GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models

•Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the models.•Ensemble models enhance the performance of solely applied REPT model.•Hybrid RRept model shows the best result in landslide prediction. Lan...

Full description

Saved in:
Bibliographic Details
Published inCatena (Giessen) Vol. 195; p. 104777
Main Authors Chen, Wei, Li, Yang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the models.•Ensemble models enhance the performance of solely applied REPT model.•Hybrid RRept model shows the best result in landslide prediction. Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide disasters. The purpose of this study is to make use of a hybrid machine learning approach by combining the reduced-error pruning trees (Rept) with a series of ensemble techniques (Bagging, Dagging, and Real Adaboost) and compare the performance of each combination for landslide susceptibility modeling. The combination of Rept model and Real Adaboost (RRept)is a novel application in the field of landslide susceptibility. Firstly, a landslide inventory map was prepared with 298 determined historical landslides events in the study area, 209 landslides (70%) were randomly selected for the training dataset and the remaining 89 landslides (30%) were used for validation dataset. On this basis, 16 landslide influencing factors were included in the landslide susceptibility evaluation (slope angle, elevation, slope aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to roads, distance to faults, soil, normalized difference vegetation index (NDVI), landuse, lithology and rainfall). Secondly, the correlation attribute evaluation (CAE) method was used to select the most important factors for the proposed landslide susceptibility model. The results show that all the factors contribute to the occurrence of landslide. Slope angle, Landuse, Elevation, Distance to roads, Soil and Lithology have the greatest influence on the occurrence of landslide. The receiver operating characteristics (ROC), standard error (SE), 95% confidence interval and mean absolute error (MAE) were then used to validate and compare the performance of the model. The best model should have the largest AUC value, the smallest SE, the narrowest 95% CI and the smallest MAE. The results show that the three hybrid models perform better than the Rept model alone. For the training data set, the RRept model has highest AUC value (0.927), the smallest SE (0.121), the narrowest 95% confidence interval (0.898–0.95) and the lowest MAE (0.20). For the validation data set, the RRept model has the highest AUC value (0.745), the narrowest 95% confidence interval (0.674–0.807) and the lowest MAE (0.33). The RRept has the highest predictive power for landslide susceptibility evaluation. The results show that a hybrid method improves the prediction ability of the base Rept model. In addition, the RRept model is a promising comprehensive model that can be applied to landslide susceptibility mapping.
AbstractList Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide disasters. The purpose of this study is to make use of a hybrid machine learning approach by combining the reduced-error pruning trees (Rept) with a series of ensemble techniques (Bagging, Dagging, and Real Adaboost) and compare the performance of each combination for landslide susceptibility modeling. The combination of Rept model and Real Adaboost (RRept)is a novel application in the field of landslide susceptibility. Firstly, a landslide inventory map was prepared with 298 determined historical landslides events in the study area, 209 landslides (70%) were randomly selected for the training dataset and the remaining 89 landslides (30%) were used for validation dataset. On this basis, 16 landslide influencing factors were included in the landslide susceptibility evaluation (slope angle, elevation, slope aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to roads, distance to faults, soil, normalized difference vegetation index (NDVI), landuse, lithology and rainfall). Secondly, the correlation attribute evaluation (CAE) method was used to select the most important factors for the proposed landslide susceptibility model. The results show that all the factors contribute to the occurrence of landslide. Slope angle, Landuse, Elevation, Distance to roads, Soil and Lithology have the greatest influence on the occurrence of landslide. The receiver operating characteristics (ROC), standard error (SE), 95% confidence interval and mean absolute error (MAE) were then used to validate and compare the performance of the model. The best model should have the largest AUC value, the smallest SE, the narrowest 95% CI and the smallest MAE. The results show that the three hybrid models perform better than the Rept model alone. For the training data set, the RRept model has highest AUC value (0.927), the smallest SE (0.121), the narrowest 95% confidence interval (0.898–0.95) and the lowest MAE (0.20). For the validation data set, the RRept model has the highest AUC value (0.745), the narrowest 95% confidence interval (0.674–0.807) and the lowest MAE (0.33). The RRept has the highest predictive power for landslide susceptibility evaluation. The results show that a hybrid method improves the prediction ability of the base Rept model. In addition, the RRept model is a promising comprehensive model that can be applied to landslide susceptibility mapping.
•Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the models.•Ensemble models enhance the performance of solely applied REPT model.•Hybrid RRept model shows the best result in landslide prediction. Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide disasters. The purpose of this study is to make use of a hybrid machine learning approach by combining the reduced-error pruning trees (Rept) with a series of ensemble techniques (Bagging, Dagging, and Real Adaboost) and compare the performance of each combination for landslide susceptibility modeling. The combination of Rept model and Real Adaboost (RRept)is a novel application in the field of landslide susceptibility. Firstly, a landslide inventory map was prepared with 298 determined historical landslides events in the study area, 209 landslides (70%) were randomly selected for the training dataset and the remaining 89 landslides (30%) were used for validation dataset. On this basis, 16 landslide influencing factors were included in the landslide susceptibility evaluation (slope angle, elevation, slope aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to roads, distance to faults, soil, normalized difference vegetation index (NDVI), landuse, lithology and rainfall). Secondly, the correlation attribute evaluation (CAE) method was used to select the most important factors for the proposed landslide susceptibility model. The results show that all the factors contribute to the occurrence of landslide. Slope angle, Landuse, Elevation, Distance to roads, Soil and Lithology have the greatest influence on the occurrence of landslide. The receiver operating characteristics (ROC), standard error (SE), 95% confidence interval and mean absolute error (MAE) were then used to validate and compare the performance of the model. The best model should have the largest AUC value, the smallest SE, the narrowest 95% CI and the smallest MAE. The results show that the three hybrid models perform better than the Rept model alone. For the training data set, the RRept model has highest AUC value (0.927), the smallest SE (0.121), the narrowest 95% confidence interval (0.898–0.95) and the lowest MAE (0.20). For the validation data set, the RRept model has the highest AUC value (0.745), the narrowest 95% confidence interval (0.674–0.807) and the lowest MAE (0.33). The RRept has the highest predictive power for landslide susceptibility evaluation. The results show that a hybrid method improves the prediction ability of the base Rept model. In addition, the RRept model is a promising comprehensive model that can be applied to landslide susceptibility mapping.
ArticleNumber 104777
Author Chen, Wei
Li, Yang
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-5825-1422
  surname: Chen
  fullname: Chen, Wei
  email: chenwei0930@xust.edu.cn
– sequence: 2
  givenname: Yang
  surname: Li
  fullname: Li, Yang
BookMark eNqFkE1rGzEQhkVJoI6bf5CDjr2su1rJq90eCsU0bsCQQ5uz0MfIHSOvXEkb8L_vOttTDslpYHifl5nnhlwNcQBC7li9YjVrvxxWVhcY9Kqpm8tKSCk_kAXrZFO1XSevyKLmglUda5uP5CbnQ11PoTVbELV9-FUZncFReNZh1AXjQKOnQQ8uB3RA85gtnAoaDFjOdMw47Omfs0noqI3H01heIB0oDgVCwD0MFugxOgj5E7n2OmS4_T-X5On-x-_Nz2r3uH3YfN9VmrdNqbyXzBlRG9s3wgtoemuM0dJ63jHLQfacade2nAG0wkrRS8-ldNoI58E5viSf595Tin9HyEUdcTo7TG9AHLNq1utJTs_b9RQVc9SmmHMCr04JjzqdFavVxac6qNmnuvhUs88J-_oKszh_XpLG8B78bYYnJfCMkFS2eNHkMIEtykV8u-AfboSYcw
CitedBy_id crossref_primary_10_2113_2022_5216125
crossref_primary_10_3390_rs15071886
crossref_primary_10_1007_s11356_022_22778_3
crossref_primary_10_1080_10106049_2021_1920635
crossref_primary_10_3390_rs14143259
crossref_primary_10_1080_27669645_2022_2101256
crossref_primary_10_3389_feart_2021_722491
crossref_primary_10_1007_s40808_023_01888_y
crossref_primary_10_1016_j_jenvman_2021_112015
crossref_primary_10_1016_j_gsf_2023_101541
crossref_primary_10_1016_j_jhydrol_2021_126500
crossref_primary_10_3390_ijerph192114248
crossref_primary_10_1007_s11629_020_6393_8
crossref_primary_10_1007_s12665_021_09572_z
crossref_primary_10_3390_land12081522
crossref_primary_10_1080_19475683_2022_2040587
crossref_primary_10_1016_j_ecolind_2024_111600
crossref_primary_10_1016_j_nhres_2023_06_006
crossref_primary_10_3390_su15031971
crossref_primary_10_1080_17499518_2024_2302134
crossref_primary_10_1007_s11629_023_8128_0
crossref_primary_10_3390_rs12203347
crossref_primary_10_1016_j_asr_2024_08_003
crossref_primary_10_3390_ijgi9120696
crossref_primary_10_1016_j_ecolind_2023_109919
crossref_primary_10_1007_s12665_021_10033_w
crossref_primary_10_1080_19475705_2020_1833990
crossref_primary_10_1155_2021_6647829
crossref_primary_10_1080_10106049_2021_1967464
crossref_primary_10_1007_s12665_021_09921_y
crossref_primary_10_1061_NHREFO_NHENG_1771
crossref_primary_10_1007_s11069_024_06844_2
crossref_primary_10_1007_s10064_025_04180_8
crossref_primary_10_1007_s11356_023_26247_3
crossref_primary_10_1007_s41324_022_00444_7
crossref_primary_10_1016_j_catena_2020_104833
crossref_primary_10_1080_10106049_2022_2120638
crossref_primary_10_1007_s40789_024_00678_w
crossref_primary_10_1007_s10706_022_02333_0
crossref_primary_10_1080_10106049_2024_2361714
crossref_primary_10_1080_19475705_2021_1947904
crossref_primary_10_1002_gj_5166
crossref_primary_10_1016_j_asr_2024_11_052
crossref_primary_10_1007_s41748_022_00312_2
crossref_primary_10_1007_s11356_022_21931_2
crossref_primary_10_1016_j_ijdrr_2024_104991
crossref_primary_10_1007_s12665_022_10193_3
crossref_primary_10_3390_app12178483
crossref_primary_10_1016_j_catena_2021_105250
crossref_primary_10_3390_app10196652
crossref_primary_10_1016_j_catena_2022_106700
crossref_primary_10_1016_j_ecoinf_2021_101292
crossref_primary_10_3390_app12125992
crossref_primary_10_3390_app14020485
crossref_primary_10_1007_s11069_024_06414_6
crossref_primary_10_1007_s12665_021_09998_5
crossref_primary_10_1016_j_scitotenv_2021_147360
crossref_primary_10_1016_j_catena_2021_105779
crossref_primary_10_1007_s11069_025_07132_3
crossref_primary_10_1016_j_gsf_2020_11_007
crossref_primary_10_3390_geomatics1040023
crossref_primary_10_32604_cmes_2024_056576
crossref_primary_10_1016_j_envsoft_2025_106367
crossref_primary_10_1007_s11069_022_05786_x
crossref_primary_10_1007_s12205_022_1471_9
crossref_primary_10_1016_j_jrmge_2023_07_026
crossref_primary_10_1007_s10064_023_03328_8
crossref_primary_10_1007_s11356_023_30762_8
crossref_primary_10_1186_s40068_024_00382_3
crossref_primary_10_1080_10106049_2020_1837262
crossref_primary_10_1080_19475705_2021_1880977
crossref_primary_10_3389_feart_2022_861057
crossref_primary_10_1007_s10346_023_02040_8
crossref_primary_10_21597_jist_1225104
crossref_primary_10_3390_rs12152478
crossref_primary_10_1016_j_catena_2021_105388
crossref_primary_10_1016_j_qsa_2024_100241
crossref_primary_10_1007_s11069_021_04673_1
crossref_primary_10_1016_j_ejrh_2021_100848
crossref_primary_10_1016_j_catena_2022_106379
crossref_primary_10_3390_app14188413
crossref_primary_10_1007_s10668_024_04592_8
crossref_primary_10_3389_feart_2023_1147427
crossref_primary_10_1007_s11069_024_06576_3
crossref_primary_10_3390_app15031163
crossref_primary_10_1016_j_ecolind_2023_109968
crossref_primary_10_3390_ijgi10040232
crossref_primary_10_1016_j_compgeo_2022_105175
crossref_primary_10_1080_24749508_2024_2395205
crossref_primary_10_1515_htmp_2022_0261
crossref_primary_10_1016_j_ecolind_2024_112736
crossref_primary_10_3390_s22010177
crossref_primary_10_1007_s12665_023_10787_5
crossref_primary_10_1080_10106049_2021_1986578
crossref_primary_10_3390_rs12244134
crossref_primary_10_1080_10106049_2024_2322066
crossref_primary_10_3390_ijerph182211987
crossref_primary_10_1007_s12665_022_10534_2
crossref_primary_10_3390_rs12203423
crossref_primary_10_35970_jinita_v5i1_1865
crossref_primary_10_1007_s11069_022_05326_7
crossref_primary_10_1007_s10064_024_03851_2
crossref_primary_10_1080_10106049_2022_2076924
crossref_primary_10_1007_s10064_023_03230_3
crossref_primary_10_3389_fenvs_2025_1522949
crossref_primary_10_3390_app13127276
crossref_primary_10_3390_rs12142180
crossref_primary_10_1016_j_aei_2020_101230
crossref_primary_10_1007_s11069_021_04862_y
crossref_primary_10_3389_feart_2024_1464775
crossref_primary_10_1016_j_catena_2022_106239
crossref_primary_10_1016_j_foreco_2023_121288
crossref_primary_10_3390_rs16020347
crossref_primary_10_1016_j_qsa_2023_100083
crossref_primary_10_1007_s11069_022_05430_8
crossref_primary_10_1007_s12665_025_12148_w
crossref_primary_10_13168_AGG_2024_0019
crossref_primary_10_3390_su16093701
crossref_primary_10_1080_10106049_2021_1939439
crossref_primary_10_1080_19475705_2024_2396908
crossref_primary_10_1007_s12665_022_10603_6
crossref_primary_10_3390_ijgi10040253
crossref_primary_10_1007_s12665_022_10375_z
crossref_primary_10_3389_fenvs_2024_1424988
crossref_primary_10_3390_atmos15070788
crossref_primary_10_1007_s12517_022_09488_3
crossref_primary_10_1007_s12665_021_09889_9
crossref_primary_10_1016_j_asr_2021_02_011
crossref_primary_10_1016_j_pce_2022_103235
crossref_primary_10_3390_ijerph182010971
crossref_primary_10_1016_j_heliyon_2023_e21542
crossref_primary_10_1007_s12665_024_11501_9
crossref_primary_10_3389_feart_2021_589630
crossref_primary_10_1007_s12145_020_00530_0
crossref_primary_10_21605_cukurovaumfd_933874
crossref_primary_10_4236_ijg_2022_133010
crossref_primary_10_1007_s11053_024_10402_9
crossref_primary_10_1080_10106049_2021_2009921
crossref_primary_10_3390_app13158617
crossref_primary_10_3390_rs12233854
crossref_primary_10_1007_s11440_023_01841_4
crossref_primary_10_1016_j_gsf_2021_101203
crossref_primary_10_1080_10106049_2024_2326005
crossref_primary_10_1007_s12665_023_10844_z
crossref_primary_10_1080_10106049_2021_2009920
crossref_primary_10_31466_kfbd_1446997
crossref_primary_10_1002_gj_4683
crossref_primary_10_1007_s10064_021_02194_6
crossref_primary_10_1016_j_ijdrr_2021_102662
crossref_primary_10_1016_j_scitotenv_2024_175277
crossref_primary_10_3390_su13105369
crossref_primary_10_1080_10106049_2022_2035830
crossref_primary_10_1016_j_enggeo_2021_106480
crossref_primary_10_1016_j_aiig_2024_100093
crossref_primary_10_1016_j_catena_2024_108437
crossref_primary_10_3390_w15203685
crossref_primary_10_1016_j_gsf_2021_101317
crossref_primary_10_1109_ACCESS_2025_3550572
crossref_primary_10_1007_s11069_023_06279_1
crossref_primary_10_1007_s11069_022_05764_3
crossref_primary_10_1007_s13753_024_00575_5
crossref_primary_10_1007_s10064_023_03409_8
crossref_primary_10_1016_j_catena_2021_105344
crossref_primary_10_3390_ijgi9070443
crossref_primary_10_1016_j_ecolind_2023_111335
crossref_primary_10_3390_math10162945
Cites_doi 10.1007/s10064-016-0919-x
10.3390/app9183755
10.3390/f10090743
10.1016/j.catena.2016.06.004
10.1007/s00704-015-1702-9
10.1016/j.jhydrol.2020.124602
10.3390/sym11060762
10.3390/ijgi9030144
10.3390/sym12030325
10.1007/s002540000163
10.1016/S0169-555X(03)00164-8
10.1006/jcss.1997.1504
10.1016/j.cageo.2008.08.007
10.2307/3673806
10.1007/s12665-015-4950-1
10.3390/su11164386
10.1016/j.catena.2016.09.007
10.1007/BF00058655
10.1007/s11004-013-9511-0
10.1007/s12665-017-6731-5
10.1007/s11063-014-9386-1
10.1016/j.enggeo.2004.06.001
10.1080/02723646.2018.1559583
10.3390/ijerph17072473
10.1080/10106049.2017.1404143
10.1007/s12665-009-0373-1
10.1109/LSP.2014.2313570
10.1039/C7MO00030H
10.1016/j.catena.2015.07.020
10.1007/s10064-017-1202-5
10.1007/s10346-015-0557-6
10.1080/10106049.2017.1404141
10.1016/j.geomorph.2017.12.008
10.1016/j.scitotenv.2019.02.263
10.1016/j.scitotenv.2020.137231
10.1016/0034-4257(94)00071-T
10.1007/s12665-019-8415-9
10.3390/su10103697
10.1007/s11069-005-1709-0
10.3390/rs10101545
10.1080/10106049.2016.1195886
10.3837/tiis.2013.11.010
10.1016/j.cageo.2011.04.012
10.1080/10106049.2018.1499820
10.1016/j.catena.2018.12.033
10.1007/s00704-016-1919-2
10.1016/j.geomorph.2008.05.041
10.5194/nhess-7-523-2007
10.1016/j.scitotenv.2018.01.266
10.1007/s12517-012-0532-7
10.1007/s12665-016-5919-4
10.1002/esp.3290160505
10.1007/s12665-015-5194-9
10.1016/S0013-7952(01)00093-X
10.1016/j.geomorph.2011.12.040
10.1007/s10346-015-0614-1
10.1080/19475705.2018.1549111
10.3390/w12010113
10.1007/s12665-015-5233-6
10.1016/j.geomorph.2005.05.011
10.3390/app10020425
10.1007/s12517-017-2961-9
10.1007/s10651-010-0147-7
10.1007/s10346-011-0283-7
10.1016/S0020-7373(87)80053-6
10.1007/s12594-018-0862-5
10.1016/j.cageo.2020.104445
10.1007/s10346-016-0790-7
10.1007/s12665-011-0976-1
10.1016/j.geomorph.2006.09.023
10.1016/j.catena.2019.104179
10.1016/j.catena.2018.12.018
10.1080/10286608.2019.1568418
10.1007/s10346-016-0743-1
10.1016/j.cageo.2012.08.023
10.1007/s12665-015-4048-9
10.1016/j.geomorph.2004.06.010
10.1023/A:1007614523901
10.1007/s12517-010-0272-5
10.1016/j.bbadis.2017.10.036
10.3390/app10010016
10.1007/s11069-018-3299-7
10.1007/s11069-015-1799-2
10.3390/app9010171
10.1007/s13762-013-0464-0
10.3390/app8071046
10.1016/j.catena.2019.104188
10.1080/10106049.2018.1499816
10.1016/j.proeng.2016.06.169
10.1007/s11069-012-0347-6
10.1016/j.catena.2019.104396
10.1007/s11069-016-2304-2
10.3390/su11247118
10.1080/17538947.2016.1169561
10.1134/S0097807819050051
10.1016/j.catena.2018.07.012
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.catena.2020.104777
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Sciences (General)
EISSN 1872-6887
ExternalDocumentID 10_1016_j_catena_2020_104777
S0341816220303271
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a362t-ff71db40bc924f4e29cbbba7cf381c3e7931ad6631ee64c7497f377dab4dfedd3
IEDL.DBID .~1
ISSN 0341-8162
IngestDate Fri Jul 11 08:36:16 EDT 2025
Tue Jul 01 01:46:42 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Fri Feb 23 02:48:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reduced error pruning tree
Landslide
Dagging
Real Adaboost
Bagging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a362t-ff71db40bc924f4e29cbbba7cf381c3e7931ad6631ee64c7497f377dab4dfedd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5825-1422
PQID 2552029365
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552029365
crossref_primary_10_1016_j_catena_2020_104777
crossref_citationtrail_10_1016_j_catena_2020_104777
elsevier_sciencedirect_doi_10_1016_j_catena_2020_104777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Catena (Giessen)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tien Bui, Shirzadi, Shahabi, Geertsema, Omidvar, Clague, Thai Pham, Dou, Talebpour Asl, Bin Ahmad (b0430) 2019; 10
Chen, Hong, Panahi, Shahabi, Wang, Shirzadi, Pirasteh, Alesheikh, Khosravi, Panahi (b0070) 2019; 9
Zhu, Miao, Yang, Bai, Liu, Hong (b0575) 2018; 171
Pham, Prakash (b0315) 2019; 78
Tien Bui, Pradhan, Revhaug, Tran (b0425) 2014
Yilmaz (b0550) 2009; 35
Truong, Mitamura, Kono, Raghavan, Yonezawa, Do, Tien Bui, Lee (b0450) 2018; 8
Dou, Yamagishi, Pourghasemi, Yunus, Song, Xu, Zhu (b0145) 2015; 78
Park, Lee, Lee, Lee (b0280) 2018; 10
Tsangaratos, Ilia (b0455) 2016; 145
Chen, Sun, Han (b0080) 2019; 9
Freund, Schapire (b0165) 1997; 55
Witten, Frank, Hall, Pal (b0500) 2016
Jaafari, Najafi, Pourghasemi, Rezaeian, Sattarian (b0200) 2014; 11
Lee, Lee, Jung, Lee (b0230) 2019
Wang, Guo, Li, He, Wu (b0475) 2019; 10
Trigo, Zêzere, Rodrigues, Trigo (b0445) 2005; 36
Shahri, Spross, Johansson, Larsson (b0390) 2019; 183
Akgun, Sezer, Nefeslioglu, Gokceoglu, Pradhan (b0025) 2012; 38
Mitchell, Michalski, Carbonell (b0265) 2013
Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (b0415) 2016; 75
Guang, Peihua, Chen, Wen, Zhiguang, Junqi, Xiujun (b0175) 2019; 27
Phong, Phan, Prakash, Singh, Shirzadi, Chapi, Ly, Ho, Quoc, Pham (b0330) 2019
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (b0555) 2016; 13
Dehnavi, Aghdam, Pradhan, Varzandeh (b0125) 2015; 135
Li, Wang (b0245) 2019; 11
Breiman (b0050) 1996; 24
Ding, Chen, Hong (b0135) 2017; 32
Pham, Prakash, Singh, Shirzadi, Shahabi, Bui (b0325) 2019; 175
Zhao, Chen (b0565) 2020; 10
Pradhan, Kim (b0360) 2017; 76
Schapire, Singer (b0385) 1999; 37
Wang, Wang, Li, Huang, Cai (b0480) 2018; 14
Sarkar, Kanungo, Mehrotra (b0380) 1995
Nguyen, Ha, Jaafari, Nguyen, Van Phong, Al-Ansari, Prakash, Le, Pham (b0270) 2020; 17
Talebi, A., Uijlenhoet, R., Troch, P.A., 2007. Soil moisture storage and hillslope stability.
Sharma, Patel, Debnath, Ghose (b0395) 2012; 5
Pham, Bui, Prakash, Dholakia (b0295) 2016; 83
Chen, Li, Tsangaratos, Shahabi, Ilia, Xue, Bian (b0075) 2020; 10
Akgun (b0020) 2012; 9
Pham, Prakash (b0310) 2019; 34
Xu, Dai, Xu, Lee (b0530) 2012; 145
Guo, Qin, Ma, Xia, Chen, Si, Lu (b0180) 2019
Thai Pham, Shirzadi, Shahabi, Omidvar, Singh, Sahana, Talebpour Asl, Bin Ahmad, Kim Quoc, Lee (b0405) 2019; 11
Wu, Wu, Yang, Chen, Zhang, Ke, Li (b0520) 2017; 10
Can, Nefeslioglu, Gokceoglu, Sonmez, Duman (b0055) 2005; 72
Carrara, Cardinali, Detti, Guzzetti, Pasqui, Reichenbach (b0060) 1991; 16
Micheletti, Foresti, Robert, Leuenberger, Pedrazzini, Jaboyedoff, Kanevski (b0260) 2014; 46
Dai, Lee, Li, Xu (b0115) 2001; 40
Pradhan (b0370) 2013; 51
Ercanoglu, Gokceoglu (b0150) 2004; 75
Dahal, Hasegawa, Nonomura, Yamanaka, Dhakal, Paudyal (b0110) 2008; 102
Tsangaratos, Ilia, Rozos (b0460) 2013
Hong, Liu, Zhu (b0195) 2020; 718
Wu, Nagahashi (b0505) 2014; 21
Xu, W., Lee, E.-J., 2013. A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm. KSII Transactions on Internet & Information Systems, 7.
Wang, Duan, Hong (b0485) 2019; 183
Ting, K.M., Witten, I.H., 1997. Stacking bagged and dagged models.
Wang, Lei, Chen, Shahabi, Shirzadi (b0470) 2020; 12
Hall, Townshend, Engman (b0185) 1995; 51
Wang, Chen, Chen (b0465) 2020; 9
Zhang, Wu, Niu, Yang, Zhao (b0560) 2017; 76
Bozo, Cela (b0045) 2016; 143
Pham, Bui, Pourghasemi, Indra, Dholakia (b0290) 2017; 128
Xie, Bian, Xia (b0525) 2005; 26
Akgun, Türk (b0030) 2010; 61
Ahachad, Omari, Figueiras-Vidal (b0015) 2015; 42
Pourghasemi, Gayen, Park, Lee, Lee (b0340) 2018; 10
Pham (b0285) 2018; 91
Dai, Lee, Ngai (b0120) 2002; 64
Galli, Ardizzone, Cardinali, Guzzetti, Reichenbach (b0170) 2008; 94
Chen, Liang, Ke, Yang, Zhao (b0090) 2019; 34
Polykretis, Chalkias (b0335) 2018; 93
Khosravi, Pham, Chapi, Shirzadi, Shahabi, Revhaug, Prakash, Bui (b0210) 2018; 627
Lee, Park, Lee (b0225) 2015; 74
Li, Huang (b0240) 2018; 1864
Pham, Prakash, Bui (b0320) 2018; 303
Yilmaz (b0545) 2009; 35
Pham, Prakash (b0305) 2017
Pradhan (b0365) 2011; 18
Ayalew, Yamagishi (b0040) 2005; 65
Yan, Liang, Gui, Xie, Zhao (b0540) 2019; 34
Fang, Wang, Peng, Hong (b0160) 2020; 104470
Hong, Liu, Zhu (b0190) 2019; 78
Pourghasemi, Kerle (b0345) 2016; 75
Devkota, Regmi, Pourghasemi, Yoshida, Pradhan, Ryu, Dhital, Althuwaynee (b0130) 2013; 65
Wang, Fang, Hong (b0490) 2019; 666
Wu, Li, Liu, Bai, Wang, He, Liu, Sun (b0515) 2016; 75
Abedini, Ghasemian, Shirzadi, Shahabi, Chapi, Pham, Bin Ahmad, Tien Bui (b0005) 2019; 34
Tien Bui, Pham, Nguyen, Hoang (b0420) 2016; 9
Costache, Hong, Wang (b0100) 2019; 183
McKean, Roering (b0255) 2004; 57
Pham, Bui, Prakash, Dholakia (b0300) 2017; 149
Li, Chen (b0250) 2020; 12
Aghdam, Varzandeh, Pradhan (b0010) 2016; 75
Nguyen, V.-T., Tran, T.H., Ha, N.A., Ngo, V.L., Nadhir, A.-A., Tran, V.P., Duy Nguyen, H., MA, M., Amini, A., Prakash, I., 2019. GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability, 11, 7118.
Ciervo, Rianna, Mercogliano, Papa (b0095) 2017; 14
Cui, Lu, Li (b0105) 2017; 32
Falah, Zeinivand (b0155) 2019; 46
Chen, Oguchi, Hayakawa, Saito, Chen (b0065) 2017; 14
Tien Bui, Tuan, Klempe, Pradhan, Revhaug (b0435) 2016; 13
Pourghasemi, Rossi (b0355) 2017; 130
Quinlan (b0375) 1987; 27
Lepore, Kamal, Shanahan, Bras (b0235) 2012; 66
Chen, Zhao, Tsangaratos, Shahabi, Ilia, Xue, Wang, Ahmad (b0085) 2020; 583
Wang, Fang, Wang, Peng, Hong (b0495) 2020; 138
Thai Pham, Tien Bui, Prakash (b0410) 2018; 35
Dou, Oguchi, Hayakawa, Uchiyama, Saito, Paudel (b0140) 2014
Kotsianti, Kanellopoulos (b0220) 2007
Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (b0570) 2019; 183
Wu, Ke, Chen, Liang, Zhao, Hong (b0510) 2020; 187
Arnone, Francipane, Noto (b0035) 2012
Jaafari, Panahi, Pham, Shahabi, Bui, Rezaie, Lee (b0205) 2019; 175
Pourghasemi, Pradhan, Gokceoglu, Mohammadi, Moradi (b0350) 2013; 6
Kose, Turk (b0215) 2019; 40
10.1016/j.catena.2020.104777_b0275
Guang (10.1016/j.catena.2020.104777_b0175) 2019; 27
Cui (10.1016/j.catena.2020.104777_b0105) 2017; 32
Wu (10.1016/j.catena.2020.104777_b0510) 2020; 187
Zhu (10.1016/j.catena.2020.104777_b0570) 2019; 183
Ahachad (10.1016/j.catena.2020.104777_b0015) 2015; 42
Pham (10.1016/j.catena.2020.104777_b0285) 2018; 91
Jaafari (10.1016/j.catena.2020.104777_b0205) 2019; 175
Nguyen (10.1016/j.catena.2020.104777_b0270) 2020; 17
Wang (10.1016/j.catena.2020.104777_b0490) 2019; 666
Hall (10.1016/j.catena.2020.104777_b0185) 1995; 51
Dai (10.1016/j.catena.2020.104777_b0115) 2001; 40
Pourghasemi (10.1016/j.catena.2020.104777_b0345) 2016; 75
Chen (10.1016/j.catena.2020.104777_b0075) 2020; 10
Li (10.1016/j.catena.2020.104777_b0245) 2019; 11
Ciervo (10.1016/j.catena.2020.104777_b0095) 2017; 14
Tsangaratos (10.1016/j.catena.2020.104777_b0460) 2013
Thai Pham (10.1016/j.catena.2020.104777_b0410) 2018; 35
Pradhan (10.1016/j.catena.2020.104777_b0360) 2017; 76
Wang (10.1016/j.catena.2020.104777_b0475) 2019; 10
Tsangaratos (10.1016/j.catena.2020.104777_b0455) 2016; 145
Fang (10.1016/j.catena.2020.104777_b0160) 2020; 104470
Xie (10.1016/j.catena.2020.104777_b0525) 2005; 26
Pourghasemi (10.1016/j.catena.2020.104777_b0340) 2018; 10
Quinlan (10.1016/j.catena.2020.104777_b0375) 1987; 27
Devkota (10.1016/j.catena.2020.104777_b0130) 2013; 65
Pourghasemi (10.1016/j.catena.2020.104777_b0355) 2017; 130
Tien Bui (10.1016/j.catena.2020.104777_b0430) 2019; 10
Yilmaz (10.1016/j.catena.2020.104777_b0545) 2009; 35
Truong (10.1016/j.catena.2020.104777_b0450) 2018; 8
Jaafari (10.1016/j.catena.2020.104777_b0200) 2014; 11
Chen (10.1016/j.catena.2020.104777_b0085) 2020; 583
Breiman (10.1016/j.catena.2020.104777_b0050) 1996; 24
Tien Bui (10.1016/j.catena.2020.104777_b0425) 2014
Akgun (10.1016/j.catena.2020.104777_b0020) 2012; 9
Costache (10.1016/j.catena.2020.104777_b0100) 2019; 183
Aghdam (10.1016/j.catena.2020.104777_b0010) 2016; 75
Li (10.1016/j.catena.2020.104777_b0240) 2018; 1864
Yan (10.1016/j.catena.2020.104777_b0540) 2019; 34
Ercanoglu (10.1016/j.catena.2020.104777_b0150) 2004; 75
Thai Pham (10.1016/j.catena.2020.104777_b0405) 2019; 11
Pham (10.1016/j.catena.2020.104777_b0325) 2019; 175
10.1016/j.catena.2020.104777_b0440
Shahri (10.1016/j.catena.2020.104777_b0390) 2019; 183
Polykretis (10.1016/j.catena.2020.104777_b0335) 2018; 93
Tien Bui (10.1016/j.catena.2020.104777_b0420) 2016; 9
Mitchell (10.1016/j.catena.2020.104777_b0265) 2013
Zhao (10.1016/j.catena.2020.104777_b0565) 2020; 10
McKean (10.1016/j.catena.2020.104777_b0255) 2004; 57
Zhu (10.1016/j.catena.2020.104777_b0575) 2018; 171
Dai (10.1016/j.catena.2020.104777_b0120) 2002; 64
Sharma (10.1016/j.catena.2020.104777_b0395) 2012; 5
Lee (10.1016/j.catena.2020.104777_b0230) 2019
Pourghasemi (10.1016/j.catena.2020.104777_b0350) 2013; 6
Tien Bui (10.1016/j.catena.2020.104777_b0415) 2016; 75
Chen (10.1016/j.catena.2020.104777_b0080) 2019; 9
Pham (10.1016/j.catena.2020.104777_b0310) 2019; 34
Wang (10.1016/j.catena.2020.104777_b0495) 2020; 138
Pham (10.1016/j.catena.2020.104777_b0320) 2018; 303
Abedini (10.1016/j.catena.2020.104777_b0005) 2019; 34
Pham (10.1016/j.catena.2020.104777_b0290) 2017; 128
Pradhan (10.1016/j.catena.2020.104777_b0370) 2013; 51
Youssef (10.1016/j.catena.2020.104777_b0555) 2016; 13
Kotsianti (10.1016/j.catena.2020.104777_b0220) 2007
Wu (10.1016/j.catena.2020.104777_b0520) 2017; 10
Chen (10.1016/j.catena.2020.104777_b0065) 2017; 14
Galli (10.1016/j.catena.2020.104777_b0170) 2008; 94
Pham (10.1016/j.catena.2020.104777_b0300) 2017; 149
Xu (10.1016/j.catena.2020.104777_b0530) 2012; 145
Akgun (10.1016/j.catena.2020.104777_b0030) 2010; 61
Chen (10.1016/j.catena.2020.104777_b0070) 2019; 9
Hong (10.1016/j.catena.2020.104777_b0190) 2019; 78
Yilmaz (10.1016/j.catena.2020.104777_b0550) 2009; 35
Can (10.1016/j.catena.2020.104777_b0055) 2005; 72
Micheletti (10.1016/j.catena.2020.104777_b0260) 2014; 46
Wu (10.1016/j.catena.2020.104777_b0515) 2016; 75
Hong (10.1016/j.catena.2020.104777_b0195) 2020; 718
Akgun (10.1016/j.catena.2020.104777_b0025) 2012; 38
Pham (10.1016/j.catena.2020.104777_b0315) 2019; 78
Falah (10.1016/j.catena.2020.104777_b0155) 2019; 46
Khosravi (10.1016/j.catena.2020.104777_b0210) 2018; 627
Kose (10.1016/j.catena.2020.104777_b0215) 2019; 40
Phong (10.1016/j.catena.2020.104777_b0330) 2019
Carrara (10.1016/j.catena.2020.104777_b0060) 1991; 16
Zhang (10.1016/j.catena.2020.104777_b0560) 2017; 76
Lee (10.1016/j.catena.2020.104777_b0225) 2015; 74
Witten (10.1016/j.catena.2020.104777_b0500) 2016
Pham (10.1016/j.catena.2020.104777_b0305) 2017
Arnone (10.1016/j.catena.2020.104777_b0035) 2012
Bozo (10.1016/j.catena.2020.104777_b0045) 2016; 143
Wang (10.1016/j.catena.2020.104777_b0485) 2019; 183
Guo (10.1016/j.catena.2020.104777_b0180) 2019
Tien Bui (10.1016/j.catena.2020.104777_b0435) 2016; 13
Chen (10.1016/j.catena.2020.104777_b0090) 2019; 34
Pham (10.1016/j.catena.2020.104777_b0295) 2016; 83
10.1016/j.catena.2020.104777_b0535
Lepore (10.1016/j.catena.2020.104777_b0235) 2012; 66
Wang (10.1016/j.catena.2020.104777_b0465) 2020; 9
Wang (10.1016/j.catena.2020.104777_b0470) 2020; 12
Park (10.1016/j.catena.2020.104777_b0280) 2018; 10
Li (10.1016/j.catena.2020.104777_b0250) 2020; 12
Trigo (10.1016/j.catena.2020.104777_b0445) 2005; 36
Dou (10.1016/j.catena.2020.104777_b0140) 2014
Sarkar (10.1016/j.catena.2020.104777_b0380) 1995
10.1016/j.catena.2020.104777_b0400
Wang (10.1016/j.catena.2020.104777_b0480) 2018; 14
Dou (10.1016/j.catena.2020.104777_b0145) 2015; 78
Dehnavi (10.1016/j.catena.2020.104777_b0125) 2015; 135
Ding (10.1016/j.catena.2020.104777_b0135) 2017; 32
Dahal (10.1016/j.catena.2020.104777_b0110) 2008; 102
Schapire (10.1016/j.catena.2020.104777_b0385) 1999; 37
Wu (10.1016/j.catena.2020.104777_b0505) 2014; 21
Ayalew (10.1016/j.catena.2020.104777_b0040) 2005; 65
Freund (10.1016/j.catena.2020.104777_b0165) 1997; 55
Pradhan (10.1016/j.catena.2020.104777_b0365) 2011; 18
References_xml – volume: 27
  start-page: 1153
  year: 2019
  end-page: 1163
  ident: b0175
  article-title: ASSESSMENT OF REGIONAL LANDSLIDE SUSCEPTIBILITY BASED ON COMBINED MODEL OF CERTAINTY FACTOR METHOD
  publication-title: Journal of Engineering Geology
– volume: 76
  start-page: 1263
  year: 2017
  end-page: 1279
  ident: b0360
  article-title: Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea
  publication-title: Bull. Eng. Geol. Environ.
– volume: 12
  start-page: 325
  year: 2020
  ident: b0470
  article-title: Hybrid computational intelligence methods for landslide susceptibility mapping
  publication-title: Symmetry
– volume: 14
  start-page: 1235
  year: 2017
  end-page: 1240
  ident: b0065
  article-title: Relationship between landslide size and rainfall conditions in Taiwan
  publication-title: Landslides
– volume: 102
  start-page: 496
  year: 2008
  end-page: 510
  ident: b0110
  article-title: Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence
  publication-title: Geomorphology
– volume: 32
  start-page: 935
  year: 2017
  end-page: 955
  ident: b0105
  article-title: Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models
  publication-title: Geocarto International
– volume: 65
  start-page: 135
  year: 2013
  end-page: 165
  ident: b0130
  article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya
  publication-title: Nat. Hazards
– volume: 10
  start-page: 3697
  year: 2018
  ident: b0340
  article-title: Assessment of landslide-prone areas and their zonation using logistic regression, logitboost, and naïvebayes machine-learning algorithms
  publication-title: Sustainability
– volume: 34
  start-page: 1427
  year: 2019
  end-page: 1457
  ident: b0005
  article-title: A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment
  publication-title: Geocarto International
– start-page: 493
  year: 2007
  end-page: 500
  ident: b0220
  publication-title: Combining bagging, boosting and dagging for classification
– volume: 130
  start-page: 609
  year: 2017
  end-page: 633
  ident: b0355
  article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods
  publication-title: Theor. Appl. Climatol.
– volume: 78
  start-page: 1749
  year: 2015
  end-page: 1776
  ident: b0145
  article-title: An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan
  publication-title: Nat. Hazards
– year: 2012
  ident: b0035
  article-title: Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a small Sicilian
– volume: 9
  start-page: 3755
  year: 2019
  ident: b0070
  article-title: Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo)
  publication-title: Applied Sciences
– year: 2016
  ident: b0500
  article-title: Data Mining: Practical machine learning tools and techniques
– volume: 13
  start-page: 839
  year: 2016
  end-page: 856
  ident: b0555
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
– volume: 10
  start-page: 743
  year: 2019
  ident: b0430
  article-title: New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed
  publication-title: Forests
– start-page: 585
  year: 2013
  end-page: 593
  ident: b0460
  article-title: Case event system for landslide susceptibility analysis
  publication-title: Landslide science and practice
– volume: 93
  start-page: 249
  year: 2018
  end-page: 274
  ident: b0335
  article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models
  publication-title: Nat. Hazards
– volume: 1864
  start-page: 2241
  year: 2018
  end-page: 2246
  ident: b0240
  article-title: Predicting and analyzing early wake-up associated gene expressions by integrating GWAS and eQTL studies
  publication-title: Biochimica et Biophys. Acta (BBA)-Mol. Basis Dis.
– volume: 66
  start-page: 1667
  year: 2012
  end-page: 1681
  ident: b0235
  article-title: Rainfall-induced landslide susceptibility zonation of Puerto Rico
  publication-title: Environ. Earth Sci.
– volume: 10
  start-page: 820
  year: 2019
  end-page: 835
  ident: b0475
  article-title: Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor
  publication-title: Geomatics Natural Hazards Risk
– volume: 34
  start-page: 1408
  year: 2019
  end-page: 1426
  ident: b0540
  article-title: Optimizing landslide susceptibility mapping in the Kongtong District, NW China: comparing the subdivision criteria of factors
  publication-title: Geocarto International
– volume: 104470
  year: 2020
  ident: b0160
  article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping
  publication-title: Comput. Geosci.
– volume: 78
  start-page: 488
  year: 2019
  ident: b0190
  article-title: Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China)
  publication-title: Environmental Earth Sciences
– volume: 40
  start-page: 381
  year: 2001
  end-page: 391
  ident: b0115
  article-title: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong
  publication-title: Environ. Geol.
– volume: 18
  start-page: 471
  year: 2011
  end-page: 493
  ident: b0365
  article-title: Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling
  publication-title: Environ. Ecol. Stat.
– volume: 5
  start-page: 789
  year: 2012
  end-page: 796
  ident: b0395
  article-title: Assessing landslide vulnerability from soil characteristics—a GIS-based analysis
  publication-title: Arabian J. Geosci.
– reference: Nguyen, V.-T., Tran, T.H., Ha, N.A., Ngo, V.L., Nadhir, A.-A., Tran, V.P., Duy Nguyen, H., MA, M., Amini, A., Prakash, I., 2019. GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability, 11, 7118.
– volume: 9
  start-page: 144
  year: 2020
  ident: b0465
  article-title: Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 42
  start-page: 155
  year: 2015
  end-page: 165
  ident: b0015
  article-title: Neighborhood guided smoothed emphasis for real AdaBoost ensembles
  publication-title: Neural Process. Lett.
– volume: 75
  start-page: 553
  year: 2016
  ident: b0010
  article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran)
  publication-title: Environmental Earth Sciences
– start-page: 1
  year: 2019
  end-page: 15
  ident: b0230
  article-title: Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan
  publication-title: Korea. Geocarto Int.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b0165
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 37
  start-page: 297
  year: 1999
  end-page: 336
  ident: b0385
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Machine Learning
– reference: Ting, K.M., Witten, I.H., 1997. Stacking bagged and dagged models.
– volume: 46
  start-page: 33
  year: 2014
  end-page: 57
  ident: b0260
  article-title: Machine learning feature selection methods for landslide susceptibility mapping
  publication-title: Math. Geosci.
– volume: 183
  year: 2019
  ident: b0570
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
– volume: 34
  start-page: 348
  year: 2019
  end-page: 367
  ident: b0090
  article-title: Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China
  publication-title: Geocarto International
– volume: 32
  start-page: 619
  year: 2017
  end-page: 639
  ident: b0135
  article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping
  publication-title: Geocarto international
– volume: 17
  start-page: 2473
  year: 2020
  ident: b0270
  article-title: Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study Vietnam
  publication-title: Int. J. Environ. Res. Public Health
– volume: 14
  start-page: 64
  year: 2018
  end-page: 73
  ident: b0480
  article-title: Identification and analysis of the cleavage site in a signal peptide using SMOTE, dagging, and feature selection methods
  publication-title: Mol. Omics
– volume: 6
  start-page: 2351
  year: 2013
  end-page: 2365
  ident: b0350
  article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed
  publication-title: Iran. Arabian J. Geosci.
– volume: 72
  start-page: 250
  year: 2005
  end-page: 271
  ident: b0055
  article-title: Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses
  publication-title: Geomorphology
– volume: 57
  start-page: 331
  year: 2004
  end-page: 351
  ident: b0255
  article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry
  publication-title: Geomorphology
– volume: 75
  start-page: 422
  year: 2016
  ident: b0515
  article-title: Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province
  publication-title: China. Environ. Earth Sci.
– volume: 9
  start-page: 93
  year: 2012
  end-page: 106
  ident: b0020
  article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at zmir, Turkey
  publication-title: Landslides
– volume: 583
  year: 2020
  ident: b0085
  article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping
  publication-title: J. Hydrol.
– volume: 35
  start-page: 1125
  year: 2009
  end-page: 1138
  ident: b0550
  article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat¡ªTurkey)
  publication-title: Comput. Geosci.
– volume: 175
  start-page: 203
  year: 2019
  end-page: 218
  ident: b0325
  article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches
  publication-title: Catena
– volume: 9
  start-page: 1077
  year: 2016
  end-page: 1097
  ident: b0420
  article-title: Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam
  publication-title: Int. J. Digital Earth
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: b0490
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
– volume: 94
  start-page: 268
  year: 2008
  end-page: 289
  ident: b0170
  article-title: Comparing landslide inventory maps
  publication-title: Geomorphology
– start-page: 301
  year: 1995
  end-page: 309
  ident: b0380
  article-title: Landslide hazard zonation: a case study in Garhwal Himalaya
  publication-title: India. Mountain Res. Develop.
– volume: 11
  start-page: 909
  year: 2014
  end-page: 926
  ident: b0200
  article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 78
  start-page: 1911
  year: 2019
  end-page: 1925
  ident: b0315
  article-title: A novel hybrid model of bagging-based naïve bayes trees for landslide susceptibility assessment
  publication-title: Bull. Eng. Geol. Environ.
– volume: 14
  start-page: 1043
  year: 2017
  end-page: 1055
  ident: b0095
  article-title: Effects of climate change on shallow landslides in a small coastal catchment in southern Italy
  publication-title: Landslides
– volume: 143
  start-page: 1435
  year: 2016
  end-page: 1442
  ident: b0045
  article-title: Problems with Landslide Stabilization of Dukat in the Road Vlora-Saranda
  publication-title: Procedia Eng.
– volume: 12
  start-page: 113
  year: 2020
  ident: b0250
  article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques
  publication-title: Water
– volume: 35
  start-page: 1125
  year: 2009
  end-page: 1138
  ident: b0545
  article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey)
  publication-title: Comput. Geosci.
– volume: 40
  start-page: 481
  year: 2019
  end-page: 501
  ident: b0215
  article-title: GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods
  publication-title: Phys. Geogr.
– volume: 11
  start-page: 762
  year: 2019
  ident: b0245
  article-title: Landslide susceptibility mapping for the Muchuan county (China): A comparison between bivariate statistical models (woe, ebf, and ioe) and their ensembles with logistic regression
  publication-title: Symmetry
– volume: 38
  start-page: 23
  year: 2012
  end-page: 34
  ident: b0025
  article-title: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm
  publication-title: Comput. Geosci.
– volume: 36
  start-page: 331
  year: 2005
  end-page: 354
  ident: b0445
  article-title: The influence of the North Atlantic Oscillation on rainfall triggering of landslides near Lisbon
  publication-title: Nat. Hazards
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0050
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 83
  start-page: 97
  year: 2016
  end-page: 127
  ident: b0295
  article-title: Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS
  publication-title: Nat. Hazards
– volume: 175
  start-page: 430
  year: 2019
  end-page: 445
  ident: b0205
  article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility
  publication-title: Catena
– volume: 11
  start-page: 4386
  year: 2019
  ident: b0405
  article-title: Landslide susceptibility assessment by novel hybrid machine learning algorithms
  publication-title: Sustainability
– volume: 10
  start-page: 187
  year: 2017
  ident: b0520
  article-title: A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models
  publication-title: Arabian J. Geosci.
– volume: 26
  start-page: 71
  year: 2005
  end-page: 74
  ident: b0525
  article-title: Systematic analysis of risk evaluation of landslide hazard
  publication-title: Yantu Lixue(Rock Soil Mech.)
– volume: 75
  start-page: 185
  year: 2016
  ident: b0345
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province
  publication-title: Iran. Environ. Earth Sci.
– volume: 718
  year: 2020
  ident: b0195
  article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble
  publication-title: Sci. Total Environ.
– reference: Talebi, A., Uijlenhoet, R., Troch, P.A., 2007. Soil moisture storage and hillslope stability.
– volume: 187
  year: 2020
  ident: b0510
  article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping
  publication-title: Catena
– volume: 61
  start-page: 595
  year: 2010
  end-page: 611
  ident: b0030
  article-title: Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis
  publication-title: Environmental Earth Sciences
– volume: 149
  start-page: 52
  year: 2017
  end-page: 63
  ident: b0300
  article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS
  publication-title: Catena
– start-page: 87
  year: 2014
  end-page: 111
  ident: b0425
  article-title: A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam, Remote Sensing Applications in Environmental Research
  publication-title: Springer
– volume: 138
  year: 2020
  ident: b0495
  article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks
  publication-title: Comput. Geosci.
– volume: 75
  start-page: 229
  year: 2004
  end-page: 250
  ident: b0150
  article-title: Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)
  publication-title: Eng. Geol.
– volume: 183
  year: 2019
  ident: b0100
  article-title: Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics
  publication-title: Catena
– volume: 145
  start-page: 70
  year: 2012
  end-page: 80
  ident: b0530
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China
  publication-title: Geomorphology
– volume: 145
  start-page: 164
  year: 2016
  end-page: 179
  ident: b0455
  article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size
  publication-title: Catena
– volume: 35
  start-page: 139
  year: 2018
  end-page: 157
  ident: b0410
  article-title: Landslide susceptibility modelling using different advanced decision trees methods
  publication-title: Civil Eng. Environ. Syst.
– volume: 10
  start-page: 425
  year: 2020
  ident: b0075
  article-title: Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models
  publication-title: Applied Sciences
– volume: 51
  start-page: 350
  year: 2013
  end-page: 365
  ident: b0370
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
– start-page: 419
  year: 2014
  end-page: 424
  ident: b0140
  article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan, Landslide science for a safer geoenvironment
  publication-title: Springer
– volume: 51
  start-page: 138
  year: 1995
  end-page: 156
  ident: b0185
  article-title: Status of remote sensing algorithms for estimation of land surface state parameters
  publication-title: Remote Sens. Environ.
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: b0375
  article-title: Simplifying decision trees
  publication-title: Int. J. Man Mach. Stud.
– volume: 76
  start-page: 405
  year: 2017
  ident: b0560
  article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area
  publication-title: China. Environ. Earth Sciences
– volume: 303
  start-page: 256
  year: 2018
  end-page: 270
  ident: b0320
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees
  publication-title: Geomorphology
– volume: 75
  start-page: 1101
  year: 2016
  ident: b0415
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
– volume: 34
  start-page: 316
  year: 2019
  end-page: 333
  ident: b0310
  article-title: Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping
  publication-title: Geocarto Int.
– volume: 46
  start-page: 679
  year: 2019
  end-page: 692
  ident: b0155
  article-title: GIS-Based Groundwater Potential Mapping in Khorramabad in Lorestan, Iran, using Frequency Ratio (FR) and Weights of Evidence (WoE) Models
  publication-title: Water Resour.
– volume: 128
  start-page: 255
  year: 2017
  end-page: 273
  ident: b0290
  article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods
  publication-title: Theor. Appl. Climatol.
– start-page: 255
  year: 2017
  end-page: 269
  ident: b0305
  publication-title: A Novel Hybrid Intelligent Approach of Random Subspace Ensemble and Reduced Error Pruning Trees for Landslide Susceptibility Modeling: A Case Study at Mu Cang Chai District, Yen Bai Province
– volume: 65
  start-page: 15
  year: 2005
  end-page: 31
  ident: b0040
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
– volume: 627
  start-page: 744
  year: 2018
  end-page: 755
  ident: b0210
  article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 427
  year: 1991
  end-page: 445
  ident: b0060
  article-title: GIS techniques and statistical models in evaluating landslide hazard
  publication-title: Earth Surf. Proc. Land.
– volume: 9
  start-page: 171
  year: 2019
  ident: b0080
  article-title: Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models
  publication-title: Applied Sciences
– volume: 8
  start-page: 1046
  year: 2018
  ident: b0450
  article-title: Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree
  publication-title: Appl. Sci.
– volume: 183
  year: 2019
  ident: b0485
  article-title: A comparative study of composite kernels for landslide susceptibility mapping: A case study in Yongxin County
  publication-title: China. Catena
– volume: 91
  start-page: 355
  year: 2018
  end-page: 362
  ident: b0285
  article-title: A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility
  publication-title: J. Geol. Soc. India
– volume: 13
  start-page: 361
  year: 2016
  end-page: 378
  ident: b0435
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
– volume: 171
  start-page: 222
  year: 2018
  end-page: 233
  ident: b0575
  article-title: Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping
  publication-title: Catena
– volume: 64
  start-page: 65
  year: 2002
  end-page: 87
  ident: b0120
  article-title: Landslide risk assessment and management: an overview
  publication-title: Eng. Geol.
– volume: 74
  start-page: 413
  year: 2015
  end-page: 429
  ident: b0225
  article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea
  publication-title: Environ. Earth Sci.
– start-page: 1
  year: 2019
  end-page: 15
  ident: b0180
  article-title: Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China
– volume: 135
  start-page: 122
  year: 2015
  end-page: 148
  ident: b0125
  article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran
  publication-title: CATENA
– year: 2013
  ident: b0265
  article-title: An artificial intelligence approach
– volume: 10
  start-page: 16
  year: 2020
  ident: b0565
  article-title: Gis-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques
  publication-title: Appl. Sci.
– start-page: 1
  year: 2019
  end-page: 24
  ident: b0330
  article-title: Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district
  publication-title: Vietnam. Geocarto Int.
– reference: Xu, W., Lee, E.-J., 2013. A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm. KSII Transactions on Internet & Information Systems, 7.
– volume: 21
  start-page: 687
  year: 2014
  end-page: 691
  ident: b0505
  article-title: Parameterized adaboost: introducing a parameter to speed up the training of real adaboost
  publication-title: IEEE Signal Process Lett.
– volume: 10
  start-page: 1545
  year: 2018
  ident: b0280
  article-title: Landslide susceptibility mapping and comparison using decision tree models: A Case Study of Jumunjin Area Korea
  publication-title: Remote Sens.
– volume: 183
  year: 2019
  ident: b0390
  article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network
  publication-title: CATENA
– volume: 76
  start-page: 1263
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0360
  article-title: Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-016-0919-x
– volume: 9
  start-page: 3755
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0070
  article-title: Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo)
  publication-title: Applied Sciences
  doi: 10.3390/app9183755
– year: 2013
  ident: 10.1016/j.catena.2020.104777_b0265
– volume: 10
  start-page: 743
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0430
  article-title: New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed
  publication-title: Forests
  doi: 10.3390/f10090743
– volume: 145
  start-page: 164
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0455
  article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.004
– volume: 128
  start-page: 255
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0290
  article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1702-9
– volume: 583
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0085
  article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124602
– volume: 11
  start-page: 762
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0245
  article-title: Landslide susceptibility mapping for the Muchuan county (China): A comparison between bivariate statistical models (woe, ebf, and ioe) and their ensembles with logistic regression
  publication-title: Symmetry
  doi: 10.3390/sym11060762
– volume: 9
  start-page: 144
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0465
  article-title: Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9030144
– volume: 12
  start-page: 325
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0470
  article-title: Hybrid computational intelligence methods for landslide susceptibility mapping
  publication-title: Symmetry
  doi: 10.3390/sym12030325
– volume: 40
  start-page: 381
  year: 2001
  ident: 10.1016/j.catena.2020.104777_b0115
  article-title: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong
  publication-title: Environ. Geol.
  doi: 10.1007/s002540000163
– volume: 57
  start-page: 331
  year: 2004
  ident: 10.1016/j.catena.2020.104777_b0255
  article-title: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(03)00164-8
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.catena.2020.104777_b0165
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 35
  start-page: 1125
  year: 2009
  ident: 10.1016/j.catena.2020.104777_b0550
  article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat¡ªTurkey)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.08.007
– start-page: 419
  year: 2014
  ident: 10.1016/j.catena.2020.104777_b0140
  article-title: GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan, Landslide science for a safer geoenvironment
  publication-title: Springer
– start-page: 301
  year: 1995
  ident: 10.1016/j.catena.2020.104777_b0380
  article-title: Landslide hazard zonation: a case study in Garhwal Himalaya
  publication-title: India. Mountain Res. Develop.
  doi: 10.2307/3673806
– volume: 75
  start-page: 185
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0345
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province
  publication-title: Iran. Environ. Earth Sci.
  doi: 10.1007/s12665-015-4950-1
– volume: 11
  start-page: 4386
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0405
  article-title: Landslide susceptibility assessment by novel hybrid machine learning algorithms
  publication-title: Sustainability
  doi: 10.3390/su11164386
– volume: 149
  start-page: 52
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0300
  article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS
  publication-title: Catena
  doi: 10.1016/j.catena.2016.09.007
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.catena.2020.104777_b0050
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 46
  start-page: 33
  year: 2014
  ident: 10.1016/j.catena.2020.104777_b0260
  article-title: Machine learning feature selection methods for landslide susceptibility mapping
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-013-9511-0
– volume: 76
  start-page: 405
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0560
  article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area
  publication-title: China. Environ. Earth Sciences
  doi: 10.1007/s12665-017-6731-5
– volume: 42
  start-page: 155
  year: 2015
  ident: 10.1016/j.catena.2020.104777_b0015
  article-title: Neighborhood guided smoothed emphasis for real AdaBoost ensembles
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-014-9386-1
– volume: 75
  start-page: 229
  year: 2004
  ident: 10.1016/j.catena.2020.104777_b0150
  article-title: Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2004.06.001
– volume: 40
  start-page: 481
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0215
  article-title: GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.2018.1559583
– volume: 17
  start-page: 2473
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0270
  article-title: Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study Vietnam
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17072473
– volume: 183
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0485
  article-title: A comparative study of composite kernels for landslide susceptibility mapping: A case study in Yongxin County
  publication-title: China. Catena
– volume: 27
  start-page: 1153
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0175
  article-title: ASSESSMENT OF REGIONAL LANDSLIDE SUSCEPTIBILITY BASED ON COMBINED MODEL OF CERTAINTY FACTOR METHOD
  publication-title: Journal of Engineering Geology
– start-page: 493
  year: 2007
  ident: 10.1016/j.catena.2020.104777_b0220
– volume: 34
  start-page: 348
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0090
  article-title: Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China
  publication-title: Geocarto International
  doi: 10.1080/10106049.2017.1404143
– start-page: 1
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0180
– volume: 61
  start-page: 595
  year: 2010
  ident: 10.1016/j.catena.2020.104777_b0030
  article-title: Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-009-0373-1
– volume: 21
  start-page: 687
  year: 2014
  ident: 10.1016/j.catena.2020.104777_b0505
  article-title: Parameterized adaboost: introducing a parameter to speed up the training of real adaboost
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2014.2313570
– volume: 14
  start-page: 64
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0480
  article-title: Identification and analysis of the cleavage site in a signal peptide using SMOTE, dagging, and feature selection methods
  publication-title: Mol. Omics
  doi: 10.1039/C7MO00030H
– volume: 135
  start-page: 122
  year: 2015
  ident: 10.1016/j.catena.2020.104777_b0125
  article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran
  publication-title: CATENA
  doi: 10.1016/j.catena.2015.07.020
– volume: 78
  start-page: 1911
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0315
  article-title: A novel hybrid model of bagging-based naïve bayes trees for landslide susceptibility assessment
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1202-5
– ident: 10.1016/j.catena.2020.104777_b0440
– volume: 13
  start-page: 361
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0435
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 34
  start-page: 316
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0310
  article-title: Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2017.1404141
– volume: 303
  start-page: 256
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0320
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.008
– volume: 666
  start-page: 975
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0490
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 718
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0195
  article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137231
– volume: 51
  start-page: 138
  year: 1995
  ident: 10.1016/j.catena.2020.104777_b0185
  article-title: Status of remote sensing algorithms for estimation of land surface state parameters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)00071-T
– volume: 78
  start-page: 488
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0190
  article-title: Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China)
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-019-8415-9
– volume: 10
  start-page: 3697
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0340
  article-title: Assessment of landslide-prone areas and their zonation using logistic regression, logitboost, and naïvebayes machine-learning algorithms
  publication-title: Sustainability
  doi: 10.3390/su10103697
– volume: 36
  start-page: 331
  year: 2005
  ident: 10.1016/j.catena.2020.104777_b0445
  article-title: The influence of the North Atlantic Oscillation on rainfall triggering of landslides near Lisbon
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-005-1709-0
– volume: 10
  start-page: 1545
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0280
  article-title: Landslide susceptibility mapping and comparison using decision tree models: A Case Study of Jumunjin Area Korea
  publication-title: Remote Sens.
  doi: 10.3390/rs10101545
– volume: 32
  start-page: 935
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0105
  article-title: Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models
  publication-title: Geocarto International
  doi: 10.1080/10106049.2016.1195886
– ident: 10.1016/j.catena.2020.104777_b0535
  doi: 10.3837/tiis.2013.11.010
– volume: 38
  start-page: 23
  year: 2012
  ident: 10.1016/j.catena.2020.104777_b0025
  article-title: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.04.012
– volume: 34
  start-page: 1427
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0005
  article-title: A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment
  publication-title: Geocarto International
  doi: 10.1080/10106049.2018.1499820
– start-page: 1
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0230
  article-title: Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan
  publication-title: Korea. Geocarto Int.
– volume: 175
  start-page: 430
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0205
  article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.033
– volume: 130
  start-page: 609
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0355
  article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-016-1919-2
– volume: 102
  start-page: 496
  year: 2008
  ident: 10.1016/j.catena.2020.104777_b0110
  article-title: Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.05.041
– ident: 10.1016/j.catena.2020.104777_b0400
  doi: 10.5194/nhess-7-523-2007
– volume: 627
  start-page: 744
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0210
  article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.266
– volume: 6
  start-page: 2351
  year: 2013
  ident: 10.1016/j.catena.2020.104777_b0350
  article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed
  publication-title: Iran. Arabian J. Geosci.
  doi: 10.1007/s12517-012-0532-7
– volume: 35
  start-page: 1125
  year: 2009
  ident: 10.1016/j.catena.2020.104777_b0545
  article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.08.007
– volume: 75
  start-page: 1101
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0415
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5919-4
– volume: 16
  start-page: 427
  year: 1991
  ident: 10.1016/j.catena.2020.104777_b0060
  article-title: GIS techniques and statistical models in evaluating landslide hazard
  publication-title: Earth Surf. Proc. Land.
  doi: 10.1002/esp.3290160505
– start-page: 1
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0330
  article-title: Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district
  publication-title: Vietnam. Geocarto Int.
– volume: 75
  start-page: 422
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0515
  article-title: Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province
  publication-title: China. Environ. Earth Sci.
  doi: 10.1007/s12665-015-5194-9
– volume: 64
  start-page: 65
  year: 2002
  ident: 10.1016/j.catena.2020.104777_b0120
  article-title: Landslide risk assessment and management: an overview
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00093-X
– volume: 26
  start-page: 71
  year: 2005
  ident: 10.1016/j.catena.2020.104777_b0525
  article-title: Systematic analysis of risk evaluation of landslide hazard
  publication-title: Yantu Lixue(Rock Soil Mech.)
– volume: 145
  start-page: 70
  year: 2012
  ident: 10.1016/j.catena.2020.104777_b0530
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– volume: 13
  start-page: 839
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0555
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 10
  start-page: 820
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0475
  article-title: Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor
  publication-title: Geomatics Natural Hazards Risk
  doi: 10.1080/19475705.2018.1549111
– volume: 12
  start-page: 113
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0250
  article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques
  publication-title: Water
  doi: 10.3390/w12010113
– volume: 75
  start-page: 553
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0010
  article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran)
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-015-5233-6
– volume: 72
  start-page: 250
  year: 2005
  ident: 10.1016/j.catena.2020.104777_b0055
  article-title: Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2005.05.011
– volume: 10
  start-page: 425
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0075
  article-title: Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models
  publication-title: Applied Sciences
  doi: 10.3390/app10020425
– volume: 10
  start-page: 187
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0520
  article-title: A comparative study on the landslide susceptibility mapping using logistic regression and statistical index models
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-017-2961-9
– volume: 18
  start-page: 471
  year: 2011
  ident: 10.1016/j.catena.2020.104777_b0365
  article-title: Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling
  publication-title: Environ. Ecol. Stat.
  doi: 10.1007/s10651-010-0147-7
– volume: 9
  start-page: 93
  year: 2012
  ident: 10.1016/j.catena.2020.104777_b0020
  article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at zmir, Turkey
  publication-title: Landslides
  doi: 10.1007/s10346-011-0283-7
– volume: 27
  start-page: 221
  year: 1987
  ident: 10.1016/j.catena.2020.104777_b0375
  article-title: Simplifying decision trees
  publication-title: Int. J. Man Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 91
  start-page: 355
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0285
  article-title: A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility
  publication-title: J. Geol. Soc. India
  doi: 10.1007/s12594-018-0862-5
– volume: 138
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0495
  article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104445
– volume: 14
  start-page: 1235
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0065
  article-title: Relationship between landslide size and rainfall conditions in Taiwan
  publication-title: Landslides
  doi: 10.1007/s10346-016-0790-7
– volume: 66
  start-page: 1667
  year: 2012
  ident: 10.1016/j.catena.2020.104777_b0235
  article-title: Rainfall-induced landslide susceptibility zonation of Puerto Rico
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-0976-1
– volume: 94
  start-page: 268
  year: 2008
  ident: 10.1016/j.catena.2020.104777_b0170
  article-title: Comparing landslide inventory maps
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.09.023
– volume: 183
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0100
  article-title: Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104179
– volume: 175
  start-page: 203
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0325
  article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.018
– volume: 35
  start-page: 139
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0410
  article-title: Landslide susceptibility modelling using different advanced decision trees methods
  publication-title: Civil Eng. Environ. Syst.
  doi: 10.1080/10286608.2019.1568418
– volume: 14
  start-page: 1043
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0095
  article-title: Effects of climate change on shallow landslides in a small coastal catchment in southern Italy
  publication-title: Landslides
  doi: 10.1007/s10346-016-0743-1
– volume: 51
  start-page: 350
  year: 2013
  ident: 10.1016/j.catena.2020.104777_b0370
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 74
  start-page: 413
  year: 2015
  ident: 10.1016/j.catena.2020.104777_b0225
  article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4048-9
– volume: 65
  start-page: 15
  year: 2005
  ident: 10.1016/j.catena.2020.104777_b0040
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 37
  start-page: 297
  year: 1999
  ident: 10.1016/j.catena.2020.104777_b0385
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Machine Learning
  doi: 10.1023/A:1007614523901
– volume: 5
  start-page: 789
  year: 2012
  ident: 10.1016/j.catena.2020.104777_b0395
  article-title: Assessing landslide vulnerability from soil characteristics—a GIS-based analysis
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-010-0272-5
– start-page: 585
  year: 2013
  ident: 10.1016/j.catena.2020.104777_b0460
  article-title: Case event system for landslide susceptibility analysis
– volume: 1864
  start-page: 2241
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0240
  article-title: Predicting and analyzing early wake-up associated gene expressions by integrating GWAS and eQTL studies
  publication-title: Biochimica et Biophys. Acta (BBA)-Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2017.10.036
– volume: 10
  start-page: 16
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0565
  article-title: Gis-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques
  publication-title: Appl. Sci.
  doi: 10.3390/app10010016
– volume: 93
  start-page: 249
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0335
  article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3299-7
– volume: 183
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0390
  article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network
  publication-title: CATENA
– volume: 78
  start-page: 1749
  year: 2015
  ident: 10.1016/j.catena.2020.104777_b0145
  article-title: An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1799-2
– volume: 9
  start-page: 171
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0080
  article-title: Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models
  publication-title: Applied Sciences
  doi: 10.3390/app9010171
– year: 2016
  ident: 10.1016/j.catena.2020.104777_b0500
– volume: 11
  start-page: 909
  year: 2014
  ident: 10.1016/j.catena.2020.104777_b0200
  article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-013-0464-0
– volume: 8
  start-page: 1046
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0450
  article-title: Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree
  publication-title: Appl. Sci.
  doi: 10.3390/app8071046
– volume: 183
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0570
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104188
– start-page: 87
  year: 2014
  ident: 10.1016/j.catena.2020.104777_b0425
  article-title: A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam, Remote Sensing Applications in Environmental Research
  publication-title: Springer
– year: 2012
  ident: 10.1016/j.catena.2020.104777_b0035
– volume: 34
  start-page: 1408
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0540
  article-title: Optimizing landslide susceptibility mapping in the Kongtong District, NW China: comparing the subdivision criteria of factors
  publication-title: Geocarto International
  doi: 10.1080/10106049.2018.1499816
– volume: 143
  start-page: 1435
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0045
  article-title: Problems with Landslide Stabilization of Dukat in the Road Vlora-Saranda
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.06.169
– volume: 32
  start-page: 619
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0135
  article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping
  publication-title: Geocarto international
– volume: 65
  start-page: 135
  year: 2013
  ident: 10.1016/j.catena.2020.104777_b0130
  article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0347-6
– volume: 187
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0510
  article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104396
– volume: 83
  start-page: 97
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0295
  article-title: Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2304-2
– ident: 10.1016/j.catena.2020.104777_b0275
  doi: 10.3390/su11247118
– volume: 9
  start-page: 1077
  year: 2016
  ident: 10.1016/j.catena.2020.104777_b0420
  article-title: Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2016.1169561
– start-page: 255
  year: 2017
  ident: 10.1016/j.catena.2020.104777_b0305
– volume: 46
  start-page: 679
  year: 2019
  ident: 10.1016/j.catena.2020.104777_b0155
  article-title: GIS-Based Groundwater Potential Mapping in Khorramabad in Lorestan, Iran, using Frequency Ratio (FR) and Weights of Evidence (WoE) Models
  publication-title: Water Resour.
  doi: 10.1134/S0097807819050051
– volume: 104470
  year: 2020
  ident: 10.1016/j.catena.2020.104777_b0160
  article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping
  publication-title: Comput. Geosci.
– volume: 171
  start-page: 222
  year: 2018
  ident: 10.1016/j.catena.2020.104777_b0575
  article-title: Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2018.07.012
SSID ssj0004751
Score 2.6331291
Snippet •Novel REPT-based ensemble techniques for landslide susceptibility modeling.•ROC and statistical measures were used for validation and comparison of the...
Landslides have caused huge economic and human losses in China. Mapping of landslide susceptibility is an important tool to prevent and control landslide...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104777
SubjectTerms artificial intelligence
Bagging
catenas
China
confidence interval
Dagging
data collection
humans
hybrids
inventories
land use
Landslide
landslides
lithology
model validation
prediction
rain
Real Adaboost
Reduced error pruning tree
sediment transport
soil
streams
Title GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
URI https://dx.doi.org/10.1016/j.catena.2020.104777
https://www.proquest.com/docview/2552029365
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9DEb2Im4rzMSJ40EPc2mZJcxxD3RR3UcFbaF46Gd2w22EX_3aTNPUFInhry5dS8r2S5vd9PwBOtKJ244Ml6ihlECYmQUxSjdKuSUkWyVRpV-98OyKDB3z92H2sgX5VC-NglSH2lzHdR-vwpB1msz0bj9t3HRuA04jEsbXTJPZ15BhTZ-Xnb58wD0w9BaMTRk66Kp_zGC8HOspd96HYH3ZSSn9LTz8Ctc8-l1tgMywbYa_8sjqo6bwB1gOD-fOyAdauPEWvvaoHdy3gaegpfbYN-NXwDrmMpeBnf284NdCX-k7GSsNiUXiIi0fLLqEDxD_B56Wr6ILScz-E_4Zw_KWNJ_RUOsUOeLi8uO8PUOBWQJlNWXNkDI2UwB0h7QbMYB0zKYTIqDQ2hctEW7eNMmWXI5HWBEuKGTUJpSoTWBmtVLILVvJprvcAZNpkgoiYxMxg1mEpEZHrwoYxU0zEWRMk1ZRyGRqPO_6LCa8QZi-8VAR3iuClIpoAfYyalY03_pCnlbb4NwPiNjf8MfK4Ui63vuUOTLJcTxcFt9stK8cS0t3_99sPwIa7KxEwh2Bl_rrQR3YdMxctb6gtsNob3gxG77gj8_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRfQiPvFtBA96CLtts0lzFFF3fexFBW-heemKdMXuHvbfm6SpLxDBW2knpWSSmaT5vm8ADo1mbuNDFO5obTGhNsNcMYPzrs1pkahcG893vhnQ3j25fOg-zMBpw4XxsMoY--uYHqJ1vNOOvdl-HQ7btx0XgPOEpqkbp1nqeeSzXp2q24LZk_5Vb_BJj2ShCqO3x75Bw6ALMC-POyq9AFEazjsZY79lqB-xOiSg8yVYjCtHdFJ_3DLMmHIF5mMR86fpCsxdhCq97mo5ztgKHUVZ6eNVEBf9W-yTlkafEt9oZFFg-74MtUHVpAoolwCYnSKPiX9ET1NP6kIqlH-Ivw7R8IuSJwrVdKo1uD8_uzvt4VheARcua42xtSzRknSkcnswS0zKlZSyYMq6LK4y42ZuUmi3IkmMoUQxwpnNGNOFJNoarbN1aJWj0mwA4sYWksqUptwS3uE5lYkXYiOEay7TYhOypkuFitrjvgTGi2hAZs-idoTwjhC1IzYBf7R6rbU3_rBnjbfEtzEkXHr4o-VB41zhppc_MylKM5pUwu24nB3PaHfr32_fh_ne3c21uO4PrrZhwT-pATE70Bq_TcyuW9aM5V4ctu8Szvat
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIS-based+evaluation+of+landslide+susceptibility+using+hybrid+computational+intelligence+models&rft.jtitle=Catena+%28Giessen%29&rft.au=Chen%2C+Wei&rft.au=Li%2C+Yang&rft.date=2020-12-01&rft.issn=0341-8162&rft.volume=195+p.104777-&rft_id=info:doi/10.1016%2Fj.catena.2020.104777&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon