The effects of blast damage zone thickness on rock slope stability

The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope s...

Full description

Saved in:
Bibliographic Details
Published inEngineering geology Vol. 246; pp. 19 - 27
Main Authors Zheng, Huihui, Li, Tianbin, Shen, Jiayi, Xu, Chaoshui, Sun, Hongyue, Lü, Qing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope stability. In this research, the parallel layer model (PLM), in which the rock mass is divided into a number of layers parallel to the slope face with a decreasing value of D applied to each layer, is used with the limit equilibrium method to investigate the effects of T on the stability of rock slopes. Based on extensive parametric studies, a blast damage zone thickness weighting factor fT is proposed to quantify the influence of T on the evaluation of the factor of safety (FOS) of given slopes. Results show that the selection of T in the slope model plays an important role in the calculation of FOS, especially, when the ratio of T to slope height H is <1.0. Based on fT and existing stability charts, a stability model is proposed for the estimation of the FOS of slopes with different slope geometries and rock mass properties. The reliability of the proposed stability model is tested against numerical solutions. The results show that FOS estimated from the proposed stability model exhibits only 5.6% average relative discrepancy compared with numerical solutions based on 1254 sets of data. The proposed stability model is simple and effective, and can be used for the preliminary assessment of rock slope stability, considering the effects of different degree of blast damages •The blast damage factor of the HB criterion is significant in slope stability analysis.•A factor fT is proposed to quantify the effect of blast damage zone thickness T on FOS.•Results show that T in the slope model plays an important role in calculating FOS.•The factor fT is combined with stability charts to form a slope stability model.•The slope stability model can be reliably used for the assessment of slope stability.
AbstractList The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope stability. In this research, the parallel layer model (PLM), in which the rock mass is divided into a number of layers parallel to the slope face with a decreasing value of D applied to each layer, is used with the limit equilibrium method to investigate the effects of T on the stability of rock slopes. Based on extensive parametric studies, a blast damage zone thickness weighting factor fT is proposed to quantify the influence of T on the evaluation of the factor of safety (FOS) of given slopes. Results show that the selection of T in the slope model plays an important role in the calculation of FOS, especially, when the ratio of T to slope height H is <1.0. Based on fT and existing stability charts, a stability model is proposed for the estimation of the FOS of slopes with different slope geometries and rock mass properties. The reliability of the proposed stability model is tested against numerical solutions. The results show that FOS estimated from the proposed stability model exhibits only 5.6% average relative discrepancy compared with numerical solutions based on 1254 sets of data. The proposed stability model is simple and effective, and can be used for the preliminary assessment of rock slope stability, considering the effects of different degree of blast damages •The blast damage factor of the HB criterion is significant in slope stability analysis.•A factor fT is proposed to quantify the effect of blast damage zone thickness T on FOS.•Results show that T in the slope model plays an important role in calculating FOS.•The factor fT is combined with stability charts to form a slope stability model.•The slope stability model can be reliably used for the assessment of slope stability.
The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis. Traditional slope stability analysis adopts a single value of blast damage factor D for the entire rock mass, leading to the underestimation of slope stability. In this research, the parallel layer model (PLM), in which the rock mass is divided into a number of layers parallel to the slope face with a decreasing value of D applied to each layer, is used with the limit equilibrium method to investigate the effects of T on the stability of rock slopes. Based on extensive parametric studies, a blast damage zone thickness weighting factor fT is proposed to quantify the influence of T on the evaluation of the factor of safety (FOS) of given slopes. Results show that the selection of T in the slope model plays an important role in the calculation of FOS, especially, when the ratio of T to slope height H is <1.0. Based on fT and existing stability charts, a stability model is proposed for the estimation of the FOS of slopes with different slope geometries and rock mass properties. The reliability of the proposed stability model is tested against numerical solutions. The results show that FOS estimated from the proposed stability model exhibits only 5.6% average relative discrepancy compared with numerical solutions based on 1254 sets of data. The proposed stability model is simple and effective, and can be used for the preliminary assessment of rock slope stability, considering the effects of different degree of blast damages
Author Zheng, Huihui
Li, Tianbin
Shen, Jiayi
Sun, Hongyue
Xu, Chaoshui
Lü, Qing
Author_xml – sequence: 1
  givenname: Huihui
  orcidid: 0000-0002-4074-8473
  surname: Zheng
  fullname: Zheng, Huihui
  organization: Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China
– sequence: 2
  givenname: Tianbin
  surname: Li
  fullname: Li, Tianbin
  organization: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
– sequence: 3
  givenname: Jiayi
  surname: Shen
  fullname: Shen, Jiayi
  email: jiayi@zju.edu.cn
  organization: Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China
– sequence: 4
  givenname: Chaoshui
  surname: Xu
  fullname: Xu, Chaoshui
  organization: School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide 5005, Australia
– sequence: 5
  givenname: Hongyue
  surname: Sun
  fullname: Sun, Hongyue
  organization: Institute of Port, Coastal and Offshore Engineering, Zhejiang University, Hangzhou 310058, China
– sequence: 6
  givenname: Qing
  surname:
  fullname: Lü, Qing
  organization: Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
BookMark eNqFkD1LBDEQhoMoeH78A4uUNrtmEpPdtRBU_ALBRuuQZCdnzr3NmURBf717nJWFVsMw7zPDPHtke4wjEnIErAYG6mRR4zifY6w5g7ZmXc04bJEZtA2vVAfNNpkxBqJqOsl3yV7Oi3XLWDMjl08vSNF7dCXT6KkdTC60N0szR_o1naHlJbjXEfM0HmmK7pXmIa6Q5mJsGEL5PCA73gwZD3_qPnm-uX66uqseHm_vry4eKiMUL5XsQIDgXQsWDGdKWmsBuFLCOg9edlIYyVyPFpRFqTyTphet9MYqYIaLfXK82btK8e0dc9HLkB0OgxkxvmfNoZ3-E6JZR882UZdizgm9dqGYEuJYkgmDBqbX4vRCb8TptTjNOj2Jm-DTX_AqhaVJn_9h5xsMJwcfAZPOLuDosA9psqv7GP5e8A0NaIs8
CitedBy_id crossref_primary_10_1007_s11069_021_04762_1
crossref_primary_10_1007_s12517_021_07113_3
crossref_primary_10_1007_s00603_023_03448_3
crossref_primary_10_1088_1755_1315_634_1_012031
crossref_primary_10_1007_s11069_024_07080_4
crossref_primary_10_1007_s10346_020_01350_5
crossref_primary_10_1016_j_ijrmms_2019_104179
crossref_primary_10_1007_s00603_025_04385_z
crossref_primary_10_21595_jve_2019_20381
crossref_primary_10_1007_s00603_019_01771_2
crossref_primary_10_1007_s00603_023_03281_8
crossref_primary_10_1007_s00603_022_03189_9
crossref_primary_10_1016_j_ijrmms_2019_104192
crossref_primary_10_1007_s12517_020_05755_3
crossref_primary_10_1016_j_enggeo_2022_106771
crossref_primary_10_1080_17499518_2022_2062776
crossref_primary_10_1016_j_jrmge_2024_08_014
crossref_primary_10_1061__ASCE_GM_1943_5622_0001877
crossref_primary_10_21595_jve_2022_22826
crossref_primary_10_3390_app9061155
crossref_primary_10_1007_s10706_023_02576_5
crossref_primary_10_1016_j_enggeo_2023_107181
crossref_primary_10_1007_s00603_023_03295_2
crossref_primary_10_1080_19648189_2020_1780475
crossref_primary_10_1155_2021_9939361
crossref_primary_10_1007_s11760_024_03187_0
crossref_primary_10_1007_s12517_022_10093_7
crossref_primary_10_1016_j_enggeo_2019_105439
crossref_primary_10_1016_j_enggeo_2024_107437
crossref_primary_10_1007_s10346_023_02082_y
crossref_primary_10_1016_j_enggeo_2022_106745
crossref_primary_10_1016_j_eswa_2023_120595
crossref_primary_10_1016_j_engfracmech_2021_107627
Cites_doi 10.1007/s40948-016-0021-7
10.1016/j.enggeo.2017.01.018
10.1016/j.enggeo.2016.05.015
10.1016/j.enggeo.2011.12.011
10.12989/gae.2016.10.3.257
10.1016/j.jrmge.2015.03.008
10.1016/j.enggeo.2016.09.017
10.1007/s10064-004-0270-5
10.1016/j.ijrmms.2016.09.007
10.1016/j.compgeo.2008.01.004
10.1061/(ASCE)GT.1943-5606.0000251
10.1139/cgj-2013-0191
10.1007/s12594-018-0841-x
10.1061/(ASCE)GT.1943-5606.0001116
10.1007/s10064-009-0235-9
10.1016/j.ijrmms.2017.04.010
10.1016/j.ijrmms.2005.06.005
10.1016/j.compgeo.2011.03.003
10.1016/j.ijrmms.2013.09.002
10.1016/j.compgeo.2016.08.012
10.1016/j.ijrmms.2007.08.010
10.1016/j.jrmge.2018.08.001
10.1007/s10706-017-0279-8
10.1016/j.enggeo.2016.01.002
10.1016/j.enggeo.2017.05.008
10.1016/S1365-1609(03)00025-X
10.1016/S1365-1609(97)80069-X
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enggeo.2018.09.021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6917
EndPage 27
ExternalDocumentID 10_1016_j_enggeo_2018_09_021
S0013795218306471
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
IMUCA
J1W
K-O
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSZ
T5K
TN5
~02
~G-
29G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SEP
SET
SEW
SSH
VH1
WUQ
XOL
XPP
ZCG
ZMT
ZY4
7S9
L.6
ID FETCH-LOGICAL-a362t-5913132981b1a2065bbb112663bcf1f5953a50cdeb16be56f05ad385fab610a23
IEDL.DBID .~1
ISSN 0013-7952
IngestDate Thu Jul 10 17:17:34 EDT 2025
Thu Apr 24 22:51:53 EDT 2025
Mon Jul 14 08:40:23 EDT 2025
Fri Feb 23 02:15:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hoek-Brown criterion
Stability charts
Blast damage factor
Blast damage zone thickness
Weighting factor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a362t-5913132981b1a2065bbb112663bcf1f5953a50cdeb16be56f05ad385fab610a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4074-8473
PQID 2189523372
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2189523372
crossref_citationtrail_10_1016_j_enggeo_2018_09_021
crossref_primary_10_1016_j_enggeo_2018_09_021
elsevier_sciencedirect_doi_10_1016_j_enggeo_2018_09_021
PublicationCentury 2000
PublicationDate 2018-11-28
PublicationDateYYYYMMDD 2018-11-28
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-28
  day: 28
PublicationDecade 2010
PublicationTitle Engineering geology
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohanty, Chung (bb0110) 1986
Wan, Wei, Shen (bb0180) 2016; 10
Yilmaz, Ertin, Er, Tugrul (bb0190) 2018; 91
Peng, Cai, Rong, Yao, Jiang, Zhou (bb0120) 2017; 218
Deng, Li, Wang, Zhao (bb0015) 2016; 89
Hoek (bb0030) 2012
Hoek, Brown (bb0045) 2018
Li, Merifield, Lyamin (bb0080) 2011; 38
Hoek, Brown (bb0035) 1988
Jiang, Cui, Liu (bb0065) 2016; 209
Michalowski (bb0105) 2010; 136
Melentijevic, Serrano, Olalla, Galindo (bb0100) 2017; 96
Sari (bb0135) 2010
Shen, Karakus (bb0150) 2014; 51
Zuo, Liu, Li (bb0195) 2015; 7
Franz (bb0020) 2009
Lupogo (bb0085) 2017
Marinos, Carter (bb0090) 2018
Wang, Shen (bb0185) 2017; 224
Cai, Kaiser, Uno, Tasaka, Minami (bb0010) 2004; 41
Hoek, Carranza-Torres, Corkum (bb0060) 2002
Vásárhelyi, Kovács, Török (bb0175) 2016; 2
Tsiambaos, Saroglou (bb0165) 2010; 69
Bertuzzi, Douglas, Mostyn (bb0005) 2016; 202
Qian, Li, Lyamin, Wang (bb0125) 2017; 81
Sun, Chai, Xu, Qin, Chen (bb0160) 2016; 214
Hoek, Diederichs (bb0050) 2006; 43
Hoek, Brown (bb0040) 1997; 34
Read, Richards (bb0130) 2014
Li, Merifield, Lyamin (bb0070) 2008; 45
Hoek (bb0025) 2007
Shen, Karakus (bb0145) 2014; 140
Morelli (bb0115) 2017; 35
Li, Lyamin, Merifield (bb0075) 2009; 36
Shen, Karakus, Xu (bb0155) 2013; 64
Marinos, Marinos, Hoek (bb0095) 2005; 64
Sari (bb0140) 2012; 127
Hoek, Karzulovic (bb0055) 2000
Jiang (10.1016/j.enggeo.2018.09.021_bb0065) 2016; 209
Mohanty (10.1016/j.enggeo.2018.09.021_bb0110) 1986
Franz (10.1016/j.enggeo.2018.09.021_bb0020) 2009
Hoek (10.1016/j.enggeo.2018.09.021_bb0030)
Shen (10.1016/j.enggeo.2018.09.021_bb0155) 2013; 64
Marinos (10.1016/j.enggeo.2018.09.021_bb0095) 2005; 64
Read (10.1016/j.enggeo.2018.09.021_bb0130) 2014
Yilmaz (10.1016/j.enggeo.2018.09.021_bb0190) 2018; 91
Li (10.1016/j.enggeo.2018.09.021_bb0080) 2011; 38
Melentijevic (10.1016/j.enggeo.2018.09.021_bb0100) 2017; 96
Bertuzzi (10.1016/j.enggeo.2018.09.021_bb0005) 2016; 202
Shen (10.1016/j.enggeo.2018.09.021_bb0150) 2014; 51
Wang (10.1016/j.enggeo.2018.09.021_bb0185) 2017; 224
Hoek (10.1016/j.enggeo.2018.09.021_bb0035) 1988
Hoek (10.1016/j.enggeo.2018.09.021_bb0045) 2018
Shen (10.1016/j.enggeo.2018.09.021_bb0145) 2014; 140
Morelli (10.1016/j.enggeo.2018.09.021_bb0115) 2017; 35
Sari (10.1016/j.enggeo.2018.09.021_bb0135) 2010
Tsiambaos (10.1016/j.enggeo.2018.09.021_bb0165) 2010; 69
Wan (10.1016/j.enggeo.2018.09.021_bb0180) 2016; 10
Li (10.1016/j.enggeo.2018.09.021_bb0075) 2009; 36
Sari (10.1016/j.enggeo.2018.09.021_bb0140) 2012; 127
Qian (10.1016/j.enggeo.2018.09.021_bb0125) 2017; 81
Lupogo (10.1016/j.enggeo.2018.09.021_bb0085) 2017
Sun (10.1016/j.enggeo.2018.09.021_bb0160) 2016; 214
Vásárhelyi (10.1016/j.enggeo.2018.09.021_bb0175) 2016; 2
Hoek (10.1016/j.enggeo.2018.09.021_bb0050) 2006; 43
Hoek (10.1016/j.enggeo.2018.09.021_bb0055) 2000
Michalowski (10.1016/j.enggeo.2018.09.021_bb0105) 2010; 136
Deng (10.1016/j.enggeo.2018.09.021_bb0015) 2016; 89
Hoek (10.1016/j.enggeo.2018.09.021_bb0060) 2002
Hoek (10.1016/j.enggeo.2018.09.021_bb0040) 1997; 34
Zuo (10.1016/j.enggeo.2018.09.021_bb0195) 2015; 7
Li (10.1016/j.enggeo.2018.09.021_bb0070) 2008; 45
Marinos (10.1016/j.enggeo.2018.09.021_bb0090) 2018
Cai (10.1016/j.enggeo.2018.09.021_bb0010) 2004; 41
Peng (10.1016/j.enggeo.2018.09.021_bb0120) 2017; 218
Hoek (10.1016/j.enggeo.2018.09.021_bb0025) 2007
References_xml – volume: 41
  start-page: 3
  year: 2004
  end-page: 19
  ident: bb0010
  article-title: Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 136
  start-page: 583
  year: 2010
  end-page: 593
  ident: bb0105
  article-title: Limit analysis and stability charts for 3D slope failures
  publication-title: J. Geotech. Geoenviron.
– volume: 209
  start-page: 196
  year: 2016
  end-page: 208
  ident: bb0065
  article-title: A chart-based seismic stability analysis method for rock slopes using Hoek-Brown failure criterion
  publication-title: Eng. Geol.
– year: 2009
  ident: bb0020
  article-title: An Investigation of Combined Failure Mechanisms in Large Scale Open Pit Slopes
– volume: 51
  start-page: 164
  year: 2014
  end-page: 172
  ident: bb0150
  article-title: Three-dimensional numerical analysis for rock slope stability using shear strength reduction method
  publication-title: Can. Geotech. J.
– volume: 224
  start-page: 87
  year: 2017
  end-page: 96
  ident: bb0185
  article-title: Comparison of existing methods and a new tensile strength based model in estimating the Hoek-Brown constant m
  publication-title: Eng. Geol.
– year: 2017
  ident: bb0085
  article-title: Characterization of Blast Damage in Rock Slopes: An Integrated Field-Numerical Modeling Approach
– volume: 202
  start-page: 24
  year: 2016
  end-page: 35
  ident: bb0005
  article-title: Comparison of quantified and chart GSI for four rock masses
  publication-title: Eng. Geol.
– volume: 36
  start-page: 135
  year: 2009
  end-page: 148
  ident: bb0075
  article-title: Seismic rock slope stability charts based on limit analysis methods
  publication-title: Comput. Geotech.
– volume: 64
  start-page: 210
  year: 2013
  end-page: 219
  ident: bb0155
  article-title: Chart-based slope stability assessment using the Generalized Hoek-Brown criterion
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 43
  start-page: 203
  year: 2006
  end-page: 215
  ident: bb0050
  article-title: Empirical estimation of rock mass modulus
  publication-title: Int. J. Rock Mech. Min. Sci.
– start-page: 31
  year: 1988
  end-page: 38
  ident: bb0035
  article-title: The Hoek-Brown failure criterion - a 1988 update
  publication-title: Proc. 15th Canadian Rock Mech. Symp
– start-page: 59
  year: 2000
  end-page: 70
  ident: bb0055
  article-title: Rock mass properties for surface mines. Slope stability in surface mining
  publication-title: Society for Mining, Metallurgical and Exploration (SME), Littleton, CO
– year: 2007
  ident: bb0025
  article-title: Rock mass properties
  publication-title: Chapter 11 in Practical Rock Engineering
– volume: 64
  start-page: 55
  year: 2005
  end-page: 65
  ident: bb0095
  article-title: The geological strength index: applications and limitations
  publication-title: Bull. Eng. Geol. Environ.
– volume: 34
  start-page: 1165
  year: 1997
  end-page: 1186
  ident: bb0040
  article-title: Practical estimates of rock mass strength
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 2018
  ident: bb0090
  article-title: Maintaining geological reality in application of GSI for design of engineering structures in rock
  publication-title: Eng. Geol.
– volume: 81
  start-page: 155
  year: 2017
  end-page: 166
  ident: bb0125
  article-title: Parametric studies of disturbed rock slope stability based on finite element limit analysis method
  publication-title: Comput. Geotech.
– volume: 7
  start-page: 361
  year: 2015
  end-page: 366
  ident: bb0195
  article-title: A theoretical derivation of the Hoek-Brown failure criterion for rock materials
  publication-title: J. Rock Mech. Geotech. Eng.
– year: 2018
  ident: bb0045
  article-title: The Hoek-Brown failure criterion and GSI - 2018 edition
  publication-title: J. Rock Mech. Geotech. Eng.
– start-page: 169
  year: 2010
  end-page: 172
  ident: bb0135
  article-title: A simple approximation to estimate the Hoek-Brown parameter mi for intact rocks
  publication-title: Rock Mechanics in Civil and Environmental Engineering-Zhao, Labiouse, Dudt and Mathier (eds)
– volume: 140
  start-page: 971
  year: 2014
  end-page: 984
  ident: bb0145
  article-title: Simplified method for estimating the Hoek-Brown constant for intact rocks
  publication-title: J. Geotech. Geoenviron.
– volume: 96
  start-page: 47
  year: 2017
  end-page: 57
  ident: bb0100
  article-title: Incorporation of non-associative flow rules into rock slope stability analysis
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 127
  start-page: 27
  year: 2012
  end-page: 35
  ident: bb0140
  article-title: An improved method of fitting experimental data to the Hoek-Brown failure criterion
  publication-title: Eng. Geol.
– volume: 10
  start-page: 257
  year: 2016
  end-page: 267
  ident: bb0180
  article-title: Charts for estimating rock mass shear strength parameters
  publication-title: Geomech. Eng.
– volume: 2
  start-page: 131
  year: 2016
  end-page: 136
  ident: bb0175
  article-title: Analysing the modified Hoek-Brown failure criteria using Hungarian granitic rocks
  publication-title: Geomech. Geophys. Geo-Energ. Geo-Resour.
– volume: 91
  start-page: 232
  year: 2018
  end-page: 238
  ident: bb0190
  article-title: Numerical modelling of steep slopes in open rock quarries
  publication-title: J. Geol. Soc. India
– volume: 89
  start-page: 176
  year: 2016
  end-page: 184
  ident: bb0015
  article-title: Limit equilibrium method for rock slope stability analysis by using the Generalized Hoek–Brown criterion
  publication-title: Int. J. Rock Mech. Min. Sci.
– start-page: 161
  year: 2014
  end-page: 166
  ident: bb0130
  article-title: Correlation of direct and indirect tensile tests for use in the Hoek-Brown constant mi
  publication-title: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses-Alejano, Perucho, Olalla and Jiménez (Eds)
– year: 2012
  ident: bb0030
  article-title: Blast damage factor D. Technical note for RocNews
– volume: 38
  start-page: 546
  year: 2011
  end-page: 558
  ident: bb0080
  article-title: Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion
  publication-title: Comput. Geotech.
– volume: 35
  start-page: 2803
  year: 2017
  end-page: 2816
  ident: bb0115
  article-title: Alternative quantification of the Geological Strength Index chart for jointed rocks
  publication-title: Geotech. Geol. Eng.
– volume: 214
  start-page: 94
  year: 2016
  end-page: 106
  ident: bb0160
  article-title: Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique
  publication-title: Eng. Geol.
– year: 2002
  ident: bb0060
  article-title: Hoek-Brown failure criterion
  publication-title: Proceedings of NARMS-TAC 2002, Mining Innovation and Technology, Toronto, Ont
– volume: 45
  start-page: 689
  year: 2008
  end-page: 700
  ident: bb0070
  article-title: Stability charts for rock slopes based on the Hoek-Brown failure criterion
  publication-title: Int. J. Rock Mech. Min. Sci.
– start-page: 133
  year: 1986
  end-page: 140
  ident: bb0110
  article-title: Production blasting and slope stability
  publication-title: Proceedings of the International Symposium on Geotechnical Stability in Surface Mining
– volume: 69
  start-page: 13
  year: 2010
  end-page: 27
  ident: bb0165
  article-title: Excavatability assessment of rock masses using the Geological Strength Index (GSI)
  publication-title: Bull. Eng. Geol. Environ.
– volume: 218
  start-page: 187
  year: 2017
  end-page: 196
  ident: bb0120
  article-title: Determination of confinement and plastic strain dependent post-peak strength of intact rocks
  publication-title: Eng. Geol.
– start-page: 59
  year: 2000
  ident: 10.1016/j.enggeo.2018.09.021_bb0055
  article-title: Rock mass properties for surface mines. Slope stability in surface mining
– volume: 2
  start-page: 131
  issue: 2
  year: 2016
  ident: 10.1016/j.enggeo.2018.09.021_bb0175
  article-title: Analysing the modified Hoek-Brown failure criteria using Hungarian granitic rocks
  publication-title: Geomech. Geophys. Geo-Energ. Geo-Resour.
  doi: 10.1007/s40948-016-0021-7
– volume: 218
  start-page: 187
  year: 2017
  ident: 10.1016/j.enggeo.2018.09.021_bb0120
  article-title: Determination of confinement and plastic strain dependent post-peak strength of intact rocks
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.01.018
– volume: 209
  start-page: 196
  year: 2016
  ident: 10.1016/j.enggeo.2018.09.021_bb0065
  article-title: A chart-based seismic stability analysis method for rock slopes using Hoek-Brown failure criterion
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.05.015
– year: 2002
  ident: 10.1016/j.enggeo.2018.09.021_bb0060
  article-title: Hoek-Brown failure criterion
– start-page: 169
  year: 2010
  ident: 10.1016/j.enggeo.2018.09.021_bb0135
  article-title: A simple approximation to estimate the Hoek-Brown parameter mi for intact rocks
– volume: 127
  start-page: 27
  year: 2012
  ident: 10.1016/j.enggeo.2018.09.021_bb0140
  article-title: An improved method of fitting experimental data to the Hoek-Brown failure criterion
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.12.011
– start-page: 31
  year: 1988
  ident: 10.1016/j.enggeo.2018.09.021_bb0035
  article-title: The Hoek-Brown failure criterion - a 1988 update
– ident: 10.1016/j.enggeo.2018.09.021_bb0030
– volume: 10
  start-page: 257
  issue: 3
  year: 2016
  ident: 10.1016/j.enggeo.2018.09.021_bb0180
  article-title: Charts for estimating rock mass shear strength parameters
  publication-title: Geomech. Eng.
  doi: 10.12989/gae.2016.10.3.257
– volume: 7
  start-page: 361
  issue: 4
  year: 2015
  ident: 10.1016/j.enggeo.2018.09.021_bb0195
  article-title: A theoretical derivation of the Hoek-Brown failure criterion for rock materials
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2015.03.008
– year: 2009
  ident: 10.1016/j.enggeo.2018.09.021_bb0020
– volume: 214
  start-page: 94
  year: 2016
  ident: 10.1016/j.enggeo.2018.09.021_bb0160
  article-title: Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.09.017
– volume: 64
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.enggeo.2018.09.021_bb0095
  article-title: The geological strength index: applications and limitations
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-004-0270-5
– volume: 89
  start-page: 176
  year: 2016
  ident: 10.1016/j.enggeo.2018.09.021_bb0015
  article-title: Limit equilibrium method for rock slope stability analysis by using the Generalized Hoek–Brown criterion
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2016.09.007
– volume: 36
  start-page: 135
  issue: 1
  year: 2009
  ident: 10.1016/j.enggeo.2018.09.021_bb0075
  article-title: Seismic rock slope stability charts based on limit analysis methods
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2008.01.004
– volume: 136
  start-page: 583
  issue: 4
  year: 2010
  ident: 10.1016/j.enggeo.2018.09.021_bb0105
  article-title: Limit analysis and stability charts for 3D slope failures
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)GT.1943-5606.0000251
– volume: 51
  start-page: 164
  issue: 2
  year: 2014
  ident: 10.1016/j.enggeo.2018.09.021_bb0150
  article-title: Three-dimensional numerical analysis for rock slope stability using shear strength reduction method
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2013-0191
– volume: 91
  start-page: 232
  issue: 2
  year: 2018
  ident: 10.1016/j.enggeo.2018.09.021_bb0190
  article-title: Numerical modelling of steep slopes in open rock quarries
  publication-title: J. Geol. Soc. India
  doi: 10.1007/s12594-018-0841-x
– volume: 140
  start-page: 971
  issue: 6
  year: 2014
  ident: 10.1016/j.enggeo.2018.09.021_bb0145
  article-title: Simplified method for estimating the Hoek-Brown constant for intact rocks
  publication-title: J. Geotech. Geoenviron.
  doi: 10.1061/(ASCE)GT.1943-5606.0001116
– volume: 69
  start-page: 13
  issue: 1
  year: 2010
  ident: 10.1016/j.enggeo.2018.09.021_bb0165
  article-title: Excavatability assessment of rock masses using the Geological Strength Index (GSI)
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-009-0235-9
– volume: 96
  start-page: 47
  year: 2017
  ident: 10.1016/j.enggeo.2018.09.021_bb0100
  article-title: Incorporation of non-associative flow rules into rock slope stability analysis
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2017.04.010
– volume: 43
  start-page: 203
  issue: 2
  year: 2006
  ident: 10.1016/j.enggeo.2018.09.021_bb0050
  article-title: Empirical estimation of rock mass modulus
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2005.06.005
– volume: 38
  start-page: 546
  issue: 4
  year: 2011
  ident: 10.1016/j.enggeo.2018.09.021_bb0080
  article-title: Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2011.03.003
– volume: 64
  start-page: 210
  issue: 6
  year: 2013
  ident: 10.1016/j.enggeo.2018.09.021_bb0155
  article-title: Chart-based slope stability assessment using the Generalized Hoek-Brown criterion
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2013.09.002
– volume: 81
  start-page: 155
  year: 2017
  ident: 10.1016/j.enggeo.2018.09.021_bb0125
  article-title: Parametric studies of disturbed rock slope stability based on finite element limit analysis method
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2016.08.012
– volume: 45
  start-page: 689
  issue: 5
  year: 2008
  ident: 10.1016/j.enggeo.2018.09.021_bb0070
  article-title: Stability charts for rock slopes based on the Hoek-Brown failure criterion
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2007.08.010
– year: 2018
  ident: 10.1016/j.enggeo.2018.09.021_bb0045
  article-title: The Hoek-Brown failure criterion and GSI - 2018 edition
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2018.08.001
– start-page: 161
  year: 2014
  ident: 10.1016/j.enggeo.2018.09.021_bb0130
  article-title: Correlation of direct and indirect tensile tests for use in the Hoek-Brown constant mi
– year: 2018
  ident: 10.1016/j.enggeo.2018.09.021_bb0090
  article-title: Maintaining geological reality in application of GSI for design of engineering structures in rock
  publication-title: Eng. Geol.
– volume: 35
  start-page: 2803
  issue: 6
  year: 2017
  ident: 10.1016/j.enggeo.2018.09.021_bb0115
  article-title: Alternative quantification of the Geological Strength Index chart for jointed rocks
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-017-0279-8
– volume: 202
  start-page: 24
  year: 2016
  ident: 10.1016/j.enggeo.2018.09.021_bb0005
  article-title: Comparison of quantified and chart GSI for four rock masses
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.01.002
– year: 2007
  ident: 10.1016/j.enggeo.2018.09.021_bb0025
  article-title: Rock mass properties
– volume: 224
  start-page: 87
  year: 2017
  ident: 10.1016/j.enggeo.2018.09.021_bb0185
  article-title: Comparison of existing methods and a new tensile strength based model in estimating the Hoek-Brown constant mi for intact rocks
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.05.008
– start-page: 133
  year: 1986
  ident: 10.1016/j.enggeo.2018.09.021_bb0110
  article-title: Production blasting and slope stability
– volume: 41
  start-page: 3
  issue: 1
  year: 2004
  ident: 10.1016/j.enggeo.2018.09.021_bb0010
  article-title: Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/S1365-1609(03)00025-X
– year: 2017
  ident: 10.1016/j.enggeo.2018.09.021_bb0085
– volume: 34
  start-page: 1165
  issue: 8
  year: 1997
  ident: 10.1016/j.enggeo.2018.09.021_bb0040
  article-title: Practical estimates of rock mass strength
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/S1365-1609(97)80069-X
SSID ssj0013007
Score 2.4273627
Snippet The selection of the blast damage zone thickness T for the Hoek-Brown (HB) criterion is significant in open pit slope design and stability analysis....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Blast damage factor
Blast damage zone thickness
engineering
geometry
Hoek-Brown criterion
Stability charts
Weighting factor
Title The effects of blast damage zone thickness on rock slope stability
URI https://dx.doi.org/10.1016/j.enggeo.2018.09.021
https://www.proquest.com/docview/2189523372
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GBG81i1N0y3HORxTcScHu4VkTcbcbIfbDnrwb_e9tPULRPBSaJuU8PL6e7-Q93sh5MLy2CUslkGYSFigaMMCLYUNkshqFDpq4avr3w_i_jC6HYlRhXRLLQymVRbYn2O6R-viSaOwZmMxnaLGl_GWFBjjUTHpFexRC7388o197iQ0c8k0nmKArUv5nM_xsulk4iWArO2rnYbst_D0A6h99OntkO2CNtJOPrJdUrHpHtn6Ukxwn1zBjNMiPYNmjhrgxSua6CdADPqapZZiavsMoY1mKYXANaPLebawFAiiT5F9OSDD3vVDtx8UJyQEGgLPKhCSYelFCdyT6RDYhDEGNUExN2PHnJCCa9EcJwDIsbEidk2hE94WThugTTrkh6SawgCOCNUxvNHOxpE0kYRrgnVluNTGRcJJVyO8NIwaF-XD8RSLuSrzxB5Vbk6F5lRNqcCcNRJ89Frk5TP-aN8qba6-uYEChP-j53k5RQr-ENz20KnN1ksFDgLzznkrPP7310_IJt6hCDFsn5Lq6nltz4CNrEzdu1udbHRu7vqDd4kX3lM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQHNoeqq4qXV2p1wgSxwEfKWoVynICiZtlExtRaIIKHNqv70yWblKF1EsOcRxFY-fNszzvmZA7wwIbuYFwvEjAAkVp11GCGyfyjUKho-Kpu35_EIQj_2nMxyXSLrQwWFaZY3-G6Sla53dqeTRry9kMNb4uawiOOR4Vk7AEqqA7FS-TSqvTDQdfmwn1TDWNBxlgh0JBl5Z5mXg6TVWAbjM1PPXcvzLUL6xOE9DjAdnPmSNtZR93SEomPiJ73_wEj8k9DDrNKzRoYqkGarymkXoB0KDvSWwoVrfPEd1oElPIXXO6WiRLQ4EjplWybydk9PgwbIdOfkiCoyD3rB0uXHRfFEA_XeUBodBaoywoYHpiXcsFZ4rXJxFgcqAND2ydq4g1uVUamJPy2Ckpx_ABZ4SqAFqUNYEvtC_gGqG1DBNKW59bYauEFYGRk9xBHA-yWMiiVOxZZuGUGE5ZFxLCWSXOZ69l5qCx5flGEXP5YyZIAPktPW-LIZLwk-DOh4pNsllJmCMw7ow1vPN_v_2G7ITDfk_2OoPuBdnFFtQkes1LUl6_bswVkJO1vs4n3wcyluEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+blast+damage+zone+thickness+on+rock+slope+stability&rft.jtitle=Engineering+geology&rft.au=Zheng%2C+Huihui&rft.au=Li%2C+Tianbin&rft.au=Shen%2C+Jiayi&rft.au=Xu%2C+Chaoshui&rft.date=2018-11-28&rft.issn=0013-7952&rft.volume=246+p.19-27&rft.spage=19&rft.epage=27&rft_id=info:doi/10.1016%2Fj.enggeo.2018.09.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon