A comparison of the aerodynamic characteristics of four kinds of land surface in wind erosion areas of northern China
•Aerodynamic characteristics of five surfaces undergoing wind erosion differ.•Pulsation intensity, turbulence intensity, and drag coefficient increase with z0.•Consumption of roughness elements on wind force affects the surface stability.•τR/τ increases with increasing wind speed for flexible roughn...
Saved in:
Published in | Catena (Giessen) Vol. 212; p. 106112 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Aerodynamic characteristics of five surfaces undergoing wind erosion differ.•Pulsation intensity, turbulence intensity, and drag coefficient increase with z0.•Consumption of roughness elements on wind force affects the surface stability.•τR/τ increases with increasing wind speed for flexible roughness elements but decreases for rigid roughness elements.
Aerodynamic characteristics is a crucial factor influencing soil wind erosion, which is closely related to the properties of surface roughness elements. In the expansive arid and semi-arid northern China, grassland, farmland, mobile sandy land, and gobi are the main land surface types that suffer wind erosion to varying degrees. To investigate the aerodynamic characteristics of different surfaces, we used three-dimensional ultrasonic anemometers to observe the near-surface wind speed above grassland, farmland, mobile sand, and two types of gobi surfaces in areas of northern China (a total of five observation sites). We compared the aerodynamic characteristics of the five surfaces and their causes (i.e., the surface roughness length, wind speed pulsation, turbulence intensity, and drag coefficient), and analyzed how surface roughness elements weakened the airflow. The roughness length was greatest for grassland, followed by farmland, sand, fine gobi, and black gobi. The pulsation intensity of near-surface wind speed increased linearly with increasing wind speed at all sites. At a given wind speed, increasing roughness length increased the pulsation intensity of wind speed. The probability distributions for the drag coefficient and turbulence intensity of the five surfaces followed a positively skewed distribution. The drag coefficient and turbulence intensity were greatest for grassland, followed by farmland, sand, fine gobi, and black gobi surfaces. The drag force exerted on the roughness elements increased with increasing wind speed, but the ratio of drag force exerted on the roughness elements to the total drag force (τR/τ) for flexible roughness elements (i.e., plants) increased as the wind speed increased; for rigid roughness elements, τR/τ decreased with increasing wind speed. This confirms that the shelter capability of flexible roughness elements against soil wind erosion increases with the increase of wind speed, while that of rigid roughness elements is opposite. |
---|---|
AbstractList | •Aerodynamic characteristics of five surfaces undergoing wind erosion differ.•Pulsation intensity, turbulence intensity, and drag coefficient increase with z0.•Consumption of roughness elements on wind force affects the surface stability.•τR/τ increases with increasing wind speed for flexible roughness elements but decreases for rigid roughness elements.
Aerodynamic characteristics is a crucial factor influencing soil wind erosion, which is closely related to the properties of surface roughness elements. In the expansive arid and semi-arid northern China, grassland, farmland, mobile sandy land, and gobi are the main land surface types that suffer wind erosion to varying degrees. To investigate the aerodynamic characteristics of different surfaces, we used three-dimensional ultrasonic anemometers to observe the near-surface wind speed above grassland, farmland, mobile sand, and two types of gobi surfaces in areas of northern China (a total of five observation sites). We compared the aerodynamic characteristics of the five surfaces and their causes (i.e., the surface roughness length, wind speed pulsation, turbulence intensity, and drag coefficient), and analyzed how surface roughness elements weakened the airflow. The roughness length was greatest for grassland, followed by farmland, sand, fine gobi, and black gobi. The pulsation intensity of near-surface wind speed increased linearly with increasing wind speed at all sites. At a given wind speed, increasing roughness length increased the pulsation intensity of wind speed. The probability distributions for the drag coefficient and turbulence intensity of the five surfaces followed a positively skewed distribution. The drag coefficient and turbulence intensity were greatest for grassland, followed by farmland, sand, fine gobi, and black gobi surfaces. The drag force exerted on the roughness elements increased with increasing wind speed, but the ratio of drag force exerted on the roughness elements to the total drag force (τR/τ) for flexible roughness elements (i.e., plants) increased as the wind speed increased; for rigid roughness elements, τR/τ decreased with increasing wind speed. This confirms that the shelter capability of flexible roughness elements against soil wind erosion increases with the increase of wind speed, while that of rigid roughness elements is opposite. Aerodynamic characteristics is a crucial factor influencing soil wind erosion, which is closely related to the properties of surface roughness elements. In the expansive arid and semi-arid northern China, grassland, farmland, mobile sandy land, and gobi are the main land surface types that suffer wind erosion to varying degrees. To investigate the aerodynamic characteristics of different surfaces, we used three-dimensional ultrasonic anemometers to observe the near-surface wind speed above grassland, farmland, mobile sand, and two types of gobi surfaces in areas of northern China (a total of five observation sites). We compared the aerodynamic characteristics of the five surfaces and their causes (i.e., the surface roughness length, wind speed pulsation, turbulence intensity, and drag coefficient), and analyzed how surface roughness elements weakened the airflow. The roughness length was greatest for grassland, followed by farmland, sand, fine gobi, and black gobi. The pulsation intensity of near-surface wind speed increased linearly with increasing wind speed at all sites. At a given wind speed, increasing roughness length increased the pulsation intensity of wind speed. The probability distributions for the drag coefficient and turbulence intensity of the five surfaces followed a positively skewed distribution. The drag coefficient and turbulence intensity were greatest for grassland, followed by farmland, sand, fine gobi, and black gobi surfaces. The drag force exerted on the roughness elements increased with increasing wind speed, but the ratio of drag force exerted on the roughness elements to the total drag force (τR/τ) for flexible roughness elements (i.e., plants) increased as the wind speed increased; for rigid roughness elements, τR/τ decreased with increasing wind speed. This confirms that the shelter capability of flexible roughness elements against soil wind erosion increases with the increase of wind speed, while that of rigid roughness elements is opposite. |
ArticleNumber | 106112 |
Author | Yuan, Yixiao Wang, Hongtao Li, Qing Wang, Zhenting Wang, Rende Zou, Xueyong Zhang, Chunlai |
Author_xml | – sequence: 1 givenname: Chunlai surname: Zhang fullname: Zhang, Chunlai email: clzhang@bnu.edu.cn organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, PR China – sequence: 2 givenname: Yixiao surname: Yuan fullname: Yuan, Yixiao email: yuanyixiao1994@163.com organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, PR China – sequence: 3 givenname: Xueyong surname: Zou fullname: Zou, Xueyong organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, PR China – sequence: 4 givenname: Hongtao surname: Wang fullname: Wang, Hongtao organization: Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China – sequence: 5 givenname: Qing surname: Li fullname: Li, Qing organization: Hebei Engineering Research Center for Geographic Information Application, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050011, PR China – sequence: 6 givenname: Zhenting surname: Wang fullname: Wang, Zhenting organization: Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China – sequence: 7 givenname: Rende surname: Wang fullname: Wang, Rende organization: Hebei Engineering Research Center for Geographic Information Application, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050011, PR China |
BookMark | eNqFkDtPIzEURl2AxGP5BxQuaRL8iM0MBRKKloeEtA3U1h37WnFI7GB7QPx7HIZqi93Ksn2-o3u_E3IQU0RCzjmbc8b15XpuoWKEuWBCtCfNuTggx0wu-KzjWhyRk1LWjLHFleLHZLylNm13kENJkSZP6wopYE7uM8I2WGpXkMFWbEANtuwRn8ZMX0N037cNREfLmD1YpCHSj_ZBm6CEJoSM8E3FlJs5R7pchQi_yKGHTcGzn_OUvNz9fl4-zJ7-3D8ub59mILWosx56xZ1C8MK53g1aSyEV9F7DsLDS9xK9s8oPg3AdDL5TnWbCKiG8kIyDPCUXk3eX09uIpZptKBY3bWZMYzFCS636TvaqodcTatvoJaM3NlSobYmaIWwMZ2bfr1mbqV-z79dM_bbw4q_wLoct5M__xW6mGLYO3gNmU2zAaNGFjLYal8K_BV-xVJzm |
CitedBy_id | crossref_primary_10_1029_2023JD040313 crossref_primary_10_1016_j_catena_2023_106970 crossref_primary_10_1016_j_geoderma_2024_116950 crossref_primary_10_1016_j_isprsjprs_2024_09_004 crossref_primary_10_1029_2024GL111056 crossref_primary_10_1016_j_ecmx_2024_100760 crossref_primary_10_1016_j_catena_2024_107899 crossref_primary_10_1016_j_scitotenv_2024_176837 crossref_primary_10_3389_fenvs_2024_1380498 |
Cites_doi | 10.1016/0895-7177(95)00049-8 10.1017/S0022112064001173 10.1002/ldr.3185 10.1097/00010694-194510000-00004 10.1016/j.geomorph.2003.09.011 10.1016/S0169-555X(01)00097-6 10.1016/j.catena.2018.12.020 10.1146/annurev.fluid.32.1.519 10.1016/j.still.2018.10.005 10.1002/esp.4045 10.1016/j.still.2020.104601 10.1029/2001JD001259 10.1007/s11869-010-0090-7 10.1002/(SICI)1096-9837(200005)25:5<505::AID-ESP78>3.0.CO;2-D 10.1017/S0022112093003684 10.1016/j.still.2005.01.006 10.1016/j.catena.2018.06.013 10.1029/2012GL052234 10.1103/PhysRevE.79.031303 10.1016/j.aeolia.2011.07.006 10.1080/15324982.2016.1260665 10.1016/S0065-2113(08)60400-9 10.1016/0002-1571(71)90116-6 10.1007/s10546-012-9719-4 10.1360/02yd9062 10.1029/92JD01922 10.1016/S0009-2509(98)00114-6 10.1002/(SICI)1096-9837(199810)23:10<877::AID-ESP905>3.0.CO;2-R 10.1016/j.geomorph.2006.10.017 10.1016/j.geomorph.2011.01.022 10.1016/j.geomorph.2005.04.008 10.1029/2007JF000790 10.5194/angeo-23-3187-2005 10.1046/j.1365-3091.1997.d01-55.x 10.1097/00010694-199912000-00006 10.1007/s10546-004-4632-0 10.1016/j.catena.2021.105215 10.1016/S0341-8162(03)00039-0 10.1016/S0167-1987(03)00159-4 10.1016/j.still.2005.03.009 10.13031/2013.38339 10.1006/jare.2001.0807 10.1127/0941-2948/2003/0012-0257 10.1016/S1161-0301(00)00046-0 10.1007/s00254-007-0827-2 10.1002/jgrd.50687 10.1016/j.catena.2018.05.022 10.1016/j.geoderma.2010.07.016 10.1007/s12665-013-2417-9 10.1029/2012GL050847 10.2136/sssaj1965.03615995002900050035x 10.13031/2013.32875 10.1029/2007JF000784 10.1191/0309133304pp416ra 10.1007/s11434-012-5000-y 10.1097/00010694-195112000-00007 10.1016/j.geomorph.2012.05.005 10.4141/cjss62-012 10.1029/2004JF000281 10.1016/j.geoderma.2018.07.012 10.1016/j.aeolia.2020.100614 10.1016/j.still.2019.104548 10.1016/j.aeolia.2016.08.001 10.1007/BF00155203 10.1071/SR9960309 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.catena.2022.106112 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Sciences (General) |
ExternalDocumentID | 10_1016_j_catena_2022_106112 S0341816222000984 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a362t-9a951d5eaf2dd9db663235a9f6ab4c3f93efdc5fbb2d8abf858602c522f2301a3 |
IEDL.DBID | .~1 |
ISSN | 0341-8162 |
IngestDate | Mon Jul 21 11:17:57 EDT 2025 Tue Jul 01 01:46:47 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Sat Jan 11 15:48:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flexible roughness element Wind erosion Surface stability Drag coefficient Rigid roughness element |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-9a951d5eaf2dd9db663235a9f6ab4c3f93efdc5fbb2d8abf858602c522f2301a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636598395 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636598395 crossref_citationtrail_10_1016_j_catena_2022_106112 crossref_primary_10_1016_j_catena_2022_106112 elsevier_sciencedirect_doi_10_1016_j_catena_2022_106112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Catena (Giessen) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Colazo, Buschiazzo (b0060) 2010; 159 Owen (b0215) 1964; 20 Zhang, Dong, Qian (b0370) 2017; 42 Hagen (b0110) 1991; 46 Raupach, Gillette, Leys (b0235) 1993; 98 Shao (b0245) 1995; 21 Marshall (b0195) 1971; 8 Zhang, Zou, Gong, Liu, Liu (b0350) 2004; 75 Durán, Claudin, Andreotti (b0085) 2011; 3 Leenders, van Boxel, Sterk (b0140) 2005; 71 Lopez, Gracia, Arrue (b0175) 2000; 12 Chepil (b0045) 1945; 60 Zhang, Zeng, Yao (b0360) 2012; 57 Shi, Yan, Yuan, Nearing (b0275) 2004; 28 Finnigan (b0090) 2000; 32 Lóki, Rajkai, Czyz, Dexter, Diaz-Pereira, Dumitriu, Enache, Fleige, Horn, de la Rosa, Simota (b0170) 2005; 82 Zobeck (b0380) 1991; 46 Versteeg, H., Malalasekera, W., 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach (1st ed.). Prentice Hall, London. Li, McKenna Neuman (b0145) 2012; 39 Chepil (b0050) 1951; 72 Wiggs, Weaver (b0330) 2012; 39 Sharma, Garcia-Mayoral (b0260) 2018; 1001 Zou, Li, Cheng, Wang, Zhang, Kang, Liu, Zhang (b0385) 2018; 167 Dong, Gao, Fryrear (b0070) 2001; 49 Kardous, Bergametti, Marticorena (b0125) 2005; 23 Lv, Dong, Mu, Luo, Qian (b0180) 2014; 71 Shen, Zhang, Huang, Wang, Cen (b0265) 2019; 175 Zhang, Wang, Lee (b0365) 2007; 88 Mayaud, Wiggs, Bailey (b0205) 2016; 22 Stout, Zobeck (b0295) 1997; 44 Gillies, Nickling, King (b0100) 2002; 107 Yassin, Takahashi, Kato (b0345) 2012; 5 Wang, Li, Zhang, Wang, Guo, Chang, Li (b0320) 2021; 201 Dong, Qu, Liu, Zhang, Wang (b0080) 2002; 45 Anderson, Haff (b0010) 1991; 1 Dong, Fryrear, Gao (bib386) 1999; 164 Fryrear, D.W., Saleh, A., Bilbro, J.D., Schomberg, H.M., Stout, J.E., Zobeck, T.M., 1998. Revised wind erosion equation (RWEQ). Wind Erosion and Water Conservation Research Unit, USDA-ARS, Southern Plains Area Cropping Systems Research Laboratory. Technical Bulletin 1. Spies, McEwan, Butterfield (b0285) 2000; 25 Zhang, Qu, Zu, Ta (b0355) 2008; 54 Bagnold (b0020) 1941 Dai, Zhang, Cen, Wang, Liu, Zhang (b0065) 2020; 46 Jia, Zhang, Zou, Cheng, Kang, Liu, Li, Shen, Liu, Fang, Li (b0115) 2019; 186 Lee, Baas (b0135) 2012; 171 Brown, Nickling, Gillies (b0035) 2008; 113 Hagen (b0105) 1984; 27 Woodruff, Siddoway (b0335) 1965; 29 Sterk, Jacobs, Van Boxel (b0290) 1998; 23 Martin, Barchyn, Hugenholtz, Jerolmack (b0200) 2013; 118 King, Nickling, Gillies (b0130) 2005; 110 Liu, Ning, Wang (b0165) 2020; 12 van Boxel, Sterk, Arens (b0305) 2004; 59 Li, Zhang, Zhang, Shirato (b0150) 2003; 53 Zhao, Zhou, Zhang, Zhao (b0375) 2006; 87 Abulaiti, Kimura, Kodama (b0005) 2017; 31 Brucato, Grisafi, Montante (b0040) 1998; 53 Prandtl (b0225) 1952 Shao, Raupach, Leys (b0255) 1996; 34 Yan, Wang, Guo, Chen, Xin, Xu, Yan, Chen, Xu (b0340) 2018; 170 Chepil, Woodruff (b0055) 1963; 15 Tatarko, Kucharski, Li, Li (b0300) 2020; 200 Jia, Zhang, Zou, Kang (b0120) 2020; 198 Shao (b0250) 2005; 115 Liu, Dong (b0160) 2002; 22 Lyles, Krauss (b0185) 1971; 14 Sherman, Farrell (b0270) 2008; 113 Manukyan, Prigozhin (b0190) 2009; 79 Raupach (b0230) 1992; 60 Arya (b0015) 2001 Sirjani, Sameni, Moosavi, Mahmoodabadi, Laurent (b0280) 2019; 333 Mcewan, Willetts (b0210) 1993; 252 Wang, Zhou, Li, Chang, Guo, Li (b0325) 2018; 29 Dong, Liu, Wang (b0075) 2002; 43 Schönfeldt, von Löwis (b0240) 2003; 12 Walter, Gromke, Lehning (b0315) 2012; 144 Pao (b0220) 1967 Bisal, Nielsen (b0030) 1962; 42 Li, Ni (b0155) 2003; 11 Barchyn, Hugenholtz (b0025) 2011; 129 Shi (10.1016/j.catena.2022.106112_b0275) 2004; 28 Zhang (10.1016/j.catena.2022.106112_b0350) 2004; 75 Sirjani (10.1016/j.catena.2022.106112_b0280) 2019; 333 Jia (10.1016/j.catena.2022.106112_b0120) 2020; 198 Sharma (10.1016/j.catena.2022.106112_b0260) 2018; 1001 Lee (10.1016/j.catena.2022.106112_b0135) 2012; 171 Mayaud (10.1016/j.catena.2022.106112_b0205) 2016; 22 Spies (10.1016/j.catena.2022.106112_b0285) 2000; 25 Dai (10.1016/j.catena.2022.106112_b0065) 2020; 46 Zhang (10.1016/j.catena.2022.106112_b0360) 2012; 57 Dong (10.1016/j.catena.2022.106112_b0075) 2002; 43 Hagen (10.1016/j.catena.2022.106112_b0110) 1991; 46 Chepil (10.1016/j.catena.2022.106112_b0045) 1945; 60 Durán (10.1016/j.catena.2022.106112_b0085) 2011; 3 Lopez (10.1016/j.catena.2022.106112_b0175) 2000; 12 Martin (10.1016/j.catena.2022.106112_b0200) 2013; 118 Manukyan (10.1016/j.catena.2022.106112_b0190) 2009; 79 Gillies (10.1016/j.catena.2022.106112_b0100) 2002; 107 Leenders (10.1016/j.catena.2022.106112_b0140) 2005; 71 Bagnold (10.1016/j.catena.2022.106112_b0020) 1941 Colazo (10.1016/j.catena.2022.106112_b0060) 2010; 159 Shao (10.1016/j.catena.2022.106112_b0255) 1996; 34 Raupach (10.1016/j.catena.2022.106112_b0235) 1993; 98 Stout (10.1016/j.catena.2022.106112_b0295) 1997; 44 Dong (10.1016/j.catena.2022.106112_b0080) 2002; 45 Finnigan (10.1016/j.catena.2022.106112_b0090) 2000; 32 Jia (10.1016/j.catena.2022.106112_b0115) 2019; 186 Barchyn (10.1016/j.catena.2022.106112_b0025) 2011; 129 Wang (10.1016/j.catena.2022.106112_b0325) 2018; 29 Marshall (10.1016/j.catena.2022.106112_b0195) 1971; 8 Chepil (10.1016/j.catena.2022.106112_b0055) 1963; 15 10.1016/j.catena.2022.106112_b0310 Wiggs (10.1016/j.catena.2022.106112_b0330) 2012; 39 Lyles (10.1016/j.catena.2022.106112_b0185) 1971; 14 Chepil (10.1016/j.catena.2022.106112_b0050) 1951; 72 Schönfeldt (10.1016/j.catena.2022.106112_b0240) 2003; 12 Bisal (10.1016/j.catena.2022.106112_b0030) 1962; 42 Prandtl (10.1016/j.catena.2022.106112_b0225) 1952 Wang (10.1016/j.catena.2022.106112_b0320) 2021; 201 Dong (10.1016/j.catena.2022.106112_b0070) 2001; 49 Mcewan (10.1016/j.catena.2022.106112_b0210) 1993; 252 Raupach (10.1016/j.catena.2022.106112_b0230) 1992; 60 Shao (10.1016/j.catena.2022.106112_b0245) 1995; 21 Zhang (10.1016/j.catena.2022.106112_b0370) 2017; 42 Liu (10.1016/j.catena.2022.106112_b0160) 2002; 22 Owen (10.1016/j.catena.2022.106112_b0215) 1964; 20 Zhao (10.1016/j.catena.2022.106112_b0375) 2006; 87 10.1016/j.catena.2022.106112_b0095 Li (10.1016/j.catena.2022.106112_b0150) 2003; 53 Arya (10.1016/j.catena.2022.106112_b0015) 2001 van Boxel (10.1016/j.catena.2022.106112_b0305) 2004; 59 Li (10.1016/j.catena.2022.106112_b0145) 2012; 39 Liu (10.1016/j.catena.2022.106112_b0165) 2020; 12 Sterk (10.1016/j.catena.2022.106112_b0290) 1998; 23 Zhang (10.1016/j.catena.2022.106112_b0355) 2008; 54 Kardous (10.1016/j.catena.2022.106112_b0125) 2005; 23 Shao (10.1016/j.catena.2022.106112_b0250) 2005; 115 Dong (10.1016/j.catena.2022.106112_bib386) 1999; 164 Zou (10.1016/j.catena.2022.106112_b0385) 2018; 167 Brucato (10.1016/j.catena.2022.106112_b0040) 1998; 53 Hagen (10.1016/j.catena.2022.106112_b0105) 1984; 27 Pao (10.1016/j.catena.2022.106112_b0220) 1967 Yan (10.1016/j.catena.2022.106112_b0340) 2018; 170 Shen (10.1016/j.catena.2022.106112_b0265) 2019; 175 Anderson (10.1016/j.catena.2022.106112_b0010) 1991; 1 Yassin (10.1016/j.catena.2022.106112_b0345) 2012; 5 Brown (10.1016/j.catena.2022.106112_b0035) 2008; 113 Li (10.1016/j.catena.2022.106112_b0155) 2003; 11 Walter (10.1016/j.catena.2022.106112_b0315) 2012; 144 Lóki (10.1016/j.catena.2022.106112_b0170) 2005; 82 King (10.1016/j.catena.2022.106112_b0130) 2005; 110 Woodruff (10.1016/j.catena.2022.106112_b0335) 1965; 29 Lv (10.1016/j.catena.2022.106112_b0180) 2014; 71 Tatarko (10.1016/j.catena.2022.106112_b0300) 2020; 200 Abulaiti (10.1016/j.catena.2022.106112_b0005) 2017; 31 Zhang (10.1016/j.catena.2022.106112_b0365) 2007; 88 Zobeck (10.1016/j.catena.2022.106112_b0380) 1991; 46 Sherman (10.1016/j.catena.2022.106112_b0270) 2008; 113 |
References_xml | – volume: 159 start-page: 228 year: 2010 end-page: 236 ident: b0060 article-title: Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina publication-title: Geoderma – volume: 3 start-page: 243 year: 2011 end-page: 270 ident: b0085 article-title: On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws publication-title: Aeolian Res. – volume: 11 start-page: 352 year: 2003 end-page: 360 ident: b0155 article-title: Experimental measurement of air flow velocity fluctuation of wind-sand flux publication-title: J. Basic Sci. Eng. – volume: 59 start-page: 131 year: 2004 end-page: 147 ident: b0305 article-title: Sonic anemometers in aeolian sediment transport research publication-title: Geomorphology – volume: 43 start-page: 17 year: 2002 end-page: 31 ident: b0075 article-title: Aerodynamic roughness of gravel surface publication-title: Geomorphology – volume: 49 start-page: 485 year: 2001 end-page: 505 ident: b0070 article-title: Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation publication-title: J. Arid. Environ. – volume: 252 start-page: 99 year: 1993 end-page: 115 ident: b0210 article-title: Adaptation of the near surface wind to the development of sand transport publication-title: J. Fluid Mech. – volume: 98 start-page: 3023 year: 1993 end-page: 3029 ident: b0235 article-title: The effect of roughness elements on wind erosion threshold publication-title: J. Geophys. Res. – volume: 107 start-page: 4760 year: 2002 ident: b0100 article-title: Drag coefficient and plant form-response to wind speed in three plant species: Burning bush (Euonymus alatus), Colorado blue spruce (Picea pungens glauca.), and fountain grass (Pennisetum setaceum) publication-title: J. Geophys. Res. – volume: 75 start-page: 53 year: 2004 end-page: 59 ident: b0350 article-title: Aerodynamic roughness of cultivated soil and its influences on soil erosion by wind in a wind tunnel publication-title: Soil Till. Res. – volume: 201 start-page: 105215 year: 2021 ident: b0320 article-title: Comparison of dust emission ability of sand desert, gravel desert (Gobi), and farmland in northern China publication-title: Catena – volume: 46 start-page: 112 year: 1991 end-page: 118 ident: b0380 article-title: Soil properties affecting wind erosion publication-title: J. Soil Water Conserv. – volume: 22 start-page: 82 year: 2002 end-page: 87 ident: b0160 article-title: Wind tunnel tests of the roughness and drag partition on vegetated surfaces publication-title: J. Desert Res. – volume: 44 start-page: 959 year: 1997 end-page: 970 ident: b0295 article-title: Intermittent saltation publication-title: Sedimentology – volume: 42 start-page: 81 year: 1962 end-page: 86 ident: b0030 article-title: Movement of soil particles in saltation publication-title: Can. J. Soil Sci. – volume: 21 start-page: 31 year: 1995 end-page: 37 ident: b0245 article-title: A Lagrangian stochastic-model for nonpassive particle diffusion in turbulent flows publication-title: Math. Comput. Model. – volume: 31 start-page: 111 year: 2017 end-page: 124 ident: b0005 article-title: Effect of flexible and rigid roughness elements on aeolian sand transport publication-title: Arid Land Res. Manage. – volume: 60 start-page: 375 year: 1992 end-page: 395 ident: b0230 article-title: Drag and drag partition on rough surfaces publication-title: Bound.-Layer Meteor. – reference: Fryrear, D.W., Saleh, A., Bilbro, J.D., Schomberg, H.M., Stout, J.E., Zobeck, T.M., 1998. Revised wind erosion equation (RWEQ). Wind Erosion and Water Conservation Research Unit, USDA-ARS, Southern Plains Area Cropping Systems Research Laboratory. Technical Bulletin 1. – volume: 1 start-page: 21 year: 1991 end-page: 52 ident: b0010 article-title: Wind modification and bed response during saltation of sand in air publication-title: Acta Mech. (Suppl.) – volume: 115 start-page: 319 year: 2005 end-page: 338 ident: b0250 article-title: A similarity theory for saltation and application to aeolian mass flux publication-title: Bound.-Layer Meteor. – volume: 12 start-page: 257 year: 2003 end-page: 268 ident: b0240 article-title: Turbulence-driven saltation in the atmospheric surface layer publication-title: Meteorol. Z. – volume: 29 start-page: 602 year: 1965 end-page: 608 ident: b0335 article-title: A wind erosion equation publication-title: Soil Sci. Soc. Am. J. – volume: 1001 year: 2018 ident: b0260 article-title: Turbulent flows over sparse canopies publication-title: J. Phys.: Conf. Ser. – volume: 171 start-page: 69 year: 2012 end-page: 82 ident: b0135 article-title: Streamline correction for the analysis of boundary layer turbulence publication-title: Geomorphology – volume: 129 start-page: 190 year: 2011 end-page: 203 ident: b0025 article-title: Comparison of four methods to calculate aeolian sediment transport threshold from field data: Implications for transport prediction and discussion of method evolution publication-title: Geomorphology – volume: 46 start-page: 106 year: 1991 end-page: 111 ident: b0110 article-title: A wind erosion prediction system to meet user needs publication-title: J. Soil Water Conserv. – volume: 34 start-page: 309 year: 1996 end-page: 342 ident: b0255 article-title: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region publication-title: Austral. J. Soil Res. – volume: 87 start-page: 175 year: 2006 end-page: 185 ident: b0375 article-title: Effects of desertification on soil and crop growth properties in Horqin Sandy Cropland of Inner Mongolia, North China publication-title: Soil Till. Res. – volume: 45 start-page: 609 year: 2002 end-page: 615 ident: b0080 article-title: Experimental investigate on drag coefficients of gobi surfaces publication-title: Sci. China Earth Sci. – volume: 32 start-page: 519 year: 2000 end-page: 571 ident: b0090 article-title: Turbulence in plant canopies publication-title: Annu. Rev. Fluid Mech. – volume: 82 start-page: 39 year: 2005 end-page: 46 ident: b0170 article-title: SIDASS project - Part 4. Wind erodibility of cultivated soils in north-east Hungary publication-title: Soil Till. Res. – volume: 53 start-page: 255 year: 2003 end-page: 272 ident: b0150 article-title: Variations of sand transportation rates in sandy grasslands along a desertification gradient in northern China publication-title: Catena – year: 2001 ident: b0015 article-title: Introduction to micrometeorology – volume: 53 start-page: 3295 year: 1998 end-page: 3314 ident: b0040 article-title: Particle drag coefficients in turbulent fluids publication-title: Chem. Eng. Sci. – volume: 72 start-page: 465 year: 1951 end-page: 478 ident: b0050 article-title: Properties of soil which influence wind erosion: V. Mechanical stability of structure publication-title: Soil Sci. – volume: 113 start-page: F02S08 year: 2008 ident: b0270 article-title: Aerodynamic roughness lengths over movable beds: comparison of wind tunnel and field data publication-title: J. Geophys. Res. – volume: 200 start-page: 104601 year: 2020 ident: b0300 article-title: PM2.5 and PM10 emissions by abrasion of agricultural soils publication-title: Soil Till. Res. – year: 1967 ident: b0220 article-title: Fluid Mechanics – volume: 167 start-page: 429 year: 2018 end-page: 439 ident: b0385 article-title: Spatial variation of topsoil features in soil wind erosion areas of northern China publication-title: Catena – volume: 42 start-page: 889 year: 2017 end-page: 902 ident: b0370 article-title: Field observations of the vertical distribution of sand transport characteristics over fine, medium and coarse sand surfaces publication-title: Earth Surf. Proc. Landf. – volume: 27 start-page: 805 year: 1984 end-page: 808 ident: b0105 article-title: Soil aggregate abrasion by impacting sand and soil particles publication-title: Trans. ASAE – volume: 28 start-page: 366 year: 2004 end-page: 386 ident: b0275 article-title: Wind erosion research in China: past, present and future publication-title: Prog. Phys. Geog. – year: 1941 ident: b0020 article-title: The Physics of Blown Sands and Desert Dunes – volume: 71 start-page: 125 year: 2014 end-page: 131 ident: b0180 article-title: An analysis of drag force on wind of shrubs simulated in a wind tunnel publication-title: Environ. Earth. Sci. – volume: 113 start-page: F02S06 year: 2008 ident: b0035 article-title: A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions publication-title: J. Geophys. Res. – volume: 144 start-page: 217 year: 2012 end-page: 241 ident: b0315 article-title: Shear-stress partitioning in live plant canopies and modifications to Raupach’s model publication-title: Bound.-Layer Meteor. – volume: 79 year: 2009 ident: b0190 article-title: Formation of aeolian ripples and sand sorting publication-title: Phys. Rev. E. – volume: 60 start-page: 305 year: 1945 end-page: 320 ident: b0045 article-title: Dynamics of wind erosion: 1. Nature of movement of soil by wind publication-title: Soil Sci. – volume: 118 start-page: 9078 year: 2013 end-page: 9092 ident: b0200 article-title: Timescale dependence of aeolian sand flux observations under atmospheric turbulence publication-title: J. Geophys. Res.: Atmospheres – volume: 54 start-page: 411 year: 2008 end-page: 416 ident: b0355 article-title: Characteristics of wind-blown sand on Gobi/mobile sand surface publication-title: Environ. Geol. – volume: 57 start-page: 1559 year: 2012 end-page: 1567 ident: b0360 article-title: Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface publication-title: Chin. Sci. Bull. – volume: 170 start-page: 159 year: 2018 end-page: 168 ident: b0340 article-title: Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China publication-title: Catena – volume: 25 start-page: 505 year: 2000 end-page: 518 ident: b0285 article-title: One-dimensional transitional behaviour in saltation publication-title: Earth Surf. Proc. Landf. – volume: 20 start-page: 225 year: 1964 end-page: 242 ident: b0215 article-title: Saltation of uniform grains in air publication-title: J. Fluid Mech. – volume: 23 start-page: 3187 year: 2005 end-page: 3193 ident: b0125 article-title: Aerodynamic roughness length related to non-aggregated tillage ridges publication-title: Ann. Geophys. – volume: 23 start-page: 877 year: 1998 end-page: 887 ident: b0290 article-title: Effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer publication-title: Earth Surf. Proc. Landf. – volume: 29 start-page: 4362 year: 2018 end-page: 4372 ident: b0325 article-title: Difference in wind erosion characteristics between loamy and sandy farmlands and the implications for soil dust emission potential publication-title: Land Degrad. Dev. – year: 1952 ident: b0225 article-title: Essentials of fluid dynamics: With applications to hydraulics, aeronautics, meteorology and other subjects – volume: 22 start-page: 141 year: 2016 end-page: 151 ident: b0205 article-title: Dynamics of skimming flow in the wake of a vegetation patch publication-title: Aeolian Res. – volume: 164 start-page: 930 year: 1999 end-page: 935 ident: bib386 article-title: Modeling the roughness properties of artificial soil clods publication-title: Soil Sci. – volume: 110 year: 2005 ident: b0130 article-title: Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold. publication-title: J. Geophys. Res. Earth Surf. – volume: 39 year: 2012 ident: b0145 article-title: Boundary-layer turbulence characteristics during aeolian saltation publication-title: Geophys. Res. Lett. – volume: 71 start-page: 357 year: 2005 end-page: 372 ident: b0140 article-title: Wind forces and related saltation transport publication-title: Geomorphology – volume: 175 start-page: 286 year: 2019 end-page: 293 ident: b0265 article-title: The effect of wind speed averaging time on sand transport estimates publication-title: Catena – volume: 8 start-page: 269 year: 1971 end-page: 292 ident: b0195 article-title: Drag measurements in roughness arrays of varying density and distribution publication-title: Agric. Meteorol. – volume: 5 start-page: 293 year: 2012 end-page: 301 ident: b0345 article-title: Experimental simulation of wind flow over the ridge topography publication-title: Air Qual. Atmos. Health. – volume: 14 start-page: 563 year: 1971 end-page: 566 ident: b0185 article-title: Threshold velocities and initial particle motion as influenced by air turbulence publication-title: Trans. ASAE – volume: 198 start-page: 104548 year: 2020 ident: b0120 article-title: Effect of transverse ridge microtopography on the surface shear stress distribution and soil wind erosion publication-title: Soil Till. Res. – volume: 186 start-page: 94 year: 2019 end-page: 104 ident: b0115 article-title: Effects of ridge height and spacing on the near-surface airflow field and on wind erosion of a sandy soil: results of a wind tunnel study publication-title: Soil Till. Res. – volume: 12 start-page: 234 year: 2020 end-page: 241 ident: b0165 article-title: Theoretical expressions for soil particle detachment rate due to saltation bombardment in wind erosion publication-title: Sci. Cold Arid Reg. – volume: 15 start-page: 211 year: 1963 end-page: 302 ident: b0055 article-title: The physics of wind erosion and its control publication-title: Adv. Agron. – volume: 12 start-page: 191 year: 2000 end-page: 199 ident: b0175 article-title: Effects of reduced tillage on soil surface properties affecting wind erosion in semiarid fallow lands of Central Aragon publication-title: Eur. J. Agron. – reference: Versteeg, H., Malalasekera, W., 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach (1st ed.). Prentice Hall, London. – volume: 46 start-page: 100614 year: 2020 ident: b0065 article-title: Abrasion of soil clods with different textures and moisture contents in sand flow environment publication-title: Aeolian Res – volume: 333 start-page: 69 year: 2019 end-page: 80 ident: b0280 article-title: Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars province publication-title: Iran. Geoderma – volume: 88 start-page: 109 year: 2007 end-page: 119 ident: b0365 article-title: Two-phase measurements of wind and saltating sand in an atmospheric boundary layer publication-title: Geomorphology – volume: 39 year: 2012 ident: b0330 article-title: Turbulent flow structures and aeolian sediment transport over a barchan sand dune publication-title: Geophys. Res. Lett. – volume: 21 start-page: 31 issue: 9 year: 1995 ident: 10.1016/j.catena.2022.106112_b0245 article-title: A Lagrangian stochastic-model for nonpassive particle diffusion in turbulent flows publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(95)00049-8 – volume: 20 start-page: 225 issue: 2 year: 1964 ident: 10.1016/j.catena.2022.106112_b0215 article-title: Saltation of uniform grains in air publication-title: J. Fluid Mech. doi: 10.1017/S0022112064001173 – volume: 29 start-page: 4362 issue: 12 year: 2018 ident: 10.1016/j.catena.2022.106112_b0325 article-title: Difference in wind erosion characteristics between loamy and sandy farmlands and the implications for soil dust emission potential publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3185 – volume: 1 start-page: 21 year: 1991 ident: 10.1016/j.catena.2022.106112_b0010 article-title: Wind modification and bed response during saltation of sand in air publication-title: Acta Mech. (Suppl.) – volume: 12 start-page: 234 issue: 4 year: 2020 ident: 10.1016/j.catena.2022.106112_b0165 article-title: Theoretical expressions for soil particle detachment rate due to saltation bombardment in wind erosion publication-title: Sci. Cold Arid Reg. – volume: 60 start-page: 305 issue: 4 year: 1945 ident: 10.1016/j.catena.2022.106112_b0045 article-title: Dynamics of wind erosion: 1. Nature of movement of soil by wind publication-title: Soil Sci. doi: 10.1097/00010694-194510000-00004 – volume: 59 start-page: 131 issue: 1-4 year: 2004 ident: 10.1016/j.catena.2022.106112_b0305 article-title: Sonic anemometers in aeolian sediment transport research publication-title: Geomorphology doi: 10.1016/j.geomorph.2003.09.011 – volume: 43 start-page: 17 issue: 1–2 year: 2002 ident: 10.1016/j.catena.2022.106112_b0075 article-title: Aerodynamic roughness of gravel surface publication-title: Geomorphology doi: 10.1016/S0169-555X(01)00097-6 – volume: 175 start-page: 286 year: 2019 ident: 10.1016/j.catena.2022.106112_b0265 article-title: The effect of wind speed averaging time on sand transport estimates publication-title: Catena doi: 10.1016/j.catena.2018.12.020 – volume: 32 start-page: 519 issue: 1 year: 2000 ident: 10.1016/j.catena.2022.106112_b0090 article-title: Turbulence in plant canopies publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.32.1.519 – volume: 186 start-page: 94 year: 2019 ident: 10.1016/j.catena.2022.106112_b0115 article-title: Effects of ridge height and spacing on the near-surface airflow field and on wind erosion of a sandy soil: results of a wind tunnel study publication-title: Soil Till. Res. doi: 10.1016/j.still.2018.10.005 – volume: 42 start-page: 889 issue: 6 year: 2017 ident: 10.1016/j.catena.2022.106112_b0370 article-title: Field observations of the vertical distribution of sand transport characteristics over fine, medium and coarse sand surfaces publication-title: Earth Surf. Proc. Landf. doi: 10.1002/esp.4045 – volume: 200 start-page: 104601 year: 2020 ident: 10.1016/j.catena.2022.106112_b0300 article-title: PM2.5 and PM10 emissions by abrasion of agricultural soils publication-title: Soil Till. Res. doi: 10.1016/j.still.2020.104601 – volume: 107 start-page: 4760 issue: D24 year: 2002 ident: 10.1016/j.catena.2022.106112_b0100 article-title: Drag coefficient and plant form-response to wind speed in three plant species: Burning bush (Euonymus alatus), Colorado blue spruce (Picea pungens glauca.), and fountain grass (Pennisetum setaceum) publication-title: J. Geophys. Res. doi: 10.1029/2001JD001259 – volume: 5 start-page: 293 issue: 3 year: 2012 ident: 10.1016/j.catena.2022.106112_b0345 article-title: Experimental simulation of wind flow over the ridge topography publication-title: Air Qual. Atmos. Health. doi: 10.1007/s11869-010-0090-7 – volume: 25 start-page: 505 issue: 5 year: 2000 ident: 10.1016/j.catena.2022.106112_b0285 article-title: One-dimensional transitional behaviour in saltation publication-title: Earth Surf. Proc. Landf. doi: 10.1002/(SICI)1096-9837(200005)25:5<505::AID-ESP78>3.0.CO;2-D – volume: 252 start-page: 99 year: 1993 ident: 10.1016/j.catena.2022.106112_b0210 article-title: Adaptation of the near surface wind to the development of sand transport publication-title: J. Fluid Mech. doi: 10.1017/S0022112093003684 – volume: 82 start-page: 39 issue: 1 year: 2005 ident: 10.1016/j.catena.2022.106112_b0170 article-title: SIDASS project - Part 4. Wind erodibility of cultivated soils in north-east Hungary publication-title: Soil Till. Res. doi: 10.1016/j.still.2005.01.006 – volume: 170 start-page: 159 year: 2018 ident: 10.1016/j.catena.2022.106112_b0340 article-title: Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China publication-title: Catena doi: 10.1016/j.catena.2018.06.013 – volume: 39 year: 2012 ident: 10.1016/j.catena.2022.106112_b0145 article-title: Boundary-layer turbulence characteristics during aeolian saltation publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL052234 – volume: 22 start-page: 82 issue: 1 year: 2002 ident: 10.1016/j.catena.2022.106112_b0160 article-title: Wind tunnel tests of the roughness and drag partition on vegetated surfaces publication-title: J. Desert Res. – volume: 79 issue: 3 year: 2009 ident: 10.1016/j.catena.2022.106112_b0190 article-title: Formation of aeolian ripples and sand sorting publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.79.031303 – volume: 3 start-page: 243 issue: 3 year: 2011 ident: 10.1016/j.catena.2022.106112_b0085 article-title: On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2011.07.006 – volume: 31 start-page: 111 issue: 2 year: 2017 ident: 10.1016/j.catena.2022.106112_b0005 article-title: Effect of flexible and rigid roughness elements on aeolian sand transport publication-title: Arid Land Res. Manage. doi: 10.1080/15324982.2016.1260665 – volume: 15 start-page: 211 year: 1963 ident: 10.1016/j.catena.2022.106112_b0055 article-title: The physics of wind erosion and its control publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60400-9 – volume: 8 start-page: 269 issue: 4–5 year: 1971 ident: 10.1016/j.catena.2022.106112_b0195 article-title: Drag measurements in roughness arrays of varying density and distribution publication-title: Agric. Meteorol. doi: 10.1016/0002-1571(71)90116-6 – volume: 144 start-page: 217 issue: 2 year: 2012 ident: 10.1016/j.catena.2022.106112_b0315 article-title: Shear-stress partitioning in live plant canopies and modifications to Raupach’s model publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-012-9719-4 – volume: 45 start-page: 609 issue: 7 year: 2002 ident: 10.1016/j.catena.2022.106112_b0080 article-title: Experimental investigate on drag coefficients of gobi surfaces publication-title: Sci. China Earth Sci. doi: 10.1360/02yd9062 – volume: 98 start-page: 3023 issue: D2 year: 1993 ident: 10.1016/j.catena.2022.106112_b0235 article-title: The effect of roughness elements on wind erosion threshold publication-title: J. Geophys. Res. doi: 10.1029/92JD01922 – volume: 53 start-page: 3295 issue: 18 year: 1998 ident: 10.1016/j.catena.2022.106112_b0040 article-title: Particle drag coefficients in turbulent fluids publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(98)00114-6 – volume: 23 start-page: 877 issue: 10 year: 1998 ident: 10.1016/j.catena.2022.106112_b0290 article-title: Effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer publication-title: Earth Surf. Proc. Landf. doi: 10.1002/(SICI)1096-9837(199810)23:10<877::AID-ESP905>3.0.CO;2-R – volume: 88 start-page: 109 issue: 1–2 year: 2007 ident: 10.1016/j.catena.2022.106112_b0365 article-title: Two-phase measurements of wind and saltating sand in an atmospheric boundary layer publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.017 – volume: 129 start-page: 190 issue: 3/4 year: 2011 ident: 10.1016/j.catena.2022.106112_b0025 article-title: Comparison of four methods to calculate aeolian sediment transport threshold from field data: Implications for transport prediction and discussion of method evolution publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.01.022 – volume: 71 start-page: 357 issue: 3-4 year: 2005 ident: 10.1016/j.catena.2022.106112_b0140 article-title: Wind forces and related saltation transport publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.04.008 – volume: 113 start-page: F02S06 year: 2008 ident: 10.1016/j.catena.2022.106112_b0035 article-title: A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions publication-title: J. Geophys. Res. doi: 10.1029/2007JF000790 – volume: 23 start-page: 3187 issue: 10 year: 2005 ident: 10.1016/j.catena.2022.106112_b0125 article-title: Aerodynamic roughness length related to non-aggregated tillage ridges publication-title: Ann. Geophys. doi: 10.5194/angeo-23-3187-2005 – volume: 44 start-page: 959 issue: 5 year: 1997 ident: 10.1016/j.catena.2022.106112_b0295 article-title: Intermittent saltation publication-title: Sedimentology doi: 10.1046/j.1365-3091.1997.d01-55.x – volume: 164 start-page: 930 issue: 12 year: 1999 ident: 10.1016/j.catena.2022.106112_bib386 article-title: Modeling the roughness properties of artificial soil clods publication-title: Soil Sci. doi: 10.1097/00010694-199912000-00006 – volume: 115 start-page: 319 issue: 2 year: 2005 ident: 10.1016/j.catena.2022.106112_b0250 article-title: A similarity theory for saltation and application to aeolian mass flux publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-004-4632-0 – volume: 201 start-page: 105215 year: 2021 ident: 10.1016/j.catena.2022.106112_b0320 article-title: Comparison of dust emission ability of sand desert, gravel desert (Gobi), and farmland in northern China publication-title: Catena doi: 10.1016/j.catena.2021.105215 – volume: 46 start-page: 106 issue: 2 year: 1991 ident: 10.1016/j.catena.2022.106112_b0110 article-title: A wind erosion prediction system to meet user needs publication-title: J. Soil Water Conserv. – volume: 53 start-page: 255 issue: 3 year: 2003 ident: 10.1016/j.catena.2022.106112_b0150 article-title: Variations of sand transportation rates in sandy grasslands along a desertification gradient in northern China publication-title: Catena doi: 10.1016/S0341-8162(03)00039-0 – volume: 75 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.catena.2022.106112_b0350 article-title: Aerodynamic roughness of cultivated soil and its influences on soil erosion by wind in a wind tunnel publication-title: Soil Till. Res. doi: 10.1016/S0167-1987(03)00159-4 – year: 1952 ident: 10.1016/j.catena.2022.106112_b0225 – ident: 10.1016/j.catena.2022.106112_b0095 – volume: 87 start-page: 175 issue: 2 year: 2006 ident: 10.1016/j.catena.2022.106112_b0375 article-title: Effects of desertification on soil and crop growth properties in Horqin Sandy Cropland of Inner Mongolia, North China publication-title: Soil Till. Res. doi: 10.1016/j.still.2005.03.009 – volume: 14 start-page: 563 issue: 3 year: 1971 ident: 10.1016/j.catena.2022.106112_b0185 article-title: Threshold velocities and initial particle motion as influenced by air turbulence publication-title: Trans. ASAE doi: 10.13031/2013.38339 – volume: 49 start-page: 485 issue: 3 year: 2001 ident: 10.1016/j.catena.2022.106112_b0070 article-title: Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation publication-title: J. Arid. Environ. doi: 10.1006/jare.2001.0807 – volume: 11 start-page: 352 issue: 4 year: 2003 ident: 10.1016/j.catena.2022.106112_b0155 article-title: Experimental measurement of air flow velocity fluctuation of wind-sand flux publication-title: J. Basic Sci. Eng. – year: 2001 ident: 10.1016/j.catena.2022.106112_b0015 – volume: 12 start-page: 257 issue: 5 year: 2003 ident: 10.1016/j.catena.2022.106112_b0240 article-title: Turbulence-driven saltation in the atmospheric surface layer publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2003/0012-0257 – volume: 12 start-page: 191 issue: 3 year: 2000 ident: 10.1016/j.catena.2022.106112_b0175 article-title: Effects of reduced tillage on soil surface properties affecting wind erosion in semiarid fallow lands of Central Aragon publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(00)00046-0 – year: 1967 ident: 10.1016/j.catena.2022.106112_b0220 – volume: 54 start-page: 411 issue: 2 year: 2008 ident: 10.1016/j.catena.2022.106112_b0355 article-title: Characteristics of wind-blown sand on Gobi/mobile sand surface publication-title: Environ. Geol. doi: 10.1007/s00254-007-0827-2 – volume: 118 start-page: 9078 issue: 16 year: 2013 ident: 10.1016/j.catena.2022.106112_b0200 article-title: Timescale dependence of aeolian sand flux observations under atmospheric turbulence publication-title: J. Geophys. Res.: Atmospheres doi: 10.1002/jgrd.50687 – volume: 167 start-page: 429 year: 2018 ident: 10.1016/j.catena.2022.106112_b0385 article-title: Spatial variation of topsoil features in soil wind erosion areas of northern China publication-title: Catena doi: 10.1016/j.catena.2018.05.022 – volume: 1001 issue: 1 year: 2018 ident: 10.1016/j.catena.2022.106112_b0260 article-title: Turbulent flows over sparse canopies publication-title: J. Phys.: Conf. Ser. – volume: 159 start-page: 228 issue: 1-2 year: 2010 ident: 10.1016/j.catena.2022.106112_b0060 article-title: Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina publication-title: Geoderma doi: 10.1016/j.geoderma.2010.07.016 – volume: 71 start-page: 125 issue: 1 year: 2014 ident: 10.1016/j.catena.2022.106112_b0180 article-title: An analysis of drag force on wind of shrubs simulated in a wind tunnel publication-title: Environ. Earth. Sci. doi: 10.1007/s12665-013-2417-9 – volume: 39 year: 2012 ident: 10.1016/j.catena.2022.106112_b0330 article-title: Turbulent flow structures and aeolian sediment transport over a barchan sand dune publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL050847 – volume: 29 start-page: 602 issue: 5 year: 1965 ident: 10.1016/j.catena.2022.106112_b0335 article-title: A wind erosion equation publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1965.03615995002900050035x – volume: 27 start-page: 805 issue: 3 year: 1984 ident: 10.1016/j.catena.2022.106112_b0105 article-title: Soil aggregate abrasion by impacting sand and soil particles publication-title: Trans. ASAE doi: 10.13031/2013.32875 – volume: 113 start-page: F02S08 year: 2008 ident: 10.1016/j.catena.2022.106112_b0270 article-title: Aerodynamic roughness lengths over movable beds: comparison of wind tunnel and field data publication-title: J. Geophys. Res. doi: 10.1029/2007JF000784 – volume: 28 start-page: 366 issue: 3 year: 2004 ident: 10.1016/j.catena.2022.106112_b0275 article-title: Wind erosion research in China: past, present and future publication-title: Prog. Phys. Geog. doi: 10.1191/0309133304pp416ra – volume: 57 start-page: 1559 issue: 13 year: 2012 ident: 10.1016/j.catena.2022.106112_b0360 article-title: Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-012-5000-y – volume: 72 start-page: 465 issue: 6 year: 1951 ident: 10.1016/j.catena.2022.106112_b0050 article-title: Properties of soil which influence wind erosion: V. Mechanical stability of structure publication-title: Soil Sci. doi: 10.1097/00010694-195112000-00007 – volume: 171 start-page: 69 year: 2012 ident: 10.1016/j.catena.2022.106112_b0135 article-title: Streamline correction for the analysis of boundary layer turbulence publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.05.005 – volume: 42 start-page: 81 issue: 1 year: 1962 ident: 10.1016/j.catena.2022.106112_b0030 article-title: Movement of soil particles in saltation publication-title: Can. J. Soil Sci. doi: 10.4141/cjss62-012 – year: 1941 ident: 10.1016/j.catena.2022.106112_b0020 – volume: 110 issue: F4 year: 2005 ident: 10.1016/j.catena.2022.106112_b0130 article-title: Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold. publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2004JF000281 – volume: 333 start-page: 69 year: 2019 ident: 10.1016/j.catena.2022.106112_b0280 article-title: Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars province publication-title: Iran. Geoderma doi: 10.1016/j.geoderma.2018.07.012 – volume: 46 start-page: 100614 year: 2020 ident: 10.1016/j.catena.2022.106112_b0065 article-title: Abrasion of soil clods with different textures and moisture contents in sand flow environment publication-title: Aeolian Res doi: 10.1016/j.aeolia.2020.100614 – volume: 46 start-page: 112 issue: 2 year: 1991 ident: 10.1016/j.catena.2022.106112_b0380 article-title: Soil properties affecting wind erosion publication-title: J. Soil Water Conserv. – volume: 198 start-page: 104548 year: 2020 ident: 10.1016/j.catena.2022.106112_b0120 article-title: Effect of transverse ridge microtopography on the surface shear stress distribution and soil wind erosion publication-title: Soil Till. Res. doi: 10.1016/j.still.2019.104548 – volume: 22 start-page: 141 year: 2016 ident: 10.1016/j.catena.2022.106112_b0205 article-title: Dynamics of skimming flow in the wake of a vegetation patch publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2016.08.001 – volume: 60 start-page: 375 issue: 4 year: 1992 ident: 10.1016/j.catena.2022.106112_b0230 article-title: Drag and drag partition on rough surfaces publication-title: Bound.-Layer Meteor. doi: 10.1007/BF00155203 – ident: 10.1016/j.catena.2022.106112_b0310 – volume: 34 start-page: 309 issue: 3 year: 1996 ident: 10.1016/j.catena.2022.106112_b0255 article-title: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region publication-title: Austral. J. Soil Res. doi: 10.1071/SR9960309 |
SSID | ssj0004751 |
Score | 2.4037483 |
Snippet | •Aerodynamic characteristics of five surfaces undergoing wind erosion differ.•Pulsation intensity, turbulence intensity, and drag coefficient increase with... Aerodynamic characteristics is a crucial factor influencing soil wind erosion, which is closely related to the properties of surface roughness elements. In the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106112 |
SubjectTerms | aerodynamics agricultural land air flow catenas China Drag coefficient Flexible roughness element grasslands probability Rigid roughness element roughness roughness length sand soil surface roughness Surface stability turbulent flow ultrasonics Wind erosion wind speed |
Title | A comparison of the aerodynamic characteristics of four kinds of land surface in wind erosion areas of northern China |
URI | https://dx.doi.org/10.1016/j.catena.2022.106112 https://www.proquest.com/docview/2636598395 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ76J4EEPddskfR0XUVdFLyp4C0ma4Kp0ZR-IF3-7M2mqKIjgrWknackkM1-ayXyE7BvwSkaUcZSarIxEwRzYQW0ilWSW50Kw2OcpuLrOenfi4j69nyLH7VkYDKsMtr-x6d5ahzud0Judl36_cxODAS6SDBwcAoUCc4IKkeMoP3r_CvMQuadgROEIpdvjcz7GC4OOasw-xNgRro0S9pt7-mGovfc5XSQLATbSbvNlS2TK1stkLjCYP7wtk9kzT9ELV0thuo7oQcgpfbhCJl1qPhkH6cBRwH1UWbCeDSM9Nd8TN6OIg5fSJ1iz-xJGQNLRZOiUsbRf01d4QKEB_NtGFYa2o1SN20B2WFPPy71K7k5Pbo97UWBciBQ4snFUKgBcVWqVY1VVVhrgCOOpKl2mtDDcldy6yqROa1YVSrsiRQorAxjOwVImUXyNTNeD2q4TqgRMbR0rgEdG8MwUOsFN_sJWvMpdXG4Q3na0NCEdObJiPMs27uxRNuqRqB7ZqGeDRJ-1Xpp0HH_I560O5bdhJcFj_FFzr1W5hBmH2yiqtoPJSLKMZ2kJwDLd_HfrW2QeS03k5DaZHg8ndgfQzVjv-uG7S2a655e96w9Amfjh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRRVcENBW5e1KPbSHdBM_sslxhaDLay8FiZtlO7bYtsqifajqv2cmcUBUQki9JfHYiTz2zOd4PB_AZ4deyckyTZTLy0QWPKAdtC4xWe7FQEqeNnkKrsb56Eae36rbFTjuzsJQWGW0_a1Nb6x1fNKPvdm_n0z6P1I0wEWWo4MjoFDIN7BK2alUD1aHZxej8dPxyEHDwkjyCVXoTtA1YV4Ud1RTAiLOv9HyKOMveah_bHXjgE43YSMiRzZsP24LVny9DWuRxPzu7za8_d6w9OLVVpyxc_YlppX--g6WQ-YeSQfZNDCEfsx4NKAtKT1zz3M3k0jAl7JfuGxv7igIks2Xs2CcZ5Oa_cEChg3QDzdmKLqdpGraCfKzmjXU3O_h5vTk-niURNKFxKAvWySlQcxVKW8Cr6qysohIuFCmDLmx0olQCh8qp4K1vCqMDYUiFiuHMC7gaiYz4gP06mntPwIzEme3TQ0iJCdF7gqb0T5_4StRDUJa7oDoOlq7mJGciDF-6y707Kdu1aNJPbpVzw4kj7Xu24wcr8gPOh3qZyNLo9N4peanTuUaJx3tpJjaT5dzzXORqxKxpdr979aPYG10fXWpL8_GF3uwTiVtIOU-9BazpT9AsLOwh3EwPwDFSfuS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+the+aerodynamic+characteristics+of+four+kinds+of+land+surface+in+wind+erosion+areas+of+northern+China&rft.jtitle=Catena+%28Giessen%29&rft.au=Zhang%2C+Chunlai&rft.au=Yuan%2C+Yixiao&rft.au=Zou%2C+Xueyong&rft.au=Wang%2C+Hongtao&rft.date=2022-05-01&rft.issn=0341-8162&rft.volume=212&rft.spage=106112&rft_id=info:doi/10.1016%2Fj.catena.2022.106112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_catena_2022_106112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |