: 425 year: 2020 ident: b0075 article-title: Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models publication-title: Applied Sciences – volume: 51 start-page: 350 year: 2013 end-page: 365 ident: b0370 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. – start-page: 419 year: 2014 end-page: 424 ident: b0140 article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan, Landslide science for a safer geoenvironment publication-title: Springer – volume: 51 start-page: 138 year: 1995 end-page: 156 ident: b0185 article-title: Status of remote sensing algorithms for estimation of land surface state parameters publication-title: Remote Sens. Environ. – volume: 27 start-page: 221 year: 1987 end-page: 234 ident: b0375 article-title: Simplifying decision trees publication-title: Int. J. Man Mach. Stud. – volume: 76 start-page: 405 year: 2017 ident: b0560 article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area publication-title: China. Environ. Earth Sciences – volume: 303 start-page: 256 year: 2018 end-page: 270 ident: b0320 article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees publication-title: Geomorphology – volume: 75 start-page: 1101 year: 2016 ident: b0415 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. – volume: 34 start-page: 316 year: 2019 end-page: 333 ident: b0310 article-title: Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping publication-title: Geocarto Int. – volume: 46 start-page: 679 year: 2019 end-page: 692 ident: b0155 article-title: GIS-Based Groundwater Potential Mapping in Khorramabad in Lorestan, Iran, using Frequency Ratio (FR) and Weights of Evidence (WoE) Models publication-title: Water Resour. – volume: 128 start-page: 255 year: 2017 end-page: 273 ident: b0290 article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods publication-title: Theor. Appl. Climatol. – start-page: 255 year: 2017 end-page: 269 ident: b0305 publication-title: A Novel Hybrid Intelligent Approach of Random Subspace Ensemble and Reduced Error Pruning Trees for Landslide Susceptibility Modeling: A Case Study at Mu Cang Chai District, Yen Bai Province – volume: 65 start-page: 15 year: 2005 end-page: 31 ident: b0040 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology – volume: 627 start-page: 744 year: 2018 end-page: 755 ident: b0210 article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran publication-title: Sci. Total Environ. – volume: 16 start-page: 427 year: 1991 end-page: 445 ident: b0060 article-title: GIS techniques and statistical models in evaluating landslide hazard publication-title: Earth Surf. Proc. Land. – volume: 9 start-page: 171 year: 2019 ident: b0080 article-title: Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models publication-title: Applied Sciences – volume: 8 start-page: 1046 year: 2018 ident: b0450 article-title: Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree publication-title: Appl. Sci. – volume: 183 year: 2019 ident: b0485 article-title: A comparative study of composite kernels for landslide susceptibility mapping: A case study in Yongxin County publication-title: China. Catena – volume: 91 start-page: 355 year: 2018 end-page: 362 ident: b0285 article-title: A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility publication-title: J. Geol. Soc. India – volume: 13 start-page: 361 year: 2016 end-page: 378 ident: b0435 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides – volume: 171 start-page: 222 year: 2018 end-page: 233 ident: b0575 article-title: Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping publication-title: Catena – volume: 64 start-page: 65 year: 2002 end-page: 87 ident: b0120 article-title: Landslide risk assessment and management: an overview publication-title: Eng. Geol. – volume: 74 start-page: 413 year: 2015 end-page: 429 ident: b0225 article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea publication-title: Environ. Earth Sci. – start-page: 1 year: 2019 end-page: 15 ident: b0180 article-title: Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China – volume: 135 start-page: 122 year: 2015 end-page: 148 ident: b0125 article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran publication-title: CATENA – year: 2013 ident: b0265 article-title: An artificial intelligence approach – volume: 10 start-page: 16 year: 2020 ident: b0565 article-title: Gis-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques publication-title: Appl. Sci. – start-page: 1 year: 2019 end-page: 24 ident: b0330 article-title: Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district publication-title: Vietnam. Geocarto Int. – reference: Xu, W., Lee, E.-J., 2013. A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm. KSII Transactions on Internet & Information Systems, 7. – volume: 21 start-page: 687 year: 2014 end-page: 691 ident: b0505 article-title: Parameterized adaboost: introducing a parameter to speed up the training of real adaboost publication-title: IEEE Signal Process Lett. – volume: 10 start-page: 1545 year: 2018 ident: b0280 article-title: Landslide susceptibility mapping and comparison using decision tree models: A Case Study of Jumunjin Area Korea publication-title: Remote Sens. – volume: 183 year: 2019 ident: b0390 article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network publication-title: CATENA – volume: 76 start-page: 1263 year: 2017 ident: 10.1016/j.catena.2020.104777_b0360 article-title: Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-016-0919-x – volume: 9 start-page: 3755 year: 2019 ident: 10.1016/j.catena.2020.104777_b0070 article-title: Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo) publication-title: Applied Sciences doi: 10.3390/app9183755 – year: 2013 ident: 10.1016/j.catena.2020.104777_b0265 – volume: 10 start-page: 743 year: 2019 ident: 10.1016/j.catena.2020.104777_b0430 article-title: New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed publication-title: Forests doi: 10.3390/f10090743 – volume: 145 start-page: 164 year: 2016 ident: 10.1016/j.catena.2020.104777_b0455 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 128 start-page: 255 year: 2017 ident: 10.1016/j.catena.2020.104777_b0290 article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1702-9 – volume: 583 year: 2020 ident: 10.1016/j.catena.2020.104777_b0085 article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124602 – volume: 11 start-page: 762 year: 2019 ident: 10.1016/j.catena.2020.104777_b0245 article-title: Landslide susceptibility mapping for the Muchuan county (China): A comparison between bivariate statistical models (woe, ebf, and ioe) and their ensembles with logistic regression publication-title: Symmetry doi: 10.3390/sym11060762 – volume: 9 start-page: 144 year: 2020 ident: 10.1016/j.catena.2020.104777_b0465 article-title: Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi9030144 – volume: 12 start-page: 325 year: 2020 ident: 10.1016/j.catena.2020.104777_b0470 article-title: Hybrid computational intelligence methods for landslide susceptibility mapping publication-title: Symmetry doi: 10.3390/sym12030325 – volume: 40 start-page: 381 year: 2001 ident: 10.1016/j.catena.2020.104777_b0115 article-title: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong publication-title: Environ. Geol. doi: 10.1007/s002540000163 – volume: 57 start-page: 331 year: 2004 ident: 10.1016/j.catena.2020.104777_b0255 article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry publication-title: Geomorphology doi: 10.1016/S0169-555X(03)00164-8 – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.catena.2020.104777_b0165 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 35 start-page: 1125 year: 2009 ident: 10.1016/j.catena.2020.104777_b0550 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat¡ªTurkey) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.08.007 – start-page: 419 year: 2014 ident: 10.1016/j.catena.2020.104777_b0140 article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan, Landslide science for a safer geoenvironment publication-title: Springer – start-page: 301 year: 1995 ident: 10.1016/j.catena.2020.104777_b0380 article-title: Landslide hazard zonation: a case study in Garhwal Himalaya publication-title: India. Mountain Res. Develop. doi: 10.2307/3673806 – volume: 75 start-page: 185 year: 2016 ident: 10.1016/j.catena.2020.104777_b0345 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province publication-title: Iran. Environ. Earth Sci. doi: 10.1007/s12665-015-4950-1 – volume: 11 start-page: 4386 year: 2019 ident: 10.1016/j.catena.2020.104777_b0405 article-title: Landslide susceptibility assessment by novel hybrid machine learning algorithms publication-title: Sustainability doi: 10.3390/su11164386 – volume: 149 start-page: 52 year: 2017 ident: 10.1016/j.catena.2020.104777_b0300 article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS publication-title: Catena doi: 10.1016/j.catena.2016.09.007 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.catena.2020.104777_b0050 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 46 start-page: 33 year: 2014 ident: 10.1016/j.catena.2020.104777_b0260 article-title: Machine learning feature selection methods for landslide susceptibility mapping publication-title: Math. Geosci. doi: 10.1007/s11004-013-9511-0 – volume: 76 start-page: 405 year: 2017 ident: 10.1016/j.catena.2020.104777_b0560 article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area publication-title: China. Environ. Earth Sciences doi: 10.1007/s12665-017-6731-5 – volume: 42 start-page: 155 year: 2015 ident: 10.1016/j.catena.2020.104777_b0015 article-title: Neighborhood guided smoothed emphasis for real AdaBoost ensembles publication-title: Neural Process. Lett. doi: 10.1007/s11063-014-9386-1 – volume: 75 start-page: 229 year: 2004 ident: 10.1016/j.catena.2020.104777_b0150 article-title: Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2004.06.001 – volume: 40 start-page: 481 year: 2019 ident: 10.1016/j.catena.2020.104777_b0215 article-title: GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods publication-title: Phys. Geogr. doi: 10.1080/02723646.2018.1559583 – volume: 17 start-page: 2473 year: 2020 ident: 10.1016/j.catena.2020.104777_b0270 article-title: Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study Vietnam publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17072473 – volume: 183 year: 2019 ident: 10.1016/j.catena.2020.104777_b0485 article-title: A comparative study of composite kernels for landslide susceptibility mapping: A case study in Yongxin County publication-title: China. Catena – volume: 27 start-page: 1153 year: 2019 ident: 10.1016/j.catena.2020.104777_b0175 article-title: ASSESSMENT OF REGIONAL LANDSLIDE SUSCEPTIBILITY BASED ON COMBINED MODEL OF CERTAINTY FACTOR METHOD publication-title: Journal of Engineering Geology – start-page: 493 year: 2007 ident: 10.1016/j.catena.2020.104777_b0220 – volume: 34 start-page: 348 year: 2019 ident: 10.1016/j.catena.2020.104777_b0090 article-title: Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China publication-title: Geocarto International doi: 10.1080/10106049.2017.1404143 – start-page: 1 year: 2019 ident: 10.1016/j.catena.2020.104777_b0180 – volume: 61 start-page: 595 year: 2010 ident: 10.1016/j.catena.2020.104777_b0030 article-title: Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis publication-title: Environmental Earth Sciences doi: 10.1007/s12665-009-0373-1 – volume: 21 start-page: 687 year: 2014 ident: 10.1016/j.catena.2020.104777_b0505 article-title: Parameterized adaboost: introducing a parameter to speed up the training of real adaboost publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2014.2313570 – volume: 14 start-page: 64 year: 2018 ident: 10.1016/j.catena.2020.104777_b0480 article-title: Identification and analysis of the cleavage site in a signal peptide using SMOTE, dagging, and feature selection methods publication-title: Mol. Omics doi: 10.1039/C7MO00030H – volume: 135 start-page: 122 year: 2015 ident: 10.1016/j.catena.2020.104777_b0125 article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran publication-title: CATENA doi: 10.1016/j.catena.2015.07.020 – volume: 78 start-page: 1911 year: 2019 ident: 10.1016/j.catena.2020.104777_b0315 article-title: A novel hybrid model of bagging-based naïve bayes trees for landslide susceptibility assessment publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1202-5 – ident: 10.1016/j.catena.2020.104777_b0440 – volume: 13 start-page: 361 year: 2016 ident: 10.1016/j.catena.2020.104777_b0435 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – volume: 34 start-page: 316 year: 2019 ident: 10.1016/j.catena.2020.104777_b0310 article-title: Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping publication-title: Geocarto Int. doi: 10.1080/10106049.2017.1404141 – volume: 303 start-page: 256 year: 2018 ident: 10.1016/j.catena.2020.104777_b0320 article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.12.008 – volume: 666 start-page: 975 year: 2019 ident: 10.1016/j.catena.2020.104777_b0490 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.263 – volume: 718 year: 2020 ident: 10.1016/j.catena.2020.104777_b0195 article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137231 – volume: 51 start-page: 138 year: 1995 ident: 10.1016/j.catena.2020.104777_b0185 article-title: Status of remote sensing algorithms for estimation of land surface state parameters publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00071-T – volume: 78 start-page: 488 year: 2019 ident: 10.1016/j.catena.2020.104777_b0190 article-title: Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China) publication-title: Environmental Earth Sciences doi: 10.1007/s12665-019-8415-9 – volume: 10 start-page: 3697 year: 2018 ident: 10.1016/j.catena.2020.104777_b0340 article-title: Assessment of landslide-prone areas and their zonation using logistic regression, logitboost, and naïvebayes machine-learning algorithms publication-title: Sustainability doi: 10.3390/su10103697 – volume: 36 start-page: 331 year: 2005 ident: 10.1016/j.catena.2020.104777_b0445 article-title: The influence of the North Atlantic Oscillation on rainfall triggering of landslides near Lisbon publication-title: Nat. Hazards doi: 10.1007/s11069-005-1709-0 – volume: 10 start-page: 1545 year: 2018 ident: 10.1016/j.catena.2020.104777_b0280 article-title: Landslide susceptibility mapping and comparison using decision tree models: A Case Study of Jumunjin Area Korea publication-title: Remote Sens. doi: 10.3390/rs10101545 – volume: 32 start-page: 935 year: 2017 ident: 10.1016/j.catena.2020.104777_b0105 article-title: Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models publication-title: Geocarto International doi: 10.1080/10106049.2016.1195886 – ident: 10.1016/j.catena.2020.104777_b0535 doi: 10.3837/tiis.2013.11.010 – volume: 38 start-page: 23 year: 2012 ident: 10.1016/j.catena.2020.104777_b0025 article-title: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.04.012 – volume: 34 start-page: 1427 year: 2019 ident: 10.1016/j.catena.2020.104777_b0005 article-title: A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment publication-title: Geocarto International doi: 10.1080/10106049.2018.1499820 – start-page: 1 year: 2019 ident: 10.1016/j.catena.2020.104777_b0230 article-title: Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan publication-title: Korea. Geocarto Int. – volume: 175 start-page: 430 year: 2019 ident: 10.1016/j.catena.2020.104777_b0205 article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2018.12.033 – volume: 130 start-page: 609 year: 2017 ident: 10.1016/j.catena.2020.104777_b0355 article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-016-1919-2 – volume: 102 start-page: 496 year: 2008 ident: 10.1016/j.catena.2020.104777_b0110 article-title: Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.05.041 – ident: 10.1016/j.catena.2020.104777_b0400 doi: 10.5194/nhess-7-523-2007 – volume: 627 start-page: 744 year: 2018 ident: 10.1016/j.catena.2020.104777_b0210 article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.266 – volume: 6 start-page: 2351 year: 2013 ident: 10.1016/j.catena.2020.104777_b0350 article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed publication-title: Iran. Arabian J. Geosci. doi: 10.1007/s12517-012-0532-7 – volume: 35 start-page: 1125 year: 2009 ident: 10.1016/j.catena.2020.104777_b0545 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.08.007 – volume: 75 start-page: 1101 year: 2016 ident: 10.1016/j.catena.2020.104777_b0415 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5919-4 – volume: 16 start-page: 427 year: 1991 ident: 10.1016/j.catena.2020.104777_b0060 article-title: GIS techniques and statistical models in evaluating landslide hazard publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.3290160505 – start-page: 1 year: 2019 ident: 10.1016/j.catena.2020.104777_b0330 article-title: Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district publication-title: Vietnam. Geocarto Int. – volume: 75 start-page: 422 year: 2016 ident: 10.1016/j.catena.2020.104777_b0515 article-title: Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province publication-title: China. Environ. Earth Sci. doi: 10.1007/s12665-015-5194-9 – volume: 64 start-page: 65 year: 2002 ident: 10.1016/j.catena.2020.104777_b0120 article-title: Landslide risk assessment and management: an overview publication-title: Eng. Geol. doi: 10.1016/S0013-7952(01)00093-X – volume: 26 start-page: 71 year: 2005 ident: 10.1016/j.catena.2020.104777_b0525 article-title: Systematic analysis of risk evaluation of landslide hazard publication-title: Yantu Lixue(Rock Soil Mech.) – volume: 145 start-page: 70 year: 2012 ident: 10.1016/j.catena.2020.104777_b0530 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – volume: 13 start-page: 839 year: 2016 ident: 10.1016/j.catena.2020.104777_b0555 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 10 start-page: 820 year: 2019 ident: 10.1016/j.catena.2020.104777_b0475 article-title: Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor publication-title: Geomatics Natural Hazards Risk doi: 10.1080/19475705.2018.1549111 – volume: 12 start-page: 113 year: 2020 ident: 10.1016/j.catena.2020.104777_b0250 article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques publication-title: Water doi: 10.3390/w12010113 – volume: 75 start-page: 553 year: 2016 ident: 10.1016/j.catena.2020.104777_b0010 article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran) publication-title: Environmental Earth Sciences doi: 10.1007/s12665-015-5233-6 – volume: 72 start-page: 250 year: 2005 ident: 10.1016/j.catena.2020.104777_b0055 article-title: Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.05.011 – volume: 10 start-page: 425 year: 2020 ident: 10.1016/j.catena.2020.104777_b0075 article-title: Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models publication-title: Applied Sciences doi: 10.3390/app10020425 – volume: 10 start-page: 187 year: 2017 ident: 10.1016/j.catena.2020.104777_b0520 article-title: A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models publication-title: Arabian J. Geosci. doi: 10.1007/s12517-017-2961-9 – volume: 18 start-page: 471 year: 2011 ident: 10.1016/j.catena.2020.104777_b0365 article-title: Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling publication-title: Environ. Ecol. Stat. doi: 10.1007/s10651-010-0147-7 – volume: 9 start-page: 93 year: 2012 ident: 10.1016/j.catena.2020.104777_b0020 article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at zmir, Turkey publication-title: Landslides doi: 10.1007/s10346-011-0283-7 – volume: 27 start-page: 221 year: 1987 ident: 10.1016/j.catena.2020.104777_b0375 article-title: Simplifying decision trees publication-title: Int. J. Man Mach. Stud. doi: 10.1016/S0020-7373(87)80053-6 – volume: 91 start-page: 355 year: 2018 ident: 10.1016/j.catena.2020.104777_b0285 article-title: A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility publication-title: J. Geol. Soc. India doi: 10.1007/s12594-018-0862-5 – volume: 138 year: 2020 ident: 10.1016/j.catena.2020.104777_b0495 article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104445 – volume: 14 start-page: 1235 year: 2017 ident: 10.1016/j.catena.2020.104777_b0065 article-title: Relationship between landslide size and rainfall conditions in Taiwan publication-title: Landslides doi: 10.1007/s10346-016-0790-7 – volume: 66 start-page: 1667 year: 2012 ident: 10.1016/j.catena.2020.104777_b0235 article-title: Rainfall-induced landslide susceptibility zonation of Puerto Rico publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-0976-1 – volume: 94 start-page: 268 year: 2008 ident: 10.1016/j.catena.2020.104777_b0170 article-title: Comparing landslide inventory maps publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.09.023 – volume: 183 year: 2019 ident: 10.1016/j.catena.2020.104777_b0100 article-title: Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics publication-title: Catena doi: 10.1016/j.catena.2019.104179 – volume: 175 start-page: 203 year: 2019 ident: 10.1016/j.catena.2020.104777_b0325 article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches publication-title: Catena doi: 10.1016/j.catena.2018.12.018 – volume: 35 start-page: 139 year: 2018 ident: 10.1016/j.catena.2020.104777_b0410 article-title: Landslide susceptibility modelling using different advanced decision trees methods publication-title: Civil Eng. Environ. Syst. doi: 10.1080/10286608.2019.1568418 – volume: 14 start-page: 1043 year: 2017 ident: 10.1016/j.catena.2020.104777_b0095 article-title: Effects of climate change on shallow landslides in a small coastal catchment in southern Italy publication-title: Landslides doi: 10.1007/s10346-016-0743-1 – volume: 51 start-page: 350 year: 2013 ident: 10.1016/j.catena.2020.104777_b0370 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 74 start-page: 413 year: 2015 ident: 10.1016/j.catena.2020.104777_b0225 article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4048-9 – volume: 65 start-page: 15 year: 2005 ident: 10.1016/j.catena.2020.104777_b0040 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 37 start-page: 297 year: 1999 ident: 10.1016/j.catena.2020.104777_b0385 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Machine Learning doi: 10.1023/A:1007614523901 – volume: 5 start-page: 789 year: 2012 ident: 10.1016/j.catena.2020.104777_b0395 article-title: Assessing landslide vulnerability from soil characteristics—a GIS-based analysis publication-title: Arabian J. Geosci. doi: 10.1007/s12517-010-0272-5 – start-page: 585 year: 2013 ident: 10.1016/j.catena.2020.104777_b0460 article-title: Case event system for landslide susceptibility analysis – volume: 1864 start-page: 2241 year: 2018 ident: 10.1016/j.catena.2020.104777_b0240 article-title: Predicting and analyzing early wake-up associated gene expressions by integrating GWAS and eQTL studies publication-title: Biochimica et Biophys. Acta (BBA)-Mol. Basis Dis. doi: 10.1016/j.bbadis.2017.10.036 – volume: 10 start-page: 16 year: 2020 ident: 10.1016/j.catena.2020.104777_b0565 article-title: Gis-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques publication-title: Appl. Sci. doi: 10.3390/app10010016 – volume: 93 start-page: 249 year: 2018 ident: 10.1016/j.catena.2020.104777_b0335 article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models publication-title: Nat. Hazards doi: 10.1007/s11069-018-3299-7 – volume: 183 year: 2019 ident: 10.1016/j.catena.2020.104777_b0390 article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network publication-title: CATENA – volume: 78 start-page: 1749 year: 2015 ident: 10.1016/j.catena.2020.104777_b0145 article-title: An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan publication-title: Nat. Hazards doi: 10.1007/s11069-015-1799-2 – volume: 9 start-page: 171 year: 2019 ident: 10.1016/j.catena.2020.104777_b0080 article-title: Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models publication-title: Applied Sciences doi: 10.3390/app9010171 – year: 2016 ident: 10.1016/j.catena.2020.104777_b0500 – volume: 11 start-page: 909 year: 2014 ident: 10.1016/j.catena.2020.104777_b0200 article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0464-0 – volume: 8 start-page: 1046 year: 2018 ident: 10.1016/j.catena.2020.104777_b0450 article-title: Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree publication-title: Appl. Sci. doi: 10.3390/app8071046 – volume: 183 year: 2019 ident: 10.1016/j.catena.2020.104777_b0570 article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods publication-title: Catena doi: 10.1016/j.catena.2019.104188 – start-page: 87 year: 2014 ident: 10.1016/j.catena.2020.104777_b0425 article-title: A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam, Remote Sensing Applications in Environmental Research publication-title: Springer – year: 2012 ident: 10.1016/j.catena.2020.104777_b0035 – volume: 34 start-page: 1408 year: 2019 ident: 10.1016/j.catena.2020.104777_b0540 article-title: Optimizing landslide susceptibility mapping in the Kongtong District, NW China: comparing the subdivision criteria of factors publication-title: Geocarto International doi: 10.1080/10106049.2018.1499816 – volume: 143 start-page: 1435 year: 2016 ident: 10.1016/j.catena.2020.104777_b0045 article-title: Problems with Landslide Stabilization of Dukat in the Road Vlora-Saranda publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.06.169 – volume: 32 start-page: 619 year: 2017 ident: 10.1016/j.catena.2020.104777_b0135 article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping publication-title: Geocarto international – volume: 65 start-page: 135 year: 2013 ident: 10.1016/j.catena.2020.104777_b0130 article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya publication-title: Nat. Hazards doi: 10.1007/s11069-012-0347-6 – volume: 187 year: 2020 ident: 10.1016/j.catena.2020.104777_b0510 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2019.104396 – volume: 83 start-page: 97 year: 2016 ident: 10.1016/j.catena.2020.104777_b0295 article-title: Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS publication-title: Nat. Hazards doi: 10.1007/s11069-016-2304-2 – ident: 10.1016/j.catena.2020.104777_b0275 doi: 10.3390/su11247118 – volume: 9 start-page: 1077 year: 2016 ident: 10.1016/j.catena.2020.104777_b0420 article-title: Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2016.1169561 – start-page: 255 year: 2017 ident: 10.1016/j.catena.2020.104777_b0305 – volume: 46 start-page: 679 year: 2019 ident: 10.1016/j.catena.2020.104777_b0155 article-title: GIS-Based Groundwater Potential Mapping in Khorramabad in Lorestan, Iran, using Frequency Ratio (FR) and Weights of Evidence (WoE) Models publication-title: Water Resour. doi: 10.1134/S0097807819050051 – volume: 104470 year: 2020 ident: 10.1016/j.catena.2020.104777_b0160 article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping publication-title: Comput. Geosci. – volume: 171 start-page: 222 year: 2018 ident: 10.1016/j.catena.2020.104777_b0575 article-title: Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2018.07.012 |
SSID | ssj0004751 |
Score | 2.6331291 |
Snippet | •Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the... Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104777 |
SubjectTerms | artificial intelligence Bagging catenas China confidence interval Dagging data collection humans hybrids inventories land use Landslide landslides lithology model validation prediction rain Real Adaboost Reduced error pruning tree sediment transport soil streams |
Title | GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models |
URI | https://dx.doi.org/10.1016/j.catena.2020.104777 https://www.proquest.com/docview/2552029365 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9DEb2Im4rzMSJ40EPc2mZJcxxD3RR3UcFbaF46Gd2w22EX_3aTNPUFInhry5dS8r2S5vd9PwBOtKJ244Ml6ihlECYmQUxSjdKuSUkWyVRpV-98OyKDB3z92H2sgX5VC-NglSH2lzHdR-vwpB1msz0bj9t3HRuA04jEsbXTJPZ15BhTZ-Xnb58wD0w9BaMTRk66Kp_zGC8HOspd96HYH3ZSSn9LTz8Ctc8-l1tgMywbYa_8sjqo6bwB1gOD-fOyAdauPEWvvaoHdy3gaegpfbYN-NXwDrmMpeBnf284NdCX-k7GSsNiUXiIi0fLLqEDxD_B56Wr6ILScz-E_4Zw_KWNJ_RUOsUOeLi8uO8PUOBWQJlNWXNkDI2UwB0h7QbMYB0zKYTIqDQ2hctEW7eNMmWXI5HWBEuKGTUJpSoTWBmtVLILVvJprvcAZNpkgoiYxMxg1mEpEZHrwoYxU0zEWRMk1ZRyGRqPO_6LCa8QZi-8VAR3iuClIpoAfYyalY03_pCnlbb4NwPiNjf8MfK4Ui63vuUOTLJcTxcFt9stK8cS0t3_99sPwIa7KxEwh2Bl_rrQR3YdMxctb6gtsNob3gxG77gj8_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRfQiPvFtBA96CLtts0lzFFF3fexFBW-heemKdMXuHvbfm6SpLxDBW2knpWSSmaT5vm8ADo1mbuNDFO5obTGhNsNcMYPzrs1pkahcG893vhnQ3j25fOg-zMBpw4XxsMoY--uYHqJ1vNOOvdl-HQ7btx0XgPOEpqkbp1nqeeSzXp2q24LZk_5Vb_BJj2ShCqO3x75Bw6ALMC-POyq9AFEazjsZY79lqB-xOiSg8yVYjCtHdFJ_3DLMmHIF5mMR86fpCsxdhCq97mo5ztgKHUVZ6eNVEBf9W-yTlkafEt9oZFFg-74MtUHVpAoolwCYnSKPiX9ET1NP6kIqlH-Ivw7R8IuSJwrVdKo1uD8_uzvt4VheARcua42xtSzRknSkcnswS0zKlZSyYMq6LK4y42ZuUmi3IkmMoUQxwpnNGNOFJNoarbN1aJWj0mwA4sYWksqUptwS3uE5lYkXYiOEay7TYhOypkuFitrjvgTGi2hAZs-idoTwjhC1IzYBf7R6rbU3_rBnjbfEtzEkXHr4o-VB41zhppc_MylKM5pUwu24nB3PaHfr32_fh_ne3c21uO4PrrZhwT-pATE70Bq_TcyuW9aM5V4ctu8Szvat |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIS-based+evaluation+of+landslide+susceptibility+using+hybrid+computational+intelligence+models&rft.jtitle=Catena+%28Giessen%29&rft.au=Chen%2C+Wei&rft.au=Li%2C+Yang&rft.date=2020-12-01&rft.issn=0341-8162&rft.volume=195+p.104777-&rft_id=info:doi/10.1016%2Fj.catena.2020.104777&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |