Dynamic analysis of field-scale rockslides based on three-dimensional discontinuous smoothed particle hydrodynamics: A case study of Tangjiashan rockslide
To improve the understanding of the dynamic disastrous process of field-scale rockslides, a novel numerical approach, Three-dimensional Discontinuous Smoothed Particle Hydrodynamics (3DSPH), was originally developed. This method comprehensively captures sequential stages of crack initiation and prop...
Saved in:
Published in | Engineering geology Vol. 336; p. 107558 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the understanding of the dynamic disastrous process of field-scale rockslides, a novel numerical approach, Three-dimensional Discontinuous Smoothed Particle Hydrodynamics (3DSPH), was originally developed. This method comprehensively captures sequential stages of crack initiation and propagation, formation of contacts, frictional slip, catastrophic slides of rock masses, and final deposition, which was verified by three benchmark tests including the bouncing test of rigid balls, block sliding test and unconfined compression test of layered rock specimens. The approach was subsequently employed in the case of the Tangjiashan rockslide blocking valley event with particular attention paid to the influence of layered rock structure on the sliding and deposition processes. Field survey, geomorphological analysis and laboratory test of rock specimens were conducted to determine fundamental geological conditions and parameters required by the numerical simulation. Finally, 3D rockslide simulations with different rock layer thickness and strength subject to seismicity were conducted. The duration of the actual Tangjiashan rockslide's valley-blocking event (approximately 60 s) and the deposition area derived from the numerical simulation closely align with the field investigation. The rockslide mode is characterized by an ‘en masse’ motion with a peak sliding velocity of approximately 35–37 m/s. This single numerical code systematically elucidated the authentic attributes of the sliding process of large-scale rockslides, and realistically captured the characteristics of preservation of layered features within the sliding mass and ‘high-speed and short-distance’ movements with fluidization. These insights offer a fresh perspective for understanding the dynamics of large-scale rockslides with complex geological structures and subsequent accumulation processes.
•A hybrid continuous and discontinuous method, 3DSPH, was originally developed for simulating rockslides.•3D modeling of Tangjiashan rockslide was implemented with particular attention paid to the effect of layered structure.•3DSPH realistically captured the characteristics of preservation of layered features within the sliding mass. |
---|---|
AbstractList | To improve the understanding of the dynamic disastrous process of field-scale rockslides, a novel numerical approach, Three-dimensional Discontinuous Smoothed Particle Hydrodynamics (3DSPH), was originally developed. This method comprehensively captures sequential stages of crack initiation and propagation, formation of contacts, frictional slip, catastrophic slides of rock masses, and final deposition, which was verified by three benchmark tests including the bouncing test of rigid balls, block sliding test and unconfined compression test of layered rock specimens. The approach was subsequently employed in the case of the Tangjiashan rockslide blocking valley event with particular attention paid to the influence of layered rock structure on the sliding and deposition processes. Field survey, geomorphological analysis and laboratory test of rock specimens were conducted to determine fundamental geological conditions and parameters required by the numerical simulation. Finally, 3D rockslide simulations with different rock layer thickness and strength subject to seismicity were conducted. The duration of the actual Tangjiashan rockslide's valley-blocking event (approximately 60 s) and the deposition area derived from the numerical simulation closely align with the field investigation. The rockslide mode is characterized by an ‘en masse’ motion with a peak sliding velocity of approximately 35–37 m/s. This single numerical code systematically elucidated the authentic attributes of the sliding process of large-scale rockslides, and realistically captured the characteristics of preservation of layered features within the sliding mass and ‘high-speed and short-distance’ movements with fluidization. These insights offer a fresh perspective for understanding the dynamics of large-scale rockslides with complex geological structures and subsequent accumulation processes.
•A hybrid continuous and discontinuous method, 3DSPH, was originally developed for simulating rockslides.•3D modeling of Tangjiashan rockslide was implemented with particular attention paid to the effect of layered structure.•3DSPH realistically captured the characteristics of preservation of layered features within the sliding mass. To improve the understanding of the dynamic disastrous process of field-scale rockslides, a novel numerical approach, Three-dimensional Discontinuous Smoothed Particle Hydrodynamics (3DSPH), was originally developed. This method comprehensively captures sequential stages of crack initiation and propagation, formation of contacts, frictional slip, catastrophic slides of rock masses, and final deposition, which was verified by three benchmark tests including the bouncing test of rigid balls, block sliding test and unconfined compression test of layered rock specimens. The approach was subsequently employed in the case of the Tangjiashan rockslide blocking valley event with particular attention paid to the influence of layered rock structure on the sliding and deposition processes. Field survey, geomorphological analysis and laboratory test of rock specimens were conducted to determine fundamental geological conditions and parameters required by the numerical simulation. Finally, 3D rockslide simulations with different rock layer thickness and strength subject to seismicity were conducted. The duration of the actual Tangjiashan rockslide's valley-blocking event (approximately 60 s) and the deposition area derived from the numerical simulation closely align with the field investigation. The rockslide mode is characterized by an ‘en masse’ motion with a peak sliding velocity of approximately 35–37 m/s. This single numerical code systematically elucidated the authentic attributes of the sliding process of large-scale rockslides, and realistically captured the characteristics of preservation of layered features within the sliding mass and ‘high-speed and short-distance’ movements with fluidization. These insights offer a fresh perspective for understanding the dynamics of large-scale rockslides with complex geological structures and subsequent accumulation processes. |
ArticleNumber | 107558 |
Author | Shi, Zhenming Li, Bo Liu, Maomao Xue, Jianfeng Xia, Chengzhi Yu, Songbo |
Author_xml | – sequence: 1 givenname: Chengzhi surname: Xia fullname: Xia, Chengzhi – sequence: 2 givenname: Zhenming surname: Shi fullname: Shi, Zhenming – sequence: 3 givenname: Maomao surname: Liu fullname: Liu, Maomao – sequence: 4 givenname: Bo surname: Li fullname: Li, Bo email: libotj@tongji.edu.cn – sequence: 5 givenname: Songbo surname: Yu fullname: Yu, Songbo – sequence: 6 givenname: Jianfeng surname: Xue fullname: Xue, Jianfeng |
BookMark | eNqFUU2LFDEQDbKCs6v_wEOOXnpM0ul09x6EZV0_YMHLeg6ZpDKTsTsZUxmh_4q_1gwtCB70VFTxPqj3rslVTBEIec3ZljOu3h63EPd7SFvBhKynvuuGZ2TDh140auT9FdkwxtumHzvxglwjHi8rY_2G_Hy_RDMHS00004IBafLUB5hcg9ZMQHOy33AKDpDuDIKjKdJyyACNCzNEDKkSqQtoUywhntMZKc4plUPFnkwuwVaVw-JycqsV3tI7aqsWxXJ2y8XwycT9MRg8mPjH8CV57s2E8Or3vCFfPzw83X9qHr98_Hx_99iYVonSyNF2_Y4p5QVrhRSwk53pWwXSm6ETXMlhbEc5tMpz29dI_CA879gIju-YNe0NebPqnnL6fgYseq7fwDSZCPUb3QqmBO-kYhUqV6jNCTGD16ccZpMXzZm-VKGPeq1CX6rQaxWVdvsXzYZiSo2uZBOm_5HfrWSoGfwIkDXaANGCCxls0S6Ffwv8AuYprC0 |
CitedBy_id | crossref_primary_10_3390_app15063078 crossref_primary_10_3390_buildings14103140 crossref_primary_10_1016_j_sedgeo_2025_106825 |
Cites_doi | 10.1016/j.ijrmms.2020.104570 10.1007/s00603-021-02753-z 10.1016/j.ijimpeng.2014.08.018 10.1016/j.ijimpeng.2013.03.006 10.1007/s00603-023-03377-1 10.1016/j.enggeo.2022.106949 10.1016/j.enggeo.2015.05.021 10.1007/s10346-023-02147-y 10.1016/j.enggeo.2013.01.020 10.1016/0148-9062(85)92327-7 10.1006/jcph.2000.6439 10.1016/j.jrmge.2023.11.011 10.1007/s10346-021-01837-9 10.1080/10618562.2017.1422731 10.1007/s00603-019-02031-z 10.1038/s41598-020-78503-y 10.1007/s10346-021-01682-w 10.1007/s10346-019-01282-9 10.1007/s10346-009-0179-y 10.1016/j.jfluidstructs.2019.02.002 10.1007/s11440-020-01063-y 10.1016/j.ijrmms.2023.105571 10.1016/j.enggeo.2023.107003 10.1016/j.enggeo.2010.05.009 10.1007/s40571-015-0073-4 10.1016/j.compgeo.2021.104315 10.1007/s00603-014-0657-y 10.1080/15502287.2014.882436 10.1016/j.enggeo.2015.04.005 10.1016/j.enggeo.2011.12.002 10.1007/s10064-016-0876-4 10.1016/j.geomorph.2012.04.021 10.1016/j.enggeo.2014.03.018 10.1016/j.ijimpeng.2019.103387 10.1002/nag.2748 10.1016/j.ijrmms.2022.105170 10.1080/19475705.2023.2232081 10.1007/s12517-013-0885-6 10.1016/j.enggeo.2022.106762 10.1002/nag.3199 10.1007/s10704-012-9801-4 10.1016/j.coastaleng.2017.03.003 10.1002/nag.3070 10.1142/S0219876211002563 10.1007/s00603-017-1204-4 10.1016/S0045-7825(01)00254-7 10.1016/j.enggeo.2020.105788 10.1016/j.enggeo.2021.106282 10.1016/j.ijmecsci.2019.05.003 10.1016/j.enggeo.2013.10.022 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.enggeo.2024.107558 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6917 |
ExternalDocumentID | 10_1016_j_enggeo_2024_107558 S0013795224001583 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SET SEW SPC SPCBC SSE SSZ T5K TN5 VH1 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION EFKBS SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a362t-49c57b066f203242eb45a736e4fa85216489394836f1c7872f82f1509ed1b0ca3 |
IEDL.DBID | .~1 |
ISSN | 0013-7952 |
IngestDate | Fri Jul 11 17:15:50 EDT 2025 Thu Apr 24 22:59:26 EDT 2025 Mon Jul 14 08:40:30 EDT 2025 Sat Jun 29 15:30:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Layered rock mass Particle domain searching Tangjiashan rockslide Discontinuous smoothed particle hydrodynamics Accumulation Fragmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-49c57b066f203242eb45a736e4fa85216489394836f1c7872f82f1509ed1b0ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3206215460 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3206215460 crossref_primary_10_1016_j_enggeo_2024_107558 crossref_citationtrail_10_1016_j_enggeo_2024_107558 elsevier_sciencedirect_doi_10_1016_j_enggeo_2024_107558 |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Engineering geology |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Zhao, Qian (bb0305) 2015; 192 Pramanik, Deb (bb0200) 2015; 48 Bolla, Paronuzzi (bb0035) 2020; 53 De Vuyst, Vignjevic (bb0100) 2013; 180 Haddad, Pastor, Palacios, Muñoz-Salinas (bb0130) 2010; 114 Xia, Shi, Li, Zheng, Liu (bb0255) 2022; 47 Sakong, Woo, Kim (bb0215) 2019; 134 Bui, Fukagawa, Sako, Wells (bb0050) 2009 Gray, Monaghan, Swift (bb0125) 2001; 190 Huang, Dai (bb0140) 2014; 168 Bao, Huang, Liu, Zeng (bb0015) 2020; 17 Dai, Huang, Cheng, Xu (bb0095) 2014; 180 Li, Chen, Guo, Gao, Peng, Yu (bb0165) 2022; 157 Zhu, Wei, Wang, Zhang, Wu, Wang, Yang (bb0310) 2021; 40 Gili, Ruiz-Carulla, Matas, Moya, Prades, Corominas, Lantada, Núñez-Andrés, Buill, Puig, Martínez-Bofill, Saló, Mavrouli (bb0120) 2022; 19 Bao, Chen, Su, Zhang, Zhan (bb0020) 2023; 312 Xu, Fan, Huang, Yin, Hou, Dong, Tang (bb0275) 2010; 7 Chakraborty, Shaw (bb0065) 2013; 58 Paronuzzi, Bolla (bb0190) 2012; 169-170 Wang, Zheng, Zhuang, Lü (bb0245) 2023; 56 Zhan, Peng, Zhang, Wu (bb0290) 2019; 86 He, Qi, Zhan, Guo, Li, Zheng, Huang, Zou, Yang, Liang (bb0135) 2021; 18 Bui, Sako, Fukagawa, Wells (bb0045) 2008 Xu, Xu, Liu, Xu (bib311) 2021; 293 Islam, Peng (bb0150) 2019; 157-158 Franklin (bb0115) 1985; 22 Sheikh, Qiu, Ahmadipur (bb0225) 2021; 16 Zhan, Peng, Zhang, Wu (bb0295) 2020; 44 Conte, Pugliese, Troncone (bb0085) 2020; 277 Cui, Hu, Yin, Xu, Zhang (bb0090) 2010; 29 Pramanik, Pan, Jones, Albaiz, Williams, Douillet-Grellier, Pourpak (bb0205) 2017 Alneasan, Behnia (bb0005) 2021; 137 Behnia, Goshtasbi, Marji, Golshani (bb0025) 2014; 7 Xu, Xu, Wang (bb0280) 2013; 157 Franci, Cremonesi, Perego, Crosta, Oñate (bb0110) 2020; 279 Yu, Ren, Zhang, Sun (bb0285) 2022; 55 Bui, Kodikara, Pathegama, Bouazza, Haque (bb0060) 2013; 2013 Li, Gong, Tang, Zou, Bowa, Juang (bb0160) 2021; 45 Shaw, Reid, Roy, Chakraborty (bb0220) 2015; 75 Huang, Wang, Zhao (bb0145) 2017; 123 Monaghan (bb0180) 2000; 159 Tang, Yong, Ez Eldin (bb0235) 2017; 76 Xiong, Yin, Cui, Luo, Li, Li (bb0270) 2023; 14 Bi, Zhou (bb0030) 2017; 50 Xia, Shi, Li (bb0265) 2024; 21 Chakraborty, Shaw (bb0070) 2014 Bui, Sako, Fukagawa, Nguyen (bb0055) 2011 Chen, Che, Wang (bb0075) 2023; 314 Amicarelli, Kocak, Sibilla, Grabe (bb0010) 2017; 31 Mao, Zhao, Liu, Shao (bb0175) 2020; 49 Xia, Shi, Li, Liu (bb0260) 2023 Shi, Guan, Peng, Zhang, Zhu, Cai (bb0230) 2015; 193 Müller (bb0185) 1964; 2 Cleary, Pereira, Lemiale, Piane, Clennell (bb0080) 2016; 3 Wu, Yang, Ma, Lu, Li (bb0250) 2011; 8 Qi, He, Zhan (bb0210) 2022; 306 Pastor, Yague, Stickle, Manzanal, Mira (bb0195) 2018; 42 Zhao, Liu, Mao, Shao, Li (bb0300) 2020; 17 Bui, Nguyen (bb0040) 2021; 138 Douillet-Grellier, Pramanik, Pan, Albaiz, Jones, Pourpak (bb0105) 2016 Lenti, Martino (bb0155) 2012; 126 Liu, Han, Xiao, Wang (bb0170) 2020; 10 Wang, Gong, Tang, Yang (bb0240) 2023; 171 Pastor (10.1016/j.enggeo.2024.107558_bb0195) 2018; 42 Zhu (10.1016/j.enggeo.2024.107558_bb0310) 2021; 40 Shi (10.1016/j.enggeo.2024.107558_bb0230) 2015; 193 Bui (10.1016/j.enggeo.2024.107558_bb0045) 2008 Xu (10.1016/j.enggeo.2024.107558_bb0280) 2013; 157 Chen (10.1016/j.enggeo.2024.107558_bb0075) 2023; 314 Huang (10.1016/j.enggeo.2024.107558_bb0140) 2014; 168 Cleary (10.1016/j.enggeo.2024.107558_bb0080) 2016; 3 Amicarelli (10.1016/j.enggeo.2024.107558_bb0010) 2017; 31 Monaghan (10.1016/j.enggeo.2024.107558_bb0180) 2000; 159 Li (10.1016/j.enggeo.2024.107558_bb0165) 2022; 157 Qi (10.1016/j.enggeo.2024.107558_bb0210) 2022; 306 Sheikh (10.1016/j.enggeo.2024.107558_bb0225) 2021; 16 Bui (10.1016/j.enggeo.2024.107558_bb0060) 2013; 2013 Cui (10.1016/j.enggeo.2024.107558_bb0090) 2010; 29 Huang (10.1016/j.enggeo.2024.107558_bb0145) 2017; 123 Tang (10.1016/j.enggeo.2024.107558_bb0235) 2017; 76 Chakraborty (10.1016/j.enggeo.2024.107558_bb0070) 2014 Sakong (10.1016/j.enggeo.2024.107558_bb0215) 2019; 134 Yu (10.1016/j.enggeo.2024.107558_bb0285) 2022; 55 Haddad (10.1016/j.enggeo.2024.107558_bb0130) 2010; 114 Lenti (10.1016/j.enggeo.2024.107558_bb0155) 2012; 126 Müller (10.1016/j.enggeo.2024.107558_bb0185) 1964; 2 Pramanik (10.1016/j.enggeo.2024.107558_bb0200) 2015; 48 Conte (10.1016/j.enggeo.2024.107558_bb0085) 2020; 277 Bolla (10.1016/j.enggeo.2024.107558_bb0035) 2020; 53 Xia (10.1016/j.enggeo.2024.107558_bb0255) 2022; 47 Dai (10.1016/j.enggeo.2024.107558_bb0095) 2014; 180 Gili (10.1016/j.enggeo.2024.107558_bb0120) 2022; 19 Wu (10.1016/j.enggeo.2024.107558_bb0250) 2011; 8 Xu (10.1016/j.enggeo.2024.107558_bib311) 2021; 293 Zhou (10.1016/j.enggeo.2024.107558_bb0305) 2015; 192 Paronuzzi (10.1016/j.enggeo.2024.107558_bb0190) 2012; 169-170 Bui (10.1016/j.enggeo.2024.107558_bb0050) 2009 Xia (10.1016/j.enggeo.2024.107558_bb0265) 2024; 21 Mao (10.1016/j.enggeo.2024.107558_bb0175) 2020; 49 Shaw (10.1016/j.enggeo.2024.107558_bb0220) 2015; 75 Wang (10.1016/j.enggeo.2024.107558_bb0240) 2023; 171 Xiong (10.1016/j.enggeo.2024.107558_bb0270) 2023; 14 Liu (10.1016/j.enggeo.2024.107558_bb0170) 2020; 10 Xia (10.1016/j.enggeo.2024.107558_bb0260) 2023 Douillet-Grellier (10.1016/j.enggeo.2024.107558_bb0105) 2016 Gray (10.1016/j.enggeo.2024.107558_bb0125) 2001; 190 Zhan (10.1016/j.enggeo.2024.107558_bb0295) 2020; 44 Xu (10.1016/j.enggeo.2024.107558_bb0275) 2010; 7 Bi (10.1016/j.enggeo.2024.107558_bb0030) 2017; 50 Pramanik (10.1016/j.enggeo.2024.107558_bb0205) 2017 De Vuyst (10.1016/j.enggeo.2024.107558_bb0100) 2013; 180 Bao (10.1016/j.enggeo.2024.107558_bb0015) 2020; 17 Zhan (10.1016/j.enggeo.2024.107558_bb0290) 2019; 86 He (10.1016/j.enggeo.2024.107558_bb0135) 2021; 18 Bui (10.1016/j.enggeo.2024.107558_bb0055) 2011 Bui (10.1016/j.enggeo.2024.107558_bb0040) 2021; 138 Li (10.1016/j.enggeo.2024.107558_bb0160) 2021; 45 Alneasan (10.1016/j.enggeo.2024.107558_bb0005) 2021; 137 Wang (10.1016/j.enggeo.2024.107558_bb0245) 2023; 56 Zhao (10.1016/j.enggeo.2024.107558_bb0300) 2020; 17 Franklin (10.1016/j.enggeo.2024.107558_bb0115) 1985; 22 Behnia (10.1016/j.enggeo.2024.107558_bb0025) 2014; 7 Bao (10.1016/j.enggeo.2024.107558_bb0020) 2023; 312 Islam (10.1016/j.enggeo.2024.107558_bb0150) 2019; 157-158 Franci (10.1016/j.enggeo.2024.107558_bb0110) 2020; 279 Chakraborty (10.1016/j.enggeo.2024.107558_bb0065) 2013; 58 |
References_xml | – volume: 126 start-page: 19 year: 2012 end-page: 36 ident: bb0155 article-title: The interaction of seismic waves with step-like slopes and its influence on landslide movements publication-title: Eng. Geol. – volume: 180 start-page: 21 year: 2014 end-page: 33 ident: bb0095 article-title: 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake publication-title: Eng. Geol. – volume: 86 start-page: 329 year: 2019 end-page: 353 ident: bb0290 article-title: A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction publication-title: J. Fluids Struct. – volume: 47 start-page: 4469 year: 2022 end-page: 4483 ident: bb0255 article-title: Verification and application of an improved smooth particle hydrodynamics method for a rock slope under seismic conditions publication-title: Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Sci. J. China Univ. Geosci. – volume: 50 start-page: 1833 year: 2017 end-page: 1849 ident: bb0030 article-title: A Novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics publication-title: Rock Mech. Rock. Eng. – volume: 190 start-page: 6641 year: 2001 end-page: 6662 ident: bb0125 article-title: SPH elastic dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 312 year: 2023 ident: bb0020 article-title: A novel numerical approach for rock slide blocking river based on the CEFDEM model: a case study from the Samaoding paleolandslide blocking river event publication-title: Eng. Geol. – volume: 29 start-page: 319 year: 2010 end-page: 327 ident: bb0090 article-title: Discrete element analysis of collapsing and sliding response of slope triggered by time difference coupling effects of P and S seismic waves - taking Tangjiashan landslide in beichuan county for example publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mechan. Eng. – volume: 55 start-page: 1633 year: 2022 end-page: 1648 ident: bb0285 article-title: An improved form of SPH method for simulating the thermo-mechanical-damage coupling problems and its applications publication-title: Rock Mech. Rock. Eng. – volume: 134 year: 2019 ident: bb0215 article-title: Determination of impact fragments from particle analysis via smoothed particle hydrodynamics and k-means clustering publication-title: Int. J. Impact Eng. – volume: 75 start-page: 268 year: 2015 end-page: 278 ident: bb0220 article-title: Beyond classical dynamic structural plasticity using mesh-free modelling techniques publication-title: Int. J. Impact Eng. – volume: 180 start-page: 53 year: 2013 end-page: 70 ident: bb0100 article-title: Total Lagrangian SPH modelling of necking and fracture in electromagnetically driven rings publication-title: Int. J. Fract. – volume: 157-158 start-page: 498 year: 2019 end-page: 511 ident: bb0150 article-title: A Total Lagrangian SPH method for modelling damage and failure in solids publication-title: Int. J. Mech. Sci. – volume: 3 start-page: 179 year: 2016 end-page: 199 ident: bb0080 article-title: Multiscale model for predicting shear zone structure and permeability in deforming rock publication-title: Comput. Part. Mech. – start-page: 116 year: 2011 end-page: 123 ident: bb0055 article-title: An investigation of riverbank failure due to water level change using two-phase fl ow SPH model publication-title: Computer Methods for Geomechanics: Frontiers and New Applications – volume: 10 year: 2020 ident: bb0170 article-title: Failure mechanism of TRSS mode in landslides induced by earthquake publication-title: Sci. Rep. – volume: 16 start-page: 2389 year: 2021 end-page: 2408 ident: bb0225 article-title: Comparison of SPH boundary approaches in simulating frictional soil-structure interaction publication-title: Acta Geotech. – volume: 114 start-page: 312 year: 2010 end-page: 329 ident: bb0130 article-title: A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): sensitivity analysis and runout simulation publication-title: Eng. Geol. – volume: 21 start-page: 197 year: 2024 end-page: 216 ident: bb0265 article-title: A revisit of disaster process of Vajont rockslide using a coupled discontinuous smooth particle hydrodynamics (CDSPH) method publication-title: Landslides – volume: 157 year: 2022 ident: bb0165 article-title: Slope stability and post-failure analysis of soil-rock-mixture using the modified 2D DDA-SPH method publication-title: Int. J. Rock Mech. Min. Sci. – volume: 137 year: 2021 ident: bb0005 article-title: An experimental investigation on tensile fracturing of brittle rocks by considering the effect of grain size and mineralogical composition publication-title: Int. J. Rock Mech. Min. Sci. – volume: 159 start-page: 290 year: 2000 end-page: 311 ident: bb0180 article-title: SPH without a Tensile Instability publication-title: J. Comput. Phys. – volume: 76 start-page: 839 year: 2017 end-page: 853 ident: bb0235 article-title: Stability analysis of stratified rock slopes with spatially variable strength parameters: the case of Qianjiangping landslide publication-title: Bull. Eng. Geol. Environ. – start-page: 1289 year: 2017 end-page: 1296 ident: bb0205 article-title: Numerical simulation of fracture propagation in layered rock publication-title: 51st US Rock Mechanics / Geomechanics Symposium 2017 – volume: 293 start-page: 106282 year: 2021 ident: bib311 article-title: A novel parameter inversion method for an improved DEM simulation of a river damming process by a large-scale landslide publication-title: Eng. Geol. – volume: 19 start-page: 1009 year: 2022 end-page: 1029 ident: bb0120 article-title: Rockfalls: analysis of the block fragmentation through field experiments publication-title: Landslides – volume: 169-170 start-page: 165 year: 2012 end-page: 191 ident: bb0190 article-title: The prehistoric Vajont rockslide: an updated geological model publication-title: Geomorphology – volume: 171 year: 2023 ident: bb0240 article-title: Size effect and lateral pressure effect on the mechanical resistance of columnar jointed basalt publication-title: Int. J. Rock Mech. Min. Sci. – volume: 40 start-page: 739 year: 2021 end-page: 750 ident: bb0310 article-title: Research on deformation characteristics and instability mechanisms of large monoclinal layered bedrock landslides: a case study of the Longjing landslide in Shizhu county, Chongqing publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mechan. Eng. – volume: 17 year: 2020 ident: bb0015 article-title: Sph simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive Model. Part II: Solid-liquid-like phase transition and flow-like landslides publication-title: Int. J. Comp. Methods – volume: 193 start-page: 445 year: 2015 end-page: 458 ident: bb0230 article-title: Cascading breaching of the Tangjiashan landslide dam and two smaller downstream landslide dams publication-title: Eng. Geol. – volume: 192 start-page: 139 year: 2015 end-page: 153 ident: bb0305 article-title: A novel meshless numerical method for modeling progressive failure processes of slopes publication-title: Eng. Geol. – start-page: 294 year: 2014 end-page: 301 ident: bb0070 article-title: Crack propagation in bi-material system via pseudo-spring Smoothed Particle Hydrodynamics publication-title: Int. J. Comp. Methods Eng. Sci. Mechan. – volume: 22 start-page: 51 year: 1985 end-page: 60 ident: bb0115 article-title: Suggested method for determining point load strength publication-title: Int. J. Rock Mech. Min. Sci. – volume: 157 start-page: 8 year: 2013 end-page: 20 ident: bb0280 article-title: The mechanism of high-speed motion and damming of the Tangjiashan landslide publication-title: Eng. Geol. – volume: 49 start-page: 1094 year: 2020 end-page: 1100 ident: bb0175 article-title: Numerical simulation of landslides with the three-dimensional distance potential discrete element method publication-title: Zhongguo Kuangye Daxue Xuebao/J. China Univ. Min. Technol. – volume: 53 start-page: 2279 year: 2020 end-page: 2300 ident: bb0035 article-title: Numerical investigation of the pre-collapse behavior and internal damage of an unstable rock slope publication-title: Rock Mech. Rock. Eng. – volume: 168 start-page: 86 year: 2014 end-page: 97 ident: bb0140 article-title: Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method publication-title: Eng. Geol. – volume: 138 year: 2021 ident: bb0040 article-title: Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media publication-title: Comput. Geotech. – volume: 279 year: 2020 ident: bb0110 article-title: 3D simulation of Vajont disaster. Part 1: Numerical formulation and validation publication-title: Eng. Geol. – start-page: 575 year: 2009 end-page: 578 ident: bb0050 article-title: Numerical Simulation of Granular Materials Based on Smoothed Particle Hydrodynamics (SPH) – start-page: 570 year: 2008 end-page: 578 ident: bb0045 article-title: SPH-based numerical simulations for large deformation of geomaterial considering soil-structure interaction publication-title: 12th International Conference on Computer Methods and Advances in Geomechanics 2008 – volume: 58 start-page: 84 year: 2013 end-page: 95 ident: bb0065 article-title: A pseudo-spring based fracture model for SPH simulation of impact dynamics publication-title: Int. J. Impact Eng. – volume: 123 start-page: 52 year: 2017 end-page: 61 ident: bb0145 article-title: Impulse waves in reservoirs generated by landslides into shallow water publication-title: Coast. Eng. – volume: 31 start-page: 413 year: 2017 end-page: 434 ident: bb0010 article-title: A 3D smoothed particle hydrodynamics model for erosional dam-break floods publication-title: Int. J. Comp. Fluid Dynam. – volume: 2013 start-page: 687 year: 2013 end-page: 690 ident: bb0060 article-title: Large deformation and post-failure simulations of segmental retaining walls using mesh-free method (SPH) publication-title: 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics – volume: 44 start-page: 1446 year: 2020 end-page: 1471 ident: bb0295 article-title: A SPH framework for dynamic interaction between soil and rigid body system with hybrid contact method publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 17 start-page: 361 year: 2020 end-page: 377 ident: bb0300 article-title: Three-dimensional distance potential discrete element method for the numerical simulation of landslides publication-title: Landslides – volume: 2 start-page: 148 year: 1964 end-page: 212 ident: bb0185 article-title: The rock slide in the Vajont Valley publication-title: Rock Mechan. Eng. Geol. – volume: 314 year: 2023 ident: bb0075 article-title: Cumulative damage evolution rule of rock slope based on shaking table test using VMD-HT publication-title: Eng. Geol. – volume: 8 start-page: 229 year: 2011 end-page: 245 ident: bb0250 article-title: Study on the formation mechanism of Tangjiashan landslide triggered by Wenchuan earthquake using DDA simulation publication-title: Int. J. Comp. Methods – year: 2023 ident: bb0260 article-title: A discontinuous smooth particle hydrodynamics method for modeling deformation and failure processes of fractured rocks publication-title: J. Rock Mech. Geotech. Eng. – volume: 18 start-page: 2835 year: 2021 end-page: 2853 ident: bb0135 article-title: Seismic response characteristics and deformation evolution of the bedding rock slope using a large-scale shaking table publication-title: Landslides – volume: 45 start-page: 1120 year: 2021 end-page: 1138 ident: bb0160 article-title: Probabilistic analysis of a discrete element modelling of the runout behavior of the Jiweishan landslide publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 277 year: 2020 ident: bb0085 article-title: Post-failure analysis of the Maierato landslide using the material point method publication-title: Eng. Geol. – volume: 306 year: 2022 ident: bb0210 article-title: A single surface slope effects on seismic response based on shaking table test and numerical simulation publication-title: Eng. Geol. – volume: 56 start-page: 5885 year: 2023 end-page: 5902 ident: bb0245 article-title: A method for estimating the mechanical parameters of the laminae of laminated rocks based on uniaxial compression and tensile tests publication-title: Rock Mech. Rock. Eng. – volume: 42 start-page: 418 year: 2018 end-page: 448 ident: bb0195 article-title: A two-phase SPH model for debris flow propagation publication-title: Int. J. Numer. Anal. Methods Geomech. – year: 2016 ident: bb0105 article-title: Williams JR (2016) Mesh-free numerical simulation of pressure-driven fractures in brittle rocks publication-title: Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference – volume: 7 start-page: 2729 year: 2014 end-page: 2737 ident: bb0025 article-title: Numerical simulation of crack propagation in layered formations publication-title: Arab. J. Geosci. – volume: 48 start-page: 1683 year: 2015 end-page: 1698 ident: bb0200 article-title: Implementation of smoothed particle hydrodynamics for detonation of explosive with application to rock fragmentation publication-title: Rock Mech. Rock. Eng. – volume: 14 year: 2023 ident: bb0270 article-title: Damage features and dynamic formation mechanism of the Tangjiashan landslide triggered by the Wenchuan earthquake with a composite hypocenter publication-title: Geomat. Nat. Hazards Risk – volume: 7 start-page: 75 year: 2010 end-page: 87 ident: bb0275 article-title: A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes publication-title: Landslides – volume: 137 year: 2021 ident: 10.1016/j.enggeo.2024.107558_bb0005 article-title: An experimental investigation on tensile fracturing of brittle rocks by considering the effect of grain size and mineralogical composition publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2020.104570 – volume: 55 start-page: 1633 issue: 3 year: 2022 ident: 10.1016/j.enggeo.2024.107558_bb0285 article-title: An improved form of SPH method for simulating the thermo-mechanical-damage coupling problems and its applications publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-021-02753-z – volume: 75 start-page: 268 year: 2015 ident: 10.1016/j.enggeo.2024.107558_bb0220 article-title: Beyond classical dynamic structural plasticity using mesh-free modelling techniques publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2014.08.018 – volume: 58 start-page: 84 year: 2013 ident: 10.1016/j.enggeo.2024.107558_bb0065 article-title: A pseudo-spring based fracture model for SPH simulation of impact dynamics publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2013.03.006 – volume: 56 start-page: 5885 issue: 8 year: 2023 ident: 10.1016/j.enggeo.2024.107558_bb0245 article-title: A method for estimating the mechanical parameters of the laminae of laminated rocks based on uniaxial compression and tensile tests publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-023-03377-1 – volume: 312 year: 2023 ident: 10.1016/j.enggeo.2024.107558_bb0020 article-title: A novel numerical approach for rock slide blocking river based on the CEFDEM model: a case study from the Samaoding paleolandslide blocking river event publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106949 – volume: 193 start-page: 445 year: 2015 ident: 10.1016/j.enggeo.2024.107558_bb0230 article-title: Cascading breaching of the Tangjiashan landslide dam and two smaller downstream landslide dams publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.05.021 – volume: 21 start-page: 197 issue: 1 year: 2024 ident: 10.1016/j.enggeo.2024.107558_bb0265 article-title: A revisit of disaster process of Vajont rockslide using a coupled discontinuous smooth particle hydrodynamics (CDSPH) method publication-title: Landslides doi: 10.1007/s10346-023-02147-y – volume: 157 start-page: 8 year: 2013 ident: 10.1016/j.enggeo.2024.107558_bb0280 article-title: The mechanism of high-speed motion and damming of the Tangjiashan landslide publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2013.01.020 – volume: 22 start-page: 51 issue: 2 year: 1985 ident: 10.1016/j.enggeo.2024.107558_bb0115 article-title: Suggested method for determining point load strength publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/0148-9062(85)92327-7 – volume: 279 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0110 article-title: 3D simulation of Vajont disaster. Part 1: Numerical formulation and validation publication-title: Eng. Geol. – volume: 159 start-page: 290 issue: 2 year: 2000 ident: 10.1016/j.enggeo.2024.107558_bb0180 article-title: SPH without a Tensile Instability publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6439 – year: 2023 ident: 10.1016/j.enggeo.2024.107558_bb0260 article-title: A discontinuous smooth particle hydrodynamics method for modeling deformation and failure processes of fractured rocks publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2023.11.011 – volume: 19 start-page: 1009 issue: 5 year: 2022 ident: 10.1016/j.enggeo.2024.107558_bb0120 article-title: Rockfalls: analysis of the block fragmentation through field experiments publication-title: Landslides doi: 10.1007/s10346-021-01837-9 – volume: 31 start-page: 413 issue: 10 year: 2017 ident: 10.1016/j.enggeo.2024.107558_bb0010 article-title: A 3D smoothed particle hydrodynamics model for erosional dam-break floods publication-title: Int. J. Comp. Fluid Dynam. doi: 10.1080/10618562.2017.1422731 – volume: 53 start-page: 2279 issue: 5 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0035 article-title: Numerical investigation of the pre-collapse behavior and internal damage of an unstable rock slope publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-019-02031-z – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0170 article-title: Failure mechanism of TRSS mode in landslides induced by earthquake publication-title: Sci. Rep. doi: 10.1038/s41598-020-78503-y – volume: 17 issue: 4 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0015 article-title: Sph simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive Model. Part II: Solid-liquid-like phase transition and flow-like landslides publication-title: Int. J. Comp. Methods – volume: 18 start-page: 2835 issue: 8 year: 2021 ident: 10.1016/j.enggeo.2024.107558_bb0135 article-title: Seismic response characteristics and deformation evolution of the bedding rock slope using a large-scale shaking table publication-title: Landslides doi: 10.1007/s10346-021-01682-w – volume: 17 start-page: 361 issue: 2 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0300 article-title: Three-dimensional distance potential discrete element method for the numerical simulation of landslides publication-title: Landslides doi: 10.1007/s10346-019-01282-9 – volume: 7 start-page: 75 issue: 1 year: 2010 ident: 10.1016/j.enggeo.2024.107558_bb0275 article-title: A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes publication-title: Landslides doi: 10.1007/s10346-009-0179-y – volume: 86 start-page: 329 year: 2019 ident: 10.1016/j.enggeo.2024.107558_bb0290 article-title: A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.02.002 – volume: 16 start-page: 2389 issue: 8 year: 2021 ident: 10.1016/j.enggeo.2024.107558_bb0225 article-title: Comparison of SPH boundary approaches in simulating frictional soil-structure interaction publication-title: Acta Geotech. doi: 10.1007/s11440-020-01063-y – volume: 171 year: 2023 ident: 10.1016/j.enggeo.2024.107558_bb0240 article-title: Size effect and lateral pressure effect on the mechanical resistance of columnar jointed basalt publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2023.105571 – volume: 314 year: 2023 ident: 10.1016/j.enggeo.2024.107558_bb0075 article-title: Cumulative damage evolution rule of rock slope based on shaking table test using VMD-HT publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2023.107003 – volume: 114 start-page: 312 issue: 3–4 year: 2010 ident: 10.1016/j.enggeo.2024.107558_bb0130 article-title: A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): sensitivity analysis and runout simulation publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2010.05.009 – start-page: 575 year: 2009 ident: 10.1016/j.enggeo.2024.107558_bb0050 – volume: 3 start-page: 179 issue: 2 year: 2016 ident: 10.1016/j.enggeo.2024.107558_bb0080 article-title: Multiscale model for predicting shear zone structure and permeability in deforming rock publication-title: Comput. Part. Mech. doi: 10.1007/s40571-015-0073-4 – volume: 138 year: 2021 ident: 10.1016/j.enggeo.2024.107558_bb0040 article-title: Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2021.104315 – volume: 48 start-page: 1683 issue: 4 year: 2015 ident: 10.1016/j.enggeo.2024.107558_bb0200 article-title: Implementation of smoothed particle hydrodynamics for detonation of explosive with application to rock fragmentation publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-014-0657-y – start-page: 294 year: 2014 ident: 10.1016/j.enggeo.2024.107558_bb0070 article-title: Crack propagation in bi-material system via pseudo-spring Smoothed Particle Hydrodynamics publication-title: Int. J. Comp. Methods Eng. Sci. Mechan. doi: 10.1080/15502287.2014.882436 – start-page: 1289 year: 2017 ident: 10.1016/j.enggeo.2024.107558_bb0205 article-title: Numerical simulation of fracture propagation in layered rock – volume: 49 start-page: 1094 issue: 6 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0175 article-title: Numerical simulation of landslides with the three-dimensional distance potential discrete element method publication-title: Zhongguo Kuangye Daxue Xuebao/J. China Univ. Min. Technol. – volume: 192 start-page: 139 year: 2015 ident: 10.1016/j.enggeo.2024.107558_bb0305 article-title: A novel meshless numerical method for modeling progressive failure processes of slopes publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.04.005 – volume: 126 start-page: 19 year: 2012 ident: 10.1016/j.enggeo.2024.107558_bb0155 article-title: The interaction of seismic waves with step-like slopes and its influence on landslide movements publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.12.002 – volume: 76 start-page: 839 issue: 3 year: 2017 ident: 10.1016/j.enggeo.2024.107558_bb0235 article-title: Stability analysis of stratified rock slopes with spatially variable strength parameters: the case of Qianjiangping landslide publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-016-0876-4 – volume: 169-170 start-page: 165 year: 2012 ident: 10.1016/j.enggeo.2024.107558_bb0190 article-title: The prehistoric Vajont rockslide: an updated geological model publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.04.021 – start-page: 116 year: 2011 ident: 10.1016/j.enggeo.2024.107558_bb0055 article-title: An investigation of riverbank failure due to water level change using two-phase fl ow SPH model – volume: 29 start-page: 319 issue: 2 year: 2010 ident: 10.1016/j.enggeo.2024.107558_bb0090 article-title: Discrete element analysis of collapsing and sliding response of slope triggered by time difference coupling effects of P and S seismic waves - taking Tangjiashan landslide in beichuan county for example publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mechan. Eng. – volume: 180 start-page: 21 year: 2014 ident: 10.1016/j.enggeo.2024.107558_bb0095 article-title: 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.03.018 – volume: 47 start-page: 4469 issue: 12 year: 2022 ident: 10.1016/j.enggeo.2024.107558_bb0255 article-title: Verification and application of an improved smooth particle hydrodynamics method for a rock slope under seismic conditions publication-title: Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Sci. J. China Univ. Geosci. – volume: 134 year: 2019 ident: 10.1016/j.enggeo.2024.107558_bb0215 article-title: Determination of impact fragments from particle analysis via smoothed particle hydrodynamics and k-means clustering publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2019.103387 – volume: 42 start-page: 418 issue: 3 year: 2018 ident: 10.1016/j.enggeo.2024.107558_bb0195 article-title: A two-phase SPH model for debris flow propagation publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.2748 – start-page: 570 year: 2008 ident: 10.1016/j.enggeo.2024.107558_bb0045 article-title: SPH-based numerical simulations for large deformation of geomaterial considering soil-structure interaction – volume: 157 year: 2022 ident: 10.1016/j.enggeo.2024.107558_bb0165 article-title: Slope stability and post-failure analysis of soil-rock-mixture using the modified 2D DDA-SPH method publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2022.105170 – volume: 14 issue: 1 year: 2023 ident: 10.1016/j.enggeo.2024.107558_bb0270 article-title: Damage features and dynamic formation mechanism of the Tangjiashan landslide triggered by the Wenchuan earthquake with a composite hypocenter publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2023.2232081 – volume: 2013 start-page: 687 year: 2013 ident: 10.1016/j.enggeo.2024.107558_bb0060 article-title: Large deformation and post-failure simulations of segmental retaining walls using mesh-free method (SPH) – volume: 7 start-page: 2729 issue: 7 year: 2014 ident: 10.1016/j.enggeo.2024.107558_bb0025 article-title: Numerical simulation of crack propagation in layered formations publication-title: Arab. J. Geosci. doi: 10.1007/s12517-013-0885-6 – volume: 306 year: 2022 ident: 10.1016/j.enggeo.2024.107558_bb0210 article-title: A single surface slope effects on seismic response based on shaking table test and numerical simulation publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106762 – volume: 2 start-page: 148 issue: 3–4 year: 1964 ident: 10.1016/j.enggeo.2024.107558_bb0185 article-title: The rock slide in the Vajont Valley publication-title: Rock Mechan. Eng. Geol. – volume: 45 start-page: 1120 year: 2021 ident: 10.1016/j.enggeo.2024.107558_bb0160 article-title: Probabilistic analysis of a discrete element modelling of the runout behavior of the Jiweishan landslide publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.3199 – volume: 180 start-page: 53 issue: 1 year: 2013 ident: 10.1016/j.enggeo.2024.107558_bb0100 article-title: Total Lagrangian SPH modelling of necking and fracture in electromagnetically driven rings publication-title: Int. J. Fract. doi: 10.1007/s10704-012-9801-4 – volume: 123 start-page: 52 year: 2017 ident: 10.1016/j.enggeo.2024.107558_bb0145 article-title: Impulse waves in reservoirs generated by landslides into shallow water publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2017.03.003 – volume: 44 start-page: 1446 issue: 10 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0295 article-title: A SPH framework for dynamic interaction between soil and rigid body system with hybrid contact method publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.3070 – volume: 8 start-page: 229 issue: 2 year: 2011 ident: 10.1016/j.enggeo.2024.107558_bb0250 article-title: Study on the formation mechanism of Tangjiashan landslide triggered by Wenchuan earthquake using DDA simulation publication-title: Int. J. Comp. Methods doi: 10.1142/S0219876211002563 – volume: 50 start-page: 1833 issue: 7 year: 2017 ident: 10.1016/j.enggeo.2024.107558_bb0030 article-title: A Novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-017-1204-4 – volume: 190 start-page: 6641 issue: 49 year: 2001 ident: 10.1016/j.enggeo.2024.107558_bb0125 article-title: SPH elastic dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00254-7 – year: 2016 ident: 10.1016/j.enggeo.2024.107558_bb0105 article-title: Williams JR (2016) Mesh-free numerical simulation of pressure-driven fractures in brittle rocks – volume: 277 year: 2020 ident: 10.1016/j.enggeo.2024.107558_bb0085 article-title: Post-failure analysis of the Maierato landslide using the material point method publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105788 – volume: 293 start-page: 106282 issue: 6 year: 2021 ident: 10.1016/j.enggeo.2024.107558_bib311 article-title: A novel parameter inversion method for an improved DEM simulation of a river damming process by a large-scale landslide publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2021.106282 – volume: 157-158 start-page: 498 year: 2019 ident: 10.1016/j.enggeo.2024.107558_bb0150 article-title: A Total Lagrangian SPH method for modelling damage and failure in solids publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.05.003 – volume: 168 start-page: 86 year: 2014 ident: 10.1016/j.enggeo.2024.107558_bb0140 article-title: Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2013.10.022 – volume: 40 start-page: 739 issue: 4 year: 2021 ident: 10.1016/j.enggeo.2024.107558_bb0310 article-title: Research on deformation characteristics and instability mechanisms of large monoclinal layered bedrock landslides: a case study of the Longjing landslide in Shizhu county, Chongqing publication-title: Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mechan. Eng. |
SSID | ssj0013007 |
Score | 2.4374075 |
Snippet | To improve the understanding of the dynamic disastrous process of field-scale rockslides, a novel numerical approach, Three-dimensional Discontinuous Smoothed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107558 |
SubjectTerms | Accumulation case studies Discontinuous smoothed particle hydrodynamics Fragmentation geomorphology hydrodynamics laboratory experimentation Layered rock mass mathematical models Particle domain searching rockfalls surveys Tangjiashan rockslide |
Title | Dynamic analysis of field-scale rockslides based on three-dimensional discontinuous smoothed particle hydrodynamics: A case study of Tangjiashan rockslide |
URI | https://dx.doi.org/10.1016/j.enggeo.2024.107558 https://www.proquest.com/docview/3206215460 |
Volume | 336 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXOCAWMUuI3ENzWJn4VaxqIDgBFJvlhNP2rIkFWkPXPgQvpaZOGETUiWkXOJ4iTz2zLM884axI08gzABpnMSHyBFGAG4pg6dW8LWPBgXClG50b27D3r246sv-HDttY2HIrbLR_Van19q6Kek0s9kZj0YU4-sFUSJrL0hPxsT4KUREq_z4zfu6SXBtyDRlMaDabfhc7eMFxWBQhwD6AosiSYnf_zZPvxR1bX0uVthyAxt51_7ZKpuDYo0tfSMTXGfvZza5PNcNzwgvc147qDkVCgI4mqpHRJUGKk62y_Cy4BMUJTiGKP4tPQenMN2S0kdMy2nFq-eSQrQMHzeTwoevBnWuHao64V2eYV-8ZqmlAe90MXgY6Wqoi68BN9j9xfndac9pMi84Gg3axBFJJqMU0UhOCdaFD6mQOgpCELmO0eCHRFmTiDgIcy_DLe_nsZ8jtEzAeKmb6WCTzRdlAVuMpzJJdSIAP0kEf1kcg8SjsKbHTTPYZkE74SpraMkpO8aTav3PHpQVkyIxKSumbeZ8thpbWo4Z9aNWlurH8lJoOWa0PGxFr3Dn0XWKLgAloALfDREwidDd-Xfvu2yR3qz_7x6bn7xMYR9RziQ9qJfxAVvoXl73bj8Aj_3-nQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFeUhyqtGgmNo4th5IHGoKNWWPk5bqTfjxJPtFkhWZFdVL_0h_Rv8QWbihLYIqRJSpZzysCN_9nxjeWY-gLeRIjcDtQtyiWmgnEJaUo52rSitJELBpOAT3f2DZHSovhzpoyX4NeTCcFhlb_u9Te-sdX9nox_Njdl0yjm-UZzmuouCjHQ2KFjv4tkp7dvajztbBPI7Kbc_jz-Ngl5aILBkseeBykudFkS3FSuIK4mF0jaNE1SVzYjREq7JkqssTqqopDktq0xW5Dvl6KIiLG1M7d6Bu4rMBcsmvD-PLo8uQp-jzbIJ_HtDvl4XVIb1ZNLlHEpFt1LNSvP_5sO_mKGju-2HsNL7qWLTD8UqLGH9CB5cqV74GC62vJq9sH1hE9FUoouIC1pCHgVx4zdyYx22gsnSiaYWc5o7GDjWFPD1QATnBTesV7FoFq1ofzScE-bErEdBHJ85MvK-q_aD2BQltSW6srjc4djWk5OpbY9tfdnhEzi8FTyewnLd1PgMRKHzwuYK6ZEmb7PMMtS097Z8hUWJaxAPA27Kvg46y3F8N0PA24nxMBmGyXiY1iD489XM1wG54f10wNJcm8-GqOqGL98M0Bta6nx-Y2skBEwsw4Q8NJWEz_-79XW4Nxrv75m9nYPdF3Cfn_jg45ewPP-5wFfkYs2L192UFvD1ttfQb915N-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+analysis+of+field-scale+rockslides+based+on+three-dimensional+discontinuous+smoothed+particle+hydrodynamics%3A+A+case+study+of+Tangjiashan+rockslide&rft.jtitle=Engineering+geology&rft.au=Xia%2C+Chengzhi&rft.au=Shi%2C+Zhenming&rft.au=Liu%2C+Maomao&rft.au=Li%2C+Bo&rft.date=2024-07-01&rft.issn=0013-7952&rft.volume=336+p.107558-&rft_id=info:doi/10.1016%2Fj.enggeo.2024.107558&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon |