The effects of blast damage zone thickness on rock slope stability
The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope s...
Saved in:
Published in | Engineering geology Vol. 246; pp. 19 - 27 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
28.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope stability. In this research, the parallel layer model (PLM), in which the rock mass is divided into a number of layers parallel to the slope face with a decreasing value of D applied to each layer, is used with the limit equilibrium method to investigate the effects of T on the stability of rock slopes. Based on extensive parametric studies, a blast damage zone thickness weighting factor fT is proposed to quantify the influence of T on the evaluation of the factor of safety (FOS) of given slopes. Results show that the selection of T in the slope model plays an important role in the calculation of FOS, especially, when the ratio of T to slope height H is <1.0. Based on fT and existing stability charts, a stability model is proposed for the estimation of the FOS of slopes with different slope geometries and rock mass properties. The reliability of the proposed stability model is tested against numerical solutions. The results show that FOS estimated from the proposed stability model exhibits only 5.6% average relative discrepancy compared with numerical solutions based on 1254 sets of data. The proposed stability model is simple and effective, and can be used for the preliminary assessment of rock slope stability, considering the effects of different degree of blast damages
•The blast damage factor of the HB criterion is significant in slope stability analysis.•A factor fT is proposed to quantify the effect of blast damage zone thickness T on FOS.•Results show that T in the slope model plays an important role in calculating FOS.•The factor fT is combined with stability charts to form a slope stability model.•The slope stability model can be reliably used for the assessment of slope stability. |
---|---|
AbstractList | The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope stability. In this research, the parallel layer model (PLM), in which the rock mass is divided into a number of layers parallel to the slope face with a decreasing value of D applied to each layer, is used with the limit equilibrium method to investigate the effects of T on the stability of rock slopes. Based on extensive parametric studies, a blast damage zone thickness weighting factor fT is proposed to quantify the influence of T on the evaluation of the factor of safety (FOS) of given slopes. Results show that the selection of T in the slope model plays an important role in the calculation of FOS, especially, when the ratio of T to slope height H is <1.0. Based on fT and existing stability charts, a stability model is proposed for the estimation of the FOS of slopes with different slope geometries and rock mass properties. The reliability of the proposed stability model is tested against numerical solutions. The results show that FOS estimated from the proposed stability model exhibits only 5.6% average relative discrepancy compared with numerical solutions based on 1254 sets of data. The proposed stability model is simple and effective, and can be used for the preliminary assessment of rock slope stability, considering the effects of different degree of blast damages
•The blast damage factor of the HB criterion is significant in slope stability analysis.•A factor fT is proposed to quantify the effect of blast damage zone thickness T on FOS.•Results show that T in the slope model plays an important role in calculating FOS.•The factor fT is combined with stability charts to form a slope stability model.•The slope stability model can be reliably used for the assessment of slope stability. The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope stability. In this research, the parallel layer model (PLM), in which the rock mass is divided into a number of layers parallel to the slope face with a decreasing value of D applied to each layer, is used with the limit equilibrium method to investigate the effects of T on the stability of rock slopes. Based on extensive parametric studies, a blast damage zone thickness weighting factor fT is proposed to quantify the influence of T on the evaluation of the factor of safety (FOS) of given slopes. Results show that the selection of T in the slope model plays an important role in the calculation of FOS, especially, when the ratio of T to slope height H is <1.0. Based on fT and existing stability charts, a stability model is proposed for the estimation of the FOS of slopes with different slope geometries and rock mass properties. The reliability of the proposed stability model is tested against numerical solutions. The results show that FOS estimated from the proposed stability model exhibits only 5.6% average relative discrepancy compared with numerical solutions based on 1254 sets of data. The proposed stability model is simple and effective, and can be used for the preliminary assessment of rock slope stability, considering the effects of different degree of blast damages |
Author | Zheng, Huihui Li, Tianbin Shen, Jiayi Sun, Hongyue Xu, Chaoshui Lü, Qing |
Author_xml | – sequence: 1 givenname: Huihui orcidid: 0000-0002-4074-8473 surname: Zheng fullname: Zheng, Huihui organization: Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China – sequence: 2 givenname: Tianbin surname: Li fullname: Li, Tianbin organization: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China – sequence: 3 givenname: Jiayi surname: Shen fullname: Shen, Jiayi email: jiayi@zju.edu.cn organization: Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China – sequence: 4 givenname: Chaoshui surname: Xu fullname: Xu, Chaoshui organization: School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide 5005, Australia – sequence: 5 givenname: Hongyue surname: Sun fullname: Sun, Hongyue organization: Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China – sequence: 6 givenname: Qing surname: Lü fullname: Lü, Qing organization: Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China |
BookMark | eNqFkD1LBDEQhoMoeH78A4uUNrtmEpPdtRBU_ALBRuuQZCdnzr3NmURBf717nJWFVsMw7zPDPHtke4wjEnIErAYG6mRR4zifY6w5g7ZmXc04bJEZtA2vVAfNNpkxBqJqOsl3yV7Oi3XLWDMjl08vSNF7dCXT6KkdTC60N0szR_o1naHlJbjXEfM0HmmK7pXmIa6Q5mJsGEL5PCA73gwZD3_qPnm-uX66uqseHm_vry4eKiMUL5XsQIDgXQsWDGdKWmsBuFLCOg9edlIYyVyPFpRFqTyTphet9MYqYIaLfXK82btK8e0dc9HLkB0OgxkxvmfNoZ3-E6JZR882UZdizgm9dqGYEuJYkgmDBqbX4vRCb8TptTjNOj2Jm-DTX_AqhaVJn_9h5xsMJwcfAZPOLuDosA9psqv7GP5e8A0NaIs8 |
CitedBy_id | crossref_primary_10_1007_s11069_021_04762_1 crossref_primary_10_1007_s12517_021_07113_3 crossref_primary_10_1007_s00603_023_03448_3 crossref_primary_10_1088_1755_1315_634_1_012031 crossref_primary_10_1007_s11069_024_07080_4 crossref_primary_10_1007_s10346_020_01350_5 crossref_primary_10_1016_j_ijrmms_2019_104179 crossref_primary_10_1007_s00603_025_04385_z crossref_primary_10_21595_jve_2019_20381 crossref_primary_10_1007_s00603_019_01771_2 crossref_primary_10_1007_s00603_023_03281_8 crossref_primary_10_1007_s00603_022_03189_9 crossref_primary_10_1016_j_ijrmms_2019_104192 crossref_primary_10_1007_s12517_020_05755_3 crossref_primary_10_1016_j_enggeo_2022_106771 crossref_primary_10_1080_17499518_2022_2062776 crossref_primary_10_1016_j_jrmge_2024_08_014 crossref_primary_10_1061__ASCE_GM_1943_5622_0001877 crossref_primary_10_21595_jve_2022_22826 crossref_primary_10_3390_app9061155 crossref_primary_10_1007_s10706_023_02576_5 crossref_primary_10_1016_j_enggeo_2023_107181 crossref_primary_10_1007_s00603_023_03295_2 crossref_primary_10_1080_19648189_2020_1780475 crossref_primary_10_1155_2021_9939361 crossref_primary_10_1007_s11760_024_03187_0 crossref_primary_10_1007_s12517_022_10093_7 crossref_primary_10_1016_j_enggeo_2019_105439 crossref_primary_10_1016_j_enggeo_2024_107437 crossref_primary_10_1007_s10346_023_02082_y crossref_primary_10_1016_j_enggeo_2022_106745 crossref_primary_10_1016_j_eswa_2023_120595 crossref_primary_10_1016_j_engfracmech_2021_107627 |
Cites_doi | 10.1007/s40948-016-0021-7 10.1016/j.enggeo.2017.01.018 10.1016/j.enggeo.2016.05.015 10.1016/j.enggeo.2011.12.011 10.12989/gae.2016.10.3.257 10.1016/j.jrmge.2015.03.008 10.1016/j.enggeo.2016.09.017 10.1007/s10064-004-0270-5 10.1016/j.ijrmms.2016.09.007 10.1016/j.compgeo.2008.01.004 10.1061/(ASCE)GT.1943-5606.0000251 10.1139/cgj-2013-0191 10.1007/s12594-018-0841-x 10.1061/(ASCE)GT.1943-5606.0001116 10.1007/s10064-009-0235-9 10.1016/j.ijrmms.2017.04.010 10.1016/j.ijrmms.2005.06.005 10.1016/j.compgeo.2011.03.003 10.1016/j.ijrmms.2013.09.002 10.1016/j.compgeo.2016.08.012 10.1016/j.ijrmms.2007.08.010 10.1016/j.jrmge.2018.08.001 10.1007/s10706-017-0279-8 10.1016/j.enggeo.2016.01.002 10.1016/j.enggeo.2017.05.008 10.1016/S1365-1609(03)00025-X 10.1016/S1365-1609(97)80069-X |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.enggeo.2018.09.021 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6917 |
EndPage | 27 |
ExternalDocumentID | 10_1016_j_enggeo_2018_09_021 S0013795218306471 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE IMUCA J1W K-O KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSZ T5K TN5 ~02 ~G- 29G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- SEP SET SEW SSH VH1 WUQ XOL XPP ZCG ZMT ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-a362t-5913132981b1a2065bbb112663bcf1f5953a50cdeb16be56f05ad385fab610a23 |
IEDL.DBID | .~1 |
ISSN | 0013-7952 |
IngestDate | Thu Jul 10 17:17:34 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Mon Jul 14 08:40:23 EDT 2025 Fri Feb 23 02:15:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hoek-Brown criterion Stability charts Blast damage factor Blast damage zone thickness Weighting factor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-5913132981b1a2065bbb112663bcf1f5953a50cdeb16be56f05ad385fab610a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4074-8473 |
PQID | 2189523372 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2189523372 crossref_citationtrail_10_1016_j_enggeo_2018_09_021 crossref_primary_10_1016_j_enggeo_2018_09_021 elsevier_sciencedirect_doi_10_1016_j_enggeo_2018_09_021 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-28 |
PublicationDateYYYYMMDD | 2018-11-28 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-28 day: 28 |
PublicationDecade | 2010 |
PublicationTitle | Engineering geology |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mohanty, Chung (bb0110) 1986 Wan, Wei, Shen (bb0180) 2016; 10 Yilmaz, Ertin, Er, Tugrul (bb0190) 2018; 91 Peng, Cai, Rong, Yao, Jiang, Zhou (bb0120) 2017; 218 Deng, Li, Wang, Zhao (bb0015) 2016; 89 Hoek (bb0030) 2012 Hoek, Brown (bb0045) 2018 Li, Merifield, Lyamin (bb0080) 2011; 38 Hoek, Brown (bb0035) 1988 Jiang, Cui, Liu (bb0065) 2016; 209 Michalowski (bb0105) 2010; 136 Melentijevic, Serrano, Olalla, Galindo (bb0100) 2017; 96 Sari (bb0135) 2010 Shen, Karakus (bb0150) 2014; 51 Zuo, Liu, Li (bb0195) 2015; 7 Franz (bb0020) 2009 Lupogo (bb0085) 2017 Marinos, Carter (bb0090) 2018 Wang, Shen (bb0185) 2017; 224 Cai, Kaiser, Uno, Tasaka, Minami (bb0010) 2004; 41 Hoek, Carranza-Torres, Corkum (bb0060) 2002 Vásárhelyi, Kovács, Török (bb0175) 2016; 2 Tsiambaos, Saroglou (bb0165) 2010; 69 Bertuzzi, Douglas, Mostyn (bb0005) 2016; 202 Qian, Li, Lyamin, Wang (bb0125) 2017; 81 Sun, Chai, Xu, Qin, Chen (bb0160) 2016; 214 Hoek, Diederichs (bb0050) 2006; 43 Hoek, Brown (bb0040) 1997; 34 Read, Richards (bb0130) 2014 Li, Merifield, Lyamin (bb0070) 2008; 45 Hoek (bb0025) 2007 Shen, Karakus (bb0145) 2014; 140 Morelli (bb0115) 2017; 35 Li, Lyamin, Merifield (bb0075) 2009; 36 Shen, Karakus, Xu (bb0155) 2013; 64 Marinos, Marinos, Hoek (bb0095) 2005; 64 Sari (bb0140) 2012; 127 Hoek, Karzulovic (bb0055) 2000 Jiang (10.1016/j.enggeo.2018.09.021_bb0065) 2016; 209 Mohanty (10.1016/j.enggeo.2018.09.021_bb0110) 1986 Franz (10.1016/j.enggeo.2018.09.021_bb0020) 2009 Hoek (10.1016/j.enggeo.2018.09.021_bb0030) Shen (10.1016/j.enggeo.2018.09.021_bb0155) 2013; 64 Marinos (10.1016/j.enggeo.2018.09.021_bb0095) 2005; 64 Read (10.1016/j.enggeo.2018.09.021_bb0130) 2014 Yilmaz (10.1016/j.enggeo.2018.09.021_bb0190) 2018; 91 Li (10.1016/j.enggeo.2018.09.021_bb0080) 2011; 38 Melentijevic (10.1016/j.enggeo.2018.09.021_bb0100) 2017; 96 Bertuzzi (10.1016/j.enggeo.2018.09.021_bb0005) 2016; 202 Shen (10.1016/j.enggeo.2018.09.021_bb0150) 2014; 51 Wang (10.1016/j.enggeo.2018.09.021_bb0185) 2017; 224 Hoek (10.1016/j.enggeo.2018.09.021_bb0035) 1988 Hoek (10.1016/j.enggeo.2018.09.021_bb0045) 2018 Shen (10.1016/j.enggeo.2018.09.021_bb0145) 2014; 140 Morelli (10.1016/j.enggeo.2018.09.021_bb0115) 2017; 35 Sari (10.1016/j.enggeo.2018.09.021_bb0135) 2010 Tsiambaos (10.1016/j.enggeo.2018.09.021_bb0165) 2010; 69 Wan (10.1016/j.enggeo.2018.09.021_bb0180) 2016; 10 Li (10.1016/j.enggeo.2018.09.021_bb0075) 2009; 36 Sari (10.1016/j.enggeo.2018.09.021_bb0140) 2012; 127 Qian (10.1016/j.enggeo.2018.09.021_bb0125) 2017; 81 Lupogo (10.1016/j.enggeo.2018.09.021_bb0085) 2017 Sun (10.1016/j.enggeo.2018.09.021_bb0160) 2016; 214 Vásárhelyi (10.1016/j.enggeo.2018.09.021_bb0175) 2016; 2 Hoek (10.1016/j.enggeo.2018.09.021_bb0050) 2006; 43 Hoek (10.1016/j.enggeo.2018.09.021_bb0055) 2000 Michalowski (10.1016/j.enggeo.2018.09.021_bb0105) 2010; 136 Deng (10.1016/j.enggeo.2018.09.021_bb0015) 2016; 89 Hoek (10.1016/j.enggeo.2018.09.021_bb0060) 2002 Hoek (10.1016/j.enggeo.2018.09.021_bb0040) 1997; 34 Zuo (10.1016/j.enggeo.2018.09.021_bb0195) 2015; 7 Li (10.1016/j.enggeo.2018.09.021_bb0070) 2008; 45 Marinos (10.1016/j.enggeo.2018.09.021_bb0090) 2018 Cai (10.1016/j.enggeo.2018.09.021_bb0010) 2004; 41 Peng (10.1016/j.enggeo.2018.09.021_bb0120) 2017; 218 Hoek (10.1016/j.enggeo.2018.09.021_bb0025) 2007 |
References_xml | – volume: 41 start-page: 3 year: 2004 end-page: 19 ident: bb0010 article-title: Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system publication-title: Int. J. Rock Mech. Min. Sci. – volume: 136 start-page: 583 year: 2010 end-page: 593 ident: bb0105 article-title: Limit analysis and stability charts for 3D slope failures publication-title: J. Geotech. Geoenviron. – volume: 209 start-page: 196 year: 2016 end-page: 208 ident: bb0065 article-title: A chart-based seismic stability analysis method for rock slopes using Hoek-Brown failure criterion publication-title: Eng. Geol. – year: 2009 ident: bb0020 article-title: An Investigation of Combined Failure Mechanisms in Large Scale Open Pit Slopes – volume: 51 start-page: 164 year: 2014 end-page: 172 ident: bb0150 article-title: Three-dimensional numerical analysis for rock slope stability using shear strength reduction method publication-title: Can. Geotech. J. – volume: 224 start-page: 87 year: 2017 end-page: 96 ident: bb0185 article-title: Comparison of existing methods and a new tensile strength based model in estimating the Hoek-Brown constant m publication-title: Eng. Geol. – year: 2017 ident: bb0085 article-title: Characterization of Blast Damage in Rock Slopes: An Integrated Field-Numerical Modeling Approach – volume: 202 start-page: 24 year: 2016 end-page: 35 ident: bb0005 article-title: Comparison of quantified and chart GSI for four rock masses publication-title: Eng. Geol. – volume: 36 start-page: 135 year: 2009 end-page: 148 ident: bb0075 article-title: Seismic rock slope stability charts based on limit analysis methods publication-title: Comput. Geotech. – volume: 64 start-page: 210 year: 2013 end-page: 219 ident: bb0155 article-title: Chart-based slope stability assessment using the Generalized Hoek-Brown criterion publication-title: Int. J. Rock Mech. Min. Sci. – volume: 43 start-page: 203 year: 2006 end-page: 215 ident: bb0050 article-title: Empirical estimation of rock mass modulus publication-title: Int. J. Rock Mech. Min. Sci. – start-page: 31 year: 1988 end-page: 38 ident: bb0035 article-title: The Hoek-Brown failure criterion - a 1988 update publication-title: Proc. 15th Canadian Rock Mech. Symp – start-page: 59 year: 2000 end-page: 70 ident: bb0055 article-title: Rock mass properties for surface mines. Slope stability in surface mining publication-title: Society for Mining, Metallurgical and Exploration (SME), Littleton, CO – year: 2007 ident: bb0025 article-title: Rock mass properties publication-title: Chapter 11 in Practical Rock Engineering – volume: 64 start-page: 55 year: 2005 end-page: 65 ident: bb0095 article-title: The geological strength index: applications and limitations publication-title: Bull. Eng. Geol. Environ. – volume: 34 start-page: 1165 year: 1997 end-page: 1186 ident: bb0040 article-title: Practical estimates of rock mass strength publication-title: Int. J. Rock Mech. Min. Sci. – year: 2018 ident: bb0090 article-title: Maintaining geological reality in application of GSI for design of engineering structures in rock publication-title: Eng. Geol. – volume: 81 start-page: 155 year: 2017 end-page: 166 ident: bb0125 article-title: Parametric studies of disturbed rock slope stability based on finite element limit analysis method publication-title: Comput. Geotech. – volume: 7 start-page: 361 year: 2015 end-page: 366 ident: bb0195 article-title: A theoretical derivation of the Hoek-Brown failure criterion for rock materials publication-title: J. Rock Mech. Geotech. Eng. – year: 2018 ident: bb0045 article-title: The Hoek-Brown failure criterion and GSI - 2018 edition publication-title: J. Rock Mech. Geotech. Eng. – start-page: 169 year: 2010 end-page: 172 ident: bb0135 article-title: A simple approximation to estimate the Hoek-Brown parameter mi for intact rocks publication-title: Rock Mechanics in Civil and Environmental Engineering-Zhao, Labiouse, Dudt and Mathier (eds) – volume: 140 start-page: 971 year: 2014 end-page: 984 ident: bb0145 article-title: Simplified method for estimating the Hoek-Brown constant for intact rocks publication-title: J. Geotech. Geoenviron. – volume: 96 start-page: 47 year: 2017 end-page: 57 ident: bb0100 article-title: Incorporation of non-associative flow rules into rock slope stability analysis publication-title: Int. J. Rock Mech. Min. Sci. – volume: 127 start-page: 27 year: 2012 end-page: 35 ident: bb0140 article-title: An improved method of fitting experimental data to the Hoek-Brown failure criterion publication-title: Eng. Geol. – volume: 10 start-page: 257 year: 2016 end-page: 267 ident: bb0180 article-title: Charts for estimating rock mass shear strength parameters publication-title: Geomech. Eng. – volume: 2 start-page: 131 year: 2016 end-page: 136 ident: bb0175 article-title: Analysing the modified Hoek-Brown failure criteria using Hungarian granitic rocks publication-title: Geomech. Geophys. Geo-Energ. Geo-Resour. – volume: 91 start-page: 232 year: 2018 end-page: 238 ident: bb0190 article-title: Numerical modelling of steep slopes in open rock quarries publication-title: J. Geol. Soc. India – volume: 89 start-page: 176 year: 2016 end-page: 184 ident: bb0015 article-title: Limit equilibrium method for rock slope stability analysis by using the Generalized Hoek–Brown criterion publication-title: Int. J. Rock Mech. Min. Sci. – start-page: 161 year: 2014 end-page: 166 ident: bb0130 article-title: Correlation of direct and indirect tensile tests for use in the Hoek-Brown constant mi publication-title: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses-Alejano, Perucho, Olalla and Jiménez (Eds) – year: 2012 ident: bb0030 article-title: Blast damage factor D. Technical note for RocNews – volume: 38 start-page: 546 year: 2011 end-page: 558 ident: bb0080 article-title: Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion publication-title: Comput. Geotech. – volume: 35 start-page: 2803 year: 2017 end-page: 2816 ident: bb0115 article-title: Alternative quantification of the Geological Strength Index chart for jointed rocks publication-title: Geotech. Geol. Eng. – volume: 214 start-page: 94 year: 2016 end-page: 106 ident: bb0160 article-title: Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique publication-title: Eng. Geol. – year: 2002 ident: bb0060 article-title: Hoek-Brown failure criterion publication-title: Proceedings of NARMS-TAC 2002, Mining Innovation and Technology, Toronto, Ont – volume: 45 start-page: 689 year: 2008 end-page: 700 ident: bb0070 article-title: Stability charts for rock slopes based on the Hoek-Brown failure criterion publication-title: Int. J. Rock Mech. Min. Sci. – start-page: 133 year: 1986 end-page: 140 ident: bb0110 article-title: Production blasting and slope stability publication-title: Proceedings of the International Symposium on Geotechnical Stability in Surface Mining – volume: 69 start-page: 13 year: 2010 end-page: 27 ident: bb0165 article-title: Excavatability assessment of rock masses using the Geological Strength Index (GSI) publication-title: Bull. Eng. Geol. Environ. – volume: 218 start-page: 187 year: 2017 end-page: 196 ident: bb0120 article-title: Determination of confinement and plastic strain dependent post-peak strength of intact rocks publication-title: Eng. Geol. – start-page: 59 year: 2000 ident: 10.1016/j.enggeo.2018.09.021_bb0055 article-title: Rock mass properties for surface mines. Slope stability in surface mining – volume: 2 start-page: 131 issue: 2 year: 2016 ident: 10.1016/j.enggeo.2018.09.021_bb0175 article-title: Analysing the modified Hoek-Brown failure criteria using Hungarian granitic rocks publication-title: Geomech. Geophys. Geo-Energ. Geo-Resour. doi: 10.1007/s40948-016-0021-7 – volume: 218 start-page: 187 year: 2017 ident: 10.1016/j.enggeo.2018.09.021_bb0120 article-title: Determination of confinement and plastic strain dependent post-peak strength of intact rocks publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2017.01.018 – volume: 209 start-page: 196 year: 2016 ident: 10.1016/j.enggeo.2018.09.021_bb0065 article-title: A chart-based seismic stability analysis method for rock slopes using Hoek-Brown failure criterion publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.05.015 – year: 2002 ident: 10.1016/j.enggeo.2018.09.021_bb0060 article-title: Hoek-Brown failure criterion – start-page: 169 year: 2010 ident: 10.1016/j.enggeo.2018.09.021_bb0135 article-title: A simple approximation to estimate the Hoek-Brown parameter mi for intact rocks – volume: 127 start-page: 27 year: 2012 ident: 10.1016/j.enggeo.2018.09.021_bb0140 article-title: An improved method of fitting experimental data to the Hoek-Brown failure criterion publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.12.011 – start-page: 31 year: 1988 ident: 10.1016/j.enggeo.2018.09.021_bb0035 article-title: The Hoek-Brown failure criterion - a 1988 update – ident: 10.1016/j.enggeo.2018.09.021_bb0030 – volume: 10 start-page: 257 issue: 3 year: 2016 ident: 10.1016/j.enggeo.2018.09.021_bb0180 article-title: Charts for estimating rock mass shear strength parameters publication-title: Geomech. Eng. doi: 10.12989/gae.2016.10.3.257 – volume: 7 start-page: 361 issue: 4 year: 2015 ident: 10.1016/j.enggeo.2018.09.021_bb0195 article-title: A theoretical derivation of the Hoek-Brown failure criterion for rock materials publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2015.03.008 – year: 2009 ident: 10.1016/j.enggeo.2018.09.021_bb0020 – volume: 214 start-page: 94 year: 2016 ident: 10.1016/j.enggeo.2018.09.021_bb0160 article-title: Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.09.017 – volume: 64 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.enggeo.2018.09.021_bb0095 article-title: The geological strength index: applications and limitations publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-004-0270-5 – volume: 89 start-page: 176 year: 2016 ident: 10.1016/j.enggeo.2018.09.021_bb0015 article-title: Limit equilibrium method for rock slope stability analysis by using the Generalized Hoek–Brown criterion publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2016.09.007 – volume: 36 start-page: 135 issue: 1 year: 2009 ident: 10.1016/j.enggeo.2018.09.021_bb0075 article-title: Seismic rock slope stability charts based on limit analysis methods publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2008.01.004 – volume: 136 start-page: 583 issue: 4 year: 2010 ident: 10.1016/j.enggeo.2018.09.021_bb0105 article-title: Limit analysis and stability charts for 3D slope failures publication-title: J. Geotech. Geoenviron. doi: 10.1061/(ASCE)GT.1943-5606.0000251 – volume: 51 start-page: 164 issue: 2 year: 2014 ident: 10.1016/j.enggeo.2018.09.021_bb0150 article-title: Three-dimensional numerical analysis for rock slope stability using shear strength reduction method publication-title: Can. Geotech. J. doi: 10.1139/cgj-2013-0191 – volume: 91 start-page: 232 issue: 2 year: 2018 ident: 10.1016/j.enggeo.2018.09.021_bb0190 article-title: Numerical modelling of steep slopes in open rock quarries publication-title: J. Geol. Soc. India doi: 10.1007/s12594-018-0841-x – volume: 140 start-page: 971 issue: 6 year: 2014 ident: 10.1016/j.enggeo.2018.09.021_bb0145 article-title: Simplified method for estimating the Hoek-Brown constant for intact rocks publication-title: J. Geotech. Geoenviron. doi: 10.1061/(ASCE)GT.1943-5606.0001116 – volume: 69 start-page: 13 issue: 1 year: 2010 ident: 10.1016/j.enggeo.2018.09.021_bb0165 article-title: Excavatability assessment of rock masses using the Geological Strength Index (GSI) publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-009-0235-9 – volume: 96 start-page: 47 year: 2017 ident: 10.1016/j.enggeo.2018.09.021_bb0100 article-title: Incorporation of non-associative flow rules into rock slope stability analysis publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2017.04.010 – volume: 43 start-page: 203 issue: 2 year: 2006 ident: 10.1016/j.enggeo.2018.09.021_bb0050 article-title: Empirical estimation of rock mass modulus publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2005.06.005 – volume: 38 start-page: 546 issue: 4 year: 2011 ident: 10.1016/j.enggeo.2018.09.021_bb0080 article-title: Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2011.03.003 – volume: 64 start-page: 210 issue: 6 year: 2013 ident: 10.1016/j.enggeo.2018.09.021_bb0155 article-title: Chart-based slope stability assessment using the Generalized Hoek-Brown criterion publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2013.09.002 – volume: 81 start-page: 155 year: 2017 ident: 10.1016/j.enggeo.2018.09.021_bb0125 article-title: Parametric studies of disturbed rock slope stability based on finite element limit analysis method publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2016.08.012 – volume: 45 start-page: 689 issue: 5 year: 2008 ident: 10.1016/j.enggeo.2018.09.021_bb0070 article-title: Stability charts for rock slopes based on the Hoek-Brown failure criterion publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2007.08.010 – year: 2018 ident: 10.1016/j.enggeo.2018.09.021_bb0045 article-title: The Hoek-Brown failure criterion and GSI - 2018 edition publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2018.08.001 – start-page: 161 year: 2014 ident: 10.1016/j.enggeo.2018.09.021_bb0130 article-title: Correlation of direct and indirect tensile tests for use in the Hoek-Brown constant mi – year: 2018 ident: 10.1016/j.enggeo.2018.09.021_bb0090 article-title: Maintaining geological reality in application of GSI for design of engineering structures in rock publication-title: Eng. Geol. – volume: 35 start-page: 2803 issue: 6 year: 2017 ident: 10.1016/j.enggeo.2018.09.021_bb0115 article-title: Alternative quantification of the Geological Strength Index chart for jointed rocks publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-017-0279-8 – volume: 202 start-page: 24 year: 2016 ident: 10.1016/j.enggeo.2018.09.021_bb0005 article-title: Comparison of quantified and chart GSI for four rock masses publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.01.002 – year: 2007 ident: 10.1016/j.enggeo.2018.09.021_bb0025 article-title: Rock mass properties – volume: 224 start-page: 87 year: 2017 ident: 10.1016/j.enggeo.2018.09.021_bb0185 article-title: Comparison of existing methods and a new tensile strength based model in estimating the Hoek-Brown constant mi for intact rocks publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2017.05.008 – start-page: 133 year: 1986 ident: 10.1016/j.enggeo.2018.09.021_bb0110 article-title: Production blasting and slope stability – volume: 41 start-page: 3 issue: 1 year: 2004 ident: 10.1016/j.enggeo.2018.09.021_bb0010 article-title: Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/S1365-1609(03)00025-X – year: 2017 ident: 10.1016/j.enggeo.2018.09.021_bb0085 – volume: 34 start-page: 1165 issue: 8 year: 1997 ident: 10.1016/j.enggeo.2018.09.021_bb0040 article-title: Practical estimates of rock mass strength publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/S1365-1609(97)80069-X |
SSID | ssj0013007 |
Score | 2.4273627 |
Snippet | The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19 |
SubjectTerms | Blast damage factor Blast damage zone thickness engineering geometry Hoek-Brown criterion Stability charts Weighting factor |
Title | The effects of blast damage zone thickness on rock slope stability |
URI | https://dx.doi.org/10.1016/j.enggeo.2018.09.021 https://www.proquest.com/docview/2189523372 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GBG81i1N0y3HORxTcScHu4VkTcbcbIfbDnrwb_e9tPULRPBSaJuU8PL6e7-Q93sh5MLy2CUslkGYSFigaMMCLYUNkshqFDpq4avr3w_i_jC6HYlRhXRLLQymVRbYn2O6R-viSaOwZmMxnaLGl_GWFBjjUTHpFexRC7388o197iQ0c8k0nmKArUv5nM_xsulk4iWArO2rnYbst_D0A6h99OntkO2CNtJOPrJdUrHpHtn6Ukxwn1zBjNMiPYNmjhrgxSua6CdADPqapZZiavsMoY1mKYXANaPLebawFAiiT5F9OSDD3vVDtx8UJyQEGgLPKhCSYelFCdyT6RDYhDEGNUExN2PHnJCCa9EcJwDIsbEidk2hE94WThugTTrkh6SawgCOCNUxvNHOxpE0kYRrgnVluNTGRcJJVyO8NIwaF-XD8RSLuSrzxB5Vbk6F5lRNqcCcNRJ89Frk5TP-aN8qba6-uYEChP-j53k5RQr-ENz20KnN1ksFDgLzznkrPP7310_IJt6hCDFsn5Lq6nltz4CNrEzdu1udbHRu7vqDd4kX3lM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQHNoeqq4qXV2p1wgSxwEfKWoVynICiZtlExtRaIIKHNqv70yWblKF1EsOcRxFY-fNszzvmZA7wwIbuYFwvEjAAkVp11GCGyfyjUKho-Kpu35_EIQj_2nMxyXSLrQwWFaZY3-G6Sla53dqeTRry9kMNb4uawiOOR4Vk7AEqqA7FS-TSqvTDQdfmwn1TDWNBxlgh0JBl5Z5mXg6TVWAbjM1PPXcvzLUL6xOE9DjAdnPmSNtZR93SEomPiJ73_wEj8k9DDrNKzRoYqkGarymkXoB0KDvSWwoVrfPEd1oElPIXXO6WiRLQ4EjplWybydk9PgwbIdOfkiCoyD3rB0uXHRfFEA_XeUBodBaoywoYHpiXcsFZ4rXJxFgcqAND2ydq4g1uVUamJPy2Ckpx_ABZ4SqAFqUNYEvtC_gGqG1DBNKW59bYauEFYGRk9xBHA-yWMiiVOxZZuGUGE5ZFxLCWSXOZ69l5qCx5flGEXP5YyZIAPktPW-LIZLwk-DOh4pNsllJmCMw7ow1vPN_v_2G7ITDfk_2OoPuBdnFFtQkes1LUl6_bswVkJO1vs4n3wcyluEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+blast+damage+zone+thickness+on+rock+slope+stability&rft.jtitle=Engineering+geology&rft.au=Zheng%2C+Huihui&rft.au=Li%2C+Tianbin&rft.au=Shen%2C+Jiayi&rft.au=Xu%2C+Chaoshui&rft.date=2018-11-28&rft.issn=0013-7952&rft.volume=246+p.19-27&rft.spage=19&rft.epage=27&rft_id=info:doi/10.1016%2Fj.enggeo.2018.09.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon |