Regional hydrology heterogeneity and the response to climate and land surface changes in arid alpine basin, northwest China
•The hydrology changes is sensitive to energy in high-altitude.•The hydrology changes is controlled by water limitation in low-altitude area.•The water-energy coupling relation highly relies on altitudinal gradient.•Climate change dominate the hydrological shifts in alpine region. Hydrology heteroge...
Saved in:
Published in | Catena (Giessen) Vol. 187; p. 104345 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The hydrology changes is sensitive to energy in high-altitude.•The hydrology changes is controlled by water limitation in low-altitude area.•The water-energy coupling relation highly relies on altitudinal gradient.•Climate change dominate the hydrological shifts in alpine region.
Hydrology heterogeneity refers to the different water regimes or hydrological processes in response to heterogeneous in topography, landscapes, land cover, soil properties, geology and meteorology reflecting as the spatial variation of precipitation, evapotranspiration and water yield along with landscape, elevation, terrain and climate variation. However, the hydrology heterogeneity in the alpine region of inland river basin has remained unclear to date, which limits the understanding of the hydrology and landscape interaction mechanism and affects the rational utilization of regional water resources. In this study, we combined the soil and water assessment tool (SWAT) and water-energy coupling framework to detect the hydrology heterogeneity in the arid alpine region of Heihe River Basin (HRB). We applied SWAT model to present the hydrological processes and regimes at different landscapes and elevation bands by using field measured parameters, and investigate the hydrology heterogeneity as well as the response to the changes in recent climate and land surface in the perspective of water-energy coupling framework. The results indicate that SWAT is indeed a robust tool in representing the streamflow process in alpine region with accurate performance. The distribution of landscapes reflect the comprehensive effect of regional water-energy coupling, which highly rely on the altitudinal gradient. The hydrology heterogeneity in high-altitude area is sensitive to energy and in low-altitude area is sensitive to water limitation (drought stress). Climate change is the dominate factor that driving the hydrology heterogeneity shifts in alpine region of HRB, while, the effect of land surface change is gradually strengthening over the past 50 years, reflecting with the contribution of land surface change on hydrology shifts is gradually increasing. |
---|---|
AbstractList | •The hydrology changes is sensitive to energy in high-altitude.•The hydrology changes is controlled by water limitation in low-altitude area.•The water-energy coupling relation highly relies on altitudinal gradient.•Climate change dominate the hydrological shifts in alpine region.
Hydrology heterogeneity refers to the different water regimes or hydrological processes in response to heterogeneous in topography, landscapes, land cover, soil properties, geology and meteorology reflecting as the spatial variation of precipitation, evapotranspiration and water yield along with landscape, elevation, terrain and climate variation. However, the hydrology heterogeneity in the alpine region of inland river basin has remained unclear to date, which limits the understanding of the hydrology and landscape interaction mechanism and affects the rational utilization of regional water resources. In this study, we combined the soil and water assessment tool (SWAT) and water-energy coupling framework to detect the hydrology heterogeneity in the arid alpine region of Heihe River Basin (HRB). We applied SWAT model to present the hydrological processes and regimes at different landscapes and elevation bands by using field measured parameters, and investigate the hydrology heterogeneity as well as the response to the changes in recent climate and land surface in the perspective of water-energy coupling framework. The results indicate that SWAT is indeed a robust tool in representing the streamflow process in alpine region with accurate performance. The distribution of landscapes reflect the comprehensive effect of regional water-energy coupling, which highly rely on the altitudinal gradient. The hydrology heterogeneity in high-altitude area is sensitive to energy and in low-altitude area is sensitive to water limitation (drought stress). Climate change is the dominate factor that driving the hydrology heterogeneity shifts in alpine region of HRB, while, the effect of land surface change is gradually strengthening over the past 50 years, reflecting with the contribution of land surface change on hydrology shifts is gradually increasing. Hydrology heterogeneity refers to the different water regimes or hydrological processes in response to heterogeneous in topography, landscapes, land cover, soil properties, geology and meteorology reflecting as the spatial variation of precipitation, evapotranspiration and water yield along with landscape, elevation, terrain and climate variation. However, the hydrology heterogeneity in the alpine region of inland river basin has remained unclear to date, which limits the understanding of the hydrology and landscape interaction mechanism and affects the rational utilization of regional water resources. In this study, we combined the soil and water assessment tool (SWAT) and water-energy coupling framework to detect the hydrology heterogeneity in the arid alpine region of Heihe River Basin (HRB). We applied SWAT model to present the hydrological processes and regimes at different landscapes and elevation bands by using field measured parameters, and investigate the hydrology heterogeneity as well as the response to the changes in recent climate and land surface in the perspective of water-energy coupling framework. The results indicate that SWAT is indeed a robust tool in representing the streamflow process in alpine region with accurate performance. The distribution of landscapes reflect the comprehensive effect of regional water-energy coupling, which highly rely on the altitudinal gradient. The hydrology heterogeneity in high-altitude area is sensitive to energy and in low-altitude area is sensitive to water limitation (drought stress). Climate change is the dominate factor that driving the hydrology heterogeneity shifts in alpine region of HRB, while, the effect of land surface change is gradually strengthening over the past 50 years, reflecting with the contribution of land surface change on hydrology shifts is gradually increasing. |
ArticleNumber | 104345 |
Author | Deo, Ravinesh C. Yin, Zhenliang Wen, Xiaohu Feng, Qi Si, Jianhua Liu, Wen Yang, Linshan |
Author_xml | – sequence: 1 givenname: Linshan orcidid: 0000-0001-9050-6328 surname: Yang fullname: Yang, Linshan email: yanglsh08@lzb.ac.cn organization: Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China – sequence: 2 givenname: Qi surname: Feng fullname: Feng, Qi email: qifeng@lzb.ac.cn organization: Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China – sequence: 3 givenname: Zhenliang orcidid: 0000-0002-0866-400X surname: Yin fullname: Yin, Zhenliang organization: Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China – sequence: 4 givenname: Ravinesh C. surname: Deo fullname: Deo, Ravinesh C. organization: School of Agricultural, Computational and Environmental Sciences, Institute of Agriculture and Environment, University of Southern Queensland, Springfield, Queensland 4300, Australia – sequence: 5 givenname: Xiaohu surname: Wen fullname: Wen, Xiaohu organization: Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China – sequence: 6 givenname: Jianhua surname: Si fullname: Si, Jianhua organization: Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China – sequence: 7 givenname: Wen orcidid: 0000-0002-2290-6749 surname: Liu fullname: Liu, Wen organization: Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China |
BookMark | eNqFkE1LAzEQhoMo2Fb_gYccPbg12U12Uw-CFL-gIIieQzY7203ZJjVJleKfN3U9edDLDMzMO-_MM0aH1llA6IySKSW0vFxNtYpg1TQndJZKrGD8AI2oqPKsFKI6RCNSMJoJWubHaBzCihDCKk5H6PMZlsZZ1eNu13jXu-UOdxDBuyVYMHGHlW1w7AB7CBtnA-DosO7NOjl-9_p9CFvfKg1Yd8ouIWBjsfKmwarfGAu4VsHYC2ydj90HhIjnnbHqBB21qg9w-pMn6PXu9mX-kC2e7h_nN4tMFWUes7ZoGgbptbIoKM8BakFbKmqhKz5rGNWztuWCzxgoXdfAoda8oqzVIq-AVLSYoPNh78a7t22yl2sTNPTpcnDbIPMiMRKMizyNXg2j2rsQPLRSm6hiIhS9Mr2kRO6Jy5UciMs9cTkQT2L2S7zxiZPf_Se7HmSQGLwb8DJoA1ZDYzzoKBtn_l7wBRJaoQM |
CitedBy_id | crossref_primary_10_3390_atmos14030539 crossref_primary_10_1016_j_jhydrol_2022_127430 crossref_primary_10_1016_j_gecco_2021_e01729 crossref_primary_10_3390_rs14174296 crossref_primary_10_1016_j_jhydrol_2022_127533 crossref_primary_10_1029_2021JD034550 crossref_primary_10_1016_j_geoderma_2022_116133 crossref_primary_10_1016_j_ejrh_2022_101256 crossref_primary_10_3389_fenvs_2022_1015543 crossref_primary_10_3389_fenvs_2022_939321 crossref_primary_10_3390_app12199862 crossref_primary_10_1016_j_catena_2022_106220 crossref_primary_10_1016_j_scitotenv_2020_143532 crossref_primary_10_1061_JHYEFF_HEENG_5906 crossref_primary_10_1007_s10584_021_03136_7 crossref_primary_10_3389_fpls_2023_1076902 crossref_primary_10_1016_j_catena_2022_106481 crossref_primary_10_1016_j_catena_2024_108087 crossref_primary_10_1515_geo_2020_0127 crossref_primary_10_1016_j_catena_2023_107514 crossref_primary_10_1016_j_jhydrol_2023_130580 crossref_primary_10_3390_rs15153836 crossref_primary_10_1016_j_jhydrol_2022_128216 crossref_primary_10_1007_s12517_020_05965_9 crossref_primary_10_1016_j_ejrh_2025_102239 crossref_primary_10_1016_j_jhydrol_2021_127101 crossref_primary_10_3390_land12101850 crossref_primary_10_1007_s00477_021_02099_6 crossref_primary_10_1016_j_ejrh_2024_102110 crossref_primary_10_1016_j_ejrh_2025_102310 crossref_primary_10_1016_j_jhydrol_2023_130438 crossref_primary_10_1016_j_scitotenv_2020_141559 crossref_primary_10_1016_j_scitotenv_2022_159230 crossref_primary_10_1371_journal_pone_0313762 crossref_primary_10_3390_rs16111877 crossref_primary_10_1007_s11625_021_01065_z crossref_primary_10_1007_s12524_021_01348_z crossref_primary_10_1016_j_ecohyd_2023_03_006 crossref_primary_10_3390_atmos14101530 crossref_primary_10_1016_j_scitotenv_2021_152729 crossref_primary_10_1007_s00267_021_01431_8 crossref_primary_10_1016_j_agwat_2021_107423 crossref_primary_10_3389_feart_2022_857854 |
Cites_doi | 10.13031/2013.23153 10.1016/j.agrformet.2018.06.027 10.1016/j.scitotenv.2017.12.055 10.1038/s41893-019-0397-9 10.3390/w8100472 10.2166/nh.1984.0025 10.1657/1938-4246-46.2.505 10.1016/0309-1708(78)90045-3 10.1029/2007WR006711 10.1007/s10584-006-9121-7 10.1002/hyp.11225 10.1029/2018WR023063 10.1007/s11769-013-0605-x 10.1002/hyp.11098 10.1016/j.scitotenv.2016.07.206 10.1002/2015JD023294 10.1016/j.jhydrol.2007.11.009 10.1093/nsr/nwu017 10.1016/0022-1694(70)90255-6 10.2166/nh.2016.124 10.1155/2017/6310401 10.1175/JCLI-D-17-0045.1 10.1002/ldr.2665 10.3390/atmos10020043 10.1080/00385417.1961.10770737 10.2307/1907187 10.1016/j.jhydrol.2009.07.029 10.1002/2017JD027876 10.3390/f7010010 10.1002/2014WR016589 10.1016/j.agwat.2012.03.014 10.1002/hyp.11118 10.1016/j.jhydrol.2018.12.058 10.1016/j.jhydrol.2019.05.019 10.1002/2017WR022028 10.1029/94JD00483 10.1016/j.jhydrol.2016.01.069 10.1007/s10980-018-0690-4 10.1007/s11269-019-02250-7 10.5194/tc-9-1995-2015 10.1080/01621459.1968.10480934 10.2166/nh.2016.110 10.1002/2017JD027066 10.1016/j.envres.2014.12.030 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.catena.2019.104345 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Sciences (General) |
EISSN | 1872-6887 |
ExternalDocumentID | 10_1016_j_catena_2019_104345 S0341816219304874 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a362t-f3dd4e201633152eeb81f18b8c759d41c9ff58594eacbbe5ebc5714fc827e0713 |
IEDL.DBID | .~1 |
ISSN | 0341-8162 |
IngestDate | Fri Jul 11 01:47:30 EDT 2025 Tue Jul 01 01:46:40 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Fri Feb 23 02:49:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SWAT Heihe River Climate response Landscape Hydrological heterogeneity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-f3dd4e201633152eeb81f18b8c759d41c9ff58594eacbbe5ebc5714fc827e0713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9050-6328 0000-0002-0866-400X 0000-0002-2290-6749 |
PQID | 2388784582 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388784582 crossref_citationtrail_10_1016_j_catena_2019_104345 crossref_primary_10_1016_j_catena_2019_104345 elsevier_sciencedirect_doi_10_1016_j_catena_2019_104345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Catena (Giessen) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy. Budyko, Gerasimov (b0020) 1961; 2 Mły’Nski, D., Petroselli, A., Tauro, F., Cebulska, M., Walega, A., 2019. Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere, 10(2). Yang (b0220) 2016; 48 Smith (b0160) 1978; 1 Xu, Wang, Zhao, Yang (b0200) 2018; 262 Liang, Lettenmaier, Wood, Burges (b0100) 1994; 99 Ma (b0110) 2019; 575 Abbaspour, Vejdani, Haghighat (b0005) 2007; 364 Zhang, Lu, Jing, Paul, Peter (b0245) 2008; 44 Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib257) 2007; 50 Arnold, Srinivasan, Muttiah, Williams (b0015) 1998; 34 Storm (b0165) 1984; 15 Lu, L., Liu, C., Li, X., 2011. Soil texture dataset of the Heihe river basin (2011). Heihe Plan Science Data Center. Sen (b0145) 1968; 63 Viola, Feng, Caracciolo (b0190) 2019; 33 Shi (b0150) 2007; 80 Marshall (b0125) 2019; 55 Chen (b0035) 2014; 46 Marhaento, Booij, Hoekstra (b0120) 2017; 48 Zhang, Nan, Yu, Zhao, Xu (b0230) 2018; 622–623 Hamed (b0075) 2008; 349 Gao, Qin, Wang, Yang, Zheng (b0060) 2016; 7 Sun, Miao, Duan (b0170) 2017; 30 Tian, Zhang, He, Yang (b0180) 2017; 28 Tomer, Schilling (b0185) 2009; 376 Fang (b0045) 2017; 122 Feng (b0050) 2014 Yang (b0215) 2017; 31 Sivapalan (b0155) 2018 Feng (b0055) 2015; 139 Mann (b0115) 1945; 13 Karlsson (b0085) 2016; 535 Liang (b0095) 2015; 51 Jung (b0080) 2012; 110 Nash, Sutcliffe (b0135) 1970; 10 Gao (b0065) 2018; 33 Zhang, Yang, McVicar, Yang (b0240) 2018; 54 Zhang (b0235) 2017; 31 Kendall, M.G., 1975. Rank Correlation Methods. Griffin, London. Griffin, London. Yang (b0205) 2017; 2017 Chen (b0030) 2018; 123 Feng, Yang, Deo, AghaKouchak (bib256) 2019; 2 Cheng (b0040) 2014; 1 Wang, Chen, Li, Deng (b0195) 2013; 23 Zhang, Fu, Sun, Zhang, Men (b0250) 2015; 120 Renner, Seppelt, Bernhofer (b0140) 2012; 213 Tian (b0175) 2017; 31 Yang (b0210) 2018; 137 Chen (b0025) 2015; 9 Yin, Feng, Zou, Yang (b0225) 2016; 8 Zhou (b0255) 2016; 572 Gebrehiwot, Di Baldassarre, Bishop, Halldin, Breuer (b0070) 2019; 570 Shi (10.1016/j.catena.2019.104345_b0150) 2007; 80 Yin (10.1016/j.catena.2019.104345_b0225) 2016; 8 10.1016/j.catena.2019.104345_b0130 10.1016/j.catena.2019.104345_b0010 10.1016/j.catena.2019.104345_b0090 Liang (10.1016/j.catena.2019.104345_b0100) 1994; 99 Nash (10.1016/j.catena.2019.104345_b0135) 1970; 10 Feng (10.1016/j.catena.2019.104345_b0055) 2015; 139 Mann (10.1016/j.catena.2019.104345_b0115) 1945; 13 Gao (10.1016/j.catena.2019.104345_b0060) 2016; 7 Chen (10.1016/j.catena.2019.104345_b0030) 2018; 123 Xu (10.1016/j.catena.2019.104345_b0200) 2018; 262 Sivapalan (10.1016/j.catena.2019.104345_b0155) 2018 Yang (10.1016/j.catena.2019.104345_b0210) 2018; 137 Tian (10.1016/j.catena.2019.104345_b0180) 2017; 28 Zhang (10.1016/j.catena.2019.104345_b0250) 2015; 120 Chen (10.1016/j.catena.2019.104345_b0025) 2015; 9 Yang (10.1016/j.catena.2019.104345_b0215) 2017; 31 Renner (10.1016/j.catena.2019.104345_b0140) 2012; 213 Ma (10.1016/j.catena.2019.104345_b0110) 2019; 575 Zhang (10.1016/j.catena.2019.104345_b0230) 2018; 622–623 Yang (10.1016/j.catena.2019.104345_b0205) 2017; 2017 Zhang (10.1016/j.catena.2019.104345_b0245) 2008; 44 Feng (10.1016/j.catena.2019.104345_bib256) 2019; 2 Sun (10.1016/j.catena.2019.104345_b0170) 2017; 30 Wang (10.1016/j.catena.2019.104345_b0195) 2013; 23 Hamed (10.1016/j.catena.2019.104345_b0075) 2008; 349 Abbaspour (10.1016/j.catena.2019.104345_b0005) 2007; 364 Chen (10.1016/j.catena.2019.104345_b0035) 2014; 46 Gao (10.1016/j.catena.2019.104345_b0065) 2018; 33 Liang (10.1016/j.catena.2019.104345_b0095) 2015; 51 Jung (10.1016/j.catena.2019.104345_b0080) 2012; 110 Zhang (10.1016/j.catena.2019.104345_b0235) 2017; 31 Gebrehiwot (10.1016/j.catena.2019.104345_b0070) 2019; 570 Feng (10.1016/j.catena.2019.104345_b0050) 2014 Marshall (10.1016/j.catena.2019.104345_b0125) 2019; 55 Yang (10.1016/j.catena.2019.104345_b0220) 2016; 48 Budyko (10.1016/j.catena.2019.104345_b0020) 1961; 2 10.1016/j.catena.2019.104345_b0105 Moriasi (10.1016/j.catena.2019.104345_bib257) 2007; 50 Sen (10.1016/j.catena.2019.104345_b0145) 1968; 63 Zhou (10.1016/j.catena.2019.104345_b0255) 2016; 572 Smith (10.1016/j.catena.2019.104345_b0160) 1978; 1 Cheng (10.1016/j.catena.2019.104345_b0040) 2014; 1 Tomer (10.1016/j.catena.2019.104345_b0185) 2009; 376 Viola (10.1016/j.catena.2019.104345_b0190) 2019; 33 Tian (10.1016/j.catena.2019.104345_b0175) 2017; 31 Arnold (10.1016/j.catena.2019.104345_b0015) 1998; 34 Storm (10.1016/j.catena.2019.104345_b0165) 1984; 15 Karlsson (10.1016/j.catena.2019.104345_b0085) 2016; 535 Zhang (10.1016/j.catena.2019.104345_b0240) 2018; 54 Marhaento (10.1016/j.catena.2019.104345_b0120) 2017; 48 Fang (10.1016/j.catena.2019.104345_b0045) 2017; 122 |
References_xml | – volume: 44 start-page: 2183 year: 2008 end-page: 2188 ident: b0245 article-title: Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China publication-title: Water Resources Res. – volume: 122 start-page: 8410 year: 2017 end-page: 8426 ident: b0045 article-title: Influence of landscape heterogeneity on water available to tropical forests in an Amazonian catchment and implications for modeling drought response publication-title: J. Geophys. Res.: Atmospheres – volume: 31 start-page: 1469 year: 2017 end-page: 1478 ident: b0175 article-title: Challenge of vegetation greening on water resources sustainability: insights from a modeling-based analysis in Northwest China publication-title: Hydrol. Process. – volume: 99 start-page: 14415 year: 1994 end-page: 14428 ident: b0100 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: J. Geophys. Res.: Atmospheres – reference: Kendall, M.G., 1975. Rank Correlation Methods. Griffin, London. Griffin, London. – volume: 123 start-page: 3414 year: 2018 end-page: 3442 ident: b0030 article-title: Effects of cryospheric change on alpine hydrology: combining a model with observations in the upper reaches of the Hei River, China publication-title: J. Geophys. Res. Atmospheres – year: 2014 ident: b0050 article-title: Soil dataset of investigation of eco-hydrology transect in Heihe river basin in 2012 – volume: 48 start-page: 1143 year: 2017 end-page: 1155 ident: b0120 article-title: Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia publication-title: Hydrol. Res. – volume: 63 start-page: 1379 year: 1968 end-page: 1389 ident: b0145 article-title: Estimates of the regression coefficient based on Kendall's Tau publication-title: J. Am. Stat. Assoc. – volume: 30 start-page: 9399 year: 2017 end-page: 9416 ident: b0170 article-title: Changes in the spatial heterogeneity and annual distribution of observed precipitation across China publication-title: J. Clim. – volume: 80 start-page: 379 year: 2007 end-page: 393 ident: b0150 article-title: Recent and future climate change in Northwest China publication-title: Clim. Change – volume: 33 start-page: 1461 year: 2018 end-page: 1480 ident: b0065 article-title: Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models publication-title: Landscape Ecol. – volume: 23 start-page: 286 year: 2013 end-page: 300 ident: b0195 article-title: Runoff responses to climate change in arid region of northwestern China during 1960–2010 publication-title: Chinese Geogr. Sci. – volume: 46 start-page: 505 year: 2014 end-page: 523 ident: b0035 article-title: A cryosphere-hydrology observation system in a small alpine watershed in the Qilian mountains of china and its meteorological gradient publication-title: Arct. Antarct. Alp. Res. – volume: 51 start-page: 6500 year: 2015 end-page: 6519 ident: b0095 article-title: Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau publication-title: Water Resour. Res. – volume: 139 start-page: 20 year: 2015 end-page: 30 ident: b0055 article-title: Public perception of an ecological rehabilitation project in inland river basins in northern China: success or failure publication-title: Environ. Res. – volume: 2 start-page: 957 year: 2019 end-page: 961 ident: bib256 article-title: Domino effect of climate change over two millennia in ancient China’s Hexi Corridor publication-title: Nat. Sustainability – start-page: 1665 year: 2018 end-page: 1693 ident: b0155 article-title: From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science publication-title: Egu General Assembly Conference – volume: 8 start-page: 472 year: 2016 ident: b0225 article-title: Assessing variation in water balance components in mountainous Inland River Basin experiencing climate change publication-title: Water – volume: 120 start-page: 7429 year: 2015 end-page: 7453 ident: b0250 article-title: Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China publication-title: J. Geophys. Res.: Atmospheres – volume: 13 start-page: 245 year: 1945 end-page: 259 ident: b0115 article-title: Nonparametric tests against trend publication-title: Econometrica – volume: 110 start-page: 78 year: 2012 end-page: 83 ident: b0080 article-title: Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes publication-title: Agric. Water Manag. – volume: 1 start-page: 307 year: 1978 ident: b0160 article-title: European hydrologic system publication-title: Adv. Water Resour. – volume: 262 start-page: 1 year: 2018 end-page: 13 ident: b0200 article-title: Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014 publication-title: Agric. For. Meteorol. – volume: 55 start-page: 2122 year: 2019 end-page: 2141 ident: b0125 article-title: Warming alters hydrologic heterogeneity: simulated climate sensitivity of hydrology-based microrefugia in the snow-to-rain transition zone publication-title: Water Resour. Res. – volume: 1 start-page: 413 year: 2014 end-page: 428 ident: b0040 article-title: Integrated study of the water–ecosystem–economy in the Heihe River Basin publication-title: Natl. Sci. Rev. – volume: 48 start-page: 1131 year: 2016 end-page: 1142 ident: b0220 article-title: Actual daily evapotranspiration and crop coefficients for an alpine meadow in the Qilian Mountains, northwest China publication-title: Hydrol. Res. – volume: 31 start-page: 3178 year: 2017 end-page: 3190 ident: b0235 article-title: Temporal change of spatial heterogeneity and its effect on regional trend of annual precipitation heterogeneity indices publication-title: Hydrol. Process. – volume: 376 start-page: 24 year: 2009 end-page: 33 ident: b0185 article-title: A simple approach to distinguish land-use and climate-change effects on watershed hydrology publication-title: J. Hydrol. – volume: 34 start-page: 73 year: 1998 end-page: 89 ident: b0015 publication-title: Large Area Hydrologic Modeling Assessment Part I: Model Dev. J. Am. Water Resources Assoc. – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: bib257 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. Asabe – volume: 349 start-page: 350 year: 2008 end-page: 363 ident: b0075 article-title: Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis publication-title: J. Hydrol. – volume: 575 start-page: 257 year: 2019 end-page: 268 ident: b0110 article-title: Evapotranspiration and its dominant controls along an elevation gradient in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau publication-title: J. Hydrol. – volume: 213 start-page: 98 year: 2012 end-page: 112 ident: b0140 article-title: Evaluation of water-energy balance frameworks to predict the sensitivity of streamflow to climate change publication-title: Hydrol. Earth Syst. Sci. – volume: 622–623 start-page: 1016 year: 2018 end-page: 1028 ident: b0230 article-title: Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models publication-title: Sci. Total Environ. – volume: 7 start-page: 10 year: 2016 ident: b0060 article-title: Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China publication-title: Forests – volume: 31 start-page: 1100 year: 2017 end-page: 1112 ident: b0215 article-title: Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, northwest China publication-title: Hydrol. Process. – volume: 9 start-page: 1995 year: 2015 end-page: 2008 ident: b0025 article-title: Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau publication-title: The Cryosphere – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: b0135 article-title: River flow forecasting through conceptual models part I — a discussion of principles publication-title: J. Hydrol. – volume: 137 start-page: 323 year: 2018 end-page: 339 ident: b0210 article-title: Application of multivariate recursive nesting bias correction, multiscale wavelet entropy and AI-based models to improve future precipitation projection in upstream of the Heihe River, Northwest China publication-title: Theoret. Appl. Climatol. – volume: 570 start-page: 393 year: 2019 end-page: 400 ident: b0070 article-title: Is observation uncertainty masking the signal of land use change impacts on hydrology? publication-title: J. Hydrol. – volume: 535 start-page: 301 year: 2016 end-page: 317 ident: b0085 article-title: Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change publication-title: J. Hydrol. – reference: Lu, L., Liu, C., Li, X., 2011. Soil texture dataset of the Heihe river basin (2011). Heihe Plan Science Data Center. – volume: 54 start-page: 519 year: 2018 end-page: 537 ident: b0240 article-title: An analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework publication-title: Water Resour. Res. – volume: 2017 start-page: 15 year: 2017 ident: b0205 article-title: Separation of the climatic and land cover impacts on the flow regime changes in two watersheds of Northeastern Tibetan Plateau publication-title: Adv. Meteorol. – volume: 15 start-page: 283 year: 1984 end-page: 294 ident: b0165 article-title: Experience with field testings of SHE on research catchments [European Hydrological System] publication-title: Nord. Hydrol. – volume: 33 start-page: 2319 year: 2019 end-page: 2333 ident: b0190 article-title: Impacts of hydrological changes on annual runoff distribution in seasonally dry basins publication-title: Water Resour. Manage. – volume: 364 start-page: 1603 year: 2007 end-page: 1609 ident: b0005 article-title: SWAT-CUP calibration and uncertainty programs for SWAT publication-title: Modsim Int. Congress Modell. Simulation Land Water Environ. Manage. Integrated Syst. Sustain. – reference: Mły’Nski, D., Petroselli, A., Tauro, F., Cebulska, M., Walega, A., 2019. Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere, 10(2). – volume: 28 start-page: 1437 year: 2017 end-page: 1449 ident: b0180 article-title: Variability in soil hydraulic conductivity and soil hydrological response under different land covers in the mountainous area of the Heihe River Watershed, Northwest China publication-title: Land Degradation Dev. – volume: 2 start-page: 3 year: 1961 end-page: 12 ident: b0020 article-title: the heat and water balance of the earth's surface, the general theory of physical geography and the problem of the transformation of nature publication-title: Soviet Geography – volume: 572 start-page: 119 year: 2016 end-page: 128 ident: b0255 article-title: Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China publication-title: Sci. Total Environ. – reference: Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy. – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.catena.2019.104345_bib257 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. Asabe doi: 10.13031/2013.23153 – volume: 262 start-page: 1 year: 2018 ident: 10.1016/j.catena.2019.104345_b0200 article-title: Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.06.027 – volume: 622–623 start-page: 1016 year: 2018 ident: 10.1016/j.catena.2019.104345_b0230 article-title: Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.055 – volume: 2 start-page: 957 issue: 10 year: 2019 ident: 10.1016/j.catena.2019.104345_bib256 article-title: Domino effect of climate change over two millennia in ancient China’s Hexi Corridor publication-title: Nat. Sustainability doi: 10.1038/s41893-019-0397-9 – volume: 8 start-page: 472 issue: 10 year: 2016 ident: 10.1016/j.catena.2019.104345_b0225 article-title: Assessing variation in water balance components in mountainous Inland River Basin experiencing climate change publication-title: Water doi: 10.3390/w8100472 – volume: 34 start-page: 73 issue: 34 year: 1998 ident: 10.1016/j.catena.2019.104345_b0015 publication-title: Large Area Hydrologic Modeling Assessment Part I: Model Dev. J. Am. Water Resources Assoc. – ident: 10.1016/j.catena.2019.104345_b0105 – volume: 15 start-page: 283 year: 1984 ident: 10.1016/j.catena.2019.104345_b0165 article-title: Experience with field testings of SHE on research catchments [European Hydrological System] publication-title: Nord. Hydrol. doi: 10.2166/nh.1984.0025 – volume: 46 start-page: 505 issue: 2 year: 2014 ident: 10.1016/j.catena.2019.104345_b0035 article-title: A cryosphere-hydrology observation system in a small alpine watershed in the Qilian mountains of china and its meteorological gradient publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1938-4246-46.2.505 – volume: 1 start-page: 307 issue: 5 year: 1978 ident: 10.1016/j.catena.2019.104345_b0160 article-title: European hydrologic system publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(78)90045-3 – volume: 44 start-page: 2183 issue: 7 year: 2008 ident: 10.1016/j.catena.2019.104345_b0245 article-title: Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China publication-title: Water Resources Res. doi: 10.1029/2007WR006711 – ident: 10.1016/j.catena.2019.104345_b0010 – start-page: 1665 year: 2018 ident: 10.1016/j.catena.2019.104345_b0155 article-title: From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science publication-title: Egu General Assembly Conference – volume: 80 start-page: 379 issue: 3–4 year: 2007 ident: 10.1016/j.catena.2019.104345_b0150 article-title: Recent and future climate change in Northwest China publication-title: Clim. Change doi: 10.1007/s10584-006-9121-7 – volume: 31 start-page: 3178 issue: 18 year: 2017 ident: 10.1016/j.catena.2019.104345_b0235 article-title: Temporal change of spatial heterogeneity and its effect on regional trend of annual precipitation heterogeneity indices publication-title: Hydrol. Process. doi: 10.1002/hyp.11225 – volume: 55 start-page: 2122 issue: 3 year: 2019 ident: 10.1016/j.catena.2019.104345_b0125 article-title: Warming alters hydrologic heterogeneity: simulated climate sensitivity of hydrology-based microrefugia in the snow-to-rain transition zone publication-title: Water Resour. Res. doi: 10.1029/2018WR023063 – volume: 213 start-page: 98 issue: 1 year: 2012 ident: 10.1016/j.catena.2019.104345_b0140 article-title: Evaluation of water-energy balance frameworks to predict the sensitivity of streamflow to climate change publication-title: Hydrol. Earth Syst. Sci. – volume: 23 start-page: 286 issue: 3 year: 2013 ident: 10.1016/j.catena.2019.104345_b0195 article-title: Runoff responses to climate change in arid region of northwestern China during 1960–2010 publication-title: Chinese Geogr. Sci. doi: 10.1007/s11769-013-0605-x – volume: 31 start-page: 1100 year: 2017 ident: 10.1016/j.catena.2019.104345_b0215 article-title: Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, northwest China publication-title: Hydrol. Process. doi: 10.1002/hyp.11098 – volume: 572 start-page: 119 year: 2016 ident: 10.1016/j.catena.2019.104345_b0255 article-title: Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.206 – volume: 120 start-page: 7429 issue: 15 year: 2015 ident: 10.1016/j.catena.2019.104345_b0250 article-title: Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China publication-title: J. Geophys. Res.: Atmospheres doi: 10.1002/2015JD023294 – ident: 10.1016/j.catena.2019.104345_b0090 – volume: 349 start-page: 350 issue: 3–4 year: 2008 ident: 10.1016/j.catena.2019.104345_b0075 article-title: Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.11.009 – volume: 1 start-page: 413 issue: 3 year: 2014 ident: 10.1016/j.catena.2019.104345_b0040 article-title: Integrated study of the water–ecosystem–economy in the Heihe River Basin publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwu017 – volume: 10 start-page: 282 issue: 3 year: 1970 ident: 10.1016/j.catena.2019.104345_b0135 article-title: River flow forecasting through conceptual models part I — a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 48 start-page: 1131 issue: 4 year: 2016 ident: 10.1016/j.catena.2019.104345_b0220 article-title: Actual daily evapotranspiration and crop coefficients for an alpine meadow in the Qilian Mountains, northwest China publication-title: Hydrol. Res. doi: 10.2166/nh.2016.124 – volume: 2017 start-page: 15 year: 2017 ident: 10.1016/j.catena.2019.104345_b0205 article-title: Separation of the climatic and land cover impacts on the flow regime changes in two watersheds of Northeastern Tibetan Plateau publication-title: Adv. Meteorol. doi: 10.1155/2017/6310401 – volume: 30 start-page: 9399 issue: 23 year: 2017 ident: 10.1016/j.catena.2019.104345_b0170 article-title: Changes in the spatial heterogeneity and annual distribution of observed precipitation across China publication-title: J. Clim. doi: 10.1175/JCLI-D-17-0045.1 – volume: 28 start-page: 1437 issue: 4 year: 2017 ident: 10.1016/j.catena.2019.104345_b0180 article-title: Variability in soil hydraulic conductivity and soil hydrological response under different land covers in the mountainous area of the Heihe River Watershed, Northwest China publication-title: Land Degradation Dev. doi: 10.1002/ldr.2665 – volume: 137 start-page: 323 issue: 1–2 year: 2018 ident: 10.1016/j.catena.2019.104345_b0210 article-title: Application of multivariate recursive nesting bias correction, multiscale wavelet entropy and AI-based models to improve future precipitation projection in upstream of the Heihe River, Northwest China publication-title: Theoret. Appl. Climatol. – ident: 10.1016/j.catena.2019.104345_b0130 doi: 10.3390/atmos10020043 – volume: 2 start-page: 3 issue: 2 year: 1961 ident: 10.1016/j.catena.2019.104345_b0020 article-title: the heat and water balance of the earth's surface, the general theory of physical geography and the problem of the transformation of nature publication-title: Soviet Geography doi: 10.1080/00385417.1961.10770737 – volume: 13 start-page: 245 issue: 3 year: 1945 ident: 10.1016/j.catena.2019.104345_b0115 article-title: Nonparametric tests against trend publication-title: Econometrica doi: 10.2307/1907187 – volume: 376 start-page: 24 issue: 1–2 year: 2009 ident: 10.1016/j.catena.2019.104345_b0185 article-title: A simple approach to distinguish land-use and climate-change effects on watershed hydrology publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.07.029 – year: 2014 ident: 10.1016/j.catena.2019.104345_b0050 – volume: 123 start-page: 3414 issue: 7 year: 2018 ident: 10.1016/j.catena.2019.104345_b0030 article-title: Effects of cryospheric change on alpine hydrology: combining a model with observations in the upper reaches of the Hei River, China publication-title: J. Geophys. Res. Atmospheres doi: 10.1002/2017JD027876 – volume: 7 start-page: 10 issue: 1 year: 2016 ident: 10.1016/j.catena.2019.104345_b0060 article-title: Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China publication-title: Forests doi: 10.3390/f7010010 – volume: 51 start-page: 6500 issue: 8 year: 2015 ident: 10.1016/j.catena.2019.104345_b0095 article-title: Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau publication-title: Water Resour. Res. doi: 10.1002/2014WR016589 – volume: 364 start-page: 1603 issue: 3 year: 2007 ident: 10.1016/j.catena.2019.104345_b0005 article-title: SWAT-CUP calibration and uncertainty programs for SWAT publication-title: Modsim Int. Congress Modell. Simulation Land Water Environ. Manage. Integrated Syst. Sustain. – volume: 110 start-page: 78 year: 2012 ident: 10.1016/j.catena.2019.104345_b0080 article-title: Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2012.03.014 – volume: 31 start-page: 1469 issue: 7 year: 2017 ident: 10.1016/j.catena.2019.104345_b0175 article-title: Challenge of vegetation greening on water resources sustainability: insights from a modeling-based analysis in Northwest China publication-title: Hydrol. Process. doi: 10.1002/hyp.11118 – volume: 570 start-page: 393 year: 2019 ident: 10.1016/j.catena.2019.104345_b0070 article-title: Is observation uncertainty masking the signal of land use change impacts on hydrology? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.058 – volume: 575 start-page: 257 year: 2019 ident: 10.1016/j.catena.2019.104345_b0110 article-title: Evapotranspiration and its dominant controls along an elevation gradient in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.019 – volume: 54 start-page: 519 issue: 1 year: 2018 ident: 10.1016/j.catena.2019.104345_b0240 article-title: An analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework publication-title: Water Resour. Res. doi: 10.1002/2017WR022028 – volume: 99 start-page: 14415 issue: D7 year: 1994 ident: 10.1016/j.catena.2019.104345_b0100 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: J. Geophys. Res.: Atmospheres doi: 10.1029/94JD00483 – volume: 535 start-page: 301 year: 2016 ident: 10.1016/j.catena.2019.104345_b0085 article-title: Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.01.069 – volume: 33 start-page: 1461 issue: 9 year: 2018 ident: 10.1016/j.catena.2019.104345_b0065 article-title: Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models publication-title: Landscape Ecol. doi: 10.1007/s10980-018-0690-4 – volume: 33 start-page: 2319 issue: 7 year: 2019 ident: 10.1016/j.catena.2019.104345_b0190 article-title: Impacts of hydrological changes on annual runoff distribution in seasonally dry basins publication-title: Water Resour. Manage. doi: 10.1007/s11269-019-02250-7 – volume: 9 start-page: 1995 issue: 5 year: 2015 ident: 10.1016/j.catena.2019.104345_b0025 article-title: Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau publication-title: The Cryosphere doi: 10.5194/tc-9-1995-2015 – volume: 63 start-page: 1379 issue: 324 year: 1968 ident: 10.1016/j.catena.2019.104345_b0145 article-title: Estimates of the regression coefficient based on Kendall's Tau publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1968.10480934 – volume: 48 start-page: 1143 issue: 4 year: 2017 ident: 10.1016/j.catena.2019.104345_b0120 article-title: Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia publication-title: Hydrol. Res. doi: 10.2166/nh.2016.110 – volume: 122 start-page: 8410 issue: 16 year: 2017 ident: 10.1016/j.catena.2019.104345_b0045 article-title: Influence of landscape heterogeneity on water available to tropical forests in an Amazonian catchment and implications for modeling drought response publication-title: J. Geophys. Res.: Atmospheres doi: 10.1002/2017JD027066 – volume: 139 start-page: 20 year: 2015 ident: 10.1016/j.catena.2019.104345_b0055 article-title: Public perception of an ecological rehabilitation project in inland river basins in northern China: success or failure publication-title: Environ. Res. doi: 10.1016/j.envres.2014.12.030 |
SSID | ssj0004751 |
Score | 2.48852 |
Snippet | •The hydrology changes is sensitive to energy in high-altitude.•The hydrology changes is controlled by water limitation in low-altitude area.•The water-energy... Hydrology heterogeneity refers to the different water regimes or hydrological processes in response to heterogeneous in topography, landscapes, land cover,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104345 |
SubjectTerms | altitude basins China climate change Climate response climatic factors energy evapotranspiration Heihe River Hydrological heterogeneity land cover Landscape landscapes meteorology Soil and Water Assessment Tool model soil properties stream flow SWAT water resources water stress water yield watersheds |
Title | Regional hydrology heterogeneity and the response to climate and land surface changes in arid alpine basin, northwest China |
URI | https://dx.doi.org/10.1016/j.catena.2019.104345 https://www.proquest.com/docview/2388784582 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-lInoptiq2anmCBwXH3dnJTDLHUqyrYg9qobeQT3dkyS77cSiCf7vvZTItilDwNswkYSbv5X1Mfnk_xl7qKtSyaVyBls8UvB2HQhuqRWidNFKjkiXmuc_nzfSCf7ysL3fY6XAWhmCV2fb3Nj1Z63xnlGdztOy60dcxGmBZNrjkMCWXgmqCci5Iy9_-uoF5cJEoGKlxQa2H43MJ40Wgo0jVh8qWNjsrOtT0b_f0l6FO3ufsAdvLYSOc9G-2z3Z8PGD3MoP57OqA3X2fKHrxaj8v1zW8yjWlXz9kP7_47-mnH8yu3Cq1hBkhYRaoQB4jcdDRAQaDsOpBsx42C7DzDgNan54RAhLW21XQ1kN_XHgNXQTMtR3o-RKjVUCX2MU3EBNFO34FJHbuR-zi7N2302mReRcKje5sU4TKOe5xUpqqQvfuvZFlKFF0VtSt46VtAwq4bjkabWN87Y2tRcmDlRPhKet9zHbjIvonDFqrxyFo40U9wSFFq6ULxPhTO-JIGh-yaphuZXNRcuLGmKsBffZD9UJSJCTVC-mQFde9ln1Rjlvai0GS6g_lUug3bun5YhC8wnVHmyk6-sV2rTDUkULSruPRf4_-lN2fUPqegEDP2O5mtfXPMcbZmOOkxMfszsmHT9Pz32Ue_Bo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFA21IvVF2qq0avUKCgqOuzOTmck8-CBq3dqPB22hbzEzSbojS3bZ2UUWwT_lH_TeTEZRhILQt2E-QiY3OfcmObmHsScqtZnIcx0h8lURL4c2UhXlIqy1qITCTuaV545P8tEZ_3Cena-xH_1ZGKJVBuzvMN2jdbgzCK05mDXN4NMQAVjEOQ45nJKLggdm5aFZfcV5W_vq4C0a-WmS7L87fTOKgrRApBCxF5FNteYGnV-epujBjKlEbGOsXV1kpeZxXVr8h6zkiEtVZTJT1VkRc1uLpDA0scNyr7HrHOGCZBNefv_NK-GF13yk2kVUvf68nieVEcvJUbqjuKTd1ZROUf3bH_7lGby7299kt0KcCq-7pthia8Zts40gmT5ebbMb770mMF5tBXxo4VlIYv38Nvv20Vz4VUYYr_Tcvwljot5MsccaDP1BOQ0YfcK8Y-kaWEyhnjQYQRv_jCiX0C7nVtUGuvPJLTQOcHKvQU1mGB4D-uDGvQDnNeHxL8DLgd9hZ1dijbts3U2d2WFQ1mporapMkSVYZFEqoS1JDGWaRJmGuyztm1vWIQs6iXFMZE93-yI7I0kykuyMtMuiX1_Nuiwgl7xf9JaUf_RmiY7qki8f94aXONBp90Y5M122EmMrUQja5rz336U_Yhuj0-MjeXRwcnif3Uxo7cCzkB6w9cV8afYwwFpUD32HBvb5qkfQT-zwOF8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+hydrology+heterogeneity+and+the+response+to+climate+and+land+surface+changes+in+arid+alpine+basin%2C+northwest+China&rft.jtitle=Catena+%28Giessen%29&rft.au=Yang%2C+Linshan&rft.au=Feng%2C+Qi&rft.au=Yin%2C+Zhenliang&rft.au=Deo%2C+Ravinesh+C.&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=0341-8162&rft.eissn=1872-6887&rft.volume=187&rft_id=info:doi/10.1016%2Fj.catena.2019.104345&rft.externalDocID=S0341816219304874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |